函数极限的十种求法
求极限的12种方法总结及例题
求极限的12种方法总结及例题求极限的12种方法总结及例题1. 引言在数学学习中,求极限是一个重要的概念,也是许多数学题解的基础。
在学习求极限的过程中,有许多不同的方法可以帮助我们理解和解决问题。
本文将总结12种方法,帮助我们更全面地理解求极限的概念,并提供相应的例题进行演示。
2. 利用极限的定义我们可以利用极限的定义来求解问题。
根据定义,当x趋向于a时,函数f(x)的极限为L,即对于任意的正数ε,总存在正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε。
利用这个定义,可以求得一些简单的极限,如lim(x→0) sinx/x=1。
3. 利用夹逼准则夹逼准则是求极限常用的方法之一。
当我们无法直接求出某个函数的极限时,可以利用夹逼准则来找到该函数的极限值。
要求lim(x→0) xsin(1/x)的极限,可以通过夹逼准则来解决。
4. 利用极限的四则运算极限的四则运算法则是求解复杂函数极限的基本方法之一。
利用这个法则,我们可以将复杂的函数分解成简单的部分,再进行求解。
要求lim(x→0) (3x^2+2x-1)/(x+1),可以利用极限的四则运算法则来求解。
5. 利用洛必达法则当我们遇到不定型的极限时,可以利用洛必达法则来求解。
洛必达法则可以帮助我们求出不定型极限的值,例如0/0、∞/∞、0*∞等形式。
通过洛必达法则,我们可以将求解不定型极限的过程转化为求解导数的问题,从而得到极限的值。
6. 利用泰勒展开泰勒展开是求解复杂函数极限的有效方法之一。
当我们遇到无法直接求解的函数极限时,可以利用泰勒展开将其转化为无穷级数的形式,然后再进行求解。
通过泰勒展开,我们可以将复杂函数近似为一个多项式,从而求得函数的极限值。
7. 利用换元法换元法是求解复杂函数极限的常用方法之一。
通过适当的变量替换,可以将复杂的函数转化为简单的形式,然后再进行求解。
对于lim(x→∞) (1+1/x)^x,可以通过换元法将其转化为e的极限形式来求解。
函数极限的十种求法
函数极限的十种求法信科2班江星雨20140202250 函数极限可以分成而运用ε-δ定义更多的见诸于已知极限值的证明题中。
掌握这类证明对初学者深刻理解运用极限定义大有裨益。
以的极限为例,f(x) 在点以A为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数,使得当x满足不等式时,对应的f(x)函数值都满足不等式:,那么常数A就叫做函数f(x)当x→x。
时的极限。
1.利用极限的四则运算法则:极限四则运算法则的条件是充分而非必要的,因此,利用极限四则运算法则求函数极限时,必须对所给的函数逐一进行验证它是否满足极限四则运算法则条件,满足条件者。
方能利用极限四则运算法则进行求之。
不满足条件者,不能直接利用极限四则运算法则求之。
但是,井非不满足极限四则运算法则条件的函数就没有极限,而是需将函数进行恒等变形,使其符合条件后,再利用极限四则运算法则求之。
而对函数进行恒等变形时,通常运用一些技巧如拆项、分子分母同时约去零因子、分子分母有理化、通分、变量替换等等。
例 1求lim( x 2 − 3x + 5).x→ 2解:lim( x 2 − 3x + 5) = lim x 2 − lim 3x + lim 5= (lim x) 2 − 3 lim x + lim 5= 2 2 − 3 ⋅ 2 + 5 = 3.x→2 x →2 x →2 x →2 x →2 x →2 x →22.利用洛必达法则洛必达(L 'Hopital)法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法.简单讲就是,在求一个含分式的函数的极限时,分别对分子和分母求导,在求极限,和原函数的极限是一样的。
一般用在求导后为零比零或无穷比无穷的类型。
利用洛必达求极限应注意以下几点:设函数f(x)和F(x)满足下列条件:(1)x→a时,lim f(x)=0,lim F(x)=0;(2)在点a的某去心邻域内f(x)与F(x)都可导,且F(x)的导数不等于0;(3)x→a时,lim(f'(x)/F'(x))存在或为无穷大则x→a时,lim(f(x)/F(x))=lim(f'(x)/F'(x))例1:1-cosx = 1-{1-2[sin(x/2)]^2} = 2[sin(x/2)]^2xsinx = 2xsin(x/2)cos(x/2)原式= lim 2[sin(x/2)]^2 / [2xsin(x/2)cos(x/2)] = tgx / x对分子分母同时求导(洛必达法则)(tgx)' = 1 / (cosx)^2(x)' = 1原式= lim 1/(cosx)^2当x --> 0 时,cosx ---> 1原式= 13.利用两个重要极限:应用第一重要极限时,必须同时满足两个条件:①分子、分母为无穷小,即极限为0 ;②分子上取正弦的角必须与分母一样。
