对数及其运算基础知识及例题
对数的运算法则及公式例题
对数的运算法则及公式例题
对数的运算法则主要包括以下几个方面:
1. 对数的乘法法则:
logₐ(MN) = logₐM + logₐN
2. 对数的除法法则:
logₐ(M/N) = logₐM - logₐN
3. 对数的幂法法则:
logₐMᵇ= b * logₐM
4. 对数的换底法则:
logₐM = logᵦM / logᵦa
公式例题:
1. 求log₃(9)的值。
解:根据对数的定义,3的多少次方等于9,很明显3的2次方等于9,即log₃(9) = 2。
2. 求log₄(16)的值。
解:同样根据对数的定义,4的多少次方等于16,显然4的2次方等于16,因此log₄(16) = 2。
3. 求log₂(8)的值。
解:根据对数的定义,2的多少次方等于8,很明显2的3次方等于8,即log₂(8) = 3。
4. 求log₈(2)的值。
解:根据对数的定义,8的多少次方等于2,很明显8的-1次方等于2,因此log₈(2) = -1。
5. 求log₅(25)的值。
解:根据对数的定义,5的多少次方等于25,很明显5的2次方等于25,因此log₅(25) = 2。
对数运算、对数函数经典例题讲义全
1.对数的概念如果a x=N (a >0,且a ≠1),那么数x 叫做__________________,记作____________,其中a 叫做__________,N 叫做______.2.常用对数与自然对数通常将以10为底的对数叫做____________,以e 为底的对数叫做____________,log 10N 可简记为______,log e N 简记为________. 3.对数与指数的关系若a >0,且a ≠1,则a x=N ⇔log a N =____.对数恒等式:a log a N =____;log a a x=____(a >0,且a ≠1). 4.对数的性质(1)1的对数为____; (2)底的对数为____; (3)零和负数__________.1.有下列说法:①零和负数没有对数;②任何一个指数式都可以化成对数式; ③以10为底的对数叫做常用对数; ④以e 为底的对数叫做自然对数. 其中正确命题的个数为( )A .1B .2C .3D .42.有以下四个结论:①lg(lg 10)=0;②ln(ln e)=0;③若10=lg x ,则x =100;④若e =ln x ,则x =e 2.其中正确的是( )A .①③B .②④C .①②D .③④ 3.在b =log (a -2)(5-a )中,实数a 的取值范围是( )A .a >5或a <2B .2<a <5C .2<a <3或3<a <5D .3<a <44.方程3l o g 2x=14的解是( )A .x =19B .x =33 C .x = 3 D .x =95.若log a 5b =c ,则下列关系式中正确的是( )A .b =a 5cB .b 5=a cC .b =5a cD .b =c 5a6.0.51log 412-+⎛⎫ ⎪⎝⎭的值为( )A .6 B.72 C .8 D.377.已知log 7[log 3(log 2x )]=0,那么12x -=________.8.若log 2(log x 9)=1,则x =________.9.已知lg a =2.431 0,lg b =1.431 0,则b a=________. 10.(1)将下列指数式写成对数式:①10-3=11 000;②0.53=0.125;③(2-1)-1=2+1.(2)将下列对数式写成指数式:①log 26=2.585 0;②log 30.8=-0.203 1; ③lg 3=0.477 1.11.已知log a x =4,log a y =5,求A =12232x xy ⎡⎢⎥⎢⎥⎢⎥⎣的值.能力提升12.若log a 3=m ,log a 5=n ,则a 2m +n的值是( )A .15B .75C .45D .225 13.(1)先将下列式子改写成指数式,再求各式中x 的值:①log 2x =-25;②log x 3=-13.(2)已知6a=8,试用a 表示下列各式:①log 68;②log 62;③log 26.1.对数概念与指数概念有关,指数式和对数式是互逆的,即a b=N ⇔log a N =b (a >0,且a ≠1),据此可得两个常用恒等式:(1)log a a b =b ;(2) log a Na =N .2.在关系式a x=N 中,已知a 和x 求N 的运算称为求幂运算;而如果已知a 和N 求x 的运算就是对数运 算,两个式子实质相同而形式不同,互为逆运算. 3.指数式与对数式的互化1.对数的运算性质如果a >0,且a ≠1,M >0,N >0,那么: (1)log a (M ·N )=____________________;(2)log a M N =____________________;(3)log a M n=__________(n ∈R ).2.对数换底公式log a b =log c b log c a(a >0,且a ≠1,b >0,c >0,且c ≠1);特别地:log a b ·log b a =____(a >0,且a ≠1,b >0,且b ≠1).一、选择题1.下列式子中成立的是(假定各式均有意义)( ) A .log a x ·log a y =log a (x +y )B .(log a x )n=n log a x C.log a x n=log a n xD.log a x log a y=log a x -log a y 2.计算:log 916·log 881的值为( )A .18 B.118 C.83 D.383.若log 513·log 36·log 6x =2,则x 等于( )A .9 B.19 C .25 D.1254.已知3a =5b=A ,若1a +1b=2,则A 等于( )A .15 B.15 C .±15 D .2255.已知log 89=a ,log 25=b ,则lg 3等于( )A.a b -1B.32(b -1)C.3a 2(b +1)D.3(a -1)2b6.若lg a ,lg b 是方程2x 2-4x +1=0的两个根,则(lg a b)2的值等于( ) A .2 B.12 C .4 D.147.2log 510+log 50.25+(325-125)÷425=_____________________________________.8.(lg 5)2+lg 2·lg 50=________.9.2008年5月12日,四川汶川发生里氏8.0级特大地震,给人民的生命财产造成了巨大的损失.里氏地震的等级最早是在1935年由美国加州理工学院的地震学家里特判定的.它与震源中心释放的能量(热能和动能)大小有关.震级M =23lg E -3.2,其中E (焦耳)为以地震波的形式释放出的能量.如果里氏6.0级地震释放的能量相当于1颗美国在二战时投放在广岛的原子弹的能量,那么汶川大地震所释放的能量相当于________颗广岛原子弹. 三、解答题10.(1)计算:lg 12-lg 58+lg 12.5-log 89·log 34;(2)已知3a =4b=36,求2a +1b的值.11.若a 、b 是方程2(lg x )2-lg x 4+1=0的两个实根,求lg(ab )·(log a b +log b a )的值.能力提升12.下列给出了x 与10x的七组近似对应值:A .二B .四C .五D .七13.一种放射性物质不断变化为其他物质,每经过一年的剩余质量约是原来的75%,估计约经过多少年,该物质的剩余量是原来的13?(结果保留1位有效数字)(lg 2≈0.301 0,lg 3≈0.477 1)1.对数函数的定义:一般地,我们把______________________叫做对数函数,其中x 是自变量,函数的定义域是________.2.对数函数的图象与性质对数函数y =log a x (a >0且a ≠1)和指数函数__________________互为反函数. 1.函数y =log 2x -2的定义域是( )A .(3,+∞)B .[3,+∞)C .(4,+∞)D .[4,+∞)2.设集合M ={y |y =(12)x,x ∈[0,+∞)},N ={y |y =log 2x ,x ∈(0,1]},则集合M ∪N 等于( )A .(-∞,0)∪[1,+∞)B .[0,+∞)C .(-∞,1]D .(-∞,0)∪(0,1) 3.已知函数f (x )=log 2(x +1),若f (α)=1,则α等于( ) A .0 B .1 C .2 D .3 4.函数f (x )=|log 3x |的图象是( )5.已知对数函数f (x )=log a x (a >0,a ≠1),且过点(9,2),f (x )的反函数记为y =g (x ),则g (x )的解析式是( )A .g (x )=4xB .g (x )=2xC .g (x )=9xD .g (x )=3x6.若log a 23<1,则a 的取值范围是( )A .(0,23)B .(23,+∞)C .(23,1)D .(0,23)∪(1,+∞)7.如果函数f (x )=(3-a )x,g (x )=log a x 的增减性相同,则a 的取值范围是______________. 8.已知函数y =log a (x -3)-1的图象恒过定点P ,则点P 的坐标是________.9.给出函数则f (log 23)=________.三、解答题10.求下列函数的定义域与值域: (1)y =log 2(x -2);(2)y =log 4(x 2+8).11.已知函数f (x )=log a (1+x ),g (x )=log a (1-x ),(a >0,且a ≠1). (1)设a =2,函数f (x )的定义域为[3,63],求函数f (x )的最值. (2)求使f (x )-g (x )>0的x 的取值范围.能力提升12.已知图中曲线C 1,C 2,C 3,C 4分别是函数y =log a 1x ,y =log a 2x ,y =log a 3x ,y =log a 4x 的图象,则a 1,a 2,a 3,a 4的大小关系是( )A .a 4<a 3<a 2<a 1B .a 3<a 4<a 1<a 2C .a 2<a 1<a 3<a 4D .a 3<a 4<a 2<a 113.若不等式x 2-log m x <0在(0,12)内恒成立,求实数m 的取值范围.1.函数y =log m x 与y =log n x 中m 、n 的大小与图象的位置关系.当0<n <m <1时,如图①;当1<n <m 时,如图②;当0<m <1<n 时,如图③.2.由于指数函数y =a x(a >0,且a ≠1)的定义域是R ,值域为(0,+∞),再根据对数式与指数式的互化过程知道,对数函数y =log a x (a >0,且a ≠1)的定义域为(0,+∞),值域为R ,它们互为反函数,它们的定义域和值域互换,指数函数y =a x的图象过(0,1)点,故对数函数图象必过(1,0)点.1.函数y =log a x 的图象如图所示,则实数a 的可能取值是( )A .5 B.15C.1eD.122.下列各组函数中,表示同一函数的是( )A .y =x 2和y =(x )2B .|y |=|x |和y 3=x 3C .y =log a x 2和y =2log a xD .y =x 和y =log a a x3.若函数y =f (x )的定义域是[2,4],则y =f (12log x )的定义域是( )A .[12,1] B .[4,16]C .[116,14] D .[2,4]4.函数f (x )=log 2(3x+1)的值域为( )A .(0,+∞)B .[0,+∞)C .(1,+∞)D .[1,+∞)5.函数f (x )=log a (x +b )(a >0且a ≠1)的图象经过(-1,0)和(0,1)两点,则f (2)=________. 6.函数y =log a (x -2)+1(a >0且a ≠1)恒过定点____________.一、选择题1.设a =log 54,b =(log 53)2,c =log 45,则( ) A .a <c <b B .b <c <a C .a <b <c D .b <a <c2.已知函数y =f (2x)的定义域为[-1,1],则函数y =f (log 2x )的定义域为( )A .[-1,1]B .[12,2]C .[1,2]D .[2,4]3.函数f (x )=log a |x |(a >0且a ≠1)且f (8)=3,则有( ) A .f (2)>f (-2) B .f (1)>f (2) C .f (-3)>f (-2) D .f (-3)>f (-4)4.函数f (x )=a x+log a (x +1)在[0,1]上的最大值与最小值之和为a ,则a 的值为( ) A.14 B.12C .2D .4 5.已知函数f (x )=lg 1-x1+x,若f (a )=b ,则f (-a )等于( )A .bB .-b C.1b D .-1b6.函数y =3x(-1≤x <0)的反函数是( )A .y =13log x (x >0)B .y =log 3x (x >0)C .y =log 3x (13≤x <1)D .y =13log x (13≤x <1)7.函数f (x )=lg(2x-b ),若x ≥1时,f (x )≥0恒成立,则b 应满足的条件是________. 8.函数y =log a x 当x >2时恒有|y |>1,则a 的取值范围是______________. 9.若log a 2<2,则实数a 的取值范围是______________.10.已知f (x )=log a (3-ax )在x ∈[0,2]上单调递减,求a 的取值范围.11.已知函数f (x )=121log 1axx --的图象关于原点对称,其中a 为常数.(1)求a 的值;(2)若当x ∈(1,+∞)时,f (x )+12log (1)x -<m 恒成立.求实数m 的取值范围.能力提升12.设函数f (x )=log a x (a >0,a ≠1),若f (x 1x 2…x 2 010)=8,则f (x 21)+f (x 22)+…+f (x 22 010)的值等于( ) A .4 B .8C .16D .2log 48 13.已知log m 4<log n 4,比较m 与n 的大小.1.在对数函数y =log a x (a >0,且a ≠1)中,底数a 对其图象的影响无论a 取何值,对数函数y =log a x (a >0,且a ≠1)的图象均过点(1,0),且由定义域的限制,函数图象穿过点(1,0)落在第一、四象限,随着a 的逐渐增大,y =log a x (a >1,且a ≠1)的图象绕(1,0)点在第一象限由左向右顺时针排列,且当0<a <1时函数单调递减,当a >1时函数单调递增. 2.比较两个(或多个)对数的大小时,一看底数,底数相同的两个对数可直接利用对数函数的单调性来比较大小,对数函数的单调性由“底”的范围决定,若“底”的范围不明确,则需分“底数大于1”和“底数大于0且小于1”两种情况讨论;二看真数,底数不同但真数相同的两个对数可借助于图象,或应用换底公式将其转化为同底的对数来比较大小;三找中间值,底数、真数均不相同的两个对数可选择适当的中间值(如1或01.已知m =0.95.1,n =5.10.9,p =log 0.95.1,则这三个数的大小关系是( ) A .m <n <p B .m <p <n C .p <m <n D .p <n <m 2.已知0<a <1,log a m <log a n <0,则( ) A .1<n <m B .1<m <n C .m <n <1 D .n <m <13.函数y =x -1+1lg(2-x )的定义域是( )A .(1,2)B .[1,4]C .[1,2)D .(1,2]4.给定函数①y =12x ,②y =()12log 1x +,③y =|x -1|,④y =2x +1,其中在区间(0,1)上单调递减的函数序号是( )A .①②B .②③C .③④D .①④5.设函数f (x )=log a |x |,则f (a +1)与f (2)的大小关系是________________________. 6.若log 32=a ,则log 38-2log 36=________.一、选择题1.下列不等号连接错误的一组是( )A .log 0.52.7>log 0.52.8B .log 34>log 65C .log 34>log 56D .log πe>log e π2.若log 37·log 29·log 49m =log 412,则m 等于( )A.14B.22C. 2 D .43.设函数若f (3)=2,f (-2)=0,则b 等于( ) A .0 B .-1 C .1 D .24.若函数f (x )=log a (2x 2+x )(a >0,a ≠1)在区间(0,12)内恒有f (x )>0,则f (x )的单调递增区间为( )A .(-∞,-14)B .(-14,+∞)C .(0,+∞)D .(-∞,-12)5.若函数若f (a )>f (-a ),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)6.已知f (x )是定义在R 上的奇函数,f (x )在(0,+∞)上是增函数,且f (13)=0,则不等式f (log 18x )<0的解集为( )A .(0,12)B .(12,+∞)C .(12,1)∪(2,+∞)D .(0,12)∪(2,+∞)7.已知log a (ab )=1p ,则log ab ab=________.8.若log 236=a ,log 210=b ,则log 215=________.9.设函数若f (a )=18,则f (a +6)=________.10.已知集合A ={x |x <-2或x >3},B ={x |log 4(x +a )<1},若A ∩B =∅,求实数a 的取值范围. 11.抽气机每次抽出容器内空气的60%,要使容器内的空气少于原来的0.1%,则至少要抽几次?(lg 2≈0.301 0)能力提升12.设a >0,a ≠1,函数f (x )=log a (x 2-2x +3)有最小值,求不等式log a (x -1)>0的解集.13.已知函数f (x )=log a (1+x ),其中a >1.(1)比较12[f (0)+f (1)]与f (12)的大小;(2)探索12[f (x 1-1)+f (x 2-1)]≤f (x 1+x 22-1)对任意x 1>0,x 2>0恒成立.Word格式1.比较同真数的两个对数值的大小,常有两种方法:(1)利用对数换底公式化为同底的对数,再利用对数函数的单调性和倒数关系比较大小;(2)利用对数函数图象的相互位置关系比较大小.2.指数函数与对数函数的区别与联系指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)是两类不同的函数.二者的自变量不同.前者以指数为自变量,而后者以真数为自变量;但是,二者也有一定的联系,y=a x(a>0,且a≠1)和y=log a x(a>0,且a≠1)互为反函数.前者的定义域、值域分别是后者的值域、定义域.二者的图象关于直线y=x对称.完美整理。
