运筹学线性规划的图解法
管理运筹学第二章 线性规划的图解法
B、约束条件不是等式的问题:
若约束条件为 ai1 x1+ai2 x2+ … +ain xn ≤ bi 可以引进一个新的变量si ,使它等于约束右 边与左边之差 si=bi–(ai1 x1 + ai2 x2 + … + ain xn ) 显然,si 也具有非负约束,即si≥0, 这时新的约束条件成为 ai1 x1+ai2 x2+ … +ain xn+si = bi
第二章 线性规划 的图解法
一、线性规划的概念 二、线性规划问题的提出 三、线性规划的数学模型 四、线性规划的图解法 五、线性规划解的情况 六、LP图解法的灵敏度分析
一、线性规划的概念
线性规划Linear Programming 简称LP,是一 种解决在线性约束条件下追求最大或最小的 线性目标函数的方法。 线性规划的目标和约束条件都可以表示成线 性的式子。
max z 3 x1 2 x2
2 x1 x2 ≤ 10 设备B台时占用 s.t. x1 x2 ≤ 8 x , x ≥ 0 产量非负 1 2
决策变量 (decision variable) 目标函数 (objective function) 约束条件 (subject to)
-ai1
x1-ai2 x2- … -ain xn = -bi 。
例1.3:将以下线性规划问题转化为标准形式 Min f = 3.6 x1 - 5.2 x2 + 1.8 x3 s. t. 2.3 x1 + 5.2 x2 - 6.1 x3 ≤15.7 4.1 x1 + 3.3 x3 ≥8.9 x1 + x2 + x3 = 38 x 1 , x 2 , x3 ≥ 0
运筹学课后习题答案
第一章 线性规划1、由图可得:最优解为2、用图解法求解线性规划: Min z=2x 1+x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤≥+≤+-01058244212121x x x x x x解:由图可得:最优解x=1.6,y=6.4Max z=5x 1+6x 2⎪⎩⎪⎨⎧≥≤+-≥-0,23222212121x x x x x x解:由图可得:最优解Max z=5x 1+6x 2, Max z= +∞Maxz = 2x 1 +x 2⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤0,5242261552121211x x x x x x x由图可得:最大值⎪⎩⎪⎨⎧==+35121x x x , 所以⎪⎩⎪⎨⎧==2321x xmax Z = 8.1212125.max 23284164120,1,2maxZ .jZ x x x x x x x j =+⎧+≤⎪≤⎪⎨≤⎪⎪≥=⎩如图所示,在(4,2)这一点达到最大值为26将线性规划模型化成标准形式:Min z=x 1-2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≥-=++-≥+-≤++无约束321321321321,0,052327x x x x x x x x x x x x解:令Z ’=-Z,引进松弛变量x 4≥0,引入剩余变量x 5≥0,并令x 3=x 3’-x 3’’,其中x 3’≥0,x 3’’≥0Max z ’=-x 1+2x 2-3x 3’+3x 3’’⎪⎪⎩⎪⎪⎨⎧≥≥≥≥≥≥-=++-=--+-=+-++0,0,0'',0',0,05232'''7'''5433213215332143321x x x x x x x x x x x x x x x x x x x7将线性规划模型化为标准形式Min Z =x 1+2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≤-=--≥++-≤++无约束,321321321321,00632442392-x x x x x x x x x x x x解:令Z ’ = -z ,引进松弛变量x 4≥0,引进剩余变量x 5≥0,得到一下等价的标准形式。
运筹学线性规划图解法
引理1.线性规划问题的可行解X为基本可行解的充分 必要条件是X的正分量所对应的系数列向量是线性独立的. 证明:
必要性:已知X为线性规划的基本可行解,要证X的 正分量所对应的系数列向量线性独立。