16种求极限的方法
16种求极限的方法在微积分中,求极限是一项重要的技巧和方法,用于研究函数在其中一点或趋于其中一点时的行为。
求极限的方法有很多种,下面将介绍16种常见的求极限方法。
1.代入法:将待求极限中的变量替换成极限点处的值,如果代入后得到一个有界的数或者可数收敛,则该极限存在。
2.四则运算法则:利用加法、减法、乘法和除法的性质进行极限运算。
例如,如果两个函数的极限都存在,则它们的和、差、积以及商(除数非零)的极限均存在。
3.夹逼定理:如果两个函数在其中一点附近夹住一个函数,并且夹住的函数的极限存在,则被夹住的函数的极限也存在,并且等于夹住的函数的极限。
4.极限的唯一性:如果存在一个数L是函数f在其中一点的极限,那么该极限是唯一的。
5.极限的有界性:如果函数f在其中一点的极限存在,则函数f在该点附近必定有界。
反之,如果函数f在其中一点附近有界,那么该点处的极限必定存在。
6.无穷小量和无穷大量:无穷小量是指当自变量趋于其中一点时,函数值趋近于零的量,无穷大量是指当自变量趋于其中一点时,函数值趋近于无穷的量。
利用无穷小量和无穷大量的性质,可以简化极限的求解过程。
7. 根式求极限:使用L'Hopital法则来解决根式的极限问题,即将根式转化为分式,再求导数。
8.多项式求极限:将多项式的极限转化为无穷小量的极限,利用低阶无穷小量和高阶无穷小量的性质进行极限计算。
9.取对数法:将函数取对数后,利用对数的性质进行极限计算。
10.换元法:通过进行合适的变量替换,将待求极限转化为更容易求解的形式。
11.不等式运算法:通过使用不等式的性质,对函数进行合理的估计,从而求解极限。
12.导数法则:利用导数的性质,对函数进行极限计算。
例如,利用导数的定义和求导法则可以方便地求解一些函数的极限。
13.递推法:对于一些递归定义的数列或函数,可以通过递推法求解其极限。
14.泰勒展开法:利用函数对应点附近的泰勒展开式,将函数的极限转化为级数的极限,进而求解极限。
求极限的13种方法
求极限的13种方法求极限的方法有很多种,以下列举了常见的13种方法和技巧,以帮助解决各种极限问题。
1.代入法:将极限中的变量代入表达式中,简化计算。
这通常适用于简单的多项式函数。
2.夹逼定理:当一个函数夹在两个趋向于相同极限的函数之间时,函数的极限也趋向于相同的值。
3.式子分解:通过将复杂的函数分解成更简单的部分,可以更容易地计算极限。
4.求导法则:使用导数的性质和规则来计算函数的极限。
这适用于涉及导数的函数。
5.递归关系:如果一个函数的递归关系式成立,可以使用递归关系来计算函数的极限。
6.级数展开:将函数展开成无穷级数的形式,可以使用级数的性质来计算函数的极限。
7.泰勒级数:对于可微的函数,可以通过使用泰勒级数来近似计算函数的极限。
8. 洛必达法则:如果一个函数的极限形式是$\frac{0}{0}$或$\frac{\infty}{\infty}$,可以使用洛必达法则来计算极限。
该法则涉及对分子分母同时求导的操作。
9.极限存在性证明:通过证明一个函数在一些点上的左极限和右极限存在且相等,可以证明函数在该点上的极限存在。
10.收敛性证明:对于一个序列极限,可以通过证明序列是有界且单调递增或单调递减的来证明其极限存在。
11.极限值的判断:根据函数的性质,可以判断函数在一些点上的极限是多少。
12.替换法:通过将变量替换为一个新的变量,可以使函数更容易计算极限。
13.反证法:通过假设极限不存在或不等于一些特定值,来推导出矛盾的结论,从而证明极限存在或等于一些特定值。
这些方法并非完整的极限求解技巧列表,但是它们是最常见和基本的方法。
在实际问题中,可能需要结合使用多种方法来求解复杂的极限。
求函数极限的方法与技巧
求函数极限的方法与技巧函数极限是微积分中的重要概念,在解决实际问题和进行理论推导时经常需要用到。
在计算函数极限时,常常使用一些方法和技巧可以简化计算过程。
下面将介绍一些常用的函数极限计算方法和技巧。
一、代数运算法则1. 乘积运算法则:如果lim(x->a)f(x)=A,lim(x->a)g(x)=B,则lim(x->a)[f(x)g(x)]=AB。
2. 商运算法则:如果lim(x->a)f(x)=A,lim(x->a)g(x)=B且B≠0,则lim(x->a)[f(x)/g(x)]=A/B。
3. 加法运算法则:如果lim(x->a)f(x)=A,lim(x->a)g(x)=B,则lim(x->a)[f(x)+g(x)]=A+B。
4. 减法运算法则:如果lim(x->a)f(x)=A,lim(x->a)g(x)=B,则lim(x->a)[f(x)-g(x)]=A-B。
以上的代数运算法则可以简化函数极限的计算过程,通过运用这些法则可以将一个复杂的函数极限问题转化为多个简单的函数极限问题。
二、夹逼准则夹逼准则也是常用的一种函数极限计算方法。
