电磁感应经典例题要点

合集下载

高中物理电磁感应问题解析

高中物理电磁感应问题解析

高中物理电磁感应问题解析电磁感应是高中物理中的一个重要内容,也是考试中的热点考点之一。

在解决电磁感应问题时,我们需要掌握一些基本原理和解题技巧。

本文将通过具体题目的举例,来说明电磁感应问题的解析方法和考点,并给出一些解题技巧,以帮助高中学生顺利解决这类问题。

1. 线圈中的感应电动势问题:一个半径为R的圆形线圈,匀速通过一个磁感应强度为B的磁场,线圈的面积为S。

求线圈中感应电动势的大小。

解析:根据电磁感应的基本原理,当一个线圈通过磁场时,线圈中会产生感应电动势。

根据法拉第电磁感应定律,感应电动势的大小与磁感应强度的变化率成正比。

在这个问题中,磁感应强度不变,所以感应电动势的大小只与线圈的面积有关。

解题技巧:对于线圈中的感应电动势问题,我们只需要关注线圈的面积和磁感应强度的关系。

在计算时,可以将线圈的面积和磁感应强度代入感应电动势的公式中,直接计算出结果。

2. 导体中的感应电流问题:一个导体棒以速度v与一个磁感应强度为B的磁场垂直运动,求导体中感应电流的大小。

解析:当一个导体棒在磁场中运动时,磁场会对导体中的自由电子产生作用力,从而导致电子在导体内部产生漂移,形成感应电流。

根据洛伦兹力的方向,可以确定感应电流的方向。

解题技巧:对于导体中的感应电流问题,需要注意洛伦兹力的方向和感应电流的方向。

当导体棒以速度v与磁场垂直运动时,洛伦兹力的方向与速度和磁场的方向都有关。

可以通过右手定则来确定洛伦兹力的方向,从而确定感应电流的方向。

3. 电磁感应中的能量转化问题:一个半径为r的圆形线圈以角速度ω绕垂直于平面的轴旋转,磁感应强度为B,求线圈中感应电动势的大小。

解析:当一个线圈以角速度ω旋转时,线圈中会产生感应电动势。

根据法拉第电磁感应定律,感应电动势的大小与磁感应强度的变化率成正比。

在这个问题中,磁感应强度不变,所以感应电动势的大小只与线圈的角速度有关。

解题技巧:对于线圈中的感应电动势问题,我们只需要关注线圈的角速度和磁感应强度的关系。

高中物理 电磁感应 经典必考知识点总结与经典习题讲解与练习题

高中物理 电磁感应 经典必考知识点总结与经典习题讲解与练习题

第一章 电磁感应 知识点总结一、电磁感应现象1、电磁感应现象与感应电流 .(1)利用磁场产生电流的现象,叫做电磁感应现象。

(2)由电磁感应现象产生的电流,叫做感应电流。

二、产生感应电流的条件1、产生感应电流的条件:闭合电路....中磁通量发生变化.......。

2、产生感应电流的方法 . (1)磁铁运动。

(2)闭合电路一部分运动。

(3)磁场强度B 变化或有效面积S 变化。

注:第(1)(2)种方法产生的电流叫“动生电流”,第(3)种方法产生的电流叫“感生电流”。

不管是动生电流还是感生电流,我们都统称为“感应电流”。

3、对“磁通量变化”需注意的两点 .(1)磁通量有正负之分,求磁通量时要按代数和(标量计算法则)的方法求总的磁通量(穿过平面的磁感线的净条数)。

(2)“运动不一定切割,切割不一定生电”。

导体切割磁感线,不是在导体中产生感应电流的充要条件,归根结底还要看穿过闭合电路的磁通量是否发生变化。

4、分析是否产生感应电流的思路方法 .(1)判断是否产生感应电流,关键是抓住两个条件:① 回路是闭合导体回路。

② 穿过闭合回路的磁通量发生变化。

注意:第②点强调的是磁通量“变化”,如果穿过闭合导体回路的磁通量很大但不变化,那么不论低通量有多大,也不会产生感应电流。

(2)分析磁通量是否变化时,既要弄清楚磁场的磁感线分布,又要注意引起磁通量变化的三种情况:① 穿过闭合回路的磁场的磁感应强度B 发生变化。

② 闭合回路的面积S 发生变化。

③ 磁感应强度B 和面积S 的夹角发生变化。

三、感应电流的方向1、楞次定律 .(1)内容:感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。

① 凡是由磁通量的增加引起的感应电流,它所激发的磁场阻碍原来磁通量的增加。

② 凡是由磁通量的减少引起的感应电流,它所激发的磁场阻碍原来磁通量的减少。

(2)楞次定律的因果关系:闭合导体电路中磁通量的变化是产生感应电流的原因,而感应电流的磁场的出现是感应电流存在的结果,简要地说,只有当闭合电路中的磁通量发生变化时,才会有感应电流的磁场出现。

【非凡物理】经典总结电磁感应(知识点-例题精析):专题3:电磁感应中的能量问题

【非凡物理】经典总结电磁感应(知识点-例题精析):专题3:电磁感应中的能量问题

专题三:电磁感应中的能量问题1、求解电磁感应中能量问题的思路和方法 . (1)分析回路,分清电源和外电路.在电磁感应现象中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,其余部分相当于外电路。

((2、电能的三种求解思路 . (1)利用电路特征求解.在电磁感应现象中,若由于磁场变化或导体做切割磁感线运动产生的感应电动势和感应电流是恒定的,则可通过电路知识求解。

(2)利用克服安培力做功求解.电磁感应中产生的电能等于克服安培力所做的功。

(3)利用能量守恒定律求解.① 电磁感应的过程是能量的转化和守恒的过程,其他形式能的减少量等于产生的电能。

② 在较复杂的电磁感应现象中,经常涉及求解耳热的问题。

尤其是变化的安培力,不能直接由Q=I 2Rt 解,用能量守恒的方法就可以不必追究变力、变电流做功的具体细节,只需弄清能量的转化途径,注意分清有多少种形式的能在相互转化,用能量的转化与守恒定律就可求解,而用能量的转化与守恒观点,只需从全过程考虑,不涉及电流的产生过程,计算简便。

这样用守恒定律求解的方法最大特点是省去许多细节,解题简捷、方便。

③ 含有电动机的电路中,电动机工作时线圈在磁场中转动引起磁通量的变化,就会产生感应电动势,一般参考书上把这个电动势叫作反电动势,用反E 表示。

根据楞次定律这个感应电动势是阻碍电动机转动的,电流克服这个感应电动势作的功反IE W =就等于电动机可输出的机械能,这样电流对电动机作的功,(其中r 是电动机的内电阻)这就是含有电动机的电路中电功不等于电热的原因。

【例1】如图所示,足够长的两光滑导轨水平放置,两条导轨相距为d ,左端MN 用阻值不计的导线相连,金属棒ab 可在导轨上滑动,导轨单位长度的电阻为r 0 ,金属棒ab 的电阻不计。

整个装置处于竖直向下的均匀磁场中,磁场的磁感应强度随时间均匀增加,B =kt ,其中k 为常数。

金属棒ab 在水平外力的作用下,以速度v 沿导轨向右做匀速运动,t =0时,金属棒ab 与MN 相距非常近。

高中物理法拉第电磁感应定律压轴题知识点及练习题含答案解析

高中物理法拉第电磁感应定律压轴题知识点及练习题含答案解析

高中物理法拉第电磁感应定律压轴题知识点及练习题含答案解析一、高中物理解题方法:法拉第电磁感应定律1.如图甲所示,一个圆形线圈的匝数n=100,线圈面积S=200cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图乙所示。

求:(1)线圈中的感应电流的大小和方向;(2)电阻R两端电压及消耗的功率;(3)前4s内通过R的电荷量。

【答案】(1)0﹣4s内,线圈中的感应电流的大小为0.02A,方向沿逆时针方向。

4﹣6s 内,线圈中的感应电流大小为0.08A,方向沿顺时针方向;(2)0﹣4s内,R两端的电压是0.08V;4﹣6s内,R两端的电压是0.32V,R消耗的总功率为0.0272W;(3)前4s内通过R的电荷量是8×10﹣2C。

【解析】【详解】(1)0﹣4s内,由法拉第电磁感应定律有:线圈中的感应电流大小为:由楞次定律知感应电流方向沿逆时针方向。

4﹣6s内,由法拉第电磁感应定律有:线圈中的感应电流大小为:,方向沿顺时针方向。

(2)0﹣4s内,R两端的电压为:消耗的功率为:4﹣6s内,R两端的电压为:消耗的功率为:故R消耗的总功率为:(3)前4s内通过R的电荷量为:2.如图所示,垂直于纸面的匀强磁场磁感应强度为B。

纸面内有一正方形均匀金属线框abcd,其边长为L,总电阻为R,ad边与磁场边界平行。

从ad边刚进入磁场直至bc边刚要进入的过程中,线框在向左的拉力作用下以速度v匀速运动,求:(1)拉力做功的功率P;(2)ab边产生的焦耳热Q.【答案】(1)P=222B L vR(2)Q=234B L vR【解析】【详解】(1)线圈中的感应电动势E=BLv 感应电流I=E R拉力大小等于安培力大小F=BIL 拉力的功率P=Fv=222 B L v R(2)线圈ab边电阻R ab=4R 运动时间t=L vab边产生的焦耳热Q=I2R ab t =23 4B L vR3.如下图所示,MN、PQ为足够长的光滑平行导轨,间距L=0.5m.导轨平面与水平面间的夹角θ= 30°,NQ丄MN,N Q间连接有一个3R=Ω的电阻,有一匀强磁场垂直于导轨平面,磁感应强度为01B T=,将一根质量为m=0.02kg的金属棒ab紧靠NQ放置在导轨上,且与导轨接触良好,金属棒的电阻1r=Ω,其余部分电阻不计,现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与NQ 平行,当金属棒滑行至cd 处时速度大小开始保持不变,cd 距离NQ 为 s=0.5 m ,g =10m/s 2。

高考物理:《电磁感应》知识点及典型例题

高考物理:《电磁感应》知识点及典型例题

高考物理:《电磁感应》知识点及典型例题一、电磁感应现象当穿过闭合回路的磁通量发生变化时,在闭合回路中产生感应电流的现象叫电磁感应现象.由可知有三种情况可以使闭合电路中产生感应电流:1. 闭合电路的一部分导体在磁场中做切割磁感线的运动,实际上此时闭合电路的面积发生变化,引起闭合回路中磁通量的变化;2. 闭合电路所在处磁场的磁感应强度发生变化,引起闭合回路中磁通量变化;3. 闭合电路垂直于磁感线的面积发生变化,引起闭合回路中的磁通量变化.注意,若电路不闭合,则在电路两端产生感应电动势,而电路中没有感应电流.二、法拉第电磁感应定律感应电动势的大小跟穿过这一回路的磁通量的变化率成正比:,这里注意区分磁通量、磁通量的变化量、磁通量的变化率。

公式计算出来的是在时间内的平均感应电动势,而瞬时感应电动势要取时的极限值.或用公式E=BLv来求。

三、楞次定律1. 内容:感应电流的磁场总是阻碍引起感应电流的磁通量的变化.应用楞次定律实际上就是寻求电磁感应中的因果关系:因——穿过闭合电路的磁通量发生变化,果——产生感应电流,方法是由因求果.2. 解决问题的步骤:①弄清原磁场的方向以及原磁场磁通量的变化;②判断感应电流的磁场方向:当磁通量增加时,感应电流的磁场与原磁场方向相反,当磁通量减小时,感应电流的磁场与原磁场方向相同;③用安培定则判断出感应电流的方向.3. 阻碍意义的推广:(1)阻碍原磁场的变化。

“阻碍”不是阻止,而是“延缓”,感应电流的磁场不会阻止原磁场的变化,只能使原磁场的变化被延缓,原磁场的变化趋势不会改变,不会发生逆转.(2)阻碍的是原磁场的变化,如果原磁场不变化,即使它再强,也不会产生感应电流.(3)阻碍不是相反.当原磁通减小时,感应电流的磁场与原磁场同向,以阻碍其减小;当磁体远离导体运动时,导体运动将和磁体运动同向,以阻碍其相对运动.(4)“阻碍”的具体应用为:研究磁场的关系时遵循“增反减同”原则;研究相互作用力的效果时遵循“来拒去留”原则.(5)由于“阻碍”,为了维持原磁场的变化,必须有外力克服这一“阻碍”而做功,导致其它形式的能转化为电能.因此楞次定律是能量转化和守恒定律在电磁感应中的体现.4. 电势高低的判断①分清内外电路:产生感应电动势的那部分导体为内电路,其余部分为外电路.②判定电势的高低:在内电路中,感应电流从电源的负极流向电源的正极;在外电路中,感应电流从电源的正极流向负极.四、自感现象自感现象是指当线圈自身电流发生变化时,在线圈中引起的电磁感应现象,当线圈中的电流增加时,自感电流的方向与原电流方向相反;当线圈中电流减小时,自感电流的方向与原电流的方向相同.自感电动势的大小与电流的变化率成正比.自感系数L由线圈自身的性质决定,与线圈的长短、粗细、匝数、有无铁芯有关.自感电动势仅仅是减缓了原电流的变化,不会阻止原电流的变化或逆转原电流的变化.原电流最终还是要增加到稳定值或减小到零.自感现象只有在通过电路的电流发生变化时才会产生.在判断电路性质时,一般分析方法是:当流过线圈L的电流突然增大瞬间,我们可以把L看成一个阻值很大的电阻;当流经L的电流突然减小的瞬间,我们可以把L看作一个电源,它提供一个跟原电流同向的电流.图2电路中,当S断开时,我们只看到A灯闪亮了一下后熄灭,那么S断开时图1电路中有没有自感电流?能否看到明显的自感现象,不仅仅取决于自感电动势的大小,还取决于电路的结构.在图2电路中,我们预先在电路设计时取线圈的阻值远小于灯A的阻值,使S断开前,并联电路中的电流IL>>IR ,S断开瞬间,虽然L中电流在减小,但这一电流全部流过A灯,仍比S断开前A灯的电流大得多,且延滞了一段时间,所以我们看到A灯闪亮一下后熄灭,对图1的电路,S断开瞬间也有自感电流,但它比断开前流过两灯的电流还小,就不会出现闪亮一下的现象.五、电磁感应中的几类典型问题例1、如图所示,有一个弹性的轻质金属圆环,放在光滑的水平桌面上,环中央插着一根条形磁铁.突然将条形磁铁迅速向上拔出,则此时金属圆环将()A. 圆环高度不变,但圆环缩小B. 圆环高度不变,但圆环扩张C. 圆环向上跳起,同时圆环缩小D. 圆环向上跳起,同时圆环扩张解析:在金属环中磁通量有变化,所以金属环中有感应电流产生,按照楞次定律解决问题的步骤一步一步进行分析,分析出感应电流的情况后再根据受力情况考虑其运动与形变的问题.也可以根据感应电流的磁场总阻碍线圈和磁体间的相对运动来解答。