因为X为基本解,由定义,其非零分量所对应的系数 列向量线性独立;又因为X还是可行解,从而其非零分量 全为正。
•有唯一解
例1: max z=2x1+ 3x2 s.t. x1+2x2≤8 4x1≤16 x1,x2≥0
画图步骤: 1、约束区域的确定 2、目标函数等值线 3、平移目标函数等值线求最优值
x2
可行域
(4,2) z=14
目标函数 等值线
x1
•有无穷多解
例2 max z =2x1+4x2 s.t. x1+2x2≤8 4x2 ≤ 12 3x1 ≤12 x1, x2 ≥0
X(0)=Σ α iX(i) α i0,Σ α i=1 记X(1),X(2), …,X(k)中满足max CX(i)的顶点为X(m)。于是,
k
k
CX (0) Ci X (i) Ci X (m) CX (m)
i 1
i 1
由假设CX(0)为最优解,所以CX(0)=CX(m),即最优解可在顶点
充分性:已知可行解X的正分量所对应的系数列向量 线性独立,欲证X是线性规划的基本可行解。
若向量P1, P2,…, Pk线性独立,则必有k≤m;当k=m时, 它们恰构成一个基,从而X=(x1,x2,…,xk,0…0)为相 应的基可行解。K〈m时,则一定可以从其余的系数列向量 中取出m-k个与P1, P2,…, Pk构成最大的线性独立向量组, 其对应的解恰为X,所以根据定义它是基可行解。
§2 线性规划图解法
管理运筹学第二章线性规划的图解法
02
图解法的基本原理
图解法的概念
图解法是一种通过图形来直观展示线性规划问题解的方法。它通过在坐标系中绘 制可行域和目标函数,帮助我们理解问题的结构和最优解的位置。
图解法适用于线性规划问题中变量和约束条件较少的情况,能够直观地展示出最 优解的几何意义。
图解法的步骤
确定决策变量和目标函数
明确问题的决策变量和目标函数,以便在图 形中表示。
目标函数是要求最小化或最大化的函数,通常表示为 $f(x) = c_1x_1 + c_2x_2 + ldots + c_nx_n$。
04
约束条件是限制决策变量取值的条件,通常表示为 $a_1x_1 + a_2x_2 + ldots + a_nx_n leq b$或 $a_1x_1 + a_2x_2 + ldots + a_nx_n = b$。
LINDO是一款开源的线性规划求解器,用 户可以免费使用。
软件工具的使用方法
Excel
用户需要先在Excel中设置好线性规划模型,然后使 用“数据”菜单中的“规划求解”功能进行求解。
Gurobi/CPLEX/LINDO
这些软件通常需要用户先在软件界面中输入线性规划 模型,然后通过点击“求解”按钮进行求解。
实例三:分配问题
总结词
分配问题是指如何根据一定的分配原则 或目标,将有限的资源分配给不同的需 求方,以最大化整体效益。
VS
详细描述
分配问题在实际生活中广泛存在,如物资 分配、任务分配等。通过图解法,可以将 分配问题转化为线性规划模型,并利用图 形直观地展示最优解的资源分配方案。在 分配问题中,通常需要考虑不同需求方的 重要性和优先级,以及资源的有限性等因 素,以实现整体效益的最大化。
管理运筹学_第二章_线性规划的图解法
线性规划中超过约束最低限的部分,称为剩余量。 记s1,s2为剩余变量,s3为松弛变量,则s1=0, s2=125,
s3=0,加入松弛变量与剩余变量后例2的数学模型变为 标准型: 目标函数: min f =2x1+3x2+0s1+0s2+0s3 约束条件: x1+x2-s1=350, x1-s2=125, 2x1+x2+s3=600, x1, x2, s1,s2,s3≥0.
阴影部分的每 一点都是这个线 性规划的可行解, 而此公共部分是 可行解的集合, 称为可行域。
B
X2=250
100
100
300
x1
B点为最优解, X1+X2=300 坐标为(50, 250), Z=0=50x1+100x2 此时Z=27500。 Z=10000=50x1+100x2 问题的解: 最优生产方案是生产I产品50单位,生产Ⅱ产品250单位,可得 最大利润27500元。
Z=10000=50x1+50x2
线段BC上的所有点都代表了最优解,对应的最优值相 同: 50x1+50x2=15000。
10
3. 无界解,即无最优解的情况。对下述线性规划问题:
目标函数:max z =x1+x2 约束条件:x1 - x2≤1 -3x1+2x2≤6 x1≥0, x2≥0.