如果存在函数g(x)和h(x),使得对于x 在a的某个去心邻域内,有g(x)≤f(x)≤h(x),并且lim(x->a)g(x)=lim(x->a)h(x)=L,则lim(x->a)f(x)=L。
夹逼准则利用了三个函数之间的大小关系,将复杂的函数极限问题转化为两个较为简单的函数极限问题。
三、分子有理化和分母有理化在计算函数极限时,有时候分子或分母不是有理式,而是含有根号、分数等形式。
这时可以利用分子有理化和分母有理化的方法将其化简为有理式,再进行运算。
当计算lim(x->0)(sinx/x)时,可以将其改写为lim(x->0)(sinx)/(x/x)的形式,然后再利用等式lim(x->0)(sinx)/x=1来计算极限。
求函数极限的方法和技巧
求函数极限的方法和技巧函数极限是微积分中的重要概念,它是描述函数在其中一点或在无穷远处的趋势的一种方法。
通过研究函数极限,我们可以了解函数的性质,进而解决各类数学问题。
在求解函数极限时,以下是一些常用的方法和技巧:1.代入法:对于简单的函数,我们可以尝试直接代入特定的值来求解极限。
这种方法常用于多项式函数、指数函数、对数函数和三角函数等。
2. 夹逼定理:夹逼定理是使用一个比较函数来夹住(或夹逼)所要求极限的方法。
例如,当我们需要求解 sin(x)/x 的极限x→0 时,可以使用夹逼定理将其夹住为 1/x,再求解这个极限。
3.分数化简:对于含有复杂分数形式的极限,可以尝试将其化简为更简单的形式。
常见的技巧有:分子有理化、通分、差化积等。
4.极限的性质:极限满足一些基本运算性质,如加法、减法、乘法和除法。
通过运用这些性质,我们可以将一个复杂的极限问题化简为多个简单的极限求解。
5.无穷小量与无穷大量:无穷小量和无穷大量是极限中常见的概念。
无穷小量是指在一些点附近很小的变化量,无穷大量是指在一些点附近趋向无穷大的变化量。
运用无穷小量和无穷大量的概念可以帮助我们求解一些复杂的极限。
6.洛必达法则:洛必达法则是一种求解极限的常用方法。
对于一些特定类型的不定型极限问题,可以使用洛必达法则将其化简为一个更简单的形式。
洛必达法则主要适用于求解0/0或∞/∞形式的极限值。
7.泰勒展开:泰勒展开是一种求函数极限的有力工具。
它可以将一个复杂的函数展开成无穷级数,通过截取有限项,可以近似计算函数的极限。
泰勒展开常用于求解幂函数、指数函数和三角函数等的极限。
8. 重要极限:在求解函数极限时,有一些重要的极限我们需要记住,如lim(x→∞) (1+1/x)^x = e,lim(x→0) (sin(x)/x) = 1,lim(x→0) (1-cos(x))/x = 0等。
熟记这些重要极限可以提高求解极限问题的效率。
总之,求解函数极限需要根据具体情况选择合适的方法和技巧。
极限的求法
极限的求法摘要: 极限论作为数学分析的基础,一直是高等数学教育中的一个核心部分,本文主要介绍一些求极限的方法,主要目的是在了解了什么是极限的基础上系统地探讨各类极限问题的求解方法.由于极限分布于高等数学的始终,许多重要的概念都是由极限定义的。
反过来,我们也可以利用这些概念来求一些极限。
本文整理的极限运算方法有如下十种:1、用极限的定义求极限。
2、四则运算求极限。
3、利用两个重要极限求极限。
4、利用函数的连续性求极限。
5利用单调有界定理求极限。
6、利用无穷小量的有关性质求极限。
7、用左右极限与极限关系求极限。
8、利用罗比塔法则求极限。
9、利用麦克劳林公式求极限。
10、利用泰勒公式求极限 关键词: 极限 四则运算 罗比塔法则The General Method in Calculating LimitTu yue(Department of Mathematics Bohai University Liaoning Jinzhou 121000 China)Abstract : Limit as a mathematical analysis on the basis of the math education has always been one of the core of this paper mainly introduces some way to limit, the main goal is to know what is a limit on the basis of a systematic way to limit the problem of methods of solution. owing to the limit in mathematics, many important concepts are defined by the end. in turn, we can also use of these concepts to find some limit. this limits the methods of operation there are ten kinds of :1, with a limit to the definition of extreme. 