对数运算、对数函数经典例题讲义全
1.对数的概念 如果a x =N (a >0,且a ≠1),那么数x 叫做__________________,记作____________,其中a 叫做__________,N 叫做______.2.常用对数与自然对数通常将以10为底的对数叫做____________,以e 为底的对数叫做____________,log 10N 可简记为______,log e N 简记为________. 3.对数与指数的关系若a >0,且a ≠1,则a x =N ⇔log a N =____.对数恒等式:a log a N =____;log a a x =____(a >0,且a ≠1). 4.对数的性质(1)1的对数为____; (2)底的对数为____; (3)零和负数__________.1.有下列说法:①零和负数没有对数;②任何一个指数式都可以化成对数式; ③以10为底的对数叫做常用对数; ④以e 为底的对数叫做自然对数. 其中正确命题的个数为( )A .1B .2C .3D .42.有以下四个结论:①lg(lg 10)=0;②ln(ln e)=0;③若10=lg x ,则x =100;④若e =ln x ,则x =e 2.其中正确的是( )A .①③B .②④C .①②D .③④ 3.在b =log (a -2)(5-a )中,实数a 的取值围是( )A .a >5或a <2B .2<a <5C .2<a <3或3<a <5D .3<a <44.方程3log 2x=14的解是( )A .x =19B .x =33 C .x = 3 D .x =95.若log a 5b =c ,则下列关系式中正确的是( ) A .b =a 5c B .b 5=a c C .b =5a c D .b =c 5a6.0.51log 412-+⎛⎫ ⎪⎝⎭的值为( )A .6 B.72 C .8 D.377.已知log 7[log 3(log 2x )]=0,那么12x -=________.8.若log 2(log x 9)=1,则x =________.9.已知lg a =2.431 0,lg b =1.431 0,则b a=________. 10.(1)将下列指数式写成对数式:①10-3=11 000;②0.53=0.125;③(2-1)-1=2+1.(2)将下列对数式写成指数式:①log 26=2.585 0;②log 30.8=-0.203 1; ③lg 3=0.477 1.11.已知log a x =4,log a y =5,求A =121232x xy -⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦的值.能力提升12.若log a 3=m ,log a 5=n ,则a 2m +n 的值是( )A .15B .75C .45D .225 13.(1)先将下列式子改写成指数式,再求各式中x 的值:①log 2x =-25;②log x 3=-13.(2)已知6a =8,试用a 表示下列各式:①log 68;②log 62;③log 26.1.对数概念与指数概念有关,指数式和对数式是互逆的,即a b=N ⇔log a N =b (a >0,且a ≠1),据此可得两个常用恒等式:(1)log a a b =b ;(2) log a Na =N .2.在关系式a x =N 中,已知a 和x 求N 的运算称为求幂运算;而如果已知a 和N 求x 的运算就是对数运 算,两个式子实质相同而形式不同,互为逆运算. 3.指数式与对数式的互化1.对数的运算性质如果a >0,且a ≠1,M >0,N >0,那么: (1)log a (M ·N )=____________________;(2)log a MN=____________________;(3)log a M n =__________(n ∈R ).2.对数换底公式log a b =log c b log c a (a >0,且a ≠1,b >0,c >0,且c ≠1);特别地:log a b ·log b a =____(a >0,且a ≠1,b >0,且b ≠1).一、选择题1.下列式子中成立的是(假定各式均有意义)( ) A .log a x ·log a y =log a (x +y ) B .(log a x )n =n log a x C.log a x n=log a n xD.log a x log a y=log a x -log a y 2.计算:log 916·log 881的值为( )A .18 B.118 C.83 D.383.若log 513·log 36·log 6x =2,则x 等于( )A .9 B.19 C .25 D.1254.已知3a =5b =A ,若1a +1b=2,则A 等于( )A .15 B.15 C .±15 D .2255.已知log 89=a ,log 25=b ,则lg 3等于( )A.a b -1B.32(b -1)C.3a 2(b +1)D.3(a -1)2b6.若lg a ,lg b 是方程2x 2-4x +1=0的两个根,则(lg ab)2的值等于( ) A .2 B.12 C .4 D.147.2log 510+log 50.25+(325-125)÷425=_____________________________________. 8.(lg 5)2+lg 2·l g 50=________.9.2008年5月12日,汶川发生里氏8.0级特震,给人民的生命财产造成了巨大的损失.里氏地震的等级最早是在1935年由美国加州理工学院的地震学家里特判定的.它与震源中心释放的能量(热能和动能)大小有关.震级M =23lg E -3.2,其中E (焦耳)为以地震波的形式释放出的能量.如果里氏6.0级地震释放的能量相当于1颗美国在二战时投放在广岛的原子弹的能量,那么汶川震所释放的能量相当于________颗广岛原子弹. 三、解答题10.(1)计算:lg 12-lg 58+lg 12.5-log 89·log 34;(2)已知3a =4b =36,求2a +1b的值.11.若a 、b 是方程2(lg x )2-lg x 4+1=0的两个实根,求lg(ab )·(log a b +log b a )的值.能力提升12.下列给出了x 与10x 的七组近似对应值:A .二B .四C .五D .七13.一种放射性物质不断变化为其他物质,每经过一年的剩余质量约是原来的75%,估计约经过多少年,该物质的剩余量是原来的13?(结果保留1位有效数字)(lg 2≈0.301 0,lg 3≈0.477 1)1.在运算过程中避免出现以下错误: log a (MN )=log a M ·log a N .log a M N =log a M log a N.log a N n =(log a N )n .log a M ±log a N =log a (M ±N ).2.根据对数的定义和运算法则可以得到对数换底公式:log a b =log c b log c a (a >0且a ≠1,c >0且c ≠1,b >0).由对数换底公式又可得到两个重要结论: (1)log a b ·log b a =1;(2) log n ma b =mnlog a b .3.对于同底的对数的化简常用方法:(1)“收”,将同底的两对数的和(差)收成积(商)的对数;(2)“拆”,将积(商)的对数拆成两对数的和(差).对于常用对数的化简要创设情境,充分利用“lg 5+lg 2=1”来解题.1.对数函数的定义:一般地,我们把______________________叫做对数函数,其中x 是自变量,函数的定义域是________.2.对数函数的图象与性质定义 y =log a x (a >0,且a ≠1) 底数 a >1 0<a <1图象定义域 ________ 值域 ________单调性 在(0,+∞)上是增函数 在(0,+∞)上是减函数共点性 图象过点________,即log a 1=0函数值 特点 x ∈(0,1)时, y ∈________; x ∈[1,+∞)时, y ∈________ x ∈(0,1)时, y ∈________; x ∈[1,+∞)时, y ∈________ 对称性函数y =log a x 与y =1log ax 的图象关于____对称3.反函数对数函数y =log a x (a >0且a ≠1)和指数函数__________________互为反函数. 1.函数y =log 2x -2的定义域是( )A .(3,+∞)B .[3,+∞)C .(4,+∞)D .[4,+∞)2.设集合M ={y |y =(12)x ,x ∈[0,+∞)},N ={y |y =log 2x ,x ∈(0,1]},则集合M ∪N 等于( )A .(-∞,0)∪[1,+∞)B .[0,+∞)C .(-∞,1]D .(-∞,0)∪(0,1) 3.已知函数f (x )=log 2(x +1),若f (α)=1,则α等于( )A .0B .1C .2D .3 4.函数f (x )=|log 3x |的图象是( )5.已知对数函数f (x )=log a x (a >0,a ≠1),且过点(9,2),f (x )的反函数记为y =g (x ),则g (x )的解析式是( ) A .g (x )=4x B .g (x )=2x C .g (x )=9x D .g (x )=3x6.若log a 23<1,则a 的取值围是( )A .(0,23)B .(23,+∞)C .(23,1)D .(0,23)∪(1,+∞)7.如果函数f (x )=(3-a )x ,g (x )=log a x 的增减性相同,则a 的取值围是______________. 8.已知函数y =log a (x -3)-1的图象恒过定点P ,则点P 的坐标是________. 9.给出函数则f (log 23)=________. 三、解答题10.求下列函数的定义域与值域: (1)y =log 2(x -2); (2)y =log 4(x 2+8).11.已知函数f (x )=log a (1+x ),g (x )=log a (1-x ),(a >0,且a ≠1). (1)设a =2,函数f (x )的定义域为[3,63],求函数f (x )的最值. (2)求使f (x )-g (x )>0的x 的取值围.能力提升12.已知图中曲线C 1,C 2,C 3,C 4分别是函数y =log a 1x ,y =log a 2x ,y =log a 3x ,y =log a 4x 的图象,则a 1,a 2,a 3,a 4的大小关系是( )A .a 4<a 3<a 2<a 1B .a 3<a 4<a 1<a 2C .a 2<a 1<a 3<a 4D .a 3<a 4<a 2<a 113.若不等式x 2-log m x <0在(0,12)恒成立,数m 的取值围.1.函数y =log m x 与y =log n x 中m 、n 的大小与图象的位置关系.当0<n <m <1时,如图①;当1<n <m 时,如图②;当0<m <1<n 时,如图③.2.由于指数函数y =a x(a >0,且a ≠1)的定义域是R ,值域为(0,+∞),再根据对数式与指数式的互化过程知道,对数函数y =log a x (a >0,且a ≠1)的定义域为(0,+∞),值域为R ,它们互为反函数,它们的定义域和值域互换,指数函数y =a x 的图象过(0,1)点,故对数函数图象必过(1,0)点.1.函数y =log a x 的图象如图所示,则实数a 的可能取值是( )A .5 B.15C.1eD.12 2.下列各组函数中,表示同一函数的是( ) A .y =x 2和y =(x )2 B .|y |=|x |和y 3=x 3 C .y =log a x 2和y =2log a x D .y =x 和y =log a a x3.若函数y =f (x )的定义域是[2,4],则y =f (12log x )的定义域是( )A .[12,1] B .[4,16]C .[116,14] D .[2,4]4.函数f (x )=log 2(3x +1)的值域为( )A .(0,+∞)B .[0,+∞)C .(1,+∞)D .[1,+∞)5.函数f (x )=log a (x +b )(a >0且a ≠1)的图象经过(-1,0)和(0,1)两点,则f (2)=________. 6.函数y =log a (x -2)+1(a >0且a ≠1)恒过定点____________.一、选择题1.设a =log 54,b =(log 53)2,c =log 45,则( ) A .a <c <b B .b <c <a C .a <b <c D .b <a <c2.已知函数y =f (2x )的定义域为[-1,1],则函数y =f (log 2x )的定义域为( )A .[-1,1]B .[12,2]C .[1,2]D .[2,4]3.函数f (x )=log a |x |(a >0且a ≠1)且f (8)=3,则有( ) A .f (2)>f (-2) B .f (1)>f (2) C .f (-3)>f (-2) D .f (-3)>f (-4)4.函数f (x )=a x +log a (x +1)在[0,1]上的最大值与最小值之和为a ,则a 的值为( ) A.14 B.12 C .2 D .4 5.已知函数f (x )=lg 1-x 1+x ,若f (a )=b ,则f (-a )等于( )A .bB .-b C.1b D .-1b6.函数y =3x (-1≤x <0)的反函数是( ) A .y =13log x (x >0)B .y =log 3x (x >0)C .y =log 3x (13≤x <1)D .y =13log x (13≤x <1)7.函数f (x )=lg(2x -b ),若x ≥1时,f (x )≥0恒成立,则b 应满足的条件是________. 8.函数y =log a x 当x >2时恒有|y |>1,则a 的取值围是______________. 9.若log a 2<2,则实数a 的取值围是______________.10.已知f (x )=log a (3-ax )在x ∈[0,2]上单调递减,求a 的取值围.11.已知函数f (x )=121log 1axx --的图象关于原点对称,其中a 为常数. (1)求a 的值;(2)若当x ∈(1,+∞)时,f (x )+12log (1)x -<m 恒成立.数m 的取值围.能力提升12.设函数f (x )=log a x (a >0,a ≠1),若f (x 1x 2…x 2 010)=8,则f (x 21)+f (x 22)+…+f (x 22 010)的值等于( ) A .4 B .8C .16D .2log 48 13.已知log m 4<log n 4,比较m 与n 的大小.1.在对数函数y =log a x (a >0,且a ≠1)中,底数a 对其图象的影响无论a 取何值,对数函数y =log a x (a >0,且a ≠1)的图象均过点(1,0),且由定义域的限制,函数图象穿过点(1,0)落在第一、四象限,随着a 的逐渐增大,y =log a x (a >1,且a ≠1)的图象绕(1,0)点在第一象限由左向右顺时针排列,且当0<a <1时函数单调递减,当a >1时函数单调递增.2.比较两个(或多个)对数的大小时,一看底数,底数相同的两个对数可直接利用对数函数的单调性来比较大小,对数函数的单调性由“底”的围决定,若“底”的围不明确,则需分“底数大于1”和“底数大于0且小于1”两种情况讨论;二看真数,底数不同但真数相同的两个对数可借助于图象,或应用换底公式将其转化为同底的对数来比较大小;三找中间值,底数、真数均不相同的两个对数可选择适当的中间值(如1或0等)来比较.1.已知m =0.95.1,n =5.10.9,p =log 0.95.1,则这三个数的大小关系是( ) A .m <n <p B .m <p <nC .p <m <nD .p <n <m 2.已知0<a <1,log a m <log a n <0,则( )A .1<n <mB .1<m <nC .m <n <1D .n <m <13.函数y =x -1+1lg(2-x )的定义域是( )A .(1,2)B .[1,4]C .[1,2)D .(1,2]4.