(完整版)电磁感应经典例题

(完整版)电磁感应经典例题

电磁感应考点清单1 电磁感应现象 感应电流方向(一)磁通量1.磁通量:穿过磁场中某个面的磁感线的条数叫做穿过这一面积的磁能量.磁通量简称磁通,符号为Φ,单位是韦伯(Wb ).2.磁通量的计算(1)公式Φ=BS此式的适用条件是:○1匀强磁场;○2磁感线与平面垂直.(2)如果磁感线与平面不垂直,上式中的S 为平面在垂直于磁感线方向上的投影面积.θsin S B •=Φ其中θ为磁场与面积之间的夹角,我们称之为“有效面积”或“正对面积”.(3)磁通量的方向性磁通量正向穿过某平面和反向穿过该平面时,磁通量的正负关系不同.求合磁通时应注意相反方向抵消以后所剩余的磁通量.(4)磁通量的变化12Φ-Φ=∆Φ∆Φ可能是B 发生变化而引起,也可能是S 发生变化而引起,还有可能是B 和S 同时发生变化而引起的,在确定磁通量的变化时应注意.(二)电磁感应现象的产生条件1.产生感应电流的条件:穿过闭合电路的磁通量发生变化.2.感应电动势的产生条件:无论电路是否闭合,只要穿过电路的磁通量发生变化, 这部分电路就会产生感应电动势.这部分电路或导体相当于电源.[例1] (2004上海,4)两圆环A 、B 置于同一水平面上,其中A 为均匀带电绝缘环,B 为导体环.当A 以如图13-36所示的方向绕中心转动的角速度发生变化时,B 中产生如图所示方向的感应电流.则( )图13-36A.A 可能带正电且转速减小B.A 可能带正电且转速增大C.A 可能带负电且转速减小D.A 可能带负电且转速增大[解析] 由题目所给的条件可以判断,感应电流的磁场方向垂直于纸面向外,根据楞次定律,原磁场的方向与感应电流的磁场相同时是减少的,环A 应该做减速运动,产生逆时针方向的电流,故应该带负电,故选项C 是正确的,同理可得B 是正确的.[答案] BC(三)感应电流的方向1.右手定则当闭合电路的部分导体切割磁感线时,产生的感应电流的方向可以用右手定则来进行判断.右手定则:伸开右手,使大拇指跟其余四指垂直,并且都跟手掌在一个平面内,让磁感线垂直穿入手心,大拇指指向导体运动方向,那么伸直四指指向即为感应电流的方向.[说明] 伸直四指指向还有另外的一些说法:○1感应电动势的方向;○2导体的高电势处.[例2](2004天津理综,20)图13-37中MN 、GH 为平行导轨,AB 、CD 为跨在导轨上的两根横杆,导轨和横杆均为导体.有匀强磁场垂直于导轨所在的平面,方向如图,用I 表示回路的电流.A.当AB 不动而CD 向右滑动时,0≠I 且沿顺时针方向B.当AB 向左、CD 向右滑动且速度大小相等时,I =0C.当AB 、CD 都向右滑动且速度大小相等时,I =0D.当AB 、CD 都向右滑动,且AB 速度大于CD 时,0≠I 且沿逆时针方向图13-37[解析] 当AB 不动而CD 向右滑动时,0≠I ,但电流方向为逆时针,A 错;当AB 向左,CD 向右滑动时,两杆产生的感应电动势同向,故0≠I ,B 错;当AB 和CD 都向右滑动且速度大小相等时,则两杆产生的感应电动势等值反向,故I =0,C 正确;当AB 和CD 都向右滑动,且AB 速度大于CD 时,0≠I ,但方向为顺时针,D 错误.[答案] C2.楞次定律(1)内容感应电流具有这样的方向:就是感应电流的磁场总是阻碍引起感应电流的磁通量的变化.注意:○1“阻碍”不是“相反”,原磁通量增大时,感应电流的磁场与原磁通量相反,“反抗”其增加;原磁通量减小时,感应电流的磁场与原磁通量相同,“补偿”其减小.即“增反减同”.○2“阻碍”也不是阻止,电路中的磁通量还是变化的,阻碍只是延缓其变化. ○3楞次定律的实质是“能量转化和守恒”,感应电流的磁场阻碍过程,使机械能减少,转化为电能.(2)应用楞次定律判断感应电流的步骤:○1确定原磁场的方向○2明确回路中磁通量变化情况.○3应用楞次定律的“增反减同”,确定感应电流磁场的方向.○4应用右手安培定则,确立感应电流方向.[例3] (2001上海综合,14)某实验小组用如图13-38所示的实验装置来验证楞次定律.当条形磁铁自上而下穿过固定的线圈时,通过电流计的感应电流方向是()A.a→G→bB.先a→G→b,后b→G→aC.b→G→aD.先b→G→a,后a→G→b图13-38[解析] ○1确定原磁场的方向:条形磁铁在穿入线圈的过程中,磁场方向向下.○2明确回路中磁通量变化情况:向下的磁通量增加.○3由楞次定律的“增反减同”可知:线圈中感应电流产生的磁场方向向上.○4应用右手安培定则可以判断感应电流的方向为逆时针(俯视)即:从b→G→a.同理可以判断:条形磁铁穿出线圈过程中,向下的磁通量减小,由楞次定律可得:线圈中将产生顺时针的感应电流(俯视),电流从a→G→b.[答案] D[评价] 该题目关键在于对楞次定律的理解和应用以及对“穿过”二字的正确理解,它包括穿入和穿出两个过程.(3)楞次定律的另一种表述楞次定律的另一种表达为:感应电流的效果,总是要反抗产生感应电流的原因.[说明] 这里产生感应电流的原因,既可以是磁通量的变化,也可以是引起磁通量变化的相对运动或回路的形变.○1当电路的磁通量发生变化时,感应电流的效果就阻碍变化−−变形为阻碍原磁通−→量的变化.○2当出现引起磁量变化的相对运动时,感应电流的效果就阻碍变化−−拓展为阻碍−→(导体间的)相对运动,即“来时拒,去时留”.○3当回路发生形变时,感应电流的效果就阻碍回路发生形变.○4当线圈自身的电流发生变化时,感应电流的效果就阻碍原来的电流发生变化. 总之,如果问题不涉及感应电流的方向,则从楞次定律的另类表述出发的分析方法较为简便.[例4] 如图13-19所示,光滑固定导轨M 、N 水平放置,两根导体棒P 、Q 平行放于导轨上,形成一个闭合回路,当一条形磁铁从高处下落接近回路时( )图13-39A.P 、Q 将互相靠拢B.P 、Q 将互相远离C.磁铁的加速度仍为gD.磁铁的加速度小于g[解析] 方法一:设磁铁下端为N 极,如图13-40所示,根据楞次定律可判断出P 、Q 中感应电流方向,根据左手定则可判断P 、Q 所受安培力的方向,可见P 、Q 将互相靠拢,由于回路所受安培力的合力向下,由牛顿第三定律,磁铁将受到向上的反作用力,从而加速度小于g .当S 极为下端时,可得到同样的结果.图13-40方法二:根据楞次定律的另一种表述——感应电流的效果总是要反抗产生感应电流的原因,本题的“原因”是回路中磁通量的增加.归根结底是磁铁靠近回路,“效果”便是阻碍磁通量的增加和磁铁的靠近,所以P 、Q 将互相靠近,且磁铁的加速度小于g .[答案] AD2 法拉第电磁感应定律 自感(一)法拉第电磁感应定律(1)内容:电磁感应中线圈里的感应电动势眼穿过线圈的磁通量变化率成正比.(2)表达式:t E ∆∆Φ=或tn E ∆∆Φ=. (3)说明:○1式中的n 为线圈的匝数,∆Φ是线圈磁通量的变化量,△t 是磁通量变化所用的时间.t ∆∆Φ又叫磁通量的变化率. ○2∆Φ是单位是韦伯,△t 的单位是秒,E 的单位是伏特. ○3t n E ∆∆Φ=中学阶段一般只用来计算平均感应电动势,如果t∆∆Φ是恒定的,那么E 是稳恒的.[例1] 有一面积为S =100cm 2金属环,电阻为R =0.1Ω,环中磁场变化规律如图13-41所示,且磁场方向垂直环面向里,在t 1到t 2时间内,环中感应电流的方向如何?通过金属环的电量为多少?图13-41[分析] 由楞次定律可判断感应电流的方向.感应电量的计算为 R t tR t R E t I Q ∆Φ=∆∆∆Φ=∆=∆=,仅由电路电阻和磁通量变化决定,与发生磁通量变化的时间无关,本题推导的感应电量的计算表达式可以直接使用.[解析] (1)由楞次定律,可以判断金属环中感应电流方向为逆时针方向.(2)由图可知:磁感应强度的变化率为1212t t B B t B --=∆∆ ○1 线圈中的磁通量的变化率: S t t B B S t B t •--=∆∆=∆∆Φ1212 ○2 环中形成感应电流tR R t R E I ∆∆Φ=∆∆Φ==/ ○3 通过金属环的电量:t I Q ∆= ○4由○1○2○3○4解得:1.010)1.02.0()(212-⨯-=-=R S B B Q C=0.1C. (二)导线切割磁感线的感应电动势1.公式:E=BLv2.导线切割磁感线的感应电动势公式的几点说明:(1)公式仅适用于导体上各点以相同的速度切割匀强的磁场的磁感线的情况.(2)公式中的B 、v 、L 要求互相两两垂直.当L ⊥B ,L ⊥v ,而v 与B 成θ夹角时,导线切割磁感线的感应电动势大小为θsin BLv E =.(3)适用于计算当导体切割磁感线产生的感应电动势,当v 为瞬时速度时,可计算瞬时感应电动势,当v 为平均速度时,可计算平均电动势.(4)若导体棒不是直的,θsin BLv E =中的L 为切割磁感线的导体棒的有效长度.如图13-42中,棒的有效长度有ab 的弦长.图13-42[例2] (2001上海物理,22)(13分)半径为a 的圆形区域内有均匀磁场,磁感应强度为B =0.2T ,磁场方向垂直纸面向里,半径为b 的金属圆环与磁场同心放置,磁场与环面垂直,其中a =0.4m ,b =0.6m ,金属环上分别接有灯L 1、L 2,两灯的电阻均匀为R 0=2Ω,一金属棒MN 与金属环接触良好,棒与环的电阻均忽略不计.(1)若棒以v 0=5m/s 的速率在环上向右匀速滑动,求棒滑过圆环直径00′的瞬间(如图13-43所示)MN 中的电动势和流过灯L 1的电流.图13-43(2)撤去中间的金属棒MN ,将右面的半圆环OL 2O ′以OO ′为轴向上翻转90°,若此时磁场随时间均匀变化,其变化率为s T t B /)/4(/π=∆∆,求L 1的功率.[解析] (1)棒通过圆环直径时切割磁感线的有效长度L =2a ,棒中产生的感应电动势为58.02.02⨯⨯===av B BLv E V=0.8V ○1 当不计棒和环的电阻时,直径OO ′两端的电压U =E =0.8V ,通过灯L 1电流的为 28.001==R U I A =0.4A. ○2 (2)右半圆环上翻90°后,穿过回路的磁场有效面积为原来的一半,221a S π=',磁场变化时在回路中产生的感应电动热为V V a t B S t E 23.04212=⨯=∆∆•'=∆∆Φ='ππ ○3 由L 1、L 2两灯相同,圆环电阻不计,所以每灯的电压均为E U '='21,L 1的功率为 2020211028.1)21(-⨯='='=R E R U P W. ○4 3.导体切割磁感线产生的感应电动势大小两个特例:(1)长为L 的导体棒在磁感应强度为B 的匀强磁场中以ω匀速转动,导体棒产生的感应电动势:⎪⎪⎪⎩⎪⎪⎪⎨⎧-===))((212121022212不同两段的代数和以任意点为轴时,)线速度(平均速度取中点位置以端点为轴时,(不同两段的代数和)以中点为轴时,L L B E L L B E E ωωω [例3] (2004两湖理综,19)一直升飞机停在南半球的地磁极上空.该处地磁场的方向竖直向上,磁感应强度为B ,直升飞机螺旋桨叶片的长度为l ,螺旋桨转动的频率为f ,顺着地磁场的方向看螺旋桨,螺旋桨顺时针方向转动.螺旋桨叶片的近轴端为a ,远轴端为b ,如图13-44所示.如果忽略a 到转轴中心线的距离,用ε表示每个叶片中的感应电动势,则( )A.B ft 2πε=,且a 点电势低于b 点电势B.B ft 22πε-=,且a 点电势低于b 点电势C.B ft 2πε=,且a 点电势高于b 点电势D.B ft 22πε=,且a 点电势高于b 点电势图13-44[解析] 对于螺旋桨叶片ab ,其切割磁感线的速度是其做圆周运动的线速度,螺旋桨不同点的线速度不同,但是满足R v ω=',可求其等效切割速度fl lv πω==2,运用法拉第电磁感应定律B ft Blv 2πε==,由右手定则判断电流的方向为由a 指向b ,在电源内部电流由低电势流向高电势,故选项A 是正确的.[答案] A(2)面积为S 的矩形线圈在匀强磁场B 中以角速度ω绕线圈平面内的任意轴匀速转动,产生的感应电动势:⎪⎩⎪⎨⎧===θωθωsin 0BS E E BS E 时,为线圈平面与磁感线夹角时,线圈平面与磁感线垂直时,线圈平面与磁感线平行 (三)自感1.自感现象:当导体中的电流发生变化,导体本身就产生感应电动势,这个电动势总是阻碍导体中原来的电流的变化,这种由于导体本身电流发生变化而产生的电磁感应现象,叫自感现象.2.自感现象的应用(1)通电自感:通电瞬间自感线圈处相当于断路.(2)断电自感:断电时自感线圈处相当于电源.○1当线圈中电阻≥灯丝电阻时,灯缓慢熄灭; ○2当线圈中电阻<灯丝电阻时,灯闪亮后缓慢熄灭. 3.增大线圈自感系数的方法(1)增大线圈长度(2)增多单位长度上匝数(3)增大线圈截面积(口径)(4)线圈中插入铁芯4.日光灯(1)日光灯电路的组成和电路图:○1灯管:日光灯管的两端各有一个灯丝,灯管内有微量的氩和汞蒸气,灯管内涂有荧光粉.两个灯丝之间的气体导电荷发出紫外线,激发管壁上的荧光粉发出可见光.但要使管内气体导电所需电压比200V 的电源电压高得多.○2镇流器:ⅰ)结构:线圈和铁芯.ⅱ)原理:自感.ⅲ)作用:灯管启动时提供一个瞬时高压,灯管工作时降压限流.○3启动器ⅰ) 结构:电容、氖气、静触片、U形动触片、管脚、外壳.ⅱ)原理:热胀冷缩. ⅲ)作用:先接通电路,再瞬间断开电路,使镇流器产生瞬间高压.(2)日光灯电路的工作过程:合上开关,电源电压220V加在启动器两极间→氖气放电发出辉光→辉光产生的热量,使U形动触片膨胀伸长,与静触片接触接通电路→镇流器和灯丝中通过电流→氖气停止放电→动静触片分离→切断电路→镇流器产生瞬间高压,与电源电压加在一起,加在灯管两端→灯管中气体放电→日光灯发光.(3)日光灯启动后正常工作时,启动器断开,电流从灯管中通过.镇流器产生自感电动势起降压限流作用.3 电磁感应规律的综合应用法拉第电磁感应定律是电磁学的重点内容之一,其综合了力、热、静电场、直流电路、磁场等许多内容,反映在以下几个方面:1.因导体在切割运动或电路中磁通量的变化,产生感应电流,使导体受到安培力的作用,从而直接影响到导体或线圈的运动.[例1] (2002粤豫大综合,30)如图13-45所示,在一均匀磁场中有一U形导线框abcd,线框处于水平面内,磁场与线框平面垂直,R为一电阻,ef为垂直于ab的一根导体杆,它可在ab、cd上无摩擦地滑动.杆ef及线框中导线的电阻都可不计.开始时,给ef一个向右的初速度,则()A.ef将减速向右运动,但不是匀减速B.ef将匀减速向右运动,最后停止C.ef将匀速向右运动D.ef将往返运动图13-45[解析] 给ef一个向右的初速度,则ef产生感应电动势,回路中产生感应电流.由楞次定律可以判断,ef受到一个向左的安培力的作用而减速,随着ef的速度减小,ef产生的感应电动势减小,回路的感应电流减小,安培力减小,因此可以判断ef 是做加速度逐渐减小的减速运动.因此可知选项A 是正确的.[答案] A[例2] (2004北京理综,23)如图13-46甲所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L .M 、P 两点间接有阻值R 的电阻.一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直,整套装置处于磁感应强度为B 的匀强磁场中,磁场方向的垂直斜面向下.导轨和金属杆的电阻可忽略.让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.13-46 (1)由b 向a 方向看到的装置如图13-46乙所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图;(2)在加速下滑过程中,当ab 杆的速度大小为v 时,求此时ab 杆中的电流及其加速度的大小;(3)求在下滑过程中,ab 杆可以达到的速度最大值.[解析] (1)重力mg ,竖直向下;支撑力N ,垂直斜面向上;安培力F ,沿斜面向上.(2)当ab 杆速度为v 时,感应电动势E =B lv ,此时电路中电流RBlv R E I ==. ab 杆受到安培力Rv L B BIL F 22==, 根据牛顿运动定律,有Rv L B mg F mg ma 22sin sin -=-=θθ, mRv L B g a 22sin -=θ. (3)当θsin 22mg Rv L B =时,ab 杆达到最大速度v m .22sin L B mgR v m θ=. 2.以电磁感应现象为核心,综合力学各种不同的规律(如机械能、动量、牛顿运动定律)等内容形成的综合类问题.电学部分思路:将产生感应电动势的那部分电路等效为电源,如果在一个电路中切割磁感线的是几部分但又互相联系,可等效成电源的串并联,分析内外电路结构,应用闭合电路欧姆定律和部分电路欧姆定律理顺电学量之间的关系.力学部分思路:分析通电导体的受力情况及力的效果,应用牛顿定律、动量定理、动量守恒、动能定理、机械能守恒等规律理顺力学量之间的关系.[例3] (2001京春季,20)(12分)两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为l .导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图13-47所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0.若两导体棒在运动中始终不接触,求:图13-47(1)在运动中产生的焦耳热最多是多少?(2)当ab 棒的速度变为初速度的43时,cd 棒的加速度是多少? [解析] ab 棒向cd 棒运动时,两棒和导轨构成的回路面积变小,磁通量发生变化,于是产生感应电流.ab 棒受到与运动方向相反的安培力作用做减速运动,cd 棒则在安培力作用下做加速运动.在ab 棒的速度大于cd 棒的速度时,回路总有感应电流,ab 棒继续减速,cd 棒继续加速.两棒速度达到相同后,回路面积保持不变,磁通量不变化,不产生感应电流,两棒以相同的速度v 做匀速运动.(1)从初始至两棒达到速度相同的过程中,两棒总动量守恒,有mv mv 20= ○1根据能量守恒,整个过程中产生的总热量2022041)2(2121mv v m mv Q =-=○2 (2)设ab 棒的速度变为初速度的43时,cd 棒的速度为v ′,则由动量守恒可知v m v m mv '+=0043 ○3 此时回路中的感应电动势和感应电流分别为Bl v v E )43(0'-= ○4 R I 2ε= ○5此时cd 棒所受的安培力IBl F = ○6 cd 棒的加速度mF a = ○7 由以上各式,可得mRv l B a 4022=. ○8 3.电磁感应中的能量转化问题电磁感应过程实质是不同形式的能量转化的过程,电磁感应过程中产生的感应电流在磁场中必定受到安培力作用.因此要维持安培力存在,必须有“外力”克服安培力做功.此过程中,其他形式的能转化为能.“外力”克服安培力做多少功,就有多少其他形式的能转化为电能.当感应电流通过用电器时,电能又转化为其他形式的能.同理,安培力做功的过程,是电能转化为其他形式的能的过程,安培力做多少功就有多少电能转化为其他形式的能.因此电能求解思路主要有三种:○1利用克服安培力求解:电磁感应中产生的电能等于克服安培力所做的功. ○2得用能量守恒求解:开始的机械能总和与最后的机械能总和之差等于产生的电能.○3利用电路特征来求解:通过电路中所产生的电能来计算. [例4] 把一个矩形线圈从有理想边界的匀强磁场中匀速拉出(如图13-48),第一次速度为v 1,第二次速度为v 2且v 2=2v 1,则两种情况下拉力的功之比W 1/W 2= ,拉力的功率之比P 1/P 2= ,线圈中产生焦耳热之比Q 1/Q 2= .[解析] 设线圈的ab 边长为L ,bc 边长为L ′,整个线圈的电阻为R ,把ab 边拉出磁场时,cd 边以速度v 匀速运动切割磁感线产生感应电动势Blv E =.其电流方向从c 指向d ,线圈中形成的感应电流R BLv R E I == cd 边所受的安培力Rv L B BIL F 22== 为了维持线圈匀速运动,所需外力大小为Rv L B BIL F F 22=='= 因此拉出线圈过程外力的功v RL L B L F W '='=22 外力的功率222v RL B Fv P == 线圈中产生的焦耳热W v R L L B v L R R v L B Rt I Q ='='•==2222222由上面得出的W 、P 、Q 的表达式可知,两情况拉力的功、功率、线圈中的焦耳热之比分别为1∶2、1∶4、1∶2.[评价] 从题中可以看出,安培力做的功,与电路的消耗的电能是相同的.[例5] (2004河南理综,24)图13-49中a 1b 1c 1d 1和a 2b 2c 2d 2为在同一竖直面内的金属导轨,处在磁感应强度为B 的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里.导轨的a 1b 1段与a 2b 2段是竖直的,距离为l 1;c 1d 1段与c 2d 2段也是竖直的,距离为l 2.x 1y 1与x 2y 2为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为m 1和m 2,它们都垂直于导轨并与导轨保持光滑接触.两杆与导轨构成的回路的总电阻为R .F 为作用于金属杆x 1y 1上的竖直向上的恒力.已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路电阻上的热功率.[解析] 设杆向上运动的速度为v ,因杆的运动,两杆与导轨构成的回路的面积减少,从而磁通量也减少,由法拉第电磁感应定律,回路中的感应电动势的大小v l l B E )(12-=回路中的电流RE I = 电流沿顺时针方向,两金属杆都要受到安培力作用,作用于杆x 1y 1的安培力为 11BIlF =(方向向上)作用于杆x 2y 2的安培力为22BIl F =(方向向下)当杆匀速运动时,根据牛顿第二定律有02121=-+--F F g m g m F解以上各式[]2122211221)()()()(l l B Rg m m F v l l B g m m F I -+-=-+-=作用于两杆的重力功率的大小gv m m P )(21+=电阻上的热功率.)()()()()(21221212122212R l l B g m m F Q g m m R l l B g m m F P RI Q ⎥⎦⎤⎢⎣⎡-+-=+-+-== 4.电磁感应中的图象问题电磁感应中常涉及磁感应强度B 、磁通量Φ、感应电动势E 和感应电流I 随时间t 变化的图象,即B -t 图象、Φ-t 图象、E -t 图象和I -t 图象.对于切割磁感线产生感应电动势和感应电流的情况,还常涉及感应电动势E 和感应电流I 随线圈位移x 变化的图象,即E -x 图象和I -x 图象.这些图象问题大体上可分为两类:○1由给定的电磁感应过程选出或画出正确的图象. ○2由给定的有关图象分析电磁感应过程,求解相应的物理量. 不管是何种类型,电磁感应中的图象问题常需利用右手定则、楞次定律和法拉第电磁感应定律等规律分析解决.[例6] (2004内蒙理综,19)一矩形线圈位于一随时间t 变化的匀强磁场内,磁场方向垂直线圈所在的平面(纸面)向里,如图13-50所示.以I 表示线圈中的感应电流,以图中的线圈上所示方向的电流为正,则图13-51的I -t 图正确的是( )图13-50图13-51[解析] 由图象可知,在0到1秒的时间内,磁感应强度均匀增大,那么感应电流的方向为逆时针方向,与图示电流方向相反,为负值,排除B 、C 选项.根据法拉第电磁感应定律,其大小t S B t ∆•∆=∆∆Φ=ε,Rt S B R E I •∆•∆==为一定值,在2到3秒和4到5秒内,磁感应强度不变,磁通量不变,无感应电流生成,D 错误,所以A 选项感应强度不变,磁通量不变,无感应电流生成,D 错误,所以A 选项正确.[答案] A。