x2 -3x1+2x2=6 3
其中ci为第i个决策变量xi在目标函数中的系数, aij为第i个约束条件中第j个决策变量xj的系数, bj(≥0)为第j个约束条件中的常数项。
16
灵敏度分析
灵敏度分析:求得最优解之后,研究线性规划的
运筹学线性规划问题与图解法
线性规划问题的一般形式
Max(min)Z=C1X1+ C2X2+…+CnXn a11X1+ a12X2+…+ a1nXn (=, )b1 a21X1+ a22X2+…+ a2nXn (=, )b2 … … … am1X1+ am2X2+…+ amnXn (=, )bm Xj 0(j=1,…,n)
简写式
Max(min)z c j x j
j 1 n
aij x j (, )bi , i=1, 2,..., m st. j 1 x 0, j 1, 2,..., n j
n
向量式 Max(min)z CX
Pj x j (, )b st . j 1 x 0
min z C T X
线性规划的标准型
下列情况具体处理 若要求目标函数求最大化 若约束方程为不等式:非负松弛变量,非负 剩余变量 若变量不是非负:非正,自由变量, 右边为非正 任何形式的线性规划模型都可以化为标准型。
Ai
配料问题:每单位原料i含vitamin如下:
原料
1
A
4
B
1
C
0
每单位成本
2
2
3
6
1
1
7
2
1
5
6
4
每单位添 加剂中维生 素最低含量
2
5
3
8
12
14
8
求:最低成本的原料混合方案
解:设每单位添加剂中原料i的用量为 xi (i =1,2,3,4)
minZ= 2x1 + 5x2 +6x3+8x4 4x1 + 6x2 + x3+2x4 12
第二章 线性规划的图解法(简)
第二节 图解法
在线性规划中,对一个约束条件中没使用的资源或能力的大小称 之为松弛量。记为Si。
第二节 图解法
像这样把所有的约束条件都写成等式 ,称为线性规划模型的标准化,所得结果 称为线性规划的标准形式。
第二节 图解法
同样对于≥约束条件中,可以增加一些代表
最低限约束的超过量,称之为剩余变量,把≥约
第二章 线性规划的图解法
主要内容:
§1 问题的提出 (什么是线性规划) §2 图解法 §3 图解法的灵敏度分析
重点和难点
重点: (1)线性规划问题的主要概念 (2)线性规划问题的数学模型 (3)线性规划图解法的过程 (4)阴影价格的定义和灵敏度分析 难点: 灵敏度分析
第一节 问题的提出
约束条件对偶价格小于零时,约束条件
右边常数增加一个单位,就使得最优目
标函数值减少一个其对偶价格。
第三节 图解法的灵敏度分析
对目标函数值求最小值的情况下, 当对偶价格大于零时,约束条件右边常数增加 一个单位就使其最优目标函数值减少一个其对 偶价格; 当对偶价格等于零时,约束条件右边常数增加 一个单位,并不影响其最优目标函数值; 当对偶价格小于零时,约束条件右边常数增加 一个单位,就使得其最忧目标函数值增加一个 其对偶价格。
具有上述3个特征的问题为线性规划问题。
第一节 问题的提出
我们的仸务就是要选择一组或多组方案,使目
标函数值最大或最小。从选择方案的角度说,
这是规划问题。从使目标函数值最大或最小的
角度说,就是优化问题。
线性规划数学模型的一般表示方式
max(min) f ( x) c1 x1 c2 x2 cn xn a11 x1 a12 x2 a1n xn a x a x a x 21 1 22 2 2n n s.t. a x a x a x m2 2 mn n m1 1 x1 , x2 , , xn n : 变量个数 ; m : 约束行数 ; n m : 线性规划问题的规模 c j : 价值系数 ; b j : 右端项; aij : 技术系数 (, )b1 (, )b2 (, )bm 0
运筹学课堂PPT4.2目标规划的图解法
x1
,
x2
,
d
j
,
d
j
d1 0
d1
80
(3)
最优解空间:ABCD
(2) C
B
x1
(1) (3)
min
Z
P1d1
P2
(d
2
d
2
)
P3
(d
3
d
3
)
P4d
4
3x1 12
(1)
x2
4 x2 16
复习:两平行直线间的距离公式
Ax By d d C(目标约束)
y
d d 0
Ax By C
d 0 ( x0 , y0 )
d
正负偏差变量中至少有一个零,如:
A2 B2
x Ax By C
Ax By d d C d 0, d 0
Ax By d C