给定函数①y =12x ,②y =()12log 1x +,③y =|x -1|,④y =2x +1,其中在区间(0,1)上单调递减的函数序号是( )A .①②B .②③C .③④D .①④5.设函数f (x )=log a |x |,则f (a +1)与f (2)的大小关系是________________________. 6.若log 32=a ,则log 38-2log 36=________.一、选择题1.下列不等号连接错误的一组是( )A .log 0.52.7>log 0.52.8B .log 34>log 65C .log 34>log 56D .log πe>log e π2.若log 37·log 29·log 49m =log 412,则m 等于( )A.14B.22C. 2 D .43.设函数若f (3)=2,f (-2)=0,则b 等于( )A .0B .-1C .1D .24.若函数f (x )=log a (2x 2+x )(a >0,a ≠1)在区间(0,12)恒有f (x )>0,则f (x )的单调递增区间为( )A .(-∞,-14)B .(-14,+∞)C .(0,+∞)D .(-∞,-12)5.若函数若f (a )>f (-a ),则实数a 的取值围是( ) A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)6.已知f (x )是定义在R 上的奇函数,f (x )在(0,+∞)上是增函数,且f (13)=0,则不等式f (log 18x )<0的解集为( )A .(0,12)B .(12,+∞)C .(12,1)∪(2,+∞)D .(0,12)∪(2,+∞) 7.已知log a (ab )=1p ,则log ab a b=________. 8.若log 236=a ,log 210=b ,则log 215=________.9.设函数若f (a )=18,则f (a +6)=________. 10.已知集合A ={x |x <-2或x >3},B ={x |log 4(x +a )<1},若A ∩B =∅,数a 的取值围.11.抽气机每次抽出容器空气的60%,要使容器的空气少于原来的0.1%,则至少要抽几次?(lg 2≈0.301 0)能力提升12.设a >0,a ≠1,函数f (x )=log a (x 2-2x +3)有最小值,求不等式log a (x -1)>0的解集.13.已知函数f (x )=log a (1+x ),其中a >1.(1)比较12[f (0)+f (1)]与f (12)的大小; (2)探索12[f (x 1-1)+f (x 2-1)]≤f (x 1+x 22-1)对任意x 1>0,x 2>0恒成立.1.比较同真数的两个对数值的大小,常有两种方法:(1)利用对数换底公式化为同底的对数,再利用对数函数的单调性和倒数关系比较大小;(2)利用对数函数图象的相互位置关系比较大小.2.指数函数与对数函数的区别与联系指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)是两类不同的函数.二者的自变量不同.前者以指数为自变量,而后者以真数为自变量;但是,二者也有一定的联系,y=a x(a>0,且a≠1)和y=log a x(a>0,且a≠1)互为反函数.前者的定义域、值域分别是后者的值域、定义域.二者的图象关于直线y =x对称.。
对数的运算及对数函数
§2.2.1 对数与对数运算(一)¤知识要点:1. 定义:一般地,如果x a N =(0,1)a a >≠,那么数 x 叫做以a 为底 N 的对数(logarithm ).记作 log a x N =,其中a 叫做对数的底数,N 叫做真数2. 我们通常将以10为底的对数叫做常用对数(common logarithm ),并把常用对数10log N 简记为lg N 在科学技术中常使用以无理数e=2.71828……为底的对数,以e 为底的对数叫自然对数,并把自然对数log e N 简记作ln N3. 根据对数的定义,得到对数与指数间的互化关系:当0,1a a >≠时,log b a N b a N =⇔=.4. 负数与零没有对数;log 10a =, log 1a a = ,log a a N N = ¤例题精讲:【例1】将下列指数式化为对数式,对数式化为指数式:(1)712128-=; (2)327a =; (3)1100.1-=; (4)12log 325=-; (5)lg0.0013=-; (6)ln100=4.606.【例2】计算下列各式的值:(1)lg 0.001; (2)4log 8; (3)第14练 §2.2.1 对数与对数运算(一)※基础达标1.log (0,1,0)b N a b b N =>≠>对应的指数式是( ). A. b a N = B. a b N = C. N a b = D. N b a = 2.下列指数式与对数式互化不正确的一组是( ). A. 01ln10e ==与 B. 1()381118log 223-==-与 C. 123log 9293==与 D. 17log 7177==与 3.设lg 525x =,则x 的值等于( ).A. 10B. 0.01C. 100D. 10004.设13log 82x=,则底数x 的值等于( ). A. 2 B. 12 C. 4 D. 145.已知432log [log (log )]0x =,那么12x -等于( ).A.13 B. C. D. 6.若21log 3x =,则x = ; 若log 32x =-,则x = .7.计算:= ; 6l g 0.1= . ※能力提高8.求下列各式的值:(1)8; (2)9log9.求下列各式中x 的取值范围:(1)1log (3)x x -+; (2)12log (32)x x -+.※探究创新10.(1)设log 2a m =,log 3a n =,求2m n a +的值.(2)设{0,1,2}A =,{log 1,log 2,}a a B a =,且A B =,求a 的值.第15讲 §2.2.1 对数与对数运算(二)¤知识要点:1. 对数的运算法则:log ()log log a a a M N M N =+,log log log aa a MM N N=-,log log n a a M n M =,其中0,1a a >≠且,0,0,M N n R >>∈. 三条法则是有力的解题工具,能化简与求值复杂的对数式.2. 对数的换底公式log log log b a b N N a =. 如果令b =N ,则得到了对数的倒数公式1log log a b b a=. 同样,也可以推导出一些对数恒等式,如log log n n a a N N =,log log m n a a nN N m=,log log log 1a b c b c a =等. ¤例题精讲:【例2】若2510a b ==,则11a b+= .【例4】(1)化简:532111log 7log 7log 7++; (2)设23420052006log 3log 4log 5log 2006log 4m ⋅⋅⋅=,求实数m 的值.第15练 §2.2.1 对数与对数运算(二)※基础达标 1.). A. 1B. -1C. 2D. -2 2.25log ()a -(a ≠0)化简得结果是( ).A. -aB. a 2C. |a |D. a3.化简3log 1的结果是( ). A.12B. 1C. 24.已知32()log f x x =, 则(8)f 的值等于( ). A. 1 B. 2 C. 8 D. 125.化简3458log 4log 5log 8log 9⋅⋅⋅的结果是 ( ).A .1 B.32C. 2D.3 6.计算2(lg5)lg2lg50+⋅= .7.若3a =2,则log 38-2log 36= .第16讲 §2.2.2 对数函数及其性质(一)¤知识要点:1. 定义:一般地,当a >0且a ≠1时,函数a y=log x 叫做对数函数(logarithmic function). 自变量是x ; 函数的定义域是(0,+∞).2. 由2log y x =与12log y x =的图象,可以归纳出对数函数的性质:定义域为(0,)+∞,值域为R ;当1x =时,0y =,即图象过定点(1,0);当01a <<时,在(0,)+∞上递减,当1a >时,在(0,)+∞上递增.¤例题精讲:【例1】比较大小:(1)0.9log 0.8,0.9log 0.7,0.8log 0.9; (2)3log 2,2log 3,41log 3.【例2】求下列函数的定义域:(1)y (2)y【例4】求不等式log (27)log (41)(0,1)a a x x a a +>->≠且中x 的取值范围.第16练 §2.2.2 对数函数及其性质(一)※基础达标1.下列各式错误的是( ).A. 0.80.733>B. 0.10.10.750.75-<C. 0..50..5log 0.4log 0.6>D. lg1.6lg1.4>.2.当01a <<时,在同一坐标系中,函数log x a y a y x -==与的图象是( ).AC3.下列函数中哪个与函数y =x 是同一个函数( )A.log (0,1)a xy a a a =>≠ B. y =2x xC. log (0,1)x a y a a a =>≠D. y4.函数y ).A. (1,)+∞B. (,2)-∞C. (2,)+∞D. (1,2]5.若log 9log 90m n <<,那么,m n 满足的条件是( ).A. 1 m n >>B. 1n m >>C. 01n m <<<D. 01m n <<<6.函数y = . (用区间表示)7.比较两个对数值的大小:ln 7 ln12 ; 0.5log 0.7 0.5log 0.8. ※能力提高8.求下列函数的定义域:(1) ()()3log 1f x x =++; (2)y9.已知函数2()3log ,[1,4]f x x x =+∈,22()()[()]g x f x f x =-,求: (1)()f x 的值域; (2)()g x 的最大值及相应x 的值.第17讲 §2.2.2 对数函数及其性质(二)¤知识要点:1. 当一个函数是一一映射时, 可以把这个函数的因变量作为一个新函数的自变量, 而把这个函数的自变量新的函数的因变量. 我们称这两个函数为反函数(inverse function ). 互为反函数的两个函数的图象关于直线y x =对称.2. 函数(0,1)x y a a a =>≠与对数函数log (0,1)a y x a a =>≠互为反函数.3. 复合函数(())y f x ϕ=的单调性研究,口诀是“同增异减”,即两个函数同增或同减,复合后结果为增函数;若两个函数一增一减,则复合后结果为减函数. 研究复合函数单调性的具体步骤是:(i )求定义域;(ii )拆分函数;(iii )分别求(),()y f u u x ϕ==的单调性;(iv )按“同增异减”得出复合函数的单调性.¤例题精讲:【例1】讨论函数0.3log (32)y x =-的单调性.【例2】(05年山东卷.文2)下列大小关系正确的是( ). A. 30.440.43log 0.3<< B. 30.440.4log 0.33<< C. 30.44log 0.30.43<< D. 0.434log 0.330.4<<第17练 §2.2.2 对数函数及其性质(二)※基础达标 1.函数1lg1xy x+=-的图象关于( ). A. y 轴对称 B. x 轴对称 C. 原点对称D. 直线y =x 对称2.函数212log (617)y x x =-+的值域是( ).A. RB. [8,)+∞C. (,3]-∞-D. [3,)+∞3.(07年全国卷.文理8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( ).A.B. 2C.D. 44.图中的曲线是log a y x =的图象,已知a的值为43,310,15,则相应曲线1234,,,C C C C 的a 依次为( ).A.43,15,310B. 43,310,15C. 15,310,43D. 43,310,155.下列函数中,在(0,2)上为增函数的是( ). A. 12log (1)y x =+B. 2log y = C. 21log y x= D.20.2log (4)y x =-6.函数())f x x =是 函数. (填“奇”、“偶”或“非奇非偶”)7.函数x y a =的反函数的图象过点(9,2),则a 的值为 . ※能力提高8.已知6()log ,(0,1)a f x a a x b=>≠-,讨论()f x 的单调性.0 x C 1C 2C 4C 3 1y第18讲 §2.3 幂函数¤学习目标:通过实例,了解幂函数的概念;结合函数y=x, y=x 2, y=x 3, y =1/x , y=x 1/2 的图像,了解它们的变化情况.知识要点:1. 幂函数的基本形式是y x α=,其中x 是自变量,α是常数. 要求掌握y x =,2y x =,3y x =,1/2y x =,1y x -=这五个常用幂函数的图象. 2. 观察出幂函数的共性,总结如下:(1)当0α>时,图象过定点(0,0),(1,1);在(0,)+∞上是增函数.(2)当0α<时,图象过定点(1,1);在(0,)+∞上是减函数;在第一象限内,图象向上及向右都与坐标轴无限趋近.3. 幂函数y x α=的图象,在第一象限内,直线1x =的右侧,图象由下至上,指数α由小到大. y 轴和直线1x =之间,图象由上至下,指数α由小到大.¤例题精讲:【例1】已知幂函数()y f x =的图象过点(27,3),试讨论其单调性. 解:设y x α=,代入点(27,3),得327α=,解得13α=, 所以13y x =,在R 上单调递增.【例2】已知幂函数6()m y x m Z -=∈与2()m y x m Z -=∈的图象都与x 、y 轴都没有公共点,且2()m y x m Z -=∈的图象关于y 轴对称,求m 的值.解:∵ 幂函数图象与x 、y 轴都没有公共点,∴{6020m m -<-<,解得26m <<.又 ∵ 2()m y x m Z -=∈的图象关于y 轴对称, ∴ 2m -为偶数,即得4m =. 【例3】幂函数m y x =与n y x =在第一象限内的图象如图所示,则( ). A .101n m -<<<< B .1,01n m <-<<C .10,1n m -<<>D .1,1n m <->解:由幂函数图象在第一象限内的分布规律,观察第一象限内直线1x =的右侧,图象由下至上,依次是n y x =,1y x -=,0y x =,m y x =,1y x =,所以有101n m <-<<<. 选B.点评:观察第一象限内直线1x =的右侧,结合所记忆的分布规律. 注意比较两个隐含的图象1y x =与0y x =.【例4】本市某区大力开展民心工程,近几年来对全区2a m 的老房子进行平改坡(“平改坡”是指在建筑结构许可条件下,将多层住宅平屋面改建成坡屋顶,并对外墙面进行整修粉饰,达到改善住宅性能和建筑物外观视觉效果的房屋修缮行为),且每年平改坡面积的百分比相等. 若改造到面积的一半时,所用时间需10年. 已. (1)求每年平改坡的百分比;(2)问到今年为止,该平改坡工程已进行了多少年?(3)若通过技术创新,至少保留24am 的老房子开辟新的改造途径. 今后最多还需平改坡多少年?解:(1)设每年平改坡的百分比为(01)x x <<,则101(1)2a x a -=,即11011()2x -=,解得11011()0.0670 6.702x =-≈=%.(2)设到今年为止,该工程已经进行了n 年,则(1)na x -=,即110211()()22n =,解得n =5. 所以,到今年为止,该工程已经进行了5年.(3)设今后最多还需平改坡m 年,则 51(1)4m a x a +-=,即521011()()22m +=,解得m =15. 所以,今后最多还需平改坡15年.点评:以房屋改造为背景,从中抽象出函数模型,结合两组改造数据及要求,通过三个等式求得具有实际意义的底数或指数.第※基础达标1.如果幂函数()f x x α=的图象经过点 A. 16 B. 2 C. 116 2.下列函数在区间(0,3) A. 1y x= B. 12y x = C. y 3.设120.7a =,120.8b =,c 3log 0.7= A. c <b <a B. c <a <b C. a <b 4.如图的曲线是幂函数n y x =4c 相应的n 依次为( ).A .112,,,222-- B. 12,,2- C. 11,2,2,22-- D. 12,2--5.下列幂函数中过点(0,0),(1,1) A.12y x = B. 4y x = C. y =6.幂函数()y f x =的图象过点1(4,)27.比较下列各组数的大小: 32(2)a + 32a ; 223(5)a -+ 235-; 0.50.4 0.40.5.※能力提高8.幂函数273235()(1)t t f x t t x +-=-+是偶函数,且在(0,)+∞上为增函数,求函数解析式.9.1992年底世界人口达到54.8亿,若人口的平均增长率为x %,2008年底世界人口数为y (亿).(1)写出1993年底、1994年底、2000年底的世界人口数; (2)求2008年底的世界人口数y 与x 的函数解析式. 如果要使2008年的人口数不超过66.8亿,试求人口的年平均增长率应控制在多少以内?※探究创新10.请把相应的幂函数图象代号填入表格.① 23y x =; ② 2y x -=;③ 12y x =; ④ 1y x -=; ⑤ 13y x =;⑥ 43y x =;⑦ 12y x -=;⑧ 53y x =. 第19讲 第二章 基本初等函数(Ⅰ) 复习¤学习目标:理解掌握指数函数、对数函数和幂函数的性质、图象及运算性质. 