2 and to limit the operation. three, the use of two important to the maximum limit. 4, the use of relese the continuity to limit the use of flat. five have to define truth to the limit. 6 and the nature of infinity 小量 to limit. 7, with maximum limit relations with or to limit. 8, the use of 罗比塔法 is to limit. 9, the use of the work of the formula for the extreme. 10, using taylor's formula for maximumKey wrods: Limit the operation The operation of the four L ’Hospital引 言极限问题在我国古代就有着深渊的研究。
函数极限的十种求法
函数极限的十种求法函数极限是高等数学中的一个重要概念,在数学分析、微积分、实变函数、复变函数等领域均有应用。
函数极限的求法有很多种,以下将介绍其中的十种方法。
一、代数方法利用现有函数的代数性质,根据极限的定义求解。
例如,对于函数 f(x)=2x+1-x,当 x 趋近于 1 时,有:lim f(x) = lim (2x+1-x) = lim x+1 = 2x→1 x→1 x→1 x→1二、夹逼定理夹逼定理也称为夹逼准则或夹逼定律。
当f(x)≤g(x)≤h(x),且lim f(x)=lim h(x)=l 时,有 lim g(x)=l。
例如,对于函数 f(x)=sin(x)/x 和 g(x)=1,当 x 趋近于 0 时,有:-1 ≤sin(x)/x ≤ 1lim -1 ≤ lim sin(x)/x ≤ lim 1x→0 x→0 x→0 x→0lim sin(x)/x = 1三、单调有界准则单调有界准则也称收敛定理。
当一个数列同时满足单调有界性质,即数列单调递增或单调递减且有上(下)界时,该数列必定收敛。
对于函数而言,只需要证明其单调有界的性质,即可用该准则求出其极限值。
例如,对于函数 f(x)=sin(x)/x,当 x 趋近于 0 时,此时 f(x) 没有极限值,但是根据单调有界准则,可以求得其极限是 1。
四、洛必达法则洛必达法则是一种有效的求函数极限值的方法,通常用在0/0形式的极限中。
对于连续可导的函数 f(x) 和 g(x),若 lim f(x)/g(x)存在,则有:lim f(x) lim f'(x)lim ——— = lim ———x→a g(x) x→a g'(x)其中“lim” 表示极限符号,f'(x) 表示 f(x) 的导数,g'(x) 表示 g(x) 的导数。
如果上式右边的极限存在,那么左边的极限也存在,并且二者相等。
例如,对于函数 f(x)=x^2+2x 和 g(x)=x+1,当 x 趋近于 1 时,有:lim (x^2+2x) lim (2x+2)lim ———— = lim ———— = 4x→1 x+1 x+1五、泰勒公式泰勒公式是求解函数在某点处的极限值的有效方法之一。
求极限的21个方法总结
求极限的21个方法总结1. 直接代入法:将变量的值代入极限表达式中,计算极限的值。
2. 分子分母同除以最高次项的方法:可以使得分子和分母的最高次项的系数为1,简化计算。
3. 消去法:利用性质将某些项消去,使得表达式更容易计算。
4. 因式分解法:将极限表达式中的因式进行分解,简化计算。
5. 分数分解法:将极限表达式中的分数进行分解,简化计算。
6. 奇偶性性质:利用函数的奇偶性质,简化计算。
7. 倍角、半角、和差公式:利用三角函数的相关公式,简化计算。
8. 幂函数性质:利用幂函数的性质,简化计算。
9. 对数函数性质:利用对数函数的性质,简化计算。
10. 指数函数性质:利用指数函数的性质,简化计算。
11. 三角函数性质:利用三角函数的性质,简化计算。
12. 极坐标法:将极限表达式转化为极坐标形式,简化计算。
13. 无穷小代换法:将极限表达式中的变量代换为无穷小量,简化计算。
14. 夹逼定理:利用夹逼定理确定极限的值。
15. L'Hopital法则:当计算的极限为0/0或者∞/∞形式时,可以利用L'Hopital 法则进行计算。
16. 泰勒展开法:将极限表达式进行泰勒展开,取较低阶项进行计算。
17. 递推法:将极限表达式中的各项逐步推导出来,从而得到极限的值。
18. 积分法:将极限表达式转化为积分形式,利用积分的性质计算极限的值。
19. 微分法:将极限表达式转化为微分形式,利用微分的性质计算极限的值。