高中物理 第09章 电磁感应 (单双棒问题)典型例题(含答案)【经典】

高中物理   第09章  电磁感应  (单双棒问题)典型例题(含答案)【经典】

第九章 电磁感应知识点七:单杆问题(与电阻结合)(水平单杆、斜面单杆(先电后力再能量))1、发电式(1)电路特点:导体棒相当于电源,当速度为v 时,电动势E =Blv(2)安培力特点:安培力为阻力,并随速度增大而增大(3)加速度特点:加速度随速度增大而减小(4)运动特点:加速度减小的加速运动(5)最终状态:匀速直线运动(6)两个极值①v=0时,有最大加速度:②a=0时,有最大速度:(7)能量关系 (8)动量关系 (9)变形:摩擦力;改变电路;改变磁场方向;改变轨道解题步骤:解决此类问题首先要建立“动→电→动”的思维顺序,可概括总结为:(1)找”电源”,用法拉第电磁感应定律和楞次定律求解电动势的大小和方向;(2)画出等效电路图,求解回路中的电流的大小及方向;(3)分析安培力对导体棒运动速度、加速度的动态过程,最后确定导体棒的最终运动情况;(4)列出牛顿第二定律或平衡方程求解.2、阻尼式(1)电路特点:导体棒相当于电源。