突出联系与转化、分类与讨论、数与形结合等重要的数学思想、能力. 通过对指数函数、对数函数等具体函数的研究,加深对函数概念的理解.¤例题精讲:【例1】若()(0,1)x f x a a a =>≠且,则1212()()()22x x f x f x f ++≤. 证明:121212122()()()222x x x x f x f x x x a a f a ++++-=-0==≥. ∴ 1212()()()22x x f x f x f ++≤. (注:此性质为函数的凹凸性) 【例2】已知函数2()(0,0)1bxf x b a ax =≠>+.(1)判断()f x 的奇偶性; (2)若3211(1),log (4)log 422f a b =-=,求a ,b 的值.解:(1)()f x 定义域为R ,2()()1bxf x f x ax --==-+,故()f x 是奇函数.(2)由1(1)12b f a ==+,则210a b -+=.又log 3(4a -b )=1,即4a -b =3.由{21043a b a b -+=-=得a =1,b =1.【例3】(01天津卷.19)设a >0, ()x x e af x a e=+是R 上的偶函数.(1)求a 的值; (2)证明()f x 在(0,)+∞上是增函数.解:(1)∵ ()x x e af x a e=+是R 上的偶函数,∴ ()()0f x f x --=.∴ 110()()x x x x x x e a e a a e a e a e a e a a---+--=⇒-+-10()()0x x a e e a -=⇒--=.e x -e -x 不可能恒为“0”, ∴ 当1a-a =0时等式恒成立, ∴a =1.(2)在(0,)+∞上任取x 1<x 2,1212121212111()()()()x x x x x x x x e f x f x e e e a e e e e -=+--=-+-12121()(1)x x x x e e e e =-- ∵ e >1,x 1<x 2, ∴ 121x x e e >>, ∴12x x e e >1,121212()(1)x x x x x x e e e e e e --<0,∴ 12()()0f x f x -<, ∴ ()f x 是在(0,)+∞上的增函数.点评:本题主要考查了函数的奇偶性以及单调性的基础知识.此题中的函数,也可以看成指数函数xy a =与x a y a x =+的复合,可以进一步变式探讨x ay a x=+的单调性. 【例4】已知1992年底世界人口达到54.8亿.(1)若人口的平均增长率为1.2%,写出经过t 年后的世界人口数y (亿)与t 的函数解析式;(2)若人口的平均增长率为x %,写出2010年底世界人口数为y (亿)与x 的函数解析式. 如果要使2010年的人口数不超过66.8亿,试求人口的年平均增长率应控制在多少以内?解:(1)经过t 年后的世界人口数为 *54.8(1 1.2)54.8 1.012,t t y t N =⨯+%=⨯∈.(2)2010年底的世界人口数y 与x 的函数解析式为 1854.8(1)y x =⨯+%.由1854.8(1)y x =⨯+%≤66.8,解得1001) 1.1x ≤⨯≈. 所以,人口的年平均增长率应控制在1.1%以内.点评:解应用题应先建立数学模型,再用数学知识解决,然后回到实际问题,给出答案. 此题由增长率的知识,可以得到指数型或幂型函数,并得到关于增长率的简单不等式,解决实际中增长率控制问题.第19练 第二章 基本初等函数(Ⅰ) 复习※基础达标 1.(06年全国卷II.文2理1)已知集合{}2{|3},|log 1M x x N x x =<=>,则M N =( ).A. ∅B. {}|03x x <<C. {}|13x x <<D. {}|23x x << 2.(08年北京卷.文2)若372log πlog 6log 0.8a b c ===,,,则( ). A. a b c >> B. b a c >> C. c a b >> D. b c a >>3.(05年福建卷)函数()x b f x a -=的图象如图,其中a 、b 为常数,则下列结论正确的是( ). A. 1,0a b >< B. 1,0a b >> C. 01,0a b <<> D. 01,0a b <<<4.(06年广东卷)函数2()lg(31)f x x =++的定义域是( ). A.1(,)3-+∞ B. 1(,1)3- C. 11(,)33- D. 1(,)3-∞-5.(06年陕西卷)设函数()log ()(0,1)a f x x b a a =+>≠的图像过点(2,1),其反函数的图像过点(2,8),则a b +等于( ).A. 3B. 4C. 5D. 66.(06年辽宁卷.文14理13)设,0(),0x e x g x lnx x ⎧≤=⎨>⎩,则1(())2g g = .7.如图所示,曲线是幂函数y x α=在第一象限内的图象,已知α分别取11,1,,22-四个值,则相应图象依次为 .※能力提高8.已知定义域为R 的函数12()2x x bf x a+-+=+是奇函数. 求,a b 的值.9.已知函数y =24log log 42x x(2≤x ≤4).(1)求输入x =234时对应的y 值; (2)令2log t x =,求y 关于t 的函数关系式及t 的范围.※探究创新10.设121()log 1axf x x -=-为奇函数,a 为常数.(1)求a 的值; (2)证明()f x 在区间(1,+∞)内单调递增;1 () 2x m恒成立,求实数m的取值范围.(3)若对于区间[3,4]上的每一个x值,不等式()f x>。
对数及其运算基础知识及例题
对数及其运算基础知识及例题1、定义:对数是指用一个数b(b>0且不等于1)作为底数,将一个正数a表示成幂b的指数的形式,即a=b^x(x为实数),则x称为以b为底a的对数,记作logb a。
2、性质:①logb 1=0(b>0且不等于1)②logb b=1(b>0且不等于1)③logb (mn)=logb m+logb n(m>0,n>0,b>0且不等于1)④logb (m/n)=logb m-logb n(m>0,n>0,b>0且不等于1)⑤logb m^k=klogb m(m>0,b>0且不等于1,k为任意实数)3、对数的运算性质:①logb (mn)=logb m+logb n②logb (m/n)=logb m-logb n③logb m^k=klogb m④logb (a^k)=klogb a⑤logb a=logc a/logc b(b>0,且不等于1,c>0,且不等于1)4、换底公式:XXX b(b>0,且不等于1,c>0,且不等于1)5、对数的其他运算性质:①logb a=logb c,则a=c②logb a=logc a/logc b=logd a/logd b6、常用对数和自然对数:常用对数:以10为底数的对数,记作XXX。
自然对数:以自然常数e(e≈2.)为底数的对数,记作ln。
典型例题】类型一、对数的概念例1.求下列各式中x的取值范围:1)log2(x-5)≥0;(2)log(x-1)-log(x+2)0.改写为:1)x≥5;2)x>1且x<2;3)x>1且x1且x>1.类型二、指数式与对数式互化及其应用例2.将下列指数式与对数式互化:1)log2 16=4;(2)log1/27=-3;(3)log3 1/2= -1/log2 3;(4)53=125;(5)2^-1=1/2;(6)(1/3)^x=9.改写为:1)2^4=16;2)1/27=3^-3;3)3^-1/2=2/log2 3;4)5^3=125;5)2^-1=1/2;6)x=log(1/3)9/log(1/3)2.类型三、利用对数恒等式化简求值1+log5 77=log5 500.类型四、积、商、幂的对数例4.用loga x,loga y,loga z表示下列各式:1)loga (xy/z)=loga x+loga y-loga z;2)loga (xy)=loga x+loga y;3)loga (x^2/y^3z)=2loga x-3loga y-loga z;4)loga (x^2y^3/z)=2loga x+3loga y-loga z。
对数函数基础运算法则及例题-答案
对数函数的定义:函数x y a log =)10(≠>a a 且叫做对数函数,定义域为),0(+∞,值域为),(+∞-∞.对数的四则运算法则:若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+; (2) log log log a a a MM N N=-;(3)log log ()n a a M n M n R =∈. (4)N nN a na log 1log =对数函数的图像及性质例1.已知x =49时,不等式 (x 2– x – 2)> (–x 2+2x + 3)成立,求使此不等式成立的x 的取值范围.解:∵x =49使原不等式成立. ∴[249)49(2--]> )3492)49(1[2+⋅+⋅ 即1613>1639. 而1613<1639. 所以y = 为减函数,故0<a <1.∴原不等式可化为⎪⎪⎩⎪⎪⎨⎧++-<-->++->--322032022222x x x x x x x x , 解得⎪⎪⎩⎪⎪⎨⎧<<-<<->-<2513121x x x x 或. 故使不等式成立的x 的取值范围是)25,2( 例2.求证:函数f (x ) =xx -1log 2在(0, 1)上是增函数.解:设0<x 1<x 2<1,则f (x 2) – f (x 1) = 212221log log 11x x x x ---21221(1)log (1)x x x x -=-=.11log 21122x x x x --⋅ ∵0<x 1<x 2<1,∴12x x >1,2111x x -->1. 则2112211log x x x x --⋅>0,∴f (x 2)>f (x 1). 故函数f (x )在(0, 1)上是增函数 例3.已知f (x ) = (a – ) (a >1).(1)求f(x)的定义域和值域;(2)判证并证明f(x)的单调性.解:(1)由a>1,a–>0,而a>,则x<1. 故f(x)的定义域为( -∞,1),而<a,可知0<a–<a,又a>1. 则(a– )< = 1.取f (x)<1,故函数f (x)的值域为(–∞, 1).(2)设x1>x2>1,又a>1,∴1x a>2x a,∴1x aa <2x a,∴ (a–1x a)< (a–2x a),即f (x1)<f (x2),故f (x)在(1, +∞)上为减函数.。
对数与对数函数知识点及例题讲解
对数与对数函数1.对数(1)对数的定义:)对数的定义:如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b . (2)指数式与对数式的关系:a b =N Ûlog a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化. (3)对数运算性质: ①log a (MN )=log a M +log a N . ②log a NM =log a M -log a N . ③log a M n =n log a M .(M >0,N >0,a >0,a ≠1)④对数换底公式:log b N =bNN a a log log log (a >0,a ≠1,b >0,b ≠1,N >0). 2.对数函数(1)对数函数的定义)对数函数的定义函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1 对数函数的底数为什么要大于0且不为1呢?在一个普通对数式里在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。
但是,根据对数定义: : loglog a a=1;如果a=1或=0那么log a a 就可以等于一切实数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16) (2)对数函数的图象)对数函数的图象O xyy = l o g x a > Oxy<a <a y = l o g x a 1111( ())底数互为倒数的两个对数函数的图象关于x 轴对称. (3)对数函数的性质: ①定义域:(0,+∞). ②值域:R . ③过点(1,0),即当x =1时,y =0. ④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数. 基础例题1.函数f (x )=|log 2x |的图象是的图象是1 1 1-1 1111 1 xxxxy y y y O OOOA BC D解析:f (x )=îíì<<-³.10,log ,1,log 22x x x x答案:A 2.若f --1(x )为函数f (x )=lg (x +1)的反函数,则f --1(x )的值域为___________________. 解析:f -1(x )的值域为f (x )=lg (x +1)的定义域.由f (x )=lg (x +1)的定义域为(-1,+∞),∴f --1(x )的值域为(-1,+∞). 答案:(-1,+∞)∞)3.已知f (x )的定义域为[0,1],则函数y =f [log 21(3-x )]的定义域是__________. 解析:由0≤log 21(3-x )≤1Þlog 211≤log 21(3-x )≤log 2121Þ21≤3-x ≤1Þ2≤x ≤25. 答案:[2,25]4.若log x7y=z ,则x 、y 、z 之间满足之间满足A.y 7=x zB.y =x 7zC.y =7x zD.y =z x解析:由logx 7y=z Þx z=7y Þx 7z=y ,即y =x 7z. 答案:B 5.已知1<m <n ,令a =(log n m )2,b =log n m 2,c =log n (log n m ),则,则A.a <b <cB.a <c <bC.b <a <cD.c <a <b解析:∵1<m <n ,∴0<log n m <1. ∴log n (log n m )<0. 答案:D 6.若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于等于 A.42 B.22 C.41 D.21解析:∵0<a <1,∴f (x )=log a x 是减函数.∴log a a =3·log a 2a . ∴log a 2a =31.∴1+log a 2=31.∴log a 2=-32.∴a =42. 答案:A 7.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于A. 21 B.-21 C.2 D.-2 解析:y =log 2|ax -1|=log 2|a (x -a1)|,对称轴为x =a1,由a1=-2 得a =-21. 答案:B 注意:此题还可用特殊值法解决,如利用f (0)=f (-4), 可得0=log 2|-4a -1|.∴|4a +1|=1.∴4a +1=1或4a +1=-1. ∵a ≠0,∴a =-21. 8.函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是能是OxyOxyOxyOxyABC D解析:∵f (x )与g (x )都是偶函数,∴f (x )·g (x )也是偶函数,)111-1O xy注意:研究函数的性质时,利用图象会更直观. 【例3】 已知f (x )=log 31[3-(x -1)2],求f (x )的值域及单调区间. 解:∵真数3-(x -1)2≤3,∴log 31[3-(x -1)2]≥log 313=-1,即f (x )的值域是[-1,+∞).又3-(x -1)2>0,得1-3<x <1+3,∴x ∈(1-3,1]时,]时,3-(x -1)2单调递增,从而f (x )单调递减;x ∈[1,1+3)时,f (x )单调递增. 注意:讨论复合函数的单调性要注意定义域. 【例4】已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围. 解:∵a >0且a ≠1,∴t =3-ax 为减函数.依题意a >1,又t =3-ax 在[0,2]上应有t >0,∴3-2a >0.∴a <23.故1<a <23. 【例5】设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和)和 g (x )的公共定义域内比较|f (x )|与|g (x )|的大小. 解:f (x )、g (x )的公共定义域为(-1,1). |f (x )|-|g (x )|=|lg (1-x )|-|lg (1+x )|. (1)当0<x <1时,|lg (1-x )|-|lg (1+x )|=-lg (1-x 2)>0; (2)当x =0时,|lg (1-x )|-|lg (1+x )|=0;(3)当-1<x <0时,|lg (1-x )|-|lg (1+x )|=lg (1-x 2)<0. 综上所述,当0<x <1时,|f (x )|>|g (x )|;当x =0时,|f (x )|=|g (x )|;当-1<x <0时,|f (x )|<|g (x )|. 【例6】 求函数y =2lg (x -2)-lg (x -3)的最小值. 解:定义域为x >3,原函数为y =lg 3)2(2--x x . 又∵3)2(2--x x x =3442-+-x x x =31)3(2)3(2-+-+-x x x =(x -3)+31-x +2≥4, ∴当x =4时,y min =lg4. 【例7】 (2003年北京宣武第二次模拟考试)在f 1(x )=x 21,f 2(x )=x 2,f 3(x )=2x ,f 4(x )=log 21x 四个函数中,x 1>x 2>1时,能使21[f(x 1)+f (x 2)]<f (221x xx x +)成立的函数是)成立的函数是A.f 1(x )=x 21B.f 2(x )=x 2C.f 3(x )=2xD.f 4(x )=log 21x解析:由图形可直观得到:只有f 1(x )=x 21为“上凸”的函数. 答案:A 探究创新1.若f (x )=x 2-x +b ,且f (log 2a )=b ,log 2[f (a )]=2(a ≠1). (1)求f (log 2x )的最小值及对应的x 值;值;(2)x 取何值时,f (log 2x )>f (1)且log 2[f (x )]<f (1)?)? 解:(1)∵f (x )=x 2-x +b ,∴f (log 2a )=log 22a -log 2a +b . 由已知有log 22a -log 2a +b =b ,∴(log 2a -1)log 2a =0. ∵a ≠1,∴log 2a =1.∴a =2.又log 2[f (a )]=2,∴f (a )=4. ∴a 2-a +b =4,b =4-a 2+a =2.故f (x )=x 2-x +2,127m +m -+m )-+m+2m ≥+xm+2m )+x m ≥2m (当且仅当=xm ,即=m 时等号成立)+x m +2m )=4m ,即4m ≥≥169. 可以首先将它们与零比较,分出正负;正数通常都再与1比较分出大于1还是小于1,然后在各类中间两两相比较. 3.在给定条件下,求字母的取值范围是常见题型,要重视不等式知识及函数单调性在这类问题上的应用. 。