20. 反函数法:将极限表达式中的函数进行反函数变换,简化计算。
21. 几何法:利用几何图形的性质计算极限的值。
求函数极限的方法与技巧
求函数极限的方法与技巧
函数极限是数学分析中的一个重要概念,用于描述函数在某一点或无穷远处的趋势。
求函数极限的方法与技巧有很多,下面将介绍一些常用的方法:
1. 代入法:
这是最简单也是最直接的求函数极限的方法。
即将要求的极限值代入函数中计
算。
2. 等价无穷小替换法:
当函数极限形式为无穷小与无穷大相乘或相除时,可以将其替换为等价无穷小,
然后再求极限。
3. 夹逼准则:
当函数在某一区间内与两个已知函数夹在中间,且这两个已知函数极限值相等时,可以利用夹逼准则求得要求的极限。
4. 利用极限性质:
有些函数的极限可以利用基本极限性质求得,例如常见的指数函数、对数函数、
三角函数等。
5. L'Hospital法则:
当函数的分子和分母在某一点的极限都为0或者都为无穷大时,可以使用
L'Hospital法则求得函数极限。
6. 泰勒展开法:
有些函数无法直接求得极限,可以使用泰勒展开法将函数展开成一个求极限较容
易的形式,然后再求得极限。
7. 收敛性判断:
对于一些特殊的函数列,可以使用收敛性判断的方法判断函数极限是否存在。
除了以上提到的方法与技巧,还可以根据具体问题的特点,灵活应用其他的数学分析
技巧来求解函数极限。
需要注意的是,求函数极限的过程需要严格的逻辑推理、数学推导
和计算技巧,需要熟练掌握相关的数学理论和运算方法。
高等数学求极限的常用方法(附例题和详解)
高等数学求极限的常用方法(附例题和详解)高等数学是高等教育中的重要课程之一,其涵盖的内容非常广泛,包括微积分、数理方程和变换等方面。
其中求极限是微积分中的核心内容之一,也是数学建模和应用中常用的方法之一。
本文将介绍求极限的常用方法,并提供相应的例题和详解。
一、用夹逼定理求极限夹逼定理是求极限中常用的方法之一,其思路是通过一个比较大小的框架,来判断所求极限的范围和趋势。
具体而言,假设存在两个函数 f(x) 和 g(x),满足以下条件:1. 对于 x 属于某个区间 [a, b],有 f(x) <= g(x)。
2. 在区间 [a, b] 内,f(x) 和 g(x) 的极限均存在,即 lim[f(x)] = A,lim[g(x)] = A。
3. 在区间 [a, b] 内,除有限个点外,f(x) = g(x)。
则可以得到 lim[f(x)] = lim[g(x)] = A。
下面是一个例子:例1:求极限 lim[(x^2 - 4x + 3) / (x - 3)]。
解法:可以将原式改写成 (x - 1)(x - 3) / (x - 3),即 (x - 1)。
则对于x ∈ (3,∞),有 0 <= x - 1 <= x - 3,因此:0 <= (x^2 - 4x + 3) / (x - 3) - (x - 1) <= x - 3,而 lim[x - 3] = ∞,因此可用夹逼定理得到所求极限为 lim[(x^2 - 4x + 3) / (x - 3)] = lim[(x - 1)] = 2。
二、用洛必达法则求极限洛必达法则是求导数时的常用方法,在求极限时也可以用到。
具体而言,假设有一个形如 lim[f(x) / g(x)] 的无穷小量,若这个无穷小量的分子和分母都存在极限,并且它们的极限都等于 0 或者±∞,则可以用洛必达法则来求出极限的值。
其中,洛必达法则的形式如下:若 lim[f(x)] = 0,lim[g(x)] = 0,且g'(x) ≠ 0,则 lim[f(x) / g(x)] = lim[f'(x) / g'(x)]。
16种求极限的方法
16种求极限的方法 <网上找的仅供参考>首先说下我的感觉,假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。
树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。
为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。
函数的性质表现在各个方面首先对极限的总结如下极限的保号性很重要就是说在一定区间内函数的正负与极限一致1 极限分为一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种)2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???)1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。