Ax By C d C(在下半平面)
P2d4
P3d
3
P4 (2d1
d
2
)
x1 30 x2 20 / 3
x2
d1 0
d1 0
d
2
25 /
3
d2 0
d
3
680
d
3
0
d
4
0
d4 0
D
E(35/2,15)
(2)
min Z (0, 0, 680, 25 / 3)
F(30,20/3)
A
B
x1
(1)
(4) (3)
4.2 目标规划的图解法
差变量大于零的区域。
(1) (2) (3)
(平行) (4)
(2)
x1
管理运筹学 线性规划的图解法课件
线性规划的应用领域
生产计划
线性规划可以用于制定生产计划,优 化资源配置,提高生产效率。
物流优化
线性规划可以用于优化物流配送路线 、车辆调度等问题,降低运输成本。
金融投资
线性规划可以用于金融投资组合优化 ,实现风险和收益的平衡。
资源分配
线性规划可以用于资源分配问题,如 人员、资金、设备等资源的合理分配 ,提高资源利用效率。
束条件。
线性规划的目标是在满足一系列 限制条件下,使某一目标函数达
到最优值。
线性规划问题通常表示为求解一 组变量的最优值,使得这些变量 满足一系列线性等式或不等式约
束。
线性规划的数学模型
线性规划的数学模型由决策变量、目标函数和约束条 件三部分组成。
输标02入题
决策变量是问题中需要求解的未知数,通常表示为 $x_1, x_2, ldots, x_n$。
01
03
约束条件是限制决策变量取值的条件,通常表示为 $a_1x_1 + a_2x_2 + ldots + a_nx_n leq b$或 $a_1x_1 + a_2x_2 + ldots + a_nx_n = b$。
04
目标函数是问题要优化的函数,通常表示为$f(x) = c_1x_1 + c_2x_2 + ldots + c_nx_n$。
03
绿色发展与线性规 划的结合
将可持续发展理念融入线性规划 ,实现资源节约、环境友好的发 展目标。
THANKS
[ 感谢观看 ]
约束条件
生产计划问题通常受到资源限制、市场需求和生 产能力等约束条件的限制。
详细描述
生产计划问题通常涉及到如何分配有限的资源, 以最大化某种目标函数(如利润)。通过图解法 ,我们可以将约束条件和目标函数在二维平面上 表示出来,从而找到最优解。
运筹学 第01章 线性规划问题
线性规划建模步骤
设定决策变量 明确约束条件并用决策变量的线性等式或 不等式表示 用变量的线性函数表示要达到的目标,并 确定是求极小还是求极大 根据变量的物理性质确定变量是否具有非 负性 注:其中最关键是设定决策变量这一步
生产计划问题(1)
某工厂用三种原料生产三种产品,已知的 条件如下表所示,试制订总利润最大的日 生产计划
线性规划问题解的有关概念(2)
基本解:令模型中所有非基变量的值等于零后,由 模型的约束方程组得到的一组解。 基本可行解:满足非负条件的基本解称为基本可行 解。 可行基:对应于基本可行解的基称为可行基。 退化解:基本可行解的非零分量个数小于m时,称 为退化解。 最优基:若对应于基B的基本可行解X是线性规划的 最优解,则称B为线性规划的最优基
人员安排问题(1)
医院护士24小时值班,不同时段需要的护 士人数不等(见下表)。每个护士每天连 续值班8小时,在各时段开始时上班。问最 少需要多少护士?
序号 1 2 3 4 时段 06—10 10—14 14—18 18—22 最少人数 60 70 60 50
5 6
22—02 02—06
20 30
人员安排问题(2)
设xj为第j时段开始值班的护士人数
目标函数为:使人数最少,则有
min f ( X ) x1 x2 x3 x4 x5 x6 x6 x1 60 x x 70 1 2 x2 x3 60 s.t. x3 x4 50 x x 20 5 4 x5 x6 30 x1 , x2 , x3 , x4 , x5 , x6 0且为整数
运筹学
第一章 线性规划问题
本章重点
线性规划建模 线性规划的图解法 线性规划的标准形式 单纯形法 两阶段法 大M法
第二章 线性规划的图解法
例2.某工厂在计划期内要安排Ⅰ、Ⅱ两种产 品的生产,已知生产单位产品所需的设备台 时及A、B两种原材料的消耗、资源的限制, 如下表:
设备 原料 A 原料 B 单位产品获利 Ⅰ 1 2 0 50 元 Ⅱ 1 1 1 100 元 资源限制 300 台时 400 千克 250 千克
问题:工厂应分别生产多少单位Ⅰ、Ⅱ 产品才能使工厂获利最多?