(2)安培力的特点:安培力为阻力,并随速度减小而减小。

(3)加速度特点:加速度随速度减小而减小 (4)运动特点:加速度减小的减速运动(5)最终状态:静止 (6)能量关系:动能转化为焦耳热 (7)动量关系(8)变形:有摩擦力;磁场不与导轨垂直等1.(多选)如图所示,MN 和PQ 是两根互相平行竖直放置的光滑金属导轨,已知导轨足够长,且电阻不计.有一垂直导轨平面向里的匀强磁场,磁感应强度为B ,宽度为L ,ab 是一根不但与导轨垂直而且始终与导轨接触良好的金属杆.开始,将开关S 断开,让ab 由静止开始自由下落,过段时间后,再将S 闭合,若从S 闭合开始计时,则金属杆ab 的速度v 随时间t 变化的图象可能是( ).答案 ACD FN M m F mga m μ-=22-+=()()m F mg R r v B l μ212E mFs Q mgS mv μ=++0m Ft BLq mgt mv μ--=-22()B F B l v a m m R r ==+22B B l v F BIl R r ==+20102mv Q-=00BIl t mv -⋅∆=-0mv q Bl =Bl s q n R r R r φ∆⋅∆==++2、(单选)如图所示,足够长平行金属导轨倾斜放置,倾角为37 °,宽度为0.5 m ,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω.一导体棒MN 垂直于导轨放置,质量为0.2 kg ,接入电路的电阻为1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8 T .将导体棒MN 由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN 的运动速度以及小灯泡消耗的电功率分别为(重力加速度g 取10 m/s 2,sin 37°=0.6)( ).答案 BA .2.5 m/s 1 WB .5 m/s 1 WC .7.5 m/s 9 WD .15 m/s 9 W3.(多选)如图所示,水平固定放置的足够长的U 形金属导轨处于竖直向上的匀强磁场中,在导轨上放着金属棒ab ,开始时ab 棒以水平初速度v 0向右运动,最后静止在导轨上,就导轨光滑和导轨粗糙的两种情况相比较,这个过程( ).答案 ACA .安培力对ab 棒所做的功不相等B .电流所做的功相等C .产生的总内能相等D .通过ab 棒的电荷量相等4.(单选)如图,足够长的U 型光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN 与PQ 平行且间距为L ,导轨平面与磁感应强度为B 的匀强磁场垂直,导轨电阻不计.金属棒ab 由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,ab 棒接入电路的电阻为R ,当流过ab 棒某一横截面的电量为q 时,棒的速度大小为v ,则金属棒ab 在这一过程中( ).答案 BA .运动的平均速度大小为12vB .下滑的位移大小为qR BLC .产生的焦耳热为qBLvD .受到的最大安培力大小为B 2L 2v R sin θ5.(多选)如图所示,相距为L 的两条足够长的光滑平行金属导轨与水平面的夹角为θ,上端接有定值电阻R ,匀强磁场垂直于导轨平面,磁感应强度为B .将质量为m 的导体棒由静止释放,当速度达到v 时开始匀速运动,此时对导体棒施加一平行于导轨向下的拉力,并保持拉力的功率恒为P ,导体棒最终以2v 的速度匀速运动.导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电阻,重力加速度为g .下列选项正确的是( ).答案 ACA .P =2mgv sin θB .P =3mgv sin θC .当导体棒速度达到v 2时加速度大小为g 2sin θD .在速度达到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力所做的功6、(单选)如图所示,两光滑平行导轨水平放置在匀强磁场中,磁场垂直导轨所在平面,金属棒ab 可沿导轨自由滑动,导轨一端连接一个定值电阻R ,金属棒和导轨电阻不计.现将金属棒沿导轨由静止向右拉,若保持拉力F 恒定,经时间t 1后速度为v ,加速度为a 1,最终以速度2v 做匀速运动;若保持拉力的功率P 恒定,棒由静止经时间t 2后速度为v ,加速度为a 2,最终也以速度2v 做匀速运动,则( ).答案 BA .t 2=t 1B .t 1>t 2C .a 2=2a 1D .a 2=5a 17. (多选)如图所示,足够长的光滑导轨倾斜放置,其下端连接一个定值电阻R ,匀强磁场垂直于导轨所在平面,将ab 棒在导轨上无初速度释放,当ab 棒下滑到稳定状态时,速度为v ,电阻R 上消耗的功率为P .导轨和导体棒电阻不计.下列判断正确的是( ).A .导体棒的a 端比b 端电势低 答案 BDB .ab 棒在达到稳定状态前做加速度减小的加速运动C .若磁感应强度增大为原来的2倍,其他条件不变,则ab 棒下滑到稳定状态时速度将变为原来的12D .若换成一根质量为原来2倍的导体棒,其他条件不变,则ab 棒下滑到稳定状态时的功率将变为原来的4倍8.(单选)如图所示,足够长的光滑金属导轨MN 、PQ 平行放置,且都倾斜着与水平面成夹角θ.在导轨的最上端M 、P 之间接有电阻R ,不计其他电阻.导体棒ab 从导轨的最底端冲上导轨,当没有磁场时,ab 上升的最大高度为H ;若存在垂直导轨平面的匀强磁场时,ab 上升的最大高度为h .在两次运动过程中ab 都与导轨保持垂直,且初速度都相等.关于上述情景,下列说法正确的是( ).A .两次上升的最大高度相比较为H <hB .有磁场时导体棒所受合力的功等于无磁场时合力的功C .有磁场时,电阻R 产生的焦耳热为12mv 20D .有磁场时,ab 上升过程的最小加速度大于g sin θ 答案 B9.如图所示,两根平行金属导轨固定在同一水平面内,间距为l ,导轨左端连接一个电阻.一根质量为m 、电阻为r 的金属杆ab 垂直放置在导轨上.在杆的右方距杆为d 处有一个匀强磁场,磁场方向垂直于轨道平面向下,磁感应强度为B .对杆施加一个大小为F 、方向平行于导轨的恒力,使杆从静止开始运动,已知杆到达磁场区域时速度为v ,之后进入磁场恰好做匀速运动.不计导轨的电阻,假定导轨与杆之间存在恒定的阻力.求(1)导轨对杆ab 的阻力大小f ;(2)杆ab 中通过的电流及其方向;(3)导轨左端所接电阻的阻值R .答案 (1)F -mv 22d (2)mv 22Bld a →b (3)2B 2l 2d mv -r(1)杆进入磁场前做匀加速运动,有① ② 解得导轨对杆的阻力③ (2)杆进入磁场后做匀速运动,有④ 杆ab 所受的安培力⑤ 解得杆ab 中通过的电流⑥ 杆中的电流方向自a 流向b⑦ (3)杆产生的感应电动势⑧ 杆中的感应电流⑨解得导轨左端所接电阻阻值⑩ 10.如图甲所示.一对平行光滑轨道放置在水平面上,两轨道间距l =0.20 m ,电阻R =1.0 Ω;有一导体杆静止地放在轨道上,与两轨道垂直,杆及轨道的电阻皆可忽略不计,整个装置处于磁感应强度B =0.5 T 的匀强磁场中,磁场方向垂直轨道面向下.现在一外力F 沿轨道方向拉杆,使之做匀加速运动,测得力F 与时间t 的关系如图乙所示.求杆的质量m 和加速度a .答案 0.1 kg 10 m/s 2解:导体杆在轨道上做匀加速直线运动,用表示其速度,t 表示时间,则有:①杆切割磁力线,将产生感应电动势:② 在杆、轨道和电阻的闭合回路中产生电流③杆受到的安培力的④ 根据牛顿第二定律,有⑤ 联立以上各式,得⑥ 由图线上取两点代入⑥式,可计算得出:,答:杆的质量为,其加速度为.11、如图所示,质量m1=0.1 kg,电阻R1=0.3 Ω,长度l=0.4 m的导体棒ab横放在U型金属框架上.框架质量m2=0.2 kg,放在绝缘水平面上,与水平面间的动摩擦因数μ=0.2.相距0.4 m的MM′、NN′相互平行,电阻不计且足够长.电阻R2=0.1 Ω的MN垂直于MM′.整个装置处于竖直向上的匀强磁场中,磁感应强度B=0.5 T.垂直于ab施加F=2 N的水平恒力,ab从静止开始无摩擦地运动,始终与MM′、NN′保持良好接触.当ab运动到某处时,框架开始运动.设框架与水平面间最大静摩擦力等于滑动摩擦力,g取10 m/s2.(1)求框架开始运动时ab速度v的大小;(2)从ab开始运动到框架开始运动的过程中,MN上产生的热量Q=0.1 J,求该过程ab位移x的大小.答案(1)6 m/s(2)1.1 m(1)ab对框架的压力① 框架受水平面的支持力②依题意,最大静摩擦力等于滑动摩擦力,则框架受到最大静摩擦力③ab中的感应电动势④ MN中电流⑤MN受到的安培力⑥ 框架开始运动时⑦ 由上述各式代入数据解得⑧(2)闭合回路中产生的总热量⑨ 由能量守恒定律,得⑩代入数据解得⑪12、如图甲所示,MN、PQ两条平行的光滑金属轨道与水平面成θ=30°角固定,M、P之间接电阻箱R,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B=0.5 T.质量为m的金属杆ab水平放置在轨道上,其接入电路的电阻值为r.现从静止释放杆ab,测得其在下滑过程中的最大速度为v m.改变电阻箱的阻值R,得到v m与R的关系如图乙所示.已知轨道间距为L=2 m,重力加速度g取10 m/s2,轨道足够长且电阻不计.(1)当R=0时,求杆ab匀速下滑过程中产生的感应电动势E的大小及杆中电流的方向;(2)求杆ab的质量m和阻值r;(3)当R=4 Ω时,求回路瞬时电功率每增加1 W的过程中合外力对杆做的功W.答案(1)2 V b→a(2)0.2 kg 2 Ω(3)0.6 J解:(1)由图可以知道,当时,杆最终以匀速运动,产生电动势由右手定则判断得知,杆中电流方向从(2)设最大速度为v,杆切割磁感线产生的感应电动势由闭合电路的欧姆定律:杆达到最大速度时满足计算得出:由图象可以知道:斜率为,纵截距为, 得到:计算得出:,(3)根据题意:,得,则由动能定理得联立得代入计算得出13.如图甲所示,MN 、PQ 两条平行的光滑金属轨道与水平面成θ=30°角固定,两轨道间距为L =1 m .质量为m 的金属杆ab 垂直放置在轨道上,其阻值忽略不计.空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B =0.5 T .P 、M 间接有阻值为R 1的定值电阻,Q 、N 间接电阻箱R .现从静止释放ab ,改变电阻箱的阻值R ,测得最大速度为v m ,得到1v m 与1R 的关系如图乙所示.若轨道足够长且电阻不计,重力加速度g 取10 m/s 2.求: (1)金属杆的质量m 和定值电阻的阻值R 1; (2)当电阻箱R 取4 Ω时,且金属杆ab 运动的加速度为12g sin θ时,此时金属杆ab 运动的速度;(3)当电阻箱R 取4 Ω时,且金属杆ab 运动的速度为v m 2时,定值电阻R 1消耗的电功率.解析 (1)总电阻为R 总=R 1R /(R 1+R ),电路的总电流I =BLv /R 总 当达到最大速度时金属棒受力平衡,有mg sin θ=BIL =B 2L 2v m R 1R (R 1+R ),1v m =B 2L 2mgR sin θ+B 2L 2mgR 1sin θ,根据图象代入数据,可以得到金属杆的质量m =0.1 kg ,R 1=1 Ω. (2)金属杆ab 运动的加速度为12g sin θ时,I ′=BLv ′/R 总 根据牛顿第二定律得mg sin θ-BI ′L =ma即mg sin θ-B 2L 2v ′R 1R (R 1+R )=12mg sin θ,代入数据,得到v ′=0.8 m/s. (3)当电阻箱R 取4 Ω时,根据图象得到v m =1.6 m/s ,则v =v m 2=0.8 m/s ,P =E 2R 1=B 2L 2v 2R 1=0.16 W.14.如图所示,竖直平面内有无限长,不计电阻的两组平行光滑金属导轨,宽度均为L =0.5 m ,上方连接一个阻值R =1 Ω的定值电阻,虚线下方的区域内存在磁感应强度B =2 T 的匀强磁场.完全相同的两根金属杆1和2靠在导轨上,金属杆与导轨等宽且与导轨接触良好,电阻均为r =0.5 Ω.将金属杆1固定在磁场的上边缘(仍在此磁场内),金属杆2从磁场边界上方h 0=0.8 m 处由静止释放,进入磁场后恰做匀速运动.(g 取10 m/s 2)(1)求金属杆的质量m 为多大?(2)若金属杆2从磁场边界上方h 1=0.2 m 处由静止释放,进入磁场经过一段时间后开始做匀速运动.在此过程中整个回路产生了1.4 J 的电热,则此过程中流过电阻R 的电荷量q 为多少?解析 (1)金属杆2进入磁场前做自由落体运动,则v m =2gh 0=4 m/s金属杆2进入磁场后受两个力而处于平衡状态,即mg =BIL ,且E =BLv m ,I =E 2r +R解得m =B 2L 2v m 2r +R g =22×0.52×42×0.5+1×10kg =0.2 kg. (2)金属杆2从下落到再次匀速运动的过程中,设金属杆2在磁场内下降h 2,由能量守恒定律得 mg (h 1+h 2)=12mv 2m +Q 解得h 2=12mv 2m +Q mg -h 1=0.2×42+2×1.42×0.2×10 m -0.2 m =1.3 m 金属杆2进入磁场到匀速运动的过程中,感应电动势和感应电流的平均值分别为E =BLh 2t 2,I =E 2r +R 故流过电阻R 的电荷量q =It 2 联立解得q =BLh 22r +R =2×0.5×1.32×0.5+1C =0.65 C.15.如图12(a)所示,间距为l 、电阻不计的光滑导轨固定在倾角为θ的斜面上.在区域Ⅰ内有方向垂直于斜面的匀强磁场,磁感应强度为B ;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t 的大小随时间t 变化的规律如图(b)所示.t =0时刻在轨道上端的金属棒ab 从如图所示位置由静止开始沿导轨下滑,同时下端的另一金属棒cd 在位于区域Ⅰ内的导轨上由静止释放.在ab 棒运动到区域Ⅱ的下边界EF 处之前,cd 棒始终静止不动,两棒均与导轨接触良好.已知cd棒的质量为m 、电阻为R ,ab 棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l ,在t =t x 时刻(t x 未知)ab 棒恰进入区域Ⅱ,重力加速度为g .求:(1)通过cd 棒电流的方向和区域Ⅰ内磁场的方向;(2)当ab 棒在区域Ⅱ内运动时cd 棒消耗的电功率;(3)ab 棒开始下滑的位置离EF 的距离;(4)ab 棒从开始下滑至EF 的过程中回路中产生的热量.解析 (1)由楞次定律知通过cd 棒的电流方向为d →c 区域Ⅰ内磁场方向为垂直于纸面向上.(2)对cd 棒:F 安=BIl =mg sin θ,所以通过cd 棒的电流大小I =mg sin θBl 当ab 棒在区域Ⅱ内运动时cd 棒消耗的电功率 P =I 2R =m 2g 2R sin 2θB 2l 2. (3)ab 棒在到达区域Ⅱ前做匀加速直线运动,加速度a =g sin θ cd 棒始终静止不动,ab 棒在到达区域Ⅱ前、后回路中产生的感应电动势不变,则ab 棒在区域Ⅱ中一定做匀速直线运动,可得ΔΦΔt =Blv t ,即B ·2l ·l t x =Blg sin θt x ,所以t x =2l g sin θ ab 棒在区域Ⅱ中做匀速直线运动的速度v t =2gl sin θ 则ab 棒开始下滑的位置离EF 的距离h =12at 2x +2l =3l . (4)ab 棒在区域Ⅱ中运动的时间t 2=2l v t=2lg sin θ ab 棒从开始下滑至EF 的总时间t =t x +t 2=22lg sin θ,E =Blv t =Bl 2gl sin θ ab 棒从开始下滑至EF 的过程中闭合回路产生的热量Q =EIt =4mgl sin θ.16.如图所示,两根正对的平行金属直轨道MN 、M ´N ´位于同一水平面上,两轨道之间的距离l=0.50m .轨道的MM ´端之间接一阻值R=0.40Ω的定值电阻,NN ´端与两条位于竖直面内的半圆形光滑金属轨道NP 、N ´P ´平滑连接,两半圆轨道的半径均为R 0=0.50m .直轨道的右端处于竖直向下、磁感应强度B=0.64 T 的匀强磁场中,磁场区域的宽度d=0.80m ,且其右边界与NN ´重合.现有一质量m =0.20kg 、电阻r =0.10Ω的导体杆ab 静止在距磁场的左边界s=2.0m 处.在与杆垂直的水平恒力F=2.0N 的作用下ab 杆开始运动,当运动至磁场的左边界时撤去F ,结果导体杆ab 恰好能以最小速度通过半圆形轨道的最高点PP ´.已知导体杆ab 在运动过程中与轨道接触良好,且始终与轨道垂直,导体杆ab 与直轨道之间的动摩擦因数μ=0.10,轨道的电阻可忽略不计,取g =10m/s 2,求:⑴导体杆刚进入磁场时,通过导体杆上的电流大小和方向;⑵导体杆穿过磁场的过程中通过电阻R 上的电荷量;⑶导体杆穿过磁场的过程中整个电路中产生的焦耳热.解:(1)设导体杆在F 的作用下运动至磁场的左边界时的速度为,根据动能定理则有:导体杆刚进入磁场时产生的感应电动势为:此时通过导体杆上的电流大小为:(或 根据右手定则可以知道,电流方向为由b 向a (2)设导体杆在磁场中运动的时间为t,产生的感应电动势的平均值为,则有: 通过电阻R 的感应电流的平均值为:通过电阻R 的电荷量为:(或 (3)设导体杆离开磁场时的速度大小为,运动到圆轨道最高点的速度为,因导体杆恰好能通过半圆形轨道的最高点,根据牛顿第二定律对导体杆在轨道最高点时有:对于导体杆从运动至的过程,根据机械能守恒定律有:计算得出:导体杆穿过磁场的过程中损失的机械能为:此过程中电路中产生的焦耳热为:知识点八:单杆问题(与电容器结合)电容有外力充电式(1)电路特点:导体为发电边;电容器被充电。

高考物理电磁感应现象习题知识点及练习题及答案

高考物理电磁感应现象习题知识点及练习题及答案

高考物理电磁感应现象习题知识点及练习题及答案一、高中物理解题方法:电磁感应现象的两类情况1.如图,光滑金属轨道POQ 、´´´P O Q 互相平行,间距为L ,其中´´O Q 和OQ 位于同一水平面内,PO 和´´P O 构成的平面与水平面成30°。

正方形线框ABCD 边长为L ,其中AB 边和CD 边质量均为m ,电阻均为r ,两端与轨道始终接触良好,导轨电阻不计。

BC 边和AD 边为绝缘轻杆,质量不计。

线框从斜轨上自静止开始下滑,开始时底边AB 与OO ´相距L 。

在水平轨道之间,´´MNN M 长方形区域分布着有竖直向上的匀强磁场,´OM O N L =>,´´N M 右侧区域分布着竖直向下的匀强磁场,这两处磁场的磁感应强度大小均为B 。

在右侧磁场区域内有一垂直轨道放置并被暂时锁定的导体杆EF ,其质量为m 电阻为r 。

锁定解除开关K 与M 点的距离为L ,不会阻隔导轨中的电流。

当线框AB 边经过开关K 时,EF 杆的锁定被解除,不计轨道转折处OO ´和锁定解除开关造成的机械能损耗。

(1)求整个线框刚到达水平面时的速度0v ; (2)求线框AB 边刚进入磁场时,AB 两端的电压U AB ; (3)求CD 边进入磁场时,线框的速度v ;(4)若线框AB 边尚未到达´´M N ,杆EF 就以速度23123B L v mr=离开M ´N ´右侧磁场区域,求此时线框的速度多大?【答案】(132gL 2)16BL gL 3)23323B L gL mr;(4)233223B L gL mr【解析】 【分析】 【详解】(1)由机械能守恒201sin 302sin 30022mgL mg L mv +=︒︒- 可得032v gL =(2)由法拉第电磁感应定律可知0E BLv =根据闭合电路欧姆定律可知032BLv I r =根据部分电路欧姆定律12AB U I r =⋅可得AB U =(3)线框进入磁场的过程中,由动量定理022BIL t mv mv -⋅∆=-又有232BL I t r ⋅∆=代入可得233B L v mr= (4)杆EF 解除锁定后,杆EF 向左运动,线框向右运动,线框总电流等于杆EF 上电流 对杆EF1BIL t m v ⋅∆=∆对线框22BIL t m v ⋅∆=⋅∆可得122v v ∆=∆整理得到2321123B L v v mr∆=∆=可得232223B L v v v mr=-∆=2.如图所示,两条平行的固定金属导轨相距L =1m ,光滑水平部分有一半径为r =0.3m 的圆形磁场区域,磁感应强度大小为10.5T B =、方向竖直向下;倾斜部分与水平方向的夹角为θ=37°,处于垂直于斜面的匀强磁场中,磁感应强度大小为B =0.5T 。

电磁感应解题技巧及练习

电磁感应解题技巧及练习

电磁感应专题复习(重要)基础回顾(一)法拉弟电磁感应定律1、内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比E=nΔΦ/Δt(普适公式)当导体切割磁感线运动时,其感应电动势计算公式为E=BLVsinα2、E=nΔΦ/Δt与E=BLVsinα的选用①E=nΔΦ/Δt计算的是Δt时间内的平均电动势,一般有两种特殊求法ΔΦ/Δt=BΔS/Δt即B不变ΔΦ/Δt=SΔB/Δt即S不变② E=BLVsinα可计算平均动势,也可计算瞬时电动势。

③直导线在磁场中转动时,导体上各点速度不一样,可用V平=ω(R1+R2)/2代入也可用E=nΔΦ/Δt 间接求得出 E=BL2ω/2(L为导体长度,ω为角速度。

)(二)电磁感应的综合问题一般思路:先电后力即:先作“源”的分析--------找出电路中由电磁感应所产生的电源,求出电源参数E和r。

再进行“路”的分析-------分析电路结构,弄清串、并联关系,求出相应部分的电流大小,以便安培力的求解。

然后进行“力”的分析--------要分析力学研究对象(如金属杆、导体线圈等)的受力情况尤其注意其所受的安培力。

按着进行“运动”状态的分析---------根据力和运动的关系,判断出正确的运动模型。

最后是“能量”的分析-------寻找电磁感应过程和力学研究对象的运动过程中能量转化和守恒的关系。

【常见题型分析】题型一楞次定律、右手定则的简单应用例题(2006、广东)如图所示,用一根长为L、质量不计的细杆与一个上弧长为L0 、下弧长为d0的金属线框的中点连接并悬挂于o点,悬点正下方存在一个弧长为2 L0、下弧长为2 d0、方向垂直纸面向里的匀强磁场,且d0 远小于L先将线框拉开到图示位置,松手后让线框进入磁场,忽略空气阻力和摩擦,下列说法中正确的是A、金属线框进入磁场时感应电流的方向为a→b→c→d→B、金属线框离开磁场时感应电流的方向a→d→c→b→C、金属线框d c边进入磁场与ab边离开磁场的速度大小总是相等D、金属线框最终将在磁场内做简谐运动。