全部熟记(x趋近无穷的时候还原成无穷小)2落笔他法则(大题目有时候会有暗示要你使用这个方法)首先他的使用有严格的使用前提!!!!!!必须是 X趋近而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x 趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!)必须是 0比0 无穷大比无穷大!!!!!!!!!当然还要注意分母不能为0落笔他法则分为3中情况1 0比0 无穷比无穷时候直接用2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成1中的形式了3 0的0次方 1的无穷次方无穷的0次方对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0)3泰勒公式 (含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!)E的x展开 sina 展开 cos 展开 ln1+x展开对题目简化有很好帮助4面对无穷大比上无穷大形式的解决办法取大头原则最大项除分子分母!!!!!!!!!!!看上去复杂处理很简单!!!!!!!!!!5无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。
极限求法总结
极限的求法1、利用极限的定义求极限2、直接代入法求极限3、利用函数的连续性求极限4、利用单调有界原理求极限5、利用极限的四则运算性质求极限6.利用无穷小的性质求极限7、无穷小量分出法求极限8、消去零因子法求极限9、利用拆项法技巧求极限10、换元法求极限11、利用夹逼准则求极限[3]12、利用中值定理求极限13、利用罗必塔法则求极限14、利用定积分求和式的极限15、利用泰勒展开式求极限16、分段函数的极限1、利用极限的定义求极限用定义法证明极限,必须有一先决条件,即事先得知道极限的猜测值A,这种情况一般较困难推测出,只能对一些比较简单的数列或函数推测分析出极限值,然后再去用定义法去证明,在这个过程中,放缩法和含绝对值的不等式总是密切相连的。
例:lim f x A的ε-δ 定义是指:ε>0,δ=δ( x0,ε) >0,0< |x- x0| x x<δ |f(x)-A| <ε 为了求δ 可先对x0 的邻域半径适当限制,如然后适当放大|f(x)-A |≤φ (x) ( 必然保证φ (x) 为无穷小) ,此时往往要用含绝对值的不|x+a|=|(x- x0)+( x0 +a)| ≤|x- x0|+| x0+a| <|x0 +a|+δ1 域|x+a|=|(x- x0)+( x0 +a)| ≥| x0 +a|-|x- x0|>| x0 +a|- δ1 从φ(x)<δ 2,求出δ 2后,取δ=min( δ1,δ2) ,当0<|x- x0 | <δ 时,就有|f(x)-A| <ε.例:设lim x n a 则有 lim x 1x2...xna.n n n证明:因为lim x a , 对,N1N1() ,当n N1 时,x n -a于是当n 2n N1时,x1 x2 (x)nax1 x2 (x)nnan n其中 A x1 a x2 a x N1 是一个定数再由A,n2解得 n 2A,故取N max N1, 2A 当n N时,x1 x2 ... x n +n 2 22、直接代入法求极限适用于分子、分母的极限不同时为零或不同时为例 1.求分析由于所以采用直接代入法解原式=3、利用函数的连续性求极限定理[2]:一切连续函数在其定义区间内的点处都连续,即如果x0是函数f(x)的定义区间内的一点,则有 lim f(x) f (x0)。
求函数极限的方法与技巧
求函数极限的方法与技巧随着数学的发展,求函数极限的方法与技巧也越来越丰富和多样化。
下面我将介绍一些常用的方法和技巧,帮助你更好地求解函数极限问题。
我们来介绍一些常用的求函数极限的基本技巧:1. 代入法:通过直接将极限点代入函数中计算,从而得到极限值。
代入法适用于有明确极限的函数。
2. 分式对分法:对于分式形式的函数,我们可以通过分母有理化或者因式分解的方式,将函数拆分成几个更简单的分式,然后再进行求解。
3. 夹逼法:当函数的上下界存在且极限相等时,我们可以利用夹逼法求得函数的极限。
4. 常用极限:有一些函数的极限是常用的,例如三角函数的极限、指数函数的极限等,我们可以通过这些常用极限来求解更复杂的函数极限。
还有一些更高级的方法和技巧能够帮助我们更好地求解复杂的函数极限问题:1. 极限的运算法则:我们可以根据极限的运算法则来计算复合函数、求和函数、误差函数的极限等。
2. 等价无穷小替换法:当函数的极限形式为无穷大与无穷小的组合时,我们可以通过将无穷大和无穷小进行等价替换,从而简化函数的运算。
3. 泰勒展开法:对于一些复杂的函数,我们可以通过使用泰勒展开公式来近似求得函数的极限。
4. L'Hopital法则:当函数的极限形式为0/0或无穷大/无穷大的不确定型时,我们可以通过L'Hopital法则将其转化为求导的形式,从而得到准确的极限值。
除了上述常见的方法和技巧外,还有一些特殊的函数极限求解方法。