对数运算和对数性质例题和练习.doc
(性质3)设 log/ = p ,由对数的定义可得M =冲,. M n =a np对数的运算性质1. 对数的运算性质:如果 a>0 , gl, M 〉0 , N>0, 那么(1) k )g.(MN) = log.M+log.N ;M(2) log, —= log,M-log fl 2V ; (3) log“ M n=n\og (l M(ne R)・证明:(性质 1)设 log w M = p , log] N = q ,由对数的定义可得M =冲,,! I II :.MN = a p -a (,=a p+q, \I I I .L \og a (MN)= p + q , [ 即证得 log” MN = log“ M + lo g“ N ・说明:(1)语言表达:“积的对数二对数的和”……(简易表达以帮助记忆);(2) 注意有时必须逆向运算:如/og ]()5 + /og|()2 = /og ]()10 =l ;(3) 注意定义域:log 2(-3)(-5) = log 2(-3)-^log 2(-5)是不成立的,/o 幻0(-10)2 =2/华]0(-10)是不成立的;(4) 当心记忆错误:log a ( MN ) # log a M ・log a N ,试举反例,log a ( M 土 N)。
log a M ± log a N ,试举反例 o2. 例题分析:例].用 log a x 9 log“y, log“z 表示下列各式:(1) log fl — ;(2) log”Z例2.求下列各式的值:(1) log2(47x25); (2) IgVlOO .例 3.计算:(1) Igl4-21g- + lg7-lgl8; (2)散竺3 lg9例4・已知lg2 = 0.3010, lg3 = 0.4771,求lg 1.44的值。
例5.己知log“ x = log“ c + Z?,求工.例 6. (1)已知3" =2,用a表示log34-log36; (2)已知log32 = a 93” =5,用3.换底公式换底公式:log“ N二吼小N (立〉0 , a A 1 ; m > 0, m 1) log,/证明:设log/ = x,则a,= N ,两边取以m为底的对数得:log〃" = log,M,A xlog m a = log,,, N ,从而得:工=堕酒,..・log,N = ^^・log”,。
专题:对数运算知识归纳及类型题总结
专题:对数运算题型一:对数概念的理解:例1:求下列各式中得x 取值范围(1))10(2log -x (2))2()1(log +-x x变式练习:求下列各式中得x 值(1)812log = (2)=421log (3)若4log 16-=x,求x 值题型二:对数式与指数式的转化例2:对数式与指数式的转化(1)62554= (2)3log 82= (3)16)41(2=- 变式练习:对数式与指数式的转化(1)2log 01.01.0= (2)32)32(1-=+-题型三:化简与求值例3:求下列各式的值(1)32log 318- (2))32(2)32(2log log -++变式练习:(1)40lg 50lg 8lg 5lg 2lg --+= (2)若,3010.02lg =求5lg(3)设3643==y x ,求yx 12+的值 题型四:换底公式的应用 例4:(1)求32log 9log 278∙的值 (2)求证z z y x y x log log log =⋅变式练习:(1)计算5log 4log 85⋅(2)已知b a ==4log ,3log 55,求:12log 25 (用a,b 表示)应用练习:1.若log x (2+1)=-1, 则x = 。
2.已知f (e x )=x ,则f (5)等于 。
3.对数式)5(log )2(a a -- 中实数a 的取值范围是 。
4.若10≤x ≤100, 则|3-lg x |-4)x lg(x lg 42+-= 。
5.已知集合A={y|y=log 2 x,x>1},B={y|y=(21)x ,x>1},则A ⋂B 等于 。
6.已知函数f (x )=⎪⎩⎪⎨⎧<+≥)4()1()4()21(x x f x x , 则f (log 23)=_________7.已知 log 18 9=a ,18b =5:用a , b 表示 log 36 45。
对数函数知识点及典型例题讲解
对数函数知识点1.对数:(1) 定义:如果N a b =)1,0(≠>a a 且,那么称 为 ,记作 ,其中a 称为对数的底,N 称为真数. ① 以10为底的对数称为常用对数,N 10log 记作___________.② 以无理数)71828.2( =e e 为底的对数称为自然对数,N e log 记作_________. (2) 基本性质:① 真数N 为 (负数和零无对数);② 01log =a ;③ 1log =a a ; ④ 对数恒等式:N a N a =log . (3) 运算性质:① log a (MN)=___________________________; ② log a NM =____________________________;③ log a M n= (n ∈R).④ 换底公式:log a N = (a >0,a ≠1,m >0,m ≠1,N>0)⑤ log mna a nb b m = .2.对数函数:① 定义:函数 称为对数函数,1) 函数的定义域为( ;2) 函数的值域为 ;3) 当______时,函数为减函数,当______时为增函数;4) 函数x y a log =与函数)1,0(≠>=a a a y x且互为反函数. ② 1) 图象经过点( ),图象在 ;2) 对数函数以 为渐近线(当10<<a 时,图象向上无限接近y 轴;当1>a 时,图象向下无限接近y 轴);4) 函数y =log a x 与 的图象关于x 轴对称. ③ 函数值的变化特征:例1 计算:(1))32(log32-+(2)2(lg 2)2+lg 2·lg5+12lg )2(lg 2+-;(3)21lg 4932-34lg 8+lg 245.例2 比较下列各组数的大小.(1)log 332与log 556; (2)log 1.10.7与log 1.20.7;(3)已知log 21b <log 21a <log 21c,比较2b ,2a ,2c 的大小关系.例3已知函数f(x)=log a x(a >0,a ≠1),如果对于任意x ∈[3,+∞)都有|f(x)|≥1成立, 试求a 的取值范围.函数y=log 2x 的图象交于C 、D 两点.例4 已知过原点O 的一条直线与函数y=log 8x 的图象交于A 、B 两点,分别过A 、B 作y 轴的平行与 (1)证明:点C 、D 和原点O 在同一直线上; (2)当BC 平行于x 轴时,求点A 的坐标.1解:(1)方法一 利用对数定义求值 设)32(log32-+=x, 则(2+3)x=2-3=321+=(2+3)-1,∴x=-1.方法二 利用对数的运算性质求解)32(log 32-+=32log +321+=32log+(2+3)-1=-1.(2)原式=lg 2(2lg 2+lg5)+12lg 2)2(lg 2+-=lg 2(lg2+lg5)+|lg 2-1| =lg 2+(1-lg 2)=1. (3)原式=21(lg32-lg49)-34lg821+21lg245 =21 (5lg2-2lg7)-34×2lg 23+21 (2lg7+lg5) =25lg2-lg7-2lg2+lg7+21lg5=21lg2+21lg5 =21lg(2×5)= 21lg10=21. 2解:(1)∵log 332<log 31=0, 而log 556>log 51=0,∴log 332<log 556.(2)方法一 ∵0<0.7<1,1.1<1.2, ∴0>2.1log 1.1log 7.00.7>, ∴2.1log 11.1log 17.07.0<,即由换底公式可得log 1.10.7<log 1.20.7.方法二 作出y=log 1.1x 与y=log 1.2x 的图象. 如图所示两图象与x=0.7相交可知log 1.10.7<log 1.20.7. (3)∵y=x 21log 为减函数,且c a b 212121log log log <<, ∴b >a >c,而y=2x 是增函数,∴2b >2a >2c .3解:当a >1时,对于任意x ∈[3,+∞),都有f(x)>0. 所以,|f(x)|=f(x),而f(x)=log a x 在[3,+∞)上为增函数, ∴对于任意x ∈[3,+∞),有f(x)≥log a 3. 因此,要使|f(x)|≥1对于任意x ∈[3,+∞)都成立. 只要log a 3≥1=log a a 即可,∴1<a ≤3. 当0<a <1时,对于x ∈[3,+∞),有f(x)<0, ∴|f(x)|=-f(x). ∵f (x )=log a x 在[3,+∞)上为减函数,∴-f (x )在[3,+∞)上为增函数. ∴对于任意x ∈[3,+∞)都有 |f(x)|=-f(x)≥-log a 3. 因此,要使|f(x)|≥1对于任意x ∈[3,+∞)都成立, 只要-log a 3≥1成立即可, ∴log a 3≤-1=log a a1,即a 1≤3,∴31≤a <1. 综上,使|f(x)|≥1对任意x ∈[3,+∞)都成立的a 的取值范围是:(1,3]∪[31,1).例4(1)证明 设点A 、B 的横坐标分别为x 1、x 2, 由题设知x 1>1,x 2>1,则点A 、B 的纵坐标分别为log 8x 1、log 8x 2. 因为A 、B 在过点O 的直线上,所以228118log log x x x x =点C 、D 的坐标分别为(x 1,log 2x 1)、(x 2,log 2x 2), 由于log 2x 1=2log log 818x =3log 8x 1,log 2x 2=3log 8x 2, OC 的斜率为k 1=118112log 3log x x x x =, OD 的斜率为,log 3log 2282222x x x x k ==由此可知k 1=k 2,即O 、C 、D 在同一直线上. (2)解: 由于BC 平行于x 轴,知log 2x 1=log 8x 2,即得log 2x 1=31log 2x 2,x 2=x 31, 代入x 2log 8x 1=x 1log 8x 2,得x 31log 8x 1=3x 1log 8x 1,由于x 1>1,知log 8x 1≠0,故x 31=3x 1, 又因x 1>1,解得x 1=3,于是点A 的坐标为(3,log 83).训练1:化简求值. (1)log 2487+log 212-21log 242-1; (2)(lg2)2+lg2·lg50+lg25; (3)(log 32+log 92)·(log 43+log 83).训练2:已知0<a <1,b >1,ab >1,则log a bb bba1log ,log ,1的大小关系是 ( )A.log a bb bba1loglog 1<< B.bbb baa1log 1log log << C.b bb aba1log 1log log << D.b bb aablog 1log 1log <<训练3:已知函数f (x )=log 2(x 2-ax-a)在区间(-∞, 1-3]上是单调递减函数.求实数a 的取值范围.训练4:已知函数f(x)=log 211-+x x +log 2(x-1)+log 2(p-x). (1)求f(x)的定义域;(2)求f(x)的值域.1解:(1)原式=log 2487+log 212-log 242-log 22=log 2.232log 221log 242481272322-===⨯⨯⨯-(2)原式=lg2(lg2+lg50)+lg25=2lg2+lg25=lg100=2.(3)原式=(.452lg 63lg 5·3lg 22lg 3)2lg 33lg 2lg 23lg (·)3lg 22lg 3lg 2lg ==++2解: C3解:令g(x)=x 2-ax-a,则g(x)=(x-2a )2-a-42a , 由以上知g(x )的图象关于直线x=2a 对称且此抛物线开口向上.因为函数f(x)=log 2g(x)的底数2>1, 在区间(-∞,1-3]上是减函数, 所以g(x)=x 2-ax-a 在区间(-∞,1-3]上也是单调减函数,且g(x)>0.∴⎪⎩⎪⎨⎧>-----≥⎪⎩⎪⎨⎧>-≤-0)31()31(3220)31(2312a a a g a ,即解得2-23≤a <2.故a 的取值范围是{a|2-23≤a <2}.4解:(1)f(x)有意义时,有⎪⎪⎪⎩⎪⎪⎪⎨⎧>->->-+,③0,②01,①011x p x x x 由①、②得x >1,由③得x <p,因为函数的定义域为非空数集,故p >1,f(x)的定义域是(1,p).(2)f(x)=log 2[(x+1)(p-x)] =log 2[-(x-21-p )2+4)1(2+p ] (1<x <p), ①当1<21-p <p ,即p >3时, 0<-(x-4)1(4)1()21222+≤++-p p p , ∴log 2⎥⎦⎤⎢⎣⎡++---4)1()21(22p p x ≤2log 2(p+1)-2. ②当21-p ≤1,即1<p ≤3时, ∵0<-(x-),1(24)1()2122-<++-p p p ∴log 2⎥⎦⎤⎢⎣⎡++---4)1()21(22p p x <1+log 2(p-1). 综合①②可知: 当p >3时,f(x)的值域是(-∞,2log 2(p+1)-2]; 当1<p ≤3时,函数f(x)的值域是(-∞,1+log 2(p-1)). 1.处理对数函数的有关问题,要紧密联系函数图象,运用数形结合的思想进行求解.2.对数函数值的变化特点是解决含对数式问题时使用频繁的关键知识,要达到熟练、运用自如的水平,使用时常常要结合对数的特殊值共同分析.3.含有参数的指对数函数的讨论问题是重点题型,解决这类问题最基本的分类方案是以“底”大于1或小于1分类. 4.含有指数、对数的较复杂的函数问题大多数都以综合形式出现,与其它函数(特别是二次函数)形成的函数问题,与方程、不等式、数列等内容形成的各类综合问题等等,因此要注意知识的相互渗透或综合.。
人教a版高中数学:对数与对数函数知识点及例题专练