电磁感应六类常考问题解析要点

电磁感应六类常考问题解析要点

“电磁感应”六类常考问题解析电磁感应是高中物理电磁学部分的重点内容之一, 也是高考重点考查的内容之一, 每年必考. 在这一知识模块中, 考查频率较高的知识点是感应电流的产生条件、方向判定和导体棒切割磁感线产生感应电动势大小的计算. 其中感应电流(或感应电动势随时间变化的图象问题、电磁感应现象与电场、电路、力和运动、能量等知识相联系的综合问题是近几年高考的热点问题. 分析近五年高考试题, 虽是管中窥豹, 但可略见一斑, 归纳起来, 涉及“电磁感应”考点有六类常考问题, 以下作一解析.一、应用楞次定律判定感应电流方向问题楞次定律的内容是“感应电流具有这样的方向, 即感应电流的磁场总要阻碍引起感应电流的磁通量的变化”,定律中没有直接陈述感应电流的方向, 只是描述出感应电流磁场的作用总是阻碍引起感应电流的磁通量的变化, 因此, 在应用楞次定律解题时, 首先要明确原磁场的方向, 由“阻碍”根据楞次定律得出感应电流的磁场方向, 再由安培定则来确定感应电流的方向. 楞次定律的理解关键在于对“阻碍”二字含义的理解, “阻碍”不等于“阻止”. 针对产生感应电流方式的不同, 可将楞次定律中的“阻碍”二字含义理解推广为下列几种表述:(1 就穿过闭合线圈中磁通量而言, 总是阻碍引起感应电流的磁通量(原磁通量的变化. 即当原磁通量增加时, 感应电流的磁场就与原磁场方向相反;当原磁通量减少时, 感应电流的磁场就与原磁场方向相同, 简称口诀“增反减同”.(2 就导体(或磁体)的相对运动而言, 阻碍所有的相对运动, 简称口诀:“来拒去留”. 从运动的效果上看, 也可以形象地表达为“敌”进“我”退, “敌”逃“我”追.(3 就闭合电路的面积改变而言, 致使电路的面积有收缩或扩张的趋势, 收缩或扩张是为了阻碍电路磁通量的变化. 若穿过闭合电路的磁感线皆朝同一个方向, 则磁通量增大时, 面积有收缩趋势;磁通量减少时, 面积有增大趋势, 简称口诀“增缩减扩”.(4 就电流变化而言, 感应电流阻碍原电流的变化. 若原电流增大, 则感应电流方向与原电流方向相反;若原电流减小, 则感应电流的方向与原电流方向相同, 简称口诀“增反减同”. 在解决一些具体问题时, 有时应用推广表达式解题比用楞次定律本身直接解题要方便、简捷得多.例1 (2005全国卷Ⅲ, 16)如图1所示, 闭合线圈上方有一竖直放置的条形磁铁, 磁铁的N 极朝下. 当磁铁向下运动时(但未插入线圈内部)()A. 线圈中感应电流的方向与图中箭头方向相同, 磁铁与线圈相互吸引B. 线圈中感应电流的方向与图中箭头方向相同, 磁铁与线圈相互排斥C. 线圈中感应电流的方向与图中箭头方向相反, 磁铁与线圈相互吸引D. 线圈中感应电流的方向与图中箭头方向相反, 磁铁与线圈相互排斥解析当磁铁的N 极向下运动时, 穿过闭合线圈的磁通量向下且增大, 由上述楞次定律的推论(1 可知, 线圈中感应电流的磁场方向向上,线圈中感应电流的方向与图中箭头方向相同;当磁铁向下运动时, 闭合线圈中产生感应电流,闭合线圈也就成为一个磁体, 它要阻碍条形磁铁的运动, 由上述楞次定律的推论(2 可知, 闭合线圈要阻碍条形磁铁向下运动, 即磁铁与线圈相互排斥. 故选项B正确.二、电磁感应中的图象问题图象问题是一种半定量分析, 电磁感应中常涉及磁感应强度B 、磁通量Ф、感应电动势ε和感应电流i 随时间t 变化的图象, 即B -t 图象、Ф-t 图象、ε-t 图象、i -t 图象. 此外, 还涉及感应电动势ε和感应电流i 随线圈位移x 变化的图象, 即ε-x 图象和i -x 图象. 这些图象问题大体上可分为两类: (1 由给定的电磁感应过程选出或画出正确的图象;(2 由给定的有关图象分析电磁感应过程, 求解相应的物理量. 不管是何种类型图象问题, 都需要考生有较高的审题能力、理解能力, 对电磁感应的过程分析和判断能力;并且, 要注意初始状态及正方向的选取, 并结合右手定则、楞次定律和法拉第电磁感应定律等规律去分析解决问题.例2 (2007全国卷Ⅰ, 21)如图2所示, LOO /L /为一折线, 它所形成的两个角∠LOO / 和∠OO /L / 均为450.折线的右边有一匀强磁场, 其方向垂直于纸面向里.边长为l 的正方形导线框沿垂直于OO /的方向以速度v 做匀速直线运动在t = 0时刻恰好位于图中所示位置. 方向, 在图3中能够正确表示电流—时间(I -t )关系的是(时间以l /v 单位)()解析四个特殊位置, 如图4所示. 由于导线框做匀速直线运动, 所以由位置Ⅰ→Ⅱ、Ⅱ→Ⅲ、Ⅲ→Ⅳ过程所花时间相等, 均为l /v . 由图4可以看出, 在第1个l /v 的时间内, 穿过导线框的磁通量逐渐增大, 切割的有效长度在均匀增大, 因而导线框中的电流在均匀增大, 由楞次定律可判定, 导线框中产生的电流方向为逆时针(即电流为正值;在第2个和第3个l /v 的时间里, 穿过导线框的磁通量一直减少, 由楞次定律可判定, 导线框中产生的电流方向为顺时针(即电流为负值, 在这两段时间内, 导线框切割的有效长度先均匀增加后均匀减小, 因而导线框中的电流先均匀增大后均匀减小, 故选项D 正确.三、电磁感应与电场、电路知识的综合应用问题在电磁感应中, 导体棒切割磁感线或磁通量发生变化的回路将产生感应电动势, 该导体棒或回路就相当于电源. 若将产生感应电动势的导体或回路接上电容器, 可使电容器充、放电. 充电后的电容器两板间存在电场;若将产生感应电动势的导体或回路接上电阻或用电器, 就构成完整的供电电路. 这就使得电磁感应与电场、电路知识相结合成为一类综合应用问题. 解决这类问题的关键是(1找准电源, 正确判断感应电动势的方向, 即电源的正负极;(2分析清楚哪部分是内电路(产生感应电动势的导体或磁通量发生变化的那部分回路当做电源内电路处理, 哪部分是外电路, 并画出等效电路图;(3 根据法拉第电磁感应定律求出感应电动势的大小, 利用串并联电路的性质、闭合(部分电路的欧姆定律计算电流、电压等物理量, 再结合带电粒子在电场中静止、加速及偏转的有关规律求解问题.例3 如图5所示, 光滑的平行导轨P 、Q 间距m 0. 1=l , 处在同一竖直面内, 导轨的左端接有如图所示的电路, 其中水平放置的电容器两极板相距 mm 10=d , 定值电阻Ω==831R R , Ω=22R , 导轨的电阻不计. 磁感强度T 4. 0=B 的匀强磁场垂直穿过导轨面. 当金属棒ab 沿导轨向右匀速运动(开关S 断开时, 电容器两极板之间质量m =1×10-14㎏、带电量q C =-⨯-11015的微粒恰好静止不动;当S 闭合时, 微粒以加速度2m/s7=a 向下做匀加速运动,取2m/s10=g . 求:(1金属棒ab 运动的速度多大?电阻多大? (2S 闭合后, 使金属棒ab 做匀速运动的外力的功率多大?解析金属棒ab 沿导轨运动切割磁感线, ab 棒相当于电源画出等效电路图如图6所示.R R(1带电微粒在电容器两极间静止时, 受向上的电场力和向下的重力作用而平衡, 因而有mg q U d =1, 由此可求得电容器板间电压 V 0. 11001. 010*******=⨯⨯==--q mgd U . 因微粒带负电, 可知上板电势高.由于S 断开, R 1与R 2的电压和等于电容器两端电压U 1, R 3上无电流通过,可知电路中的感应电流即通过R 1、R 2的电流强度为 A R R U I 1. 02111=+= 根据闭合电路的知识, 可知ab 切割磁感线运动产生的感应电动势为r I U E 11+= ① S 闭合时, 带电粒子向下做匀加速运动, 运动方程为 mg qU d ma -=2 S 闭合时, 电容器两板间电压为 (V 3. 02=-=q d a g m U 这时电路的感应电流为 A R U I 15. 0222== 根据闭合电路的知识, 可列方程⎪⎪⎭⎫⎝⎛+++=r R R R R R I E 131312 ②联立①、②式并代入数据得 E V r==122. ,Ω由E BLv =可得m/s3==BLE v 即ab 匀速运动的速度m/s3=v ,电阻Ω=2r . (2S 闭合时, 通过ab 的电流I A 2015=. , ab 所受安培力为F BI L N 22006==. ;ab 以速度v m s =3/做匀速运动, 所受外力F 必与磁场力F 2等大, 反向, 即F N =006. , 方向向右(与v 相同, 所以外力F 的功率为W 18. 0306. 0=⨯=⋅=v F P四、电磁感应与力学知识的综合应用问题电磁感应中产生感应电流的导体棒在磁场中将会受到安培力的作用, 因此, 电磁感应问题中往往涉及到力和运动等方面的力学知识, 成为一类电磁感应与力学知识综合应用问题. 在解决这类问题时, 不仅要用电磁学中的有关规律, 如楞次定律, 法拉第电磁感应定律, 左、右手定则, 安培力的计算公式等, 还要用到力学中的有关规律, 如牛顿运动定律, 动量定理, 动能定理, 动量守恒定律等, 要将这两部分知识综合起来应用. 做好受力分析和运动过程分析是解决这类问题的关键.例4 (2003新课程, 25)如图7所示, 两根平行的金属导轨, 固定在同一水平面上, 磁感应强度为B =0.50T 的匀强磁场与导轨所在平面垂直, 导轨的电阻很小, 可不计. 导轨间的距离l =0.20m . 两根质量均为m =0.10kg 的平行杆甲、乙可在导轨上无摩擦地滑动, 滑动过程中与导轨保持垂直, 每根金属杆的为电阻R =0.50Ω, 在t =0时刻, 两杆都处于静止状态. 现有一与导轨平行, 大小为0.20N 的外力F 作用于金属杆甲上, 使金属杆在导轨上滑动. 经过t =0.5s , 金属杆甲的加速度a =1.37m/s2, 问此时两金属杆的速度各为多少?解析设任一时刻t 两金属杆甲、乙之间的距离为x , 速度分别为v 1和v 2, 经过很短的时间△t (△t →0, 杆甲移动距离v 1△t , 杆乙移动距离v 2△t , 回路面积改变t l v v lx l t v t v x S ∆-=-⨯∆+∆-=∆ (] [(2112由法拉第电磁感应定律, 回路中的感应电动势t S B E ∆∆= ,回路中的电流 R E I 2=由牛顿第二定律得杆甲的动力学方程 ma BlI F =- 由于作用于杆甲和杆乙的安培力总是大小相等, 方向相反所以, 两杆的动量改变量等于外力F 的冲量, 即 0 (21-+=⋅mv mv t F乙甲联立以上各式并代入数据解得 m/s15. 8](2[21221=-+⋅=ma F lB R m t F v m/s85. 1](2[21222=--⋅=ma F lB R m t F v 五、电磁感应中的能量转化和守恒问题在电磁感应现象中, 当导体棒做切割磁感线运动或通过线圈的磁通量发生变化时,在电路中就可产生感应电流, 实现了由其他形式的能量转化为电能. 由于机械运动而产生感应电流时, 外力要克服感应电流产生的“阻碍”作用而做功, 感应电流的电能是由外界机械能转化或外力做功而来的;无机械运动而产生感应电流时, 感应电流的电能是由产生变化磁场的电路中的电能转化而来的. 总之, 产生和维持感应电流的存在的过程就是其他形式的能量转化为感应电流电能的过程.当感应电流通过用电器时, 电能又转化为其他形式的能量, 这个过程就是安培力做功的过程. 安培力做多少功, 就有多少电能转化为其他形式的能.电磁感应现象的实质是不同形式能量转化为电能的过程, 在电磁感应现象中, 能量是守恒的. 楞次定律、法拉第电磁感应定律与能量守恒定律是相符合的. 认真分析电磁感应过程中的能量转化, 应用能量转化和守恒定律是求解较复杂的电磁感应问题常用的简便方法. 因为用能量转化和守恒观点解决电磁感应问题, 只需要从全过程考虑, 不涉及电流产生过程的具体的细节. 处理问题时重在分析导体棒机械能的变化, 寻找用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程.例5 (2004年全国卷Ⅱ, 24)图8中a 1b 1c 1d 1和a 2b 2c 2d 2为在同一竖直平面内的金属导轨, 处在磁感应强度为B 的匀强磁场中, 磁场方向垂直导轨所在的平面(纸面向里. 导轨的a 1b 1段与a 2b 2段是竖直的, 距离为l 1 ;c 1d 1段与c 2d 2段也是竖直的, 距离为l 2 . x 1y 1与x 2y 2为两根用不可伸长的绝缘轻线相连的金属细杆, 质量分别为m 1和m 2 , 它们都垂直于导轨并与导轨保持光滑接触. 两杆与导轨构成的回路的总电阻为R . F 为作用于金属杆x 1y 1上的竖直向上的恒力. 已知两杆运动到图示位置时, 已匀速向上运动, 求此时作用于两杆的重力的功率的大小和回路电阻上的热功率. 解析若从力和运动的角度来分析, 这是一道求解过程较为复杂的力电综合问题, 抓住运动特点、突破受力分析是解题的关键. 但若从功和能的角度来分析, 问题就比较简单. 因为当两杆向上匀速运动时, m 1和m 2的动能不变. 恒力F 做功, 把其它形式的能最终转化为m 1、m 2的重力势能和回路电阻上的焦耳热.根据能量转化与守恒定律, m 1、m 2的动能不变, F 的机械功率等于m 1、m 2的重力功率加上回路电阻上的热功率, 即 R I v g m m v F ⋅+⋅+=⋅221 ( ①回路中感应电流的大小为 R v l l B I (12-= ②由①②两式解得 R l l B g m m F v ⋅-+-=212221 ( ( 所以, 作用于两杆的重力的功率大小为gR m m l l B g m m F v g m m P (( ( (2121222121+⋅-+-=⋅+= 回路电阻上的热功率为R l l B g m m F v g m m v F R I Q ⋅⎥⎦⎤⎢⎣⎡-+-=⋅+-⋅=⋅=21221212 ( ( ( 六、电磁感应知识在生活、生产和科技中的应用问题电磁感应知识与我们的生活、生产和科技联系非常紧密, 从能源角度看, 电气化时代的核心发电机、变压器等设备使电磁感应知识在生产和生活中得到广泛的应用;从信息产业的迅猛发展来看,Inter 网络、电脑、通讯等设备也都和电磁感应知识密切联系. 这类问题立意高而落点低, 用于考查考生的知识迁移能力, 要求考生会从分析复杂的“纯物理”过程变为更强调通过对实际情境分析, 建立物理模型, 综合运用电磁感应知识解决问题. 解决这类问题的关键是要善于挖掘出实际问题的本质内涵, 进行模型化处理.例6 (2001上海, 6)如图9所示是一种延时开关, 当S 1闭合时, 电磁铁F 将衔铁D 吸下, C 线路接通, 当S 1断开时, 由于电磁感应作用, D 将延迟一段时间才被释放, 则()A . 由于A 线圈的电磁感应作用, 才产生延时释放D 的作用B . 由于B 线圈的电磁感应作用, 才产生延时释放D 的作用C . 如果断开B 线圈的电键S 2, 无延时作用D . 如果断开B 线圈的电键S 2, 延时将变长解析若S 2合上, 当S 1正常接通时, 线圈A 中有电流, 电磁铁的磁性来源于线圈A 中电流形成的磁场. 这时, 线圈B 中无电流. 当S 1断开时, 线圈A 中电流形成的磁场即刻消失, 因而穿过线圈B 的磁通量发生变化, 线圈B 与电键S 2形成一个闭合回路,从而线圈B 中有感应电流产生, 感应电流激发磁场, 这时电磁铁的磁性由线圈B 产生, 即F 仍然继续吸引D . 可见, 延时作用是由于线圈B 产生的. 如果断开与B线圈连接的电键S 2, 则在S 1断开时虽然穿过线圈B 的磁通量发生变化, 但无闭合回路, 线圈B 中无感应电流产生, 因而无延时作用. 故选项B 、C 正确.。