例如变量代换法、递推法、反函数法、对数变换法等,这些方法和技巧在特定情况下会更有效。
求函数极限的方法与技巧是十分丰富和多样化的。
我们可以根据具体的函数形式和条件,选择合适的方法和技巧进行求解。
在实际求解过程中,我们需要灵活运用各种方法,结合具体问题进行分析和求解,才能更好地解决函数极限问题。
求函数极限的方法总结及例题
求函数极限的方法总结及例题一、求函数极限的方法总结。
1. 代入法。
当函数在极限点处连续时,直接将极限点代入函数求值。
例如,对于函数f(x)=x + 1,求lim_x→2(x + 1),直接将x = 2代入,得到lim_x→2(x+1)=2 + 1=3。
2. 因式分解法。
适用于(0)/(0)型的极限。
例如,求lim_x→1frac{x^2-1}{x 1},将分子因式分解为(x + 1)(x 1),则原式=lim_x→1((x + 1)(x 1))/(x 1)=lim_x→1(x + 1)=2。
3. 有理化法。
对于含有根式的函数,通过有理化来消除根式。
例如,求lim_x→0(√(x+1)-1)/(x),分子分母同时乘以√(x + 1)+1进行有理化,得到lim_x→0((√(x + 1)-1)(√(x + 1)+1))/(x(√(x + 1)+1))=lim_x→0(x)/(x(√(x + 1)+1))=lim_x→0(1)/(√(x + 1)+1)=(1)/(2)。
4. 等价无穷小替换法。
当x→0时,sin xsim x,tan xsim x,ln(1 + x)sim x,e^x-1sim x等。
例如,求lim_x→0(sin2x)/(x),因为sin2xsim2x(x→0),所以lim_x→0(sin2x)/(x)=lim_x→0(2x)/(x)=2。
5. 洛必达法则。
对于(0)/(0)型或(∞)/(∞)型的极限,可对分子分母分别求导再求极限。
例如,求lim_x→0frac{e^x-1}{x},这是(0)/(0)型,根据洛必达法则,lim_x→0frac{e^x-1}{x}=lim_x→0frac{(e^x-1)'}{x'}=lim_x→0frac{e^x}{1}=1。
二、例题。
1. 例1。
求lim_x→3frac{x^2-9}{x 3}解析:这是(0)/(0)型极限,可先对分子因式分解,x^2-9=(x + 3)(x 3)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数极限的十种求法
设 f (x )=xsin 1/x + a,x<0,b+1,x=0,x^2-1,x<0,试求: 当a ,b 为何值时,f (x )在x=0处的极限存在? 当a ,b 为何值时,f (x )在x=0处连续? 注:f (x )=xsin 1/x +a, x< 0 b+1, x=0 X^2-1, x>0 解:f(0)=b+1
左极限:lim(x→0-) f(x)=lim(x→0-) (xsin(1/x)+a)=0+a =a 左极限:lim(x→0+) f(x)=lim(x→0+) (x^2-1)=0-1=-1
f(x)在x =0处连续,则lim(x→0-) f(x)=lim(x→0+) f(x)=f(0), 所以a =-1=b+1, 所以a =-1,b =-2
7.利用等价无穷小量代换求极限
例 8 求极限30tan sin lim sin x x x
x
→-. 解 由于()s i n t a n
s i n 1
c o
s c o s x
x x x x
-=-,而 ()sin ~0x x x →,()2
1cos ~02
x x x -→,()33sin ~0x x x →
故有
23300tan sin 112lim lim sin cos 2
x x x x x x x x x →→⋅
-=⋅=. 注 在利用等价无穷小量代换求极限时,应注意只有对所求极限式中相乘或相除的因式才能用等价无穷小量替代,而对极限式中的相加或相减部分则不能随意替代,如在例题中,若因有()t a n ~0x x x →
,()s i n ~0
x x x →,而推出 3300tan sin lim
lim 0sin sin x x x x x x
x x
→→--==, 则得到的式错误的结果.
附 常见等价无穷小量
()sin ~0x x x →,()tan ~0x x x →,()2
1cos ~02
x x x -→,
()arcsin ~0x x x →,()arctan ~0x x x →,()1~0x e x x -→, ()()ln 1~0x x x +→,()()11~0x x x α
α+-⋅→. 8 利用洛比达法则求极限
洛比达法则一般被用来求0
0型不定式极限及∞∞
型不定式极限.用此种方法求极限要求在
点0x 的空心领域()0
0U x 内两者都可导,且作分母的函数的导数不为零.
例1 求极限21cos lim
tan x x
x
π→+.