一.对数的运算指对互化:⇔=N a x ____________对数恒等式:1.___________________2.___________________3._______________4.______________对数的运算性质:1.___________________2.___________________3._______________换底公式:1.___________________2.___________________特殊对数:⑴通常以10为底的对数叫做常用对数,并把10log N 记为_________;⑵通常以e 为底的对数叫做自然对数,并把e log N 记为_________.1.求下列各式的值.(1)355log +212log -1505log -145log ;(2)log 2125×log 318×log 519.2.若()6430log log log x =⎡⎤⎣⎦,则12x -=3.(1)lg12-lg 58+lg12.5-log 89·log 278;(2)log 535+212log -log 5150-log 514;(3)4lg 2lg 5lg 22+-(4)(多选)以下运算中正确的有()A.lg5+lg2=1 B.5⋅−52=0C.2log 23−30= 2D.log 89⋅log 2716=89(5)(多选)下列等式成立的是()A.lg2+lg5−lg8lg50−lg40=1B.lg4+lg5−12lg0.5+lg8=2C.lg14−2lg 73+lg7−lg18=0 D.(lg2)2+lg2lg5+lg5=24.已知log 189=a,18b =5,用a、b 表示log 36455.已知实数x、y、z 满足3x =4y =6z>1,(1)求证:2x +1y =2z;(2)试比较3x、4y、6z 的大小二.对数函数的定义一般地,函数叫做对数函数,其中是自变量,函数定义域是.6.函数()()31f x lg x =+的定义域是7.函数(21)log x y -=的定义域是三.对数函数的性质1a >01a <<图象性质(1)定义域:(2)值域:(3)过点,即时(4)在上是函数(4)在上是函数(5)y<0⇔y=0⇔y>0⇔(6)y<0⇔y=0⇔y>0⇔8.较下列比较下列各组数中两个值的大小:⑴6log 7,7log 6;⑵3log π,2log 0.8;⑶0.91.1, 1.1log 0.9,0.7log 0.8;⑷5log 3,6log 3,7log 39.比较大小⑴8.1log 37.2log 3;⑵5log 67log 610.已知125ln ,log 2,x y z eπ-===,则().A x y z <<.B z x y <<.C z y x <<.D y z x<<11.设2554log 4,(log 3),log 5,a b c ===则().A a c b <<.B b c a <<.C a b c <<.D b a c<<12.函数log (1)2a y x =++的图像必过定点______________.13.函数log (2)21a y x x =++-的图像过定点______________14.解不等式2)1(log 3≥--x x 15.解关于x 的不等式:)1,0(,2log )12(log )34(log 2≠>>---+a a x x x a a a 16.()2211log log 1a a x x -->+,则a 的取值范围为________________17.解关于x 的不等式:2(log 21x )2+9(log 21x )+9≤018.图中的曲线是x y a log =的图像,已知a 的值为51,103,34,2,则相应曲线4321,,,C C C C 的a 依次为()A 、103,51,34,2B 、51,103,342C 、2,34,103,51D 、51,103,2,3419.若函数()(01)x f x a a a -=>≠且是定义域为R 的增函数,则函数()log (1)a f x x =+的图像大致是()20.(多选)已知函数=lg 2−414()A.的最小值为1B.∃∈,1+=2C.l 92>23D.o90.1−12)>o30.18−12)21.设1a >,函数()log a f x x =在区间[],2a a 上的最大值与最小值之差为12,则a =________________22.若函数()log (01)a f x x a =<<在区间[],2a a 上的最大值是最小值的3倍,则a =________________23.函数2log (3)y x =-的定义域为________________24.函数()()2log 31xf x =+的值域为________________四.对数型函数25.已知函数22()log (32)f x x x =+-.⑴求函数()f x 的定义域;⑵求()f x 的单调区间;⑶求函数()f x 的值域.26.已知[]3()2log (1,9)f x x x =+∈,求函数[]22()()()g x f x f x =+的最大值与最小值.27.已知函数()()2lg 21f x ax x =++(1)若()f x 的定义域是R ,求实数a 的取值范围及()f x 的值域(2)若()f x 的值域是R ,求实数a 的取值范围及()f x 的定义域28.已知()x f y =是二次函数,且()80=f 及()()121+-=-+x x f x f ⑴求()x f 的解析式⑵求函数()x f y 3log =的递减区间及值域29.已知:函数2()f x x x k =-+,且(2)22log 2,(log ),(0,1)f f a k a a ==>≠.⑴求,k a 的值;⑵当x 为何值时,函数(log )a f x 有最小值?求出该最小值.30.(多选)已知函数op =lg(1−p ,则A.op 的定义域为(−∞,1) B.op 的值域为C.o −1)+o −4)=1D.=o 2)的单调递增区间为(0,1)。
对数及其运算(一)
4、计算
(1) log 9 27
(3) log(2
3)
(2) log 4 3 81
(2 3)
(4) log 3 4 625
5
5.给出四个等式:
1) lg(lg10) 0; 2) lg(ln e) 0; 3)若lgx=10,则x=10; 4)若lnx=e,则x=e
2
1) ,2) 其中正确的是________ ⑵ ⑶ ⑷
(2)loga 1 0,loga a 1
(3)对数恒等式a
loga N
N , log a a b
b
常用对数及自然对数
常用对数:我们通常将以 10 为底的对数叫做 常用对数.为了简便 , N 的常用对数 简记作 lgN.
例如: log10 5 简记作lg5; log10 3.5 简记作lg3.5.
例如:
4 16
2
log 4 16 2
10 100
2
log10 100 2
1 log 4 2 2
4 2
10
2
1 2
0.01
log10 0.01 2
对数的创始人是苏格兰数学家纳皮尔 (Napier,1550年~1617年)。他发明了供 天文计算作参考的对数,并于 1614 年在爱 丁堡出版了《奇妙的对数定律说明书》, 公布了他的发明。恩格斯把对数的发明与 解析几何的创始,微积分的建立并称为 17 世纪数学的三大成就。
1 (2). 0.125 x ? 2
x
这是已知底数和幂的值,求指数! 你能看得出来吗?怎样求呢?
定义:
一般地,如果a N (a 0, 且a 1), 那么
b
数b叫做以a为底N的对数,记作b=loga N
对数运算例题和练习
对数的运算1.对数的运算性质如果a >0,且a ≠1,M >0,N >0那么:(1)log a (M ·N )= ,(2)log a M N= , (3)log a M n = (n ∈R ).2.换底公式lo g a b = a >0,且a ≠1;c>0,且c ≠1;b >0).1.判断(正确的打“√”,错误的打“×”)(1)lo g a M N =log a M log a N.( ) (2)lo g 13(-2)2=2lo g 13(-2).( )(3)积、商的对数可以化为对数的和、差.( )2.已知a >0且a ≠1,则lo g a 2+lo g a 12=( ) A .0 B .12C .1D .23.计算lo g 510-lo g 52等于( )A .lo g 58B .l g 5C .1D .24.(1)l g 10=__________;(2)已知l n a =0.2,则l n e a=__________. 5.log 29log 23=__________.探究点一 对数运算性质的应用计算下列各式:(1)lo g 53625;(2)lo g 2(32×42); (3)lo g 535-2lo g 573+lo g 57-lo g 595; (4)l g 25+23l g 8+l g 5·l g 20+(l g 2)2.1.计算下列各式的值:(1)l g 5100; (2)lo g 345-lo g 35;(3)(l g 5)2+2l g 2-(l g 2)2; (4)lg 3+25lg 9+35lg 27-lg 3lg 81-lg 27.(1)计算:(lo g 43+lo g 83)lo g 32=__________.(2)已知lo g 189=a ,18b =5,求lo g 3645.(用a ,b 表示)2.(1)log 89log 23的值是( )A .23B .32C .1D .2(2)计算:log 52·log 79log 513·log 734.1.化简12lo g 612-2lo g 62的结果为( )A .62B .122C .lo g 6 3 D.122.若ab >0,给出下列四个等式:①l g (ab )=l g a +l g b; ②l g ab =l g a -l g b ;③12l g ⎝⎛⎭⎫a b 2=l g a b ; ④l g (ab )=1log ab 10.其中一定成立的等式的序号是( )A .①②③④B .①②C .③④D .③3.方程lo g 3(x 2-10)=1+lo g 3x 的解是________.4.2lo g 510+lo g 50.25=( )A .0B .1C .2D .42.下列各等式正确的为( )A .lo g 23·lo g 25=lo g 2(3×5)B .l g 3+l g 4=l g (3+4)C .lo g 2xy =lo g 2x -lo g 2y D .l g n m =1n l g m (m >0,n >1,n ∈N *) 3.若l g x -l g y =t ,则l g ⎝⎛⎭⎫x23-l g ⎝⎛⎭⎫y23=( )A .3tB .32t C .t D .t24.2lo g 32-lo g 3329+lo g 38的值为( )A .12 B .2 C .3 D.135.若lo g 513·lo g 36·lo g 6x =2,则x 等于( )A .9B .19C .25 D.1256.计算lo g 927+lo g 224=________.7.已知m >0,且10x =l g (10m )+l g 1m ,则x =__________.8.若l g x +l g y =2l g (x -2y ),则xy =__________.9.计算下列各式的值:(1)lo g 535+2lo g 122-lo g 5150-lo g514;(2)[(1-lo g 63)2+lo g 62·lo g 618]÷lo g 64;(3)(lo g 43+lo g 83)(lo g 32+lo g 92).。
高中数学对数和对数函数知识点与例题讲解
对数与对数函数1.对数(1)对数的定义:如果a b=N(a>0,a≠1),那么b叫做以a为底N的对数,记作logaN=b.(2)指数式与对数式的关系:a b=NlogaN=b(a>0,a≠1,N>0).两个式子表示的a、b、N三个数之间的关系是一样的,并且可以互化.(3)对数运算性质:①log a(MN)=log a M+log a N.②log aMN=log a M-log a N.③logaM n=nlogaM.(M>0,N>0,a>0,a≠1)④对数换底公式:logbN= l oglogaaNb(a>0,a≠1,b>0,b≠1,N>0).2.对数函数(1)对数函数的定义函数y=log a x(a>0,a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1对数函数的底数为什么要大于0且不为1呢?在一个普通对数式里a<0,或=1的时候是会有相应b的值的。
但是,根据对数定义:log a a=1;如果a=1或=0那么log a a就可以等于一切实数(比如log11也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n=nlogaM如果a<0,那么这个等式两边就不会成立(比如,log(-2)4^(-2)就不等于(-2)*log(-2)4;一个等于1/16,另一个等于-1/16)(2)对数函数的图象yyy =l ogxa>(1)a1O1xOxy =l o g a x (<a <1) 0底数互为倒数的两个对数函数的图象关于x 轴对称. (3)对数函数的性质: ①定义域:(0,+∞). ②值域:R.③过点(1,0),即当x=1时,y=0.④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数.基础例题题型1(对数的计算) 1.求下列各式的值. (1)35 log +25log2-1 21 50log - 514 log ;(2)log5 2 1 25 ×lo g 3 1 8 ×lo g 5 1 9. 练习题1.计算:lg 1 2 -lg5 8 +lg12.5-log 89·log 278;3.log535+21log2-log51502 -log514;3.log2125×log318×log519.1loglog4log3 4.399222.5.lg5lg2lg41(6).log24lglog27lg2log33222 7.2lg2lg3111lg0.36lg823例2.已知实数x、y、z满足3x=4y=6z>1.(1)求证:2x+1y=2z;(2)试比较3x、4y、6z的大小.练习题.已知log189=a,18b=5,用a、b表示log3645.题型二:(对数函数定义域值域问题)例1.已知函数fxlog22xx1aax的定义域为集合A,关于x的不等式22 的解集为B,若AB,求实数a的取值范围.2.设函数2ylog(ax2x2)定义域为A.2(1)若AR,求实数a的取值范围;(2)若2log(ax2x2)2在x[1,2]上恒成立,求实数a的取值范围.2练习题1.已知函数2 fxlgax2x1(1)若fx的定义域是R,求实数a的取值范围及fx的值域;(2)若fx的值域是R,求实数a的取值范围及fx的定义域2求函数y=2lg (x -2)-lg (x -3)的最小值.题型三(奇偶性及性) 例题1.已知定义域为R 的函数f (x )为奇函数足f(x +2)=-f(x),当x ∈[0,1]时,f(x)=2x -1.(1)求f(x)在[-1,0)上的解析式; (2)求f(1 log24)的值. 2 4.已知f (x )=l o g 1[3-(x -1)2],求f (x )的值域.3 5.已知y =l o g a (3-a x )在[0,2]上是x 的减函数,求a 的围.4.已知函数f(x)lg(2x)lg(2x).(Ⅰ)求函数yf(x)的定义域;(Ⅱ)判断函数yf(x)的奇偶性;(Ⅲ)若f(m2)f(m),求m的取值范围.练习题1.已知函数f(x)=loga(x+1)-loga(1-x)(a>0,a≠1)(1)求f(x)的定义域;(2)判断f(x)的奇偶性,并给出证明;(3)当a>1时,求使f(x)>0的x的取值范围2.函数f(x)是定义在R上的偶函数,f(0)0,当x0时,1f(x)logx.2 (1)求函数f(x)的解析式;(2)解不等式2f(x1)2;3.已知f(x)是定义在R上的偶函数,且x0时,1f(x)log(x1).2 (Ⅰ)求f(0),f(1);(Ⅱ)求函数f(x)的表达式;(Ⅲ)若f(a1)1,求a的取值范围.题型4(函数图像问题)例题1.函数f(x)=|log2x|的图象是yy111x-11xOOAByy111x1xOOCD6.求函数y=log2|x|的定义域,并画出它的图象,指出它的单调区间.f(x)=|lgx|,a,b为实数,且0<a<b.(1)求方程f(x)=1的解;(2)若a,b满足f(a)=f(b)=2fa b2,求证:a·b=1,a b2 >1.练习题:1.已知a0且a1,函数f(x)log(x1)a,1g(x)log a,记F(x)2f(x)g(x)1x(1)求函数F(x)的定义域及其零点;(2)若关于x的方程2 F2.已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数.(1)求k的值;(2)设g(x)=log44xa?237.函数y=log2|ax-1|(a≠0)的对称轴方程是x=-2,那么a等于题型五:函数方程1方程lgx+lg(x+3)=1的解x=___________________.5.已知函数f(x)= 1()2x,x4,则f(2+log23)的值为f(x1),x4,4.已知函数f(x)log a(axx)(a0,a1为常数). (Ⅰ)求函数f(x)的定义域;(Ⅱ)若a2,x1,9,求函数f(x)的值域;(Ⅲ)若函数f(x)ya的图像恒在直线y2x1的上方,求实数a的取值范围.1xxyloglog(2x8).5.已知函数22242(Ⅰ)令tlog2x,求y关于t的函数关系式及t的取值范围;(Ⅱ)求函数的值域,并求函数取得最小值时的x的值.8.设函数f(x)=lg(1-x),g(x)=lg(1+x),在f(x)和g(x)的公共定义域内比较|f(x)|与|g(x)|的大小.您好,欢迎您阅读我的文章,本WORD文档可编辑修改,也可以直接打印。
对数运算对数函数经典例题讲义