电磁感应定律典型例题

电磁感应定律典型例题

典型例例1: 关于感应电动势,下列说法正确的是( ) A .穿过回路的磁通量越大,回路中的感应电动势就越大 B .穿过回路的磁通量变化量越大,回路中的感应电动势就越大 C .穿过回路的磁通量变化率越大,回路中的感应电动势就越大D .单位时间内穿过回路的磁通量变化量越大,回路中的感应电动势就越大 【解析】感应电动势E 的大小与磁通量变化率t∆∆φ成正比,与磁通量φ、磁通量变化量φ∆无直接联系。

A 选项中磁通量φ很大时,磁通量变化率t∆∆φ可能很小,这样感应电动势E 就会很小,故A 错。

B 选项中φ∆很大时,若经历时间很长,磁通量变化率t∆∆φ仍然会很小,感应电动势E 就很小,故B 错。

D 选项中单位时间内穿过回路的磁通量变化量即磁通量变化率t∆∆φ,它越大感应电动势E 就越大,故D 对。

答案:CD【总结】感应电动势的有无由磁通量变化量φ∆决定,φ∆≠0是回路中存在感应电动势的前提,感应电动势的大小由磁通量变化率t ∆∆φ决定,t∆∆φ越大,回路中的感应电动势越大,与φ、φ∆无关。

例2:一个面积S=4×10-2m 2,匝数N=100的线圈,放在匀强磁场中,磁场方向垂直线圈平面,磁场的磁感应强度B 随时间变化规律为△B /△t=2T/s ,则穿过线圈的磁通量变化率t∆∆φ为 Wb/s ,线圈中产生的感应电动势E= V 。

【解析】根据磁通量变化率的定义得t∆∆φ= S △B /△t=4×10-2×2 Wb/s=8×10-2Wb/s 由E=N △φ/△t 得E=100×8×10-2V=8V 答案:8×10-2;8【总结】计算磁通量φ=BScos θ、磁通量变化量△φ=φ2-φ1、磁通量变化率△φ/△t 时不用考虑匝数N ,但在求感应电动势时必须考虑匝数N ,即E=N △φ/△t 。

同样,求安培力时也要考虑匝数N ,即F=NBIL ,因为通电导线越多,它们在磁场中所受安培力就越大,所以安培力也与匝数N 有关。

高考物理 必备经典例题(考点分类讲解+讲点例题演练)电磁感应

高考物理 必备经典例题(考点分类讲解+讲点例题演练)电磁感应

高考物理必备经典例题:9电磁感应(考点分类讲解+讲点例题演练,3页)考点78.电磁感应现象,磁通量,法拉第电磁感应定律,楞次定律1.电感应现象:由磁场产生电流的现象称为电磁感应现象。

2.磁通量:在磁场中穿过某一面的磁感线的条数多少叫穿过这一面的磁通量。

用Φ表示。

Φ是标量,但是有方向(进该面或出该面)。

在匀强磁场中,当B与S的夹角为α时,有Φ=BSsinα。

单位为韦伯,符号为Wb。

1Wb=1T∙m2=1V∙s=1kg∙m2/(A∙s2)。

3.法拉第电磁感应定律:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比,即E=ΔΦ/Δt,对于n匝线圈有E=nΔΦ/Δt。

4.楞次定律:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

219.用如图所示的装置研究电磁感应现象。

在图示情况下,当电键闭合时,观察到电流表指针向右偏转。

电键闭合一段时间后,为使电流表指针向左偏转可采用的方法有()A.将变阻器滑动头向右端滑动B.将一软铁棒插入线圈A中C.将线圈A从线圈B中提出D.迅速断开电键220.德国《世界报》曾报道个别西方发达国家正在研制电磁脉冲武器——电磁炸弹,若将一枚原始脉冲功率 10千兆瓦,频率5千兆赫的电磁炸弹在不到 100米的高空爆炸,它将使方圆 400~500 米2的地面范围内的电场强度达到每米数千伏,使得电网设备、通信设施和计算机的硬盘和软件均遭到破坏。

电磁炸弹有如此破坏力的主要原因是()A.电磁脉冲引起的电磁感应现象B.电磁脉冲产生的动能C.电磁脉冲产生的高温D.电磁脉冲产生的强光221.如图所示,两个导体圆环的面积相等,处于同一磁场中,已知电容C= 0.l F,导体环电阻R= 10欧,若磁场以lT/s均匀地由2T减小到零。

在这过程中,电容器上充的电量为Q1,通过圆环上A处的电量为Q2,则Ql :Q 2等于()A. l:1B. l:2C. 2:1D. 无法比较222.照明电路中,为了安全,一般在电能表后面电路上安接一漏电保护器,如图所示,当漏电保护器的ef两端未接有电压时,脱扣开头K能始终保持接通,当ef两端有一电压时,脱扣开关K立即断开,下列说法错误的是()A.站在地面上的人触及b线时(单线接触电),脱扣开关会自动断开,即有触电保护作用B.当用户家的电流超过一定值时,脱扣开关会自动断开,即有过流保护作用C.当相线和零线间电压太高时,脱扣开关会自动断开,即有过压保护作用D.当站在绝缘物上的带电工作的人两手分别触到b线和d线时(双线触电)脱扣开关会自动断开,即有触电保护作用223.一个圆环位于匀强磁场中,圆环平面和磁场方向垂直,匀强磁场方向及大小的变化与时间的关系如图,规定磁场方向垂直纸面向内为正,则()A.第1秒和第4秒圆环中的感应电流大小相等B.第2秒和第4秒圆环中的感应电流方向相反C.第4秒圆环中的感应电流大小为第6秒的两倍D.第5秒圆环中的感应电流为顺时针方向考点79.导体切割磁感线时的感应电动势,右手定则ε=BLv。

电磁感应专题

电磁感应专题

电磁感应专题一、考点清单1、电磁感应现象,磁通量.法拉第电磁感应定律.楞次定律2、导体切割磁感线时的感应电动势.右手定则3、自感现象4、电磁感应与能量二、典型例题例1. 如图所示,有两个同心导体圆环。

内环中通有顺时针方向的电流,外环中原来无电流。

当内环中电流逐渐增大时,外环中有无感应电流?方向如何? 例2. 如图所示,闭合导体环固定。

条形磁铁S 极向下以初速度v 0沿过导体环圆心的竖直线下落过程,导体环中的感应电流方向如何?例3. 如图所示,O 1O 2是矩形导线框abcd 的对称轴,其左方有垂直于纸面向外的匀强磁场。

以下哪些情况下abcd 中有感应电流产生?方向如何?A.将abcd 向纸外平移B.将abcd 向右平移C.将abcd 以ab 为轴转动60°D.将abcd 以cd 为轴转动60°例4. 如图所示装置中,cd 杆原来静止。

当ab 杆做如下那些运动时,cd 杆将向右移动?A.向右匀速运动B.向右加速运动C.向左加速运动D.向左减速运动 例5. 如图所示,当磁铁绕O 1O 2轴匀速转动时,矩形导线框(不考虑重力)将如何运动?例6. 如图所示,水平面上有两根平行导轨,上面放两根金属棒a 、b 。

当条形磁铁如图向下移动时(不到达导轨平面),a 、b 将如何移动?例7. 如图所示,绝缘水平面上有两个离得很近的导体环a 、b。

将条形磁铁沿它们的正中向0 abd c下移动(不到达该平面),a 、b 将如何移动?例8. 如图所示,在条形磁铁从图示位置绕O 1O 2轴转动90°的过程中,放在导轨右端附近的金属棒ab 将如何移动?例9. 如图所示,a 、b 灯分别标有“36V 40W ”和“36V 25W ”,闭合电键,调节R ,使a 、b 都正常发光。

这时断开电键后重做实验:电键闭合后看到的现象是什么?稳定后那只灯较亮?再断开电键,又将看到什么现象?例10. 如图所示,用丝线将一个闭合金属环悬于O 点,虚线左边有垂直于纸面向外的匀强磁场,而右边没有磁场。

电磁感应经典例题及解析

电磁感应经典例题及解析

电磁感应经典例题及解析电磁感应是电磁学中的重要概念,也是我们日常生活中常常会遇到的现象。

在电磁感应的过程中,磁场的变化会导致电场的产生,进而引发电流的产生。

这一原理广泛应用于发电机、变压器等电磁设备中。

下面我们来看一些经典的电磁感应例题,并对其进行解析。

例题1:一个磁感强度为0.2 T的匀强磁场,以2 m/s的速度向垂直于磁场的方向移动,求导体中感应电动势的大小。

解析:根据电磁感应的原理,导体中感应电动势的大小等于磁感强度与导体的速度的乘积,即E = Bv。

将已知数据代入计算,E = 0.2 T × 2 m/s = 0.4 V。

例题2:一个圆形线圈的半径为10 cm,磁感强度为0.5 T的磁场垂直于线圈的平面,在0.2 s内磁场的强度从0.2 T增加到0.6 T,求线圈中感应电流的大小。

解析:根据电磁感应的原理,感应电流的大小等于感应电动势与电阻的比值,即I = ε/R。

感应电动势可以通过磁场的变化率来计算,即ε = -dφ/dt。

其中,φ表示磁通量。

磁通量的大小等于磁感强度与线圈面积的乘积,即φ = Bπr^2。

将已知数据代入计算,φ = 0.2 T ×π× (0.1 m)^2 = 0.02π Tm^2。

对磁通量关于时间的导数,即dφ/dt,可以计算为(0.6 T - 0.2 T)/0.2 s = 2 T/s。

因此,感应电动势的大小为ε = -2 T/s。

线圈的电阻需要另外给定,才能计算感应电流的大小。

通过以上例题的解析,我们可以看到,在电磁感应问题中,需要根据已知条件来计算磁通量的变化率,从而得到感应电动势的大小。

最后,根据电路中的电阻情况,可以计算出感应电流的大小。

电磁感应是电磁学中的重要概念,掌握电磁感应的原理和应用,对于理解和应用电磁学的知识具有重要意义。

通过解析经典的电磁感应例题,可以加深对电磁感应原理的理解,提高解决实际问题的能力。

必修4电磁感应复习(知识点+经典例题+练习)

必修4电磁感应复习(知识点+经典例题+练习)

必修4电磁感应复习(知识点+经典例题+练习)知识点1. 磁感线和磁场强度:- 磁感线是描述磁场的一种方法,它从磁北极指向磁南极,形成一个闭合的曲线。

- 磁场强度是表示磁场强弱的物理量,单位是特斯拉(T)。

2. 紧密螺绕线圈的磁场:- 螺绕线圈中通有电流时,会产生一个磁场,其磁场按右手螺旋定则的方向确定。

- 磁场的强弱与线圈匝数、电流强度以及磁场位置有关。

3. 法拉第电磁感应定律:- 当一个闭合线路中的磁通量发生变化时,沿线路产生感应电动势。

- 感应电动势的大小与磁通量变化率成正比。

4. 楞次定律:- 磁通量的变化产生感应电动势,感应电动势会产生感应电流。

- 感应电流的方向使得产生的磁场抵消原始磁通量的变化。

经典例题1. 一个圆形线圈共有100匝,半径为2m,通过线圈的磁感应强度为0.5T,线圈内的磁场强度为:- 解:根据公式B = μ₀H,其中μ₀为真空中的磁导率,H为磁场强度,代入数值计算得到磁场强度为0.25T。

2. 一个螺绕线圈的匝数为2000匝,通有电流2A,线圈半径为0.1m,求线圈中的磁场强度:- 解:根据公式B = μ₀nI,其中μ₀为真空中的磁导率,n为线圈匝数密度,I为电流强度,代入数值计算得到磁场强度为4π×10⁻⁴T。

练1. 线圈A和线圈B之间相距较远,线圈A的磁通量在变化。

根据法拉第电磁感应定律和楞次定律,分析线圈B中会产生的电流方向和大小。

2. 一个圆形线圈的半径为0.5m,匝数为1000匝。

当通过线圈的磁感应强度为2T时,求线圈中的磁场强度。

以上是必修4电磁感应的复习文档,包含知识点介绍、经典例题和练习题。

希望对你的学习有所帮助!。

电磁感应大题题型总结

电磁感应大题题型总结

电磁感应大题题型总结一、导体棒切割磁感线产生感应电动势类1. 单棒平动切割磁感线- 题目示例:- 如图所示,在一磁感应强度B = 0.5T的匀强磁场中,垂直于磁场方向水平放置着两根相距为h = 0.1m的平行金属导轨MN与PQ,导轨的电阻忽略不计。

在两根导轨的端点N、Q之间连接一阻值R=0.3Ω的电阻。

导轨上跨放着一根长为L =0.2m,每米长电阻r = 2.5Ω/m的金属棒ab,金属棒与导轨正交,交点为c、d。

当金属棒以速度v = 4.0m/s向左做匀速运动时,求:- (1)金属棒ab中感应电动势的大小;- (2)通过金属棒ab的电流大小;- (3)金属棒ab两端的电压大小。

- 解析:- (1)根据E = BLv,这里L = h = 0.1m(有效切割长度),B = 0.5T,v = 4.0m/s,则E=Bh v = 0.5×0.1×4.0 = 0.2V。

- (2)金属棒的电阻R_ab=Lr = 0.2×2.5 = 0.5Ω。

电路总电阻R_总=R +R_ab=0.3+0.5 = 0.8Ω。

根据I=(E)/(R_总),可得I=(0.2)/(0.8)=0.25A。

- (3)金属棒ab两端的电压U = E - IR_ab=0.2 - 0.25×0.5 = 0.075V。

2. 双棒切割磁感线- 题目示例:- 如图所示,两根足够长的平行金属导轨固定在倾角θ = 30^∘的斜面上,导轨电阻不计,间距L = 0.4m。

导轨所在空间被分成区域Ⅰ和Ⅱ,两区域的边界与斜面的交线为MN,Ⅰ中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁感应强度大小均为B = 0.5T。

在区域Ⅰ中,将质量m_1=0.1kg,电阻R_1=0.1Ω的金属条ab放在导轨上,ab刚好不下滑。

然后,在区域Ⅱ中将质量m_2=0.4kg,电阻R_2=0.1Ω的光滑导体棒cd置于导轨上,由静止开始下滑。

法拉第电磁感应定律压轴题知识点及练习题及答案解析

法拉第电磁感应定律压轴题知识点及练习题及答案解析

法拉第电磁感应定律压轴题知识点及练习题及答案解析一、高中物理解题方法:法拉第电磁感应定律1.如图甲所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度1L m =,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接一阻值为0.40R =Ω的电阻,质量为0.01m kg =、电阻为0.30r =Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图乙所示,图象中的OA 段为曲线,AB 段为直线,导轨电阻不计,g 取210/(m s 忽略ab 棒运动过程中对原磁场的影响).()1判断金属棒两端a 、b 的电势哪端高; ()2求磁感应强度B 的大小;()3在金属棒ab 从开始运动的1.5s 内,电阻R 上产生的热量.【答案】(1) b 端电势较高(2)0.1B T = (3) 0.26J 【解析】 【详解】()1由右手定可判断感应电流由a 到b ,可知b 端为感应电动势的正极,故b 端电势较高。