第二章 线性规划的图解法
问题1具体数据如表所示:
资源 单耗 资源 煤(t) 电(kw.h) 油(t) 单位产品价格 9 4 3 7 4 5 10 12 360 200 300 产品 甲 乙 资源限量
提出和形成问题
建立模型
求解
结果的分析和应用
第二章 线性规划的图解法
在本例中
决策变量: 甲、乙产品的计划产量,记为x1 ,x2; 目标函数: 总收入记为f,则 f=7x1 +12x2 ,为体现对其求极大化, 在f 的前面冠以极大号Max,
第二章 线性规划的图解法 例2:.某公司由于生产需要,共需要A,B两种原料至 少350吨(A,B两种材料有一定替代性),其中A原 料至少购进125吨。但由于A,B两种原料的规格不同, 各自所需的加工时间也是不同的,加工每吨A原料需 要2个小时,加工每吨B原料需要1小时,而公司总共 有600个加工小时。又知道每吨A原料的价格为2万元, 每吨B原料的价格为3万元,试问在满足生产需要的 前提下,在公司加工能力的范围内,如何购买A,B 两种原料,使得购进成本最低?
第二章 线性规划的图解法
★线性规划模型的三个基本要素:
(也是所有规划问题的三个基本要素):
(1)决策变量:甲、乙产品的产量x1 ,x2 决策变量:需要决策的量,即等待求解的未知数。 (2)目标函数:总收入最大,Max f = 7 x 1 +12 x 2 目标函数:想要达到的目标,用决策 变量的表达式表示。 (3)约束条件: 约束条件:由于资源有限,为了实现 目标有哪些资源限制,用决策变量的 等式或不等式表示。
运筹学 线性规划 图解法
x2 4x1=16
x1+2x2=8
Q4
Q3
3
•Q2(4,2) 4x2=12
Q1
0
4
x1
2x1+3x2=0
2.试算法
最优解在顶点达到:
O点:X1=0, X2=0, Z=0 Q1: X1=4, X2=0, Z=8 Q2: X1=4, X2=2, Z=14 Q3: X1=2, X2=3, Z=10 Q4: X1=0, X2=3, Z=6
x2
X1=10/3,x2 =4/3
Z=12.67
0
x1
线性代数基础知识补充与回顾
一、克莱姆规则
含有n个未知数x1,x2,…xn的n个线性方程的方程 组如下式所示:
a11x1 a12x2 ..... a1nxn b1 a21x1 a22x2 ..... a2nxn b2 ...................................... an1x1 an2x2 ..... annxn bn
克莱姆法则 如果上述线性方程组的系数行列式不等于零,即有:
a11 a1n
D
0
an1 ann
那么,上述方程组有唯一解:
x1D D 1,x2D D 2,........xn .. ..D .D .n .
其中Dj(j=1,2,……n)是把系数行列式D中的第j 列的元素用方程组的常数项代替后得到的n阶行列式.
(a)可行域有界 唯一最优解
(b)可行域有界 多个最优解
(c)可行域无界 唯一最优解
(d)可行域无界 多个最优解
(e)可行域无界 目标函数无界
(f)可行域为空集 无可行解
课堂作业:用图解法求解下列问题
某厂利用A、B两种原料,生产甲、乙两种产品,有关数据如下:
《管理运筹学》演示(图论)
v3 (v2 ,1)
检查 vs 相邻点 v1 和 v2 。 v2点,fs2 = cs2 =3,不满足标号条件;v1点,fs1 < cs1 , v1点标号为( vs , l(v1) ), l(v1) =min[ l(vs) ,( cs1 - fs1 )]= min[+ , 5-1] = 4; 检查 v1 相邻点 v3 和 v2 。 v3点,f13 = c13 =2,不满足标号条件; v2点,f21=1> 0 , v2点标号为( -v1 , l(v2) ), l(v2) =min[ l(v1) , f21]= min[4 , 1] = 1; 检查 v2 相邻点 v3 和 v4 。v3点,f32=1> 0 , v3点标号为( -v2 , l(v3) ), l(v3) =min[ l(v2) , f32]= min[1 , 1]=1 ; v4点,f24 < c24 =1,v4点标号为( v2 , 1 ) ;
,
最大流量 v(f ) = 5
最小费用最大流问题
例:求下列网络最小费用最大流。弧旁数字为( bij , cij ) 步骤:
v1
(1,7)
vt
取 f ( 0 ) =0为初始可行流; 构造赋权有向图w( f ( 0 )),
vs
解:
v1
0 0
v2
0
0
v3
vt
0
bij wij bij wij
v8
步 骤:
给 vs点以 P 标号,P(vs) = 0,其余各点给 T 标号,
T(vs) = + ;
若 vs点为刚得到 P 标号的点,考虑这样的点 vj:
( vi , vj )属于A(或[vi , vj ] 属于E ),且vj 为 T 标号。对 vj 的T 标号进行如下的更改:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可行解集/可行解域
满足约束条件的可行解的全体称为可行解集。 在平面上,所有可行解的点的集合称为可行解域。
最优解
在可行解集中,使目标函数达到最优值的可行解称为最优解。
3
图解法的一般步骤
1、建立数学模型。 2、绘制约束条件不等式图,做出可行解集
2ห้องสมุดไป่ตู้
4
D
x1
2x1 3x2 0 4x1 x2 8
x1 x2 5 x1 2x2 6
16
解
该问题有可行解但最优解无界, 即无界解。
17
例4
max F 2 x1 4 x2 s.t. x1 4 x2 3 x1 2 x2 8 x1 0, x2 0
18
解、绘制可行解域
x2
可行解域为阴 影部分OABCD 5
7
3、画目标函数图
x2
5
4x1 2x2 12
A 3
B
1
2x1 3x2 10
O
2C 4
6
x1
6x1 4x2 0
6x1 4x2 20
8
4、判断解的形式,得出结论。
本题有唯一的最优解。 解法:
最优解是由两根直线所确定的最后的交点; 解由此两根直线相应方程所组成的方程组,得到
问题的精确最优解; 将最优解代入目标函数,得最优值。
13
解、求出最优解。
x1 x2 x1 2x2
5 6
最优解:xx12
4 1
将最优解代入目标函数,得最优值:
minF 2x1 3x2 2 4 31 11
14
例3
将例2中目标函数改为 maxF=2x1+3x2, 约束条件不变。
15
解、可行解域不变
x2
x2≥0
A
6
4
B
2
x1≥0
C
B
x1 4
A
x2 3
C
1
x1 2x2 8
O
2
D
6
x1
19
解、移动目标函数等值线
x2
5
B A
1
O
2
2x1 4x2 0
x1 4
C
x2 3
x1 2x2 8
D
6
x1
20
解、目标函数等值线最终与可 行解域边线重合
x2
5
B A
1
O
2
2x1 4x2 0
x1 4
C
x2 3
x1 2x2 8
对应的可行解域。 3、画目标函数图。 4、判断解的形式,得出结论。
4
1、建立数学模型
max F 6x1 4x2 s.t. 2x1 3x2 10 4x1 2x2 12 x1 , x2 0
5
2、绘制可行解域
x2
5 4x1 2x2 12
可行解域为 阴影部分
OABC
A 3
B
1
2x1 3x2 10
9
4、求出最优解。
42xx11
3x2 2x2
10 12
最优解:xx12
2 2
将最优解代入目标函数,得最优值:
maxF 6x1 4x2 6 2 4 2 20
10
例2
min F 2x1 3x2 s.t. x1 x2 5 4x1 x2 8 x1 2x2 6 x1 0, x2 0
D
6
x1
21
解
最优解为BC线段上所有点 (无穷多个最优解)
最优值为16。
22
例5
max F 2x1 x2 s.t. x1 x2 1 0 x1 0, x2 0
23
解
x2
x1
x1 x2 1 0
24
解得: 无可行解,无最优解。
25
思考题与练习题
26
11
解、绘制可行解域
x2
x2≥0
A
可行解域为开放 区域x2ABCDx1
6
4
B
2
x1≥0
C
2
4
D
x1
4x1 x2 8
x1 x2 5 x1 2x2 6
12
解、画目标函数等值线
x2
x2≥0
A C点为最优解
6
4
B
2
x1≥0
C
2
4
D
x1
2x1 3x2 0 4x1 x2 8
x1 x2 5 x1 2x2 6
O
C
2
4
6
x1
6
3、 画目标函数图
令目标函数值为零,可得到斜率,根据斜率做一过原点的直 线。(如果可行解域在第一象限,且目标函数等值线斜率为 负)若给出问题是求最大值,把目标函数等值线平行移动到 与可行解域最后相交的点,这点就是问题的最优解;若给出 问题是求最小值,把目标函数等值线平行移动到与可行解域 最先相交的点,这点即为问题的最优解。
第二节 线性规划的图解法
对于只包含两个决策变量的线性规划问题,可以 用图解法来求解。
图解法简单直观,有助于了解线性规划问题求解 的基本原理。
1
例1
max F 6 x1 4 x2 s.t. 2 x1 3x2 10 4 x1 2 x2 12 x1 , x2 0
2
一、解的概念
可行解