1.对数的概念 如果a x =N (a >0,且a ≠1),那么数x 叫做__________________,记作____________,其中a 叫做__________,N 叫做______.2.常用对数与自然对数通常将以10为底的对数叫做____________,以e 为底的对数叫做____________,log 10N 可简记为______,log e N 简记为________. 3.对数与指数的关系若a >0,且a ≠1,则a x =N ⇔log a N =____.对数恒等式:a log a N =____;log a a x =____(a >0,且a ≠1). 4.对数的性质(1)1的对数为____; (2)底的对数为____; (3)零和负数__________.1.有下列说法:①零和负数没有对数;②任何一个指数式都可以化成对数式; ③以10为底的对数叫做常用对数; ④以e 为底的对数叫做自然对数. 其中正确命题的个数为( )A .1B .2C .3D .42.有以下四个结论:①lg(lg 10)=0;②ln(ln e)=0;③若10=lg x ,则x =100;④若e =ln x ,则x =e 2.其中正确的是( )A .①③B .②④C .①②D .③④ 3.在b =log (a -2)(5-a )中,实数a 的取值范围是( )A .a >5或a <2B .2<a <5C .2<a <3或3<a <5D .3<a <44.方程3log 2x=14的解是( )A .x =19B .x =33 C .x =3 D .x =95.若log a 5b =c ,则下列关系式中正确的是( ) A .b =a 5c B .b 5=a c C .b =5a c D .b =c 5a6.0.51log 412-+⎛⎫ ⎪⎝⎭的值为( )A .6 C .8 7.已知log 7[log 3(log 2x )]=0,那么12x -=________. 8.若log 2(log x 9)=1,则x =________.9.已知lg a = 0,lg b = 0,则ba=________.10.(1)将下列指数式写成对数式:①10-3=11 000;②=;③(2-1)-1=2+1.(2)将下列对数式写成指数式: ①log 26= 0;②=- 1;11.已知log a x =4,log a y =5,求A =121232x xy -⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦的值.能力提升12.若log a 3=m ,log a 5=n ,则a 2m +n 的值是( )A .15B .75C .45D .225 13.(1)先将下列式子改写成指数式,再求各式中x 的值:①log 2x =-25;②log x 3=-13.(2)已知6a=8,试用a 表示下列各式: ①log 68;②log 62;③log 26.1.对数概念与指数概念有关,指数式和对数式是互逆的,即a b=N ⇔log a N =b (a >0,且a ≠1),据此可得两个常用恒等式:(1)log a a b =b ;(2) log a Na =N .2.在关系式a x =N 中,已知a 和x 求N 的运算称为求幂运算;而如果已知a 和N 求x 的运算就是对数运 算,两个式子实质相同而形式不同,互为逆运算. 3.指数式与对数式的互化1.对数的运算性质如果a >0,且a ≠1,M >0,N >0,那么: (1)log a (M ·N )=____________________;(2)log a MN=____________________;(3)log a M n =__________(n ∈R ). 2.对数换底公式log a b =log c b log c a (a >0,且a ≠1,b >0,c >0,且c ≠1);特别地:log a b ·log b a =____(a >0,且a ≠1,b >0,且b ≠1).1.下列式子中成立的是(假定各式均有意义)( ) A .log a x ·log a y =log a (x +y ) B .(log a x )n =n log a x=log a n x =log a x -log a y 2.计算:log 916·log 881的值为( )A .183.若log 513·log 36·log 6x =2,则x 等于( )A .9 C .254.已知3a =5b =A ,若1a +1b=2,则A 等于( )A .15C .±15D .2255.已知log 89=a ,log 25=b ,则lg 3等于( )6.若lg a ,lg b 是方程2x 2-4x +1=0的两个根,则(lg ab)2的值等于( )A .2 C .47.2log 510++(325-125)÷425=_____________________________________. 8.(lg 5)2+lg 2·lg 50=________.9.2008年5月12日,四川汶川发生里氏级特大地震,给人民的生命财产造成了巨大的损失.里氏地震的等级最早是在1935年由美国加州理工学院的地震学家里特判定的.它与震源中心释放的能量(热能和动能)大小有关.震级M =23lg E -,其中E (焦耳)为以地震波的形式释放出的能量.如果里氏级地震释放的能量相当于1颗美国在二战时投放在广岛的原子弹的能量,那么汶川大地震所释放的能量相当于________颗广岛原子弹. 三、解答题10.(1)计算:lg 12-lg 58+lg -log 89·log 34;(2)已知3a =4b =36,求2a +1b的值.11.若a 、b 是方程2(lg x )2-lg x 4+1=0的两个实根,求lg(ab )·(log a b +log b a )的值.能力提升12.下列给出了x 与10x 的七组近似对应值:组号 一 二 三 四 五 六 七x 03 11 97 15 09 001810x 2 3 5 6 8 10 12 假设在上表的各组对应值中,有且仅有一组是错误的,它是第________组.( ) A .二 B .四 C .五 D .七13.一种放射性物质不断变化为其他物质,每经过一年的剩余质量约是原来的75%,估计约经过多少年,该物质的剩余量是原来的13?(结果保留1位有效数字)(lg 2≈ 0,lg 3≈ 1)1.在运算过程中避免出现以下错误: log a (MN )=log a M ·log a N . log a M N =log a M log a N . log a N n =(log a N )n . log a M ±log a N =log a (M ±N ).2.根据对数的定义和运算法则可以得到对数换底公式:log a b =log c b log c a(a >0且a ≠1,c >0且c ≠1,b >0).由对数换底公式又可得到两个重要结论: (1)log a b ·log b a =1;(2) log n ma b =m nlog a b .3.对于同底的对数的化简常用方法:(1)“收”,将同底的两对数的和(差)收成积(商)的对数;(2)“拆”,将积(商)的对数拆成两对数的和(差).对于常用对数的化简要创设情境,充分利用“lg 5+lg 2=1”来解题.1.对数函数的定义:一般地,我们把______________________叫做对数函数,其中x 是自变量,函数的定义域是________.2.对数函数的图象与性质定义 y =log a x (a >0,且a ≠1) 底数 a >1 0<a <1图象定义域________ 值域 ________单调性 在(0,+∞)上是增函数 在(0,+∞)上是减函数共点性 图象过点________,即log a 1=0 函数值 特点x ∈(0,1)时, y ∈________; x ∈[1,+∞)时, y ∈________ x ∈(0,1)时, y ∈________; x ∈[1,+∞)时, y ∈________对称性函数y =log a x 与y =1log ax 的图象关于____对称3.反函数对数函数y =log a x (a >0且a ≠1)和指数函数__________________互为反函数. 1.函数y =log 2x -2的定义域是( )A .(3,+∞)B .[3,+∞)C .(4,+∞)D .[4,+∞)2.设集合M ={y |y =(12)x ,x ∈[0,+∞)},N ={y |y =log 2x ,x ∈(0,1]},则集合M ∪N 等于( )A .(-∞,0)∪[1,+∞)B .[0,+∞)C .(-∞,1]D .(-∞,0)∪(0,1) 3.已知函数f (x )=log 2(x +1),若f (α)=1,则α等于( )A .0B .1C .2D .3 4.函数f (x )=|log 3x |的图象是( )5.已知对数函数f (x )=log a x (a >0,a ≠1),且过点(9,2),f (x )的反函数记为y =g (x ),则g (x )的解析式是( ) A .g (x )=4x B .g (x )=2x C .g (x )=9x D .g (x )=3x6.若log a 23<1,则a 的取值范围是( )A .(0,23)B .(23,+∞)C .(23,1)D .(0,23)∪(1,+∞)7.如果函数f (x )=(3-a )x ,g (x )=log a x 的增减性相同,则a 的取值范围是______________. 8.已知函数y =log a (x -3)-1的图象恒过定点P ,则点P 的坐标是________.9.给出函数则f (log 23)=________.三、解答题10.求下列函数的定义域与值域: (1)y =log 2(x -2); (2)y =log 4(x 2+8).11.已知函数f (x )=log a (1+x ),g (x )=log a (1-x ),(a >0,且a ≠1). (1)设a =2,函数f (x )的定义域为[3,63],求函数f (x )的最值. (2)求使f (x )-g (x )>0的x 的取值范围.能力提升12.已知图中曲线C 1,C 2,C 3,C 4分别是函数y =log a 1x ,y =log a 2x ,y =log a 3x ,y =log a 4x 的图象,则a 1,a 2,a 3,a 4的大小关系是( )A .a 4<a 3<a 2<a 1B .a 3<a 4<a 1<a 2C .a 2<a 1<a 3<a 4D .a 3<a 4<a 2<a 113.若不等式x 2-log m x <0在(0,12)内恒成立,求实数m 的取值范围.1.函数y =log m x 与y =log n x 中m 、n 的大小与图象的位置关系.当0<n <m <1时,如图①;当1<n <m 时,如图②;当0<m <1<n 时,如图③.2.由于指数函数y =a x(a >0,且a ≠1)的定义域是R ,值域为(0,+∞),再根据对数式与指数式的互化过程知道,对数函数y =log a x (a >0,且a ≠1)的定义域为(0,+∞),值域为R ,它们互为反函数,它们的定义域和值域互换,指数函数y =a x 的图象过(0,1)点,故对数函数图象必过(1,0)点.1.函数y =log a x 的图象如图所示,则实数a 的可能取值是( ) A .52.下列各组函数中,表示同一函数的是( ) A .y =x 2和y =(x )2 B .|y |=|x |和y 3=x 3C .y =log a x 2和y =2log a xD .y =x 和y =log a a x3.若函数y =f (x )的定义域是[2,4],则y =f (12log x )的定义域是( )A .[12,1] B .[4,16]C .[116,14] D .[2,4]4.函数f (x )=log 2(3x +1)的值域为( )A .(0,+∞)B .[0,+∞)C .(1,+∞)D .[1,+∞)5.函数f (x )=log a (x +b )(a >0且a ≠1)的图象经过(-1,0)和(0,1)两点,则f (2)=________. 6.函数y =log a (x -2)+1(a >0且a ≠1)恒过定点____________.一、选择题1.设a =log 54,b =(log 53)2,c =log 45,则( ) A .a <c <b B .b <c <a C .a <b <c D .b <a <c2.已知函数y =f (2x )的定义域为[-1,1],则函数y =f (log 2x )的定义域为( )A .[-1,1]B .[12,2]C .[1,2]D .[2,4]3.函数f (x )=log a |x |(a >0且a ≠1)且f (8)=3,则有( ) A .f (2)>f (-2) B .f (1)>f (2) C .f (-3)>f (-2) D .f (-3)>f (-4)4.函数f (x )=a x +log a (x +1)在[0,1]上的最大值与最小值之和为a ,则a 的值为( ) C .2 D .45.已知函数f (x )=lg 1-x1+x,若f (a )=b ,则f (-a )等于( )A .bB .-bD .-1b6.函数y =3x (-1≤x <0)的反函数是( ) A .y =13log x (x >0)B .y =log 3x (x >0)C .y =log 3x (13≤x <1)D .y =13log x (13≤x <1)7.函数f (x )=lg(2x -b ),若x ≥1时,f (x )≥0恒成立,则b 应满足的条件是________. 8.函数y =log a x 当x >2时恒有|y |>1,则a 的取值范围是______________. 9.若log a 2<2,则实数a 的取值范围是______________.10.已知f (x )=log a (3-ax )在x ∈[0,2]上单调递减,求a 的取值范围.11.已知函数f (x )=121log 1axx --的图象关于原点对称,其中a 为常数.(1)求a 的值;(2)若当x ∈(1,+∞)时,f (x )+12log (1)x -<m 恒成立.求实数m 的取值范围.能力提升12.设函数f (x )=log a x (a >0,a ≠1),若f (x 1x 2…x 2 010)=8,则f (x 21)+f (x 22)+…+f (x 22 010)的值等于( ) A .4 B .8 C .16 D .2log 48 13.已知log m 4<log n 4,比较m 与n 的大小.1.在对数函数y =log a x (a >0,且a ≠1)中,底数a 对其图象的影响 无论a 取何值,对数函数y =log a x (a >0,且a ≠1)的图象均过点(1,0),且由定义域的限制,函数图象穿过点(1,0)落在第一、四象限,随着a 的逐渐增大,y =log a x (a >1,且a ≠1)的图象绕(1,0)点在第一象限由左向右顺时针排列,且当0<a <1时函数单调递减,当a >1时函数单调递增.2.比较两个(或多个)对数的大小时,一看底数,底数相同的两个对数可直接利用对数函数的单调性来比较大小,对数函数的单调性由“底”的范围决定,若“底”的范围不明确,则需分“底数大于1”和“底数大于0且小于1”两种情况讨论;二看真数,底数不同但真数相同的两个对数可借助于图象,或应用换底公式将其转化为同底的对数来比较大小;三找中间值,底数、真数均不相同的两个对数可选择适当的中间值(如1或0等)来比较.1.已知m =,n =,p =,则这三个数的大小关系是( ) A .m <n <p B .m <p <n C .p <m <n D .p <n <m 2.已知0<a <1,log a m <log a n <0,则( )A .1<n <mB .1<m <nC .m <n <1D .n <m <13.函数y =x -1+1lg (2-x )的定义域是( )A .(1,2)B .[1,4]C .[1,2)D .(1,2]4.给定函数①y =12x ,②y =()12log 1x +,③y =|x -1|,④y =2x +1,其中在区间(0,1)上单调递减的函数序号是( )A .①②B .②③C .③④D .①④5.设函数f (x )=log a |x |,则f (a +1)与f (2)的大小关系是________________________. 6.若log 32=a ,则log 38-2log 36=________.一、选择题1.下列不等号连接错误的一组是( ) A . B .log 34>log 65C .log 34>log 56D .log πe>log e π2.若log 37·log 29·log 49m =log 412,则m 等于( )D .43.设函数若f (3)=2,f (-2)=0,则b 等于( ) A .0 B .-1 C .1 D .24.若函数f (x )=log a (2x 2+x )(a >0,a ≠1)在区间(0,12)内恒有f (x )>0,则f (x )的单调递增区间为( )A .(-∞,-14)B .(-14,+∞)C .(0,+∞)D .(-∞,-12)5.若函数若f (a )>f (-a ),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)6.已知f (x )是定义在R 上的奇函数,f (x )在(0,+∞)上是增函数,且f (13)=0,则不等式f (log 18x )<0的解集为( )A .(0,12)B .(12,+∞)C .(12,1)∪(2,+∞)D .(0,12)∪(2,+∞)7.已知log a (ab )=1p ,则log ab ab=________.8.若log 236=a ,log 210=b ,则log 215=________.9.设函数若f (a )=18,则f (a +6)=________.10.已知集合A ={x |x <-2或x >3},B ={x |log 4(x +a )<1},若A ∩B =∅,求实数a 的取值范围.11.抽气机每次抽出容器内空气的60%,要使容器内的空气少于原来的%,则至少要抽几次?(lg 2≈ 0)能力提升12.设a >0,a ≠1,函数f (x )=log a (x 2-2x +3)有最小值,求不等式log a (x -1)>0的解集.13.已知函数f (x )=log a (1+x ),其中a >1.(1)比较12[f (0)+f (1)]与f (12)的大小;(2)探索12[f (x 1-1)+f (x 2-1)]≤f (x 1+x 22-1)对任意x 1>0,x 2>0恒成立.1.比较同真数的两个对数值的大小,常有两种方法:(1)利用对数换底公式化为同底的对数,再利用对数函数的单调性和倒数关系比较大小; (2)利用对数函数图象的相互位置关系比较大小. 2.指数函数与对数函数的区别与联系指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)是两类不同的函数.二者的自变量不同.前者以指数为自变量,而后者以真数为自变量;但是,二者也有一定的联系,y =a x (a >0,且a ≠1)和y =log a x (a >0,且a ≠1)互为反函数.前者的定义域、值域分别是后者的值域、定义域.二者的图象关于直线y =x 对称.。
3.2.1对数及其运算1
(2). lg 5. log
20 lg 2 10
2
3
2
2
log3 21
1.对数的概念、表示.