()2当金属棒匀速下落时,由共点力平衡条件得:mg BIL =金属棒产生的感应电动势为:E BLv = 则电路中的电流为:EI R r=+ 由图象可得:11.27.0/7m /s 2.1 1.5x v m s t -===- 代入数据解得:0.1T B =()3在0 1.5s ~,以金属棒ab 为研究对象,根据动能定理得:212mgh Q mv =+解得:0.455J Q = 则电阻R 上产生的热量为:0.26J R RQ Q R r==+2.如图所示,竖直平面内两竖直放置的金属导轨间距为L1,导轨上端接有一电动势为E、内阻不计的电源,电源旁接有一特殊开关S,当金属棒切割磁感线时会自动断开,不切割时自动闭合;轨道内存在三个高度均为L2的矩形匀强磁场区域,磁感应强度大小均为B,方向如图。

一质量为m的金属棒从ab位置由静止开始下落,到达cd位置前已经开始做匀速运动,棒通过cdfe区域的过程中始终做匀速运动。

(完整版)高中物理电磁感应经典例题总结

(完整版)高中物理电磁感应经典例题总结

1.如图,金属棒ab 置于水平放置的U 形光滑导轨上,在ef 右侧存在有界匀强磁场B ,磁场方向垂直导轨平面向下,在ef 左侧的无磁场区域cdef 内有一半径很小的金属圆环L ,圆环与导轨在同一平面内。

当金属棒ab 在水平恒力F 作用下从磁场左边界ef 处由静止开始向右运动后,圆环L 有__________(填收缩、扩张)趋势,圆环内产生的感应电流_______________(填变大、变小、不变)。

答案:收缩,变小解析:由于金属棒ab 在恒力F 的作用下向右运动,则abcd 回路中产生逆时针方向的感应电流,则在圆环处产生垂直于只面向外的磁场,随着金属棒向右加速运动,圆环的磁通量将增大,依据楞次定律可知,圆环将有收缩的趋势以阻碍圆环的磁通量将增大;又由于金属棒向右运动的加速度减小,单位时间内磁通量的变化率减小,所以在圆环中产生的感应电流不断减小。

2.如图所示,固定位置在同一水平面内的两根平行长直金属导轨的间距为d ,其右端接有阻值为R 的电阻,整个装置处在竖直向上磁感应强度大小为B 的匀强磁场中。

一质量为m (质量分布均匀)的导体杆ab 垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为u 。

现杆在水平向左、垂直于杆的恒力F 作用下从静止开始沿导轨运动距离L 时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直)。

设杆接入电路的电阻为r ,导轨电阻不计,重力加速度大小为g 。

则此过程 ( BD )A.杆的速度最大值为B.流过电阻R 的电量为C.恒力F 做的功与摩擦力做的功之和等于杆动能的变化量D.恒力F 做的功与安倍力做的功之和大于杆动能的变化量解析:当杆达到最大速度v m 时,022=+--r R v d B mg F m μ得()()22d B r R mg F v m +-=μ,A 错;由公式()()rR BdLr R S B r R q +=+=+=∆∆Φ,B 对;在棒从开始到达到最大速度的过程中由动能定理有:K f F E W W W ∆=++安,其中mg W f μ-=,Q W -=安,恒力F 做的功与摩擦力做的功之和等于杆动能的变化量与回路产生的焦耳热之和,C 错;恒力F 做的功与安倍力做的功之和等于于杆动能的变化量与克服摩擦力做的功之和,D 对。

高中物理电磁感应现象压轴难题知识点及练习题及答案

高中物理电磁感应现象压轴难题知识点及练习题及答案

高中物理电磁感应现象压轴难题知识点及练习题及答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,两根光滑、平行且足够长的金属导轨倾斜固定在水平地面上,导轨平面与水平地面的夹角37θ=︒,间距为d =0.2m ,且电阻不计。

导轨的上端接有阻值为R =7Ω的定值电阻和理想电压表。

空间中有垂直于导轨平面斜向上的、大小为B =3T 的匀强磁场。

质量为m =0.1kg 、接入电路有效电阻r =5Ω的导体棒垂直导轨放置,无初速释放,导体棒沿导轨下滑一段距离后做匀速运动,取g =10m/s 2,sin37°=0.6,求:(1)导体棒匀速下滑的速度大小和导体棒匀速运动时电压表的示数; (2)导体棒下滑l =0.4m 过程中通过电阻R 的电荷量。