解 由于()2
l i m 1c o s l i m t a n 0x x x x π
π
→→+=
=,且有
()1cos 'sin x x +=-,()22tan '2tan sec 0x x x =≠,
由洛比达法则可得
21cos lim tan x x
x
π→+
2s i n
l i m 2t a n s e c
x x x x π→-=
3cos lim 2x x π
→⎛⎫
=- ⎪⎝⎭
12
=. 8.利用定义求极限
1.()()()
000'lim
x x f x f x f x x x →-=-,
2.()()()
0000
'lim
h f x h f x f x h
→+-=.
其中h 是无穷小,可以是()0x x x x ∆∆=-,x ∆的函数或其他表达式.
例1 求极限222
2
x x p p x q q
→+-+-()0,0p q >>.
分析 此题是0x →时0
0型未定式,在没有学习导数概念之前,常用的方法是消去分母
中的零因子,针对本题的特征,对分母分子同时进行有理化便可求解.但在学习了导数的定义式之后,我们也可直接运用导数的定义式来求解.
解 令()f x =()g x =
则
x → ()()()()
000lim
00
x f x f x g x g x →--=--
()()
'0'0f g =
p q
=
.
9. 利用归结原则求极限
归结原则设f 在()00;'U x δ内有定义,()0
lim x x f x →存在的充要条件是:
对任何含于()00;'U x δ且以0x 为极限的数列{}n x ,极限()lim n n f x →∞
都存在且相等.
例1
求极限211lim 1n
n n n →∞
⎛⎫++ ⎪⎝⎭
.
分析 利用复合函数求极限,令()2
1
211x x x u x x ++⎛⎫
=+ ⎪
⎝⎭,()1
x v x x
+=
求解. 解 令()21
211x x x u x x ++⎛⎫
=+ ⎪
⎝
⎭,()1
x v x x
+=
则有 ()lim n u x e →+∞
=;()lim 1n v x →+∞
=,
由幂指函数求极限公式得
()()211lim 1lim x
v x x x u x e x x →+∞
→+∞
⎛⎫
++== ⎪⎝⎭, 故由归结原则得
221111lim 1lim 1n x
n x e n n x x →∞
→+∞⎛⎫⎛⎫
++=++= ⎪ ⎪⎝⎭⎝⎭
. 注 1 归结原则的意义在于把函数归结为数列极限问题来处理,对于0x x +→,0x x -
→,
x →+∞和x →-∞这四种类型的单侧极限,相应的归结原则可表示为更强的形式.
注 2 若可找到一个以0x 为极限的数列{}n x ,使()lim n n f x →∞
不存在,或找到两个都以0x 为
极限的数列{}'
n x 与{}''n x ,使()'lim n n f x →∞
与()"lim n n f x →∞
都存在而不相等,则()0
lim x x f x →不存在
10.利用泰勒公式求极限
在此种求极限的方法中,用得较多的是泰勒公式在00x =时的特殊形式,即麦 克劳林公式.也可称为带有佩亚诺余项的麦克劳林公式
()()()()()()()2"000'02!!n n
n f f f x f f x x x x n ο=+++⋯⋯++.
例1 求极限2
2
4
0cos lim
x x x e x -→-.
解 由于极限式的分母为4x ,我们用麦克劳林公式表示极限的分子,取4
n =:
()24
5cos 1224x x x x ο=-++,
()2
24
52
128
x x x e
x ο-=-++,
()2
4
52
cos 12
x x x e
x ο--=-+.
因而求得
()2
4
52
4
400cos 112lim
lim 12
x x x x x x e
x x ο-→→-+-==-.
利用此种方法求极限时,必须先求函数的麦克劳林公式,选取恰当的n . 2.10用导数的定义求极限
常用的导数定义式,设函数()y f x =在点0x 处可导,则下列式子成立: 1.()()()
00
'lim
x x f x f x f x x x →-=-,
2.()()()
0000'lim
h f x h f x f x h
→+-=.
其中h 是无穷小,可以是()0x x x x ∆∆=-,x ∆的函数或其他表达式.
例1
证明()()
211
lim 2
12x x x x →-=--.
分析 当1x ≠时,10x -≠,故()()211
122x x x x x
-+=
---,于是有 ()()
231
11332212222x x x x x x x x x --+--=-==
-----, 取112δ=,当101x δ<-<时1322x <<,故有122x ->,从而有()()
21
212x x x ----
61x <-,取26
ε
δ=
即可.
证明 对于0ε∀>,取1m i n ,26εδ⎧⎫
=⎨
⎬⎩⎭
,于是当01x δ<-<时,有 ()()
21
26112x x x x ε--<-<--,
由定义知()()
211
lim 212x x x x →-=--成立.
注 函数()f x 在点0x 处是否有极限,与函数()f x 在点0x 处是否有定义无关.。