2.指数式与对数式的关系和转化. 3.常用对数和自然对数.
4.对数的运算.
5.换底公式.
(3) lg1;
(4) lg100.
(5) lg0.001;
(6) log927.
练习:
(1 log 2 2 2 )
3
(2) lg 100
3
(3) log 3 9 log 3 27 (4) lg 10 lg 0.1
2
注意:
在对数式中,a、b、N的取值范围 1.a的范围是 a>0,a≠1
2.b的范围是 3.N的范围是
知识点2.对数指数互化
指 数
b = N a
底 数
指数式ab=N 对数式logaN=b 幂
log a N = b
底数 真 数 对 数 b 指数 对数
a 底数 对数的底数
N 幂 真数
知识点2.对数指数互化
例1.把下列指数式写成对数式:
(1)2 8 1 1 (3)2 2
3
(2)2 32 1 1 3 (4)27 3
题型3.利用对数的运算性质解题
练习: 1 32 4 1. lg lg 8 lg 245 2 49 3 2 2 2 2. lg 5 lg 8 lg 5. lg 20 lg 2 3 lg 2 lg 3 lg 10 3. lg 1.8
题型4.利用对数恒等式和换底公式解题 例9.计算
1 log 0.2 3 4
(1)5
( 2) log 4 3 log 9 2 log 2 32
对数与对数的运算精典练习题
2.2.1 对数与对数的运算练习一一、选择题 1、 25)(log 5a -(a ≠0)化简得结果是( ) A 、-aB 、a 2C 、|a |D 、a2、 log 7[log 3(log 2x )]=0,则21-x 等于( )A 、31 B 、321 C 、221 D 、3313、 nn ++1log(n n -+1)等于( ) A 、1B 、-1C 、2D 、-24、 已知32a=,那么33log 82log 6-用表示是( )A 、2a -B 、52a -C 、23(1)a a -+D 、 23a a -5、 2log (2)log log a a a M N M N -=+,则NM的值为( ) A 、41B 、4C 、1D 、4或16、 若log m 9<log n 9<0,那么m,n 满足的条件是( )A 、m>n>1B 、n>m>1C 、0<n<m<1D 、0<m<n<17、 若1<x<b,a=log 2b x,c=log a x,则a,b,c 的关系是( ) A 、a<b<c B 、 a<c<b C 、c<b<a D 、c<a<b二、填空题8、 若log a x =log b y =-21log c 2,a ,b ,c 均为不等于1的正数,且x >0,y >0,c =ab ,则xy =________9 、若lg2=a ,lg3=b ,则log 512=________10、 3a=2,则log 38-2log 36=__________11、 若2log 2,log 3,m na a m n a+===___________________12、 lg25+lg2lg50+(lg2)2=三、解答题13、 222522122(lg )lg lg (lg )lg +⋅+-+14、 若lga 、lgb 是方程01422=+-x x 的两个实根,求2)(lg )lg(ba ab ⋅的值。
对数及其运算基础知识及例题
对数及其运算根底知识及例题1、概念:2、性质:3、对数的运算性质:4、换底公式:5、对数的其他运算性质6、经常使用对数和自然对数:【典型例题】类型一、对数的概念 x 的取值范围:〔1〕2log (5)x -;〔2〕(1)log (2)x x -+;〔3〕2(1)log (1)x x +-.类型二、指数式与对数式互化及其应用 例2.将以下指数式与对数式互化: (1)2log 164=;(2)13log 273=-;(3)3x =;(4)35125=;(5)1122-=;(6)2193-⎛⎫= ⎪⎝⎭.类型三、利用对数恒等式化简求值例3.求值: 71log 57+类型四、积、商、幂的对数例4. z y x a a a log ,log ,log 用表示以下各式2353(1)log ;(2)log ();(3)log ;(4)log a a a ax yxyxx y zyzz18log 9,185b a ==,求36log 45.类型六、对数运算法那么的应用(1) 91log 81log 251log 32log 53264⋅⋅⋅(2) 7lg142lg lg 7lg183-+-(3))36log 43log 32(log log 42122++(4)()248125255log 125log 25log 5(log 8log 4log 2)++++对数及其运算练习题一、选择题 一、 25)(log 5a -〔a ≠0〕化简得结果是〔 〕 A 、-aB 、a 2C 、|a |D 、a二、 log 7[log 3〔log 2x 〕]=0,那么21-x 等于〔 〕A 、31B 、321 C 、221 D 、3313、 nn ++1log〔n n -+1〕等于〔 〕 A 、1B 、-1C 、2D 、-24、 32a =,那么33log 82log 6-用表示是〔 〕A 、2a -B 、52a -C 、23(1)a a -+ D 、 23a a - 五、 2log (2)log log a a a M N M N -=+,那么NM的值为〔 〕A 、41B 、4C 、1D 、4或1 六、 假设log m 9<log n 9<0,那么m,n 知足的条件是〔 〕 A 、m>n>1 B 、n>m>1 C 、0<n<m<1 D 、0<m<n<17、 假设1<x<b,a=log 2b x,c=log a x,那么a,b,c 的关系是〔 〕 A 、a<b<c B 、 a<c<b C 、c<b<a D 、c<a<b 8、在)5(log 2a b a -=-中,实数a 的范围是〔 〕A 、 a >5或a <2B 、 25<<aC 、 23<<a 或35<<aD 、 34<<a9、 假设log [log (log )]4320x =,那么x -12等于〔 〕A 、 142 B 、122 C 、 8D 、 410、334log的值是〔 〕A 、 16B 、 2C 、 3D 、 411、 b a ==4log 3log 55,,那么log 2512是〔 〕 A 、 a b +B 、)(21b a + C 、 ab D 、12ab 12、 21366log log x =-,那么x 的值是〔 〕 A 、 3B 、 2C 、 2或-2D 、 3或213、 计算=++5lg 2lg 35lg 2lg 33〔 〕 A 、 1B 、 3C 、 2D 、 014、 23834x y ==,log ,那么x y +2的值为〔 〕 A 、 3B 、 8C 、 4D 、 log 4815、 设a 、b 、c 都是正数,且c b a 643==,那么〔 〕 A 、111c a b=+ B 、221c a b =+ C 、 122c a b=+ D 、212c a b=+ 二、填空题16、 假设log a x =log b y =-21log c 2,a ,b ,c 均为不等于1的正数,且x >0,y >0,c =ab ,那么xy =________ 17 、假设lg2=a ,lg3=b ,那么log 512=________ 18、 3a=2,那么log 38-2log 36=__________ 19、 假设2log 2,log 3,m na a m n a+===___________________20、 lg25+lg2lg50+(lg2)2=21、 假设1)12(log -=+x ,那么x=________,假设log28=y ,那么y=___________。
对数与对数运算知识点总结与例题讲解
(2)1 的对数等于 0,即 loga 1 0 ( a 0 且 a 1 ).
(3)底数的对数等于 1,即 loga a 1( a 0 且 a 1 ).
(4)对数恒等式 a loga N N ( a 0 且 a 1 ). (5) loga a x x ( a 0 且 a 1 ).
例 13. 设 loga 2 m , loga 3 n ,则 a 2mn 的值为__________.
解:∵ loga 2 m , loga 3 n ,∴ a m 2, a n 3 .
a ∴ 2mn a m 2 a n 22 3 12 .
对数与对数运算知识点总结与例题讲解 第 5 页
16 .
点评 指数运算与对数运算互为逆运算,在解题过程中,互相转化是解决相关问题的重要途
径,但一定要记清 a, x, N 在两种形式中的准确位置:指数式 a x N ,对数式 x loga N .
需 要 说 明 的 是 , 并 不 是 所 有 的 指 数 式 都 可 以 化 为 对 数 式 , 如 24 16 , 就 不 能 化 为
5 3x ,∴ 4 x 3
5,x
log 4
3
5.
例 11. 若 4a 2 , lg x a ,则 x __________.
解:∵ 4a 2 ,∴ 22a 2 , 2a 1 , a 1 . 2
1
∵ lg x a ,∴ x 10a 10 2 10 .
3 2
.
∴ log9
27
3 2
;
(2)设 log4 3
81
x ,则有
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对数及其运算基础知识及例题
1、定义:
2、性质:
3、对数的运算性质:
4、换底公式:
5、对数的其他运算性质
6、常用对数和自然对数:
【典型例题】
类型一、对数的概念
例1.求下列各式中x 的取值范围:
(1)2log (5)x -;(2)(1)log (2)x x -+;(3)2
(1)log (1)x x +-.
类型二、指数式与对数式互化及其应用 例2.将下列指数式与对数式互化: (1)2log 164=;(2)1
3
log 273=-;(3)3x =;(4)35125=;(5)1122-=;(6)2
193-⎛⎫
= ⎪⎝⎭
.
类型三、利用对数恒等式化简求值
例3.求值: 71log 5
7+
类型四、积、商、幂的对数
例4. z y x a a a log ,log ,log 用表示下列各式
235
3
(1)log ;
(2)log ();
(3)log ;
(4)log a a a a
x y
xy
x
x y z
yz
z
例5.已知18log 9,185b
a ==,求36log 45.
类型六、对数运算法则的应用 例6.求值 (1) 9
1log 81log 251log 32log 532
64⋅⋅⋅
(2) 7
lg142lg lg 7lg183
-+-
(3))36log 4
3
log 32(log log 42
1
22++
(4)()248125255log 125log 25log 5(log 8log 4log 2)++++
对数及其运算练习题
一、选择题 1、 2
5)(log 5
a -(a ≠0)化简得结果是( ) A 、-a
B 、a 2
C 、|a |
D 、a
2、 log 7[log 3(log 2x )]=0,则2
1-x 等于( )
A 、
3
1
B 、
3
21 C 、
2
21 D 、
3
31
3、 n
n ++1log
(n n -+
1)等于( ) A 、1
B 、-1
C 、2
D 、-2
4、 已知32a =,那么33log 82log 6-用表示是( )
A 、2a -
B 、52a -
C 、2
3(1)a a -+ D 、 23a a - 5、 2log (2)log log a a a M N M N -=+,则N
M
的值为( ) A 、
4
1
B 、4
C 、1
D 、4或1 6、 若log m 9<log n 9<0,那么m,n 满足的条件是( ) A 、m>n>1 B 、n>m>1 C 、0<n<m<1 D 、0<m<n<1
7、 若1<x<b,a=log 2
b x,c=log a x,则a,b,
c 的关系是( ) A 、a<b<c B 、 a<c<b C 、c<b<a D 、c<a<b 8、在)5(log 2a b a -=-中,实数a 的范围是( )
A 、 a >5或a <2
B 、 25<<a
C 、 23<<a 或35<<a
D 、 34<<a
9、 若log [log (log )]4320x =,则x -
12
等于( ) A 、 1
4
2 B 、
1
2
2 C 、 8
D 、 4
10、3
3
4
log
的值是( )
A 、 16
B 、 2
C 、 3
D 、 4
11、 已知b a ==4log 3log 55,
,则log 2512是( ) A 、 a b +
B 、
)(2
1
b a + C 、 ab D 、
12
ab 12、 已知21366log log x =-,则x 的值是( ) A 、 3
B 、 2
C 、 2或-2
D 、 3或2
13、 计算=++5lg 2lg 35lg 2lg 3
3
( ) A 、 1
B 、 3
C 、 2
D 、 0
14、 已知238
3
4x y ==,log ,则x y +2的值为( ) A 、 3
B 、 8
C 、 4
D 、 log 48
15、 设a 、b 、c 都是正数,且c
b a 643==,则( )
A 、
111c a b
=+ B 、
221c a b =+ C 、 122c a b
=+ D 、
212
c a b
=+ 二、填空题
16、 若log a x =log b y =-
2
1
log c 2,a ,b ,c 均为不等于1的正数,且x >0,y >0,c =ab ,则xy =________
17 、若lg2=a ,lg3=b ,则log 512=________ 18、 3a
=2,则log 38-2log 36=__________ 19、 若2log 2,log 3,m n
a a m n a
+===___________________
20、 lg25+lg2lg50+(lg2)2
=
21、 若1)12(log -=+x ,则x=________,若log
2
8=y ,则y=___________。
22、 若f x x ()log ()=-31,且f a ()=2,则a=_____________ 23、 已知log log log a b c x x x ===214,,,则log abc x =_________ 24、 2
342
92
3232log ()log (
)+-+=___________
三、解答题
25、 222522122(lg )lg lg (lg )lg +⋅+-+
26、 若lga 、lgb 是方程01422=+-x x 的两个实根,求2)(lg )lg(b
a a
b ⋅的值。
27、 若f(x)=1+log x 3, g(x)=2log x 2, 试比较f(x)与g(x)的大小.
28、计算:(log 2125+log 425+log 85)(log 52+log 254+log 1258)
29、已知b a ==5log 7log 1414,
,用a 、b 表示log 3528。
30、设M N a a a a
==-{}{lg }01112,,,,,,是否存在实数a ,使得M N ={}1?。