【答案】(1)20m/s 7V (2)0.02C 【解析】 【详解】(1)设导体棒匀速运动时速度为v ,通过导体棒电流为I 。

由平衡条件sin mg BId θ=①导体棒切割磁感线产生的电动势为E =Bdv ②由闭合电路欧姆定律得EI R r=+③ 联立①②③得v =20m/s ④由欧姆定律得U =IR ⑤联立①⑤得U =7V ⑥(2)由电流定义式得Q It =⑦由法拉第电磁感应定律得E t∆Φ=∆⑧B ld ∆Φ=⋅⑨由欧姆定律得EI R r=+⑩ 由⑦⑧⑨⑩得Q =0.02C ⑪2.如图()a ,平行长直导轨MN 、PQ 水平放置,两导轨间距0.5L m =,导轨左端MP 间接有一阻值为0.2R =Ω的定值电阻,导体棒ab 质量0.1m kg =,与导轨间的动摩擦因数0.1μ=,导体棒垂直于导轨放在距离左端 1.0d m =处,导轨和导体棒电阻均忽略不计.整个装置处在范围足够大的匀强磁场中,0t =时刻,磁场方向竖直向下,此后,磁感应强度B 随时间t 的变化如图()b 所示,不计感应电流磁场的影响.当3t s =时,突然使ab 棒获得向右的速度08/v m s =,同时在棒上施加一方向水平、大小可变化的外力F ,保持ab 棒具有大小为恒为24/a m s =、方向向左的加速度,取210/g m s =.()1求0t =时棒所受到的安培力0F ;()2分析前3s 时间内导体棒的运动情况并求前3s 内棒所受的摩擦力f 随时间t 变化的关系式;()3从0t =时刻开始,当通过电阻R 的电量 2.25q C =时,ab 棒正在向右运动,此时撤去外力F ,此后ab 棒又运动了2 6.05s m =后静止.求撤去外力F 后电阻R 上产生的热量Q .【答案】(1)00.025F N =,方向水平向右(2) ()0.01252?f t N =-(3) 0.195J 【解析】 【详解】 解:()1由图b 知:0.20.1T /s 2B t == 0t =时棒的速度为零,故回路中只有感生感应势为: 0.05V BE Ld t tΦ=== 感应电流为:0.25A EI R== 可得0t =时棒所受到的安培力:000.025N F B IL ==,方向水平向右;()2ab 棒与轨道间的最大摩擦力为:00.10.025N m f mg N F μ==>=故前3s 内导体棒静止不动,由平衡条件得: f BIL = 由图知在03s -内,磁感应强度为:00.20.1B B kt t =-=- 联立解得: ()0.01252(3s)f t N t =-<;()3前3s 内通过电阻R 的电量为:10.253C 0.75C q I t =⨯=⨯=设3s 后到撤去外力F 时又运动了1s ,则有:11BLs q q I t R RΦ-=== 解得:16m s =此时ab 棒的速度设为1v ,则有:221012v v as -= 解得:14m /s v =此后到停止,由能量守恒定律得: 可得:21210.195J 2Q mv mgs μ=-=3.如图所示,足够长且电阻忽略不计的两平行金属导轨固定在倾角为α=30°绝缘斜面上,导轨间距为l =0.5m 。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁感应考点清单1 电磁感应现象 感应电流方向(一)磁通量1.磁通量:穿过磁场中某个面的磁感线的条数叫做穿过这一面积的磁能量.磁通量简称磁通,符号为Φ,单位是韦伯(Wb ).2.磁通量的计算(1)公式Φ=BS此式的适用条件是:○1匀强磁场;○2磁感线与平面垂直.(2)如果磁感线与平面不垂直,上式中的S 为平面在垂直于磁感线方向上的投影面积.θsin S B •=Φ其中θ为磁场与面积之间的夹角,我们称之为“有效面积”或“正对面积”.(3)磁通量的方向性磁通量正向穿过某平面和反向穿过该平面时,磁通量的正负关系不同.求合磁通时应注意相反方向抵消以后所剩余的磁通量.(4)磁通量的变化12Φ-Φ=∆Φ∆Φ可能是B 发生变化而引起,也可能是S 发生变化而引起,还有可能是B 和S 同时发生变化而引起的,在确定磁通量的变化时应注意.(二)电磁感应现象的产生条件1.产生感应电流的条件:穿过闭合电路的磁通量发生变化.2.感应电动势的产生条件:无论电路是否闭合,只要穿过电路的磁通量发生变化, 这部分电路就会产生感应电动势.这部分电路或导体相当于电源.[例1] (2004,4)两圆环A 、B 置于同一水平面上,其中A 为均匀带电绝缘环,B 为导体环.当A 以如图13-36所示的方向绕中心转动的角速度发生变化时,B 中产生如图所示方向的感应电流.则( )图13-36A.A 可能带正电且转速减小B.A 可能带正电且转速增大C.A 可能带负电且转速减小D.A 可能带负电且转速增大[解析] 由题目所给的条件可以判断,感应电流的磁场方向垂直于纸面向外,根据楞次定律,原磁场的方向与感应电流的磁场相同时是减少的,环A 应该做减速运动,产生逆时针方向的电流,故应该带负电,故选项C 是正确的,同理可得B 是正确的.[答案] BC(三)感应电流的方向1.右手定则当闭合电路的部分导体切割磁感线时,产生的感应电流的方向可以用右手定则来进行判断.右手定则:伸开右手,使大拇指跟其余四指垂直,并且都跟手掌在一个平面,让磁感线垂直穿入手心,大拇指指向导体运动方向,那么伸直四指指向即为感应电流的方向.[说明] 伸直四指指向还有另外的一些说法:○1感应电动势的方向;○2导体的高电势处.[例2](2004天津理综,20)图13-37中MN 、GH 为平行导轨,AB 、CD 为跨在导轨上的两根横杆,导轨和横杆均为导体.有匀强磁场垂直于导轨所在的平面,方向如图,用I 表示回路的电流.A.当AB 不动而CD 向右滑动时,0≠I 且沿顺时针方向B.当AB 向左、CD 向右滑动且速度大小相等时,I =0C.当AB 、CD 都向右滑动且速度大小相等时,I =0D.当AB 、CD 都向右滑动,且AB 速度大于CD 时,0≠I 且沿逆时针方向图13-37[解析] 当AB 不动而CD 向右滑动时,0≠I ,但电流方向为逆时针,A 错;当AB 向左,CD 向右滑动时,两杆产生的感应电动势同向,故0≠I ,B 错;当AB 和CD 都向右滑动且速度大小相等时,则两杆产生的感应电动势等值反向,故I =0,C 正确;当AB 和CD 都向右滑动,且AB 速度大于CD 时,0≠I ,但方向为顺时针,D 错误.[答案] C2.楞次定律(1)容感应电流具有这样的方向:就是感应电流的磁场总是阻碍引起感应电流的磁通量的变化.注意:○1“阻碍”不是“相反”,原磁通量增大时,感应电流的磁场与原磁通量相反,“反抗”其增加;原磁通量减小时,感应电流的磁场与原磁通量相同,“补偿”其减小.即“增反减同”.○2“阻碍”也不是阻止,电路中的磁通量还是变化的,阻碍只是延缓其变化. ○3楞次定律的实质是“能量转化和守恒”,感应电流的磁场阻碍过程,使机械能减少,转化为电能.(2)应用楞次定律判断感应电流的步骤:○1确定原磁场的方向○2明确回路中磁通量变化情况.○3应用楞次定律的“增反减同”,确定感应电流磁场的方向.○4应用右手安培定则,确立感应电流方向.[例3] (2001综合,14)某实验小组用如图13-38所示的实验装置来验证楞次定律.当条形磁铁自上而下穿过固定的线圈时,通过电流计的感应电流方向是()A.a→G→bB.先a→G→b,后b→G→aC.b→G→aD.先b→G→a,后a→G→b图13-38[解析] ○1确定原磁场的方向:条形磁铁在穿入线圈的过程中,磁场方向向下.○2明确回路中磁通量变化情况:向下的磁通量增加.○3由楞次定律的“增反减同”可知:线圈中感应电流产生的磁场方向向上.○4应用右手安培定则可以判断感应电流的方向为逆时针(俯视)即:从b→G→a.同理可以判断:条形磁铁穿出线圈过程中,向下的磁通量减小,由楞次定律可得:线圈中将产生顺时针的感应电流(俯视),电流从a→G→b.[答案] D[评价] 该题目关键在于对楞次定律的理解和应用以及对“穿过”二字的正确理解,它包括穿入和穿出两个过程.(3)楞次定律的另一种表述楞次定律的另一种表达为:感应电流的效果,总是要反抗产生感应电流的原因.[说明] 这里产生感应电流的原因,既可以是磁通量的变化,也可以是引起磁通量变化的相对运动或回路的形变.○1当电路的磁通量发生变化时,感应电流的效果就阻碍变化−−→−变形为阻碍原磁通量的变化.○2当出现引起磁量变化的相对运动时,感应电流的效果就阻碍变化−−→−拓展为阻碍(导体间的)相对运动,即“来时拒,去时留”.○3当回路发生形变时,感应电流的效果就阻碍回路发生形变.○4当线圈自身的电流发生变化时,感应电流的效果就阻碍原来的电流发生变化.总之,如果问题不涉及感应电流的方向,则从楞次定律的另类表述出发的分析方法较为简便.[例4] 如图13-19所示,光滑固定导轨M 、N 水平放置,两根导体棒P 、Q 平行放于导轨上,形成一个闭合回路,当一条形磁铁从高处下落接近回路时( )图13-39A.P 、Q 将互相靠拢B.P 、Q 将互相远离C.磁铁的加速度仍为gD.磁铁的加速度小于g[解析] 方法一:设磁铁下端为N 极,如图13-40所示,根据楞次定律可判断出P 、Q 中感应电流方向,根据左手定则可判断P 、Q 所受安培力的方向,可见P 、Q 将互相靠拢,由于回路所受安培力的合力向下,由牛顿第三定律,磁铁将受到向上的反作用力,从而加速度小于g.当S 极为下端时,可得到同样的结果.图13-40方法二:根据楞次定律的另一种表述——感应电流的效果总是要反抗产生感应电流的原因,本题的“原因”是回路中磁通量的增加.归根结底是磁铁靠近回路,“效果”便是阻碍磁通量的增加和磁铁的靠近,所以P 、Q 将互相靠近,且磁铁的加速度小于g .[答案] AD2 法拉第电磁感应定律 自感(一)法拉第电磁感应定律(1)容:电磁感应中线圈里的感应电动势眼穿过线圈的磁通量变化率成正比.(2)表达式:t E ∆∆Φ=或t n E ∆∆Φ=. (3)说明:○1式中的n 为线圈的匝数,∆Φ是线圈磁通量的变化量,△t 是磁通量变化所用的时间.t∆∆Φ又叫磁通量的变化率. ○2∆Φ是单位是韦伯,△t 的单位是秒,E 的单位是伏特.○3t n E ∆∆Φ=中学阶段一般只用来计算平均感应电动势,如果t∆∆Φ是恒定的,那么E 是稳恒的.[例1] 有一面积为S =100cm 2金属环,电阻为R =0.1Ω,环中磁场变化规律如图13-41所示,且磁场方向垂直环面向里,在t 1到t 2时间,环中感应电流的方向如何?通过金属环的电量为多少?图13-41[分析] 由楞次定律可判断感应电流的方向.感应电量的计算为Rt tR t R E t I Q ∆Φ=∆∆∆Φ=∆=∆=,仅由电路电阻和磁通量变化决定,与发生磁通量变化的时间无关,本题推导的感应电量的计算表达式可以直接使用.[解析] (1)由楞次定律,可以判断金属环中感应电流方向为逆时针方向.(2)由图可知:磁感应强度的变化率为1212t t B B t B --=∆∆ ○1 线圈中的磁通量的变化率: S t t B B S t B t •--=∆∆=∆∆Φ1212 ○2 环中形成感应电流tR R t R E I ∆∆Φ=∆∆Φ==/ ○3 通过金属环的电量:t I Q ∆= ○4 由○1○2○3○4解得:1.010)1.02.0()(212-⨯-=-=R S B B Q C=0.1C. (二)导线切割磁感线的感应电动势1.公式:E=BLv2.导线切割磁感线的感应电动势公式的几点说明:(1)公式仅适用于导体上各点以相同的速度切割匀强的磁场的磁感线的情况.(2)公式中的B 、v 、L 要求互相两两垂直.当L ⊥B ,L ⊥v ,而v 与B 成θ夹角时,导线切割磁感线的感应电动势大小为θsin BLv E =.(3)适用于计算当导体切割磁感线产生的感应电动势,当v 为瞬时速度时,可计算瞬时感应电动势,当v 为平均速度时,可计算平均电动势.(4)若导体棒不是直的,θsin BLv E =中的L 为切割磁感线的导体棒的有效长度.如图13-42中,棒的有效长度有ab 的弦长.图13-42[例2] (2001物理,22)(13分)半径为a 的圆形区域有均匀磁场,磁感应强度为B =0.2T ,磁场方向垂直纸面向里,半径为b 的金属圆环与磁场同心放置,磁场与环面垂直,其中a =0.4m ,b =0.6m ,金属环上分别接有灯L 1、L 2,两灯的电阻均匀为R 0=2Ω,一金属棒MN 与金属环接触良好,棒与环的电阻均忽略不计.(1)若棒以v 0=5m/s 的速率在环上向右匀速滑动,求棒滑过圆环直径00′的瞬间(如图13-43所示)MN 中的电动势和流过灯L 1的电流.图13-43(2)撤去中间的金属棒MN ,将右面的半圆环OL 2O ′以OO ′为轴向上翻转90°,若此时磁场随时间均匀变化,其变化率为s T t B /)/4(/π=∆∆,求L 1的功率.[解析] (1)棒通过圆环直径时切割磁感线的有效长度L =2a ,棒中产生的感应电动势为58.02.02⨯⨯===av B BLv E V=0.8V ○1 当不计棒和环的电阻时,直径OO ′两端的电压U =E =0.8V ,通过灯L 1电流的为 28.001==R U I A =0.4A. ○2 (2)右半圆环上翻90°后,穿过回路的磁场有效面积为原来的一半,221a S π=',磁场变化时在回路中产生的感应电动热为V V a t B S t E 23.04212=⨯=∆∆•'=∆∆Φ='ππ ○3由L1、L2两灯相同,圆环电阻不计,所以每灯的电压均为EU'='21,L1的功率为22211028.1)21(-⨯='='=RERUP W. ○43.导体切割磁感线产生的感应电动势大小两个特例:(1)长为L的导体棒在磁感应强度为B的匀强磁场中以ω匀速转动,导体棒产生的感应电动势:⎪⎪⎪⎩⎪⎪⎪⎨⎧-===))((21212122212不同两段的代数和以任意点为轴时,)线速度(平均速度取中点位置以端点为轴时,(不同两段的代数和)以中点为轴时,LLBELLBEEωωω[例3] (2004两湖理综,19)一直升飞机停在南半球的地磁极上空.该处地磁场的方向竖直向上,磁感应强度为B,直升飞机螺旋桨叶片的长度为l,螺旋桨转动的频率为f,顺着地磁场的方向看螺旋桨,螺旋桨顺时针方向转动.螺旋桨叶片的近轴端为a,远轴端为b,如图13-44所示.如果忽略a到转轴中心线的距离,用ε表示每个叶片中的感应电动势,则()A.Bft2πε=,且a点电势低于b点电势B.Bft22πε-=,且a点电势低于b点电势C.Bft2πε=,且a点电势高于b点电势D.Bft22πε=,且a点电势高于b点电势图13-44[解析] 对于螺旋桨叶片ab,其切割磁感线的速度是其做圆周运动的线速度,螺旋桨不同点的线速度不同,但是满足Rvω=',可求其等效切割速度fllvπω==2,运用法拉第电磁感应定律BftBlv2πε==,由右手定则判断电流的方向为由a指向b,在电源部电流由低电势流向高电势,故选项A是正确的.[答案] A(2)面积为S的矩形线圈在匀强磁场B中以角速度ω绕线圈平面的任意轴匀速转动,产生的感应电动势:⎪⎩⎪⎨⎧===θωθωsin 0BS E E BS E 时,为线圈平面与磁感线夹角时,线圈平面与磁感线垂直时,线圈平面与磁感线平行 (三)自感1.自感现象:当导体中的电流发生变化,导体本身就产生感应电动势,这个电动势总是阻碍导体中原来的电流的变化,这种由于导体本身电流发生变化而产生的电磁感应现象,叫自感现象.2.自感现象的应用(1)通电自感:通电瞬间自感线圈处相当于断路.(2)断电自感:断电时自感线圈处相当于电源.○1当线圈中电阻≥灯丝电阻时,灯缓慢熄灭; ○2当线圈中电阻<灯丝电阻时,灯闪亮后缓慢熄灭. 3.增大线圈自感系数的方法(1)增大线圈长度(2)增多单位长度上匝数(3)增大线圈截面积(口径)(4)线圈中插入铁芯4.日光灯(1)日光灯电路的组成和电路图:○1灯管:日光灯管的两端各有一个灯丝,灯管有微量的氩和汞蒸气,灯管涂有荧光粉.两个灯丝之间的气体导电荷发出紫外线,激发管壁上的荧光粉发出可见光.但要使管气体导电所需电压比200V 的电源电压高得多.○2镇流器:ⅰ)结构:线圈和铁芯.ⅱ)原理:自感.ⅲ)作用:灯管启动时提供一个瞬时高压,灯管工作时降压限流.○3启动器ⅰ) 结构:电容、氖气、静触片、U 形动触片、管脚、外壳.ⅱ)原理:热胀冷缩. ⅲ)作用:先接通电路,再瞬间断开电路,使镇流器产生瞬间高压.(2)日光灯电路的工作过程:合上开关,电源电压220V 加在启动器两极间→氖气放电发出辉光→辉光产生的热量,使U 形动触片膨胀伸长,与静触片接触接通电路→镇流器和灯丝过电流→氖气停止放电→动静触片分离→切断电路→镇流器产生瞬间高压,与电源电压加在一起,加在灯管两端→灯管中气体放电→日光灯发光.(3)日光灯启动后正常工作时,启动器断开,电流从灯管过.镇流器产生自感电动势起降压限流作用.3 电磁感应规律的综合应用法拉第电磁感应定律是电磁学的重点容之一,其综合了力、热、静电场、直流电路、磁场等许多容,反映在以下几个方面:1.因导体在切割运动或电路中磁通量的变化,产生感应电流,使导体受到安培力的作用,从而直接影响到导体或线圈的运动.[例1] (2002粤豫大综合,30)如图13-45所示,在一均匀磁场中有一U 形导线框abcd ,线框处于水平面,磁场与线框平面垂直,R 为一电阻,ef 为垂直于ab 的一根导体杆,它可在ab 、cd 上无摩擦地滑动.杆ef 及线框中导线的电阻都可不计.开始时,给ef 一个向右的初速度,则( )A.ef 将减速向右运动,但不是匀减速B.ef 将匀减速向右运动,最后停止C.ef 将匀速向右运动D.ef 将往返运动图13-45[解析] 给ef 一个向右的初速度,则ef 产生感应电动势,回路中产生感应电流.由楞次定律可以判断,ef 受到一个向左的安培力的作用而减速,随着ef 的速度减小,ef 产生的感应电动势减小,回路的感应电流减小,安培力减小,因此可以判断ef 是做加速度逐渐减小的减速运动.因此可知选项A 是正确的.[答案] A[例2] (2004理综,23)如图13-46甲所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L .M 、P 两点间接有阻值R 的电阻.一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直,整套装置处于磁感应强度为B 的匀强磁场中,磁场方向的垂直斜面向下.导轨和金属杆的电阻可忽略.让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.13-46(1)由b 向a 方向看到的装置如图13-46乙所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图;(2)在加速下滑过程中,当ab 杆的速度大小为v 时,求此时ab 杆中的电流及其加速度的大小;(3)求在下滑过程中,ab 杆可以达到的速度最大值.[解析] (1)重力mg ,竖直向下;支撑力N ,垂直斜面向上;安培力F ,沿斜面向上.(2)当ab 杆速度为v 时,感应电动势E =B lv ,此时电路中电流RBlv R E I ==. ab 杆受到安培力Rv L B BIL F 22==,根据牛顿运动定律,有Rv L B mg F mg ma 22sin sin -=-=θθ, mRv L B g a 22sin -=θ. (3)当θsin 22mg Rv L B =时,ab 杆达到最大速度v m . 22sin LB mgR v m θ=. 2.以电磁感应现象为核心,综合力学各种不同的规律(如机械能、动量、牛顿运动定律)等容形成的综合类问题.电学部分思路:将产生感应电动势的那部分电路等效为电源,如果在一个电路中切割磁感线的是几部分但又互相联系,可等效成电源的串并联,分析外电路结构,应用闭合电路欧姆定律和部分电路欧姆定律理顺电学量之间的关系.力学部分思路:分析通电导体的受力情况及力的效果,应用牛顿定律、动量定理、动量守恒、动能定理、机械能守恒等规律理顺力学量之间的关系.[例3] (2001京春季,20)(12分)两根足够长的固定的平行金属导轨位于同一水平面,两导轨间的距离为l.导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图13-47所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0.若两导体棒在运动中始终不接触,求:图13-47(1)在运动中产生的焦耳热最多是多少?(2)当ab 棒的速度变为初速度的43时,cd 棒的加速度是多少? [解析] ab 棒向cd 棒运动时,两棒和导轨构成的回路面积变小,磁通量发生变化,于是产生感应电流.ab 棒受到与运动方向相反的安培力作用做减速运动,cd 棒则在安培力作用下做加速运动.在ab 棒的速度大于cd 棒的速度时,回路总有感应电流,ab 棒继续减速,cd 棒继续加速.两棒速度达到相同后,回路面积保持不变,磁通量不变化,不产生感应电流,两棒以相同的速度v 做匀速运动.(1)从初始至两棒达到速度相同的过程中,两棒总动量守恒,有mv mv 20= ○1根据能量守恒,整个过程中产生的总热量2022041)2(2121mv v m mv Q =-= ○2(2)设ab 棒的速度变为初速度的43时,cd 棒的速度为v ′,则由动量守恒可知 v m v m mv '+=0043 ○3 此时回路中的感应电动势和感应电流分别为Bl v v E )43(0'-= ○4 R I 2ε= ○5此时cd 棒所受的安培力IBl F = ○6 cd 棒的加速度mF a = ○7 由以上各式,可得mRv l B a 4022=. ○8 3.电磁感应中的能量转化问题电磁感应过程实质是不同形式的能量转化的过程,电磁感应过程中产生的感应电流在磁场中必定受到安培力作用.因此要维持安培力存在,必须有“外力”克服安培力做功.此过程中,其他形式的能转化为能.“外力”克服安培力做多少功,就有多少其他形式的能转化为电能.当感应电流通过用电器时,电能又转化为其他形式的能.同理,安培力做功的过程,是电能转化为其他形式的能的过程,安培力做多少功就有多少电能转化为其他形式的能.因此电能求解思路主要有三种:○1利用克服安培力求解:电磁感应中产生的电能等于克服安培力所做的功. ○2得用能量守恒求解:开始的机械能总和与最后的机械能总和之差等于产生的电能.○3利用电路特征来求解:通过电路中所产生的电能来计算. [例4] 把一个矩形线圈从有理想边界的匀强磁场中匀速拉出(如图13-48),第一次速度为v 1,第二次速度为v 2且v 2=2v 1,则两种情况下拉力的功之比W 1/W 2= ,拉力的功率之比P 1/P 2= ,线圈中产生焦耳热之比Q 1/Q 2= .图13-48[解析] 设线圈的ab 边长为L ,bc 边长为L ′,整个线圈的电阻为R ,把ab 边拉出磁场时,cd 边以速度v 匀速运动切割磁感线产生感应电动势Blv E =.其电流方向从c 指向d ,线圈中形成的感应电流RBLv R E I == cd 边所受的安培力Rv L B BIL F 22== 为了维持线圈匀速运动,所需外力大小为Rv L B BIL F F 22=='= 因此拉出线圈过程外力的功v RL L B L F W '='=22 外力的功率222v RL B Fv P == 线圈中产生的焦耳热W v R L L B v L R R v L B Rt I Q ='='•==2222222由上面得出的W 、P 、Q 的表达式可知,两情况拉力的功、功率、线圈中的焦耳热之比分别为1∶2、1∶4、1∶2.[评价] 从题中可以看出,安培力做的功,与电路的消耗的电能是相同的.[例5] (2004理综,24)图13-49中a 1b 1c 1d 1和a 2b 2c 2d 2为在同一竖直面的金属导轨,处在磁感应强度为B 的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里.导轨的a 1b 1段与a 2b 2段是竖直的,距离为l 1;c 1d 1段与c 2d 2段也是竖直的,距离为l 2.x 1y 1与x 2y 2为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为m 1和m 2,它们都垂直于导轨并与导轨保持光滑接触.两杆与导轨构成的回路的总电阻为R .F 为作用于金属杆x 1y 1上的竖直向上的恒力.已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路电阻上的热功率.图13-49[解析] 设杆向上运动的速度为v ,因杆的运动,两杆与导轨构成的回路的面积减少,从而磁通量也减少,由法拉第电磁感应定律,回路中的感应电动势的大小v l l B E )(12-=回路中的电流RE I = 电流沿顺时针方向,两金属杆都要受到安培力作用,作用于杆x 1y 1的安培力为 11BIlF =(方向向上)作用于杆x 2y 2的安培力为22BIl F =(方向向下)当杆匀速运动时,根据牛顿第二定律有02121=-+--F F g m g m F解以上各式[]2122211221)()()()(l l B Rg m m F v l l B g m m F I -+-=-+-=作用于两杆的重力功率的大小gv m m P )(21+=电阻上的热功率.)()()()()(21221212122212R l l B g m m F Q g m m R l l B g m m F P RI Q ⎥⎦⎤⎢⎣⎡-+-=+-+-== 4.电磁感应中的图象问题电磁感应中常涉及磁感应强度B 、磁通量Φ、感应电动势E 和感应电流I 随时间t 变化的图象,即B -t 图象、Φ-t 图象、E -t 图象和I -t 图象.对于切割磁感线产生感应电动势和感应电流的情况,还常涉及感应电动势E 和感应电流I 随线圈位移x 变化的图象,即E -x 图象和I -x 图象.这些图象问题大体上可分为两类:○1由给定的电磁感应过程选出或画出正确的图象. ○2由给定的有关图象分析电磁感应过程,求解相应的物理量. 不管是何种类型,电磁感应中的图象问题常需利用右手定则、楞次定律和法拉第电磁感应定律等规律分析解决.[例6] (2004蒙理综,19)一矩形线圈位于一随时间t 变化的匀强磁场,磁场方向垂直线圈所在的平面(纸面)向里,如图13-50所示.以I 表示线圈中的感应电流,以图中的线圈上所示方向的电流为正,则图13-51的I -t 图正确的是( )图13-50图13-51[解析] 由图象可知,在0到1秒的时间,磁感应强度均匀增大,那么感应电流的方向为逆时针方向,与图示电流方向相反,为负值,排除B 、C 选项.根据法拉第电磁感应定律,其大小t S B t ∆•∆=∆∆Φ=ε,Rt S B R E I •∆•∆==为一定值,在2到3秒和4到5秒,磁感应强度不变,磁通量不变,无感应电流生成,D 错误,所以A 选项感应强度不变,磁通量不变,无感应电流生成,D 错误,所以A 选项正确.[答案] A。

相关文档
最新文档