23.2 中心对称(第1课时)PPT优质课件

合集下载

人教版数学九年级上册..中心对称课件PPT优秀课件

人教版数学九年级上册..中心对称课件PPT优秀课件

练习:
• 1.下列说法中正确的有( c )
A.全等的两个图形的两个图形全等 D.旋转后能够重合的两个图形成中心对称
人教版数学九年级上册2.3.中.2心.1中 对心 称对课 称 件课PP件T优 秀课件
人教版数学九年级上册2.3.中.2心.1中 对心 称对课 称 件课PP件T优 秀课件
人教版数学九年级上册23.2.1中心对 称课件
(1)如图1,把其中一个图案绕点O旋转180°,你 有什么发现?
(2)如图2,线段AC, BD相交于点O,OA=OC, OB=OD.把 △OCD绕点O旋转180°,你有 什么发现?
重合
重合
O
B
(2) C
人教版数学九年级上册23.2.1中心对 称课件
人教版数学九年级上册2.3.中.2心.1中 对心 称对课 称 件课PP件T优 秀课件
人教版数学九年级上册23.2.1中心对 称课件
练习
• 3.已知如图所示,△AOB与△COD关于点O 成中心对称,连接BC,AD.
(1)求证:四边形ABCD为平行四边形;
(2)若△AOB的面积为15 cm2,求四边形 ABCD的面积.
人教版数学九年级上册23.2.1中心对 称课件
中心对称的作法: 人教版数学九年级上册23.2.1中心对称课件
C’ A
B’
O
B
A’ C
人教版数学九年级上册2.3.中.2心.1中 对心 称对课 称 件课PP件T优 秀课件
人教版数学九年级上册2.3.中.2心.1中 对心 称对课 称 件课PP件T优 秀课件
练习
• 1.如图所示,在下列四组图形中,右边图形 与左边图形成中心对称的有_(_1_)(_2.)(3)
人教版数学九年级上册2.3.中.2心.1中 对心 称对课 称 件课PP件T优 秀课件

2021年人教版数学九年级上册23 中心对称(第一课时)课件

2021年人教版数学九年级上册23 中心对称(第一课时)课件

A.点 E C.点 G
B.点 F D.点 H
8
3.如图,△ABC 与△A′B′C′关于点 O 成中心对称,则下列结论不成立的是 ( D)
A.点 A 与点 A′是对称点 C.AB∥A′B′
B.BO=B′O D.∠ACB=∠C′A′B′
9
4.如图,在△ABC 中,AB=AC,△ABC 与△FEC 关于点 C 成中心对称,连 接 AE、BF.若四边形 ABFE 为矩形,则∠ACB 为( C )
另外两个矩形,得到连接各自中心
的第二条线段,两条线段交于点G,
点G即为重心.
22
图2
►在有欢声笑语的校园里,满地都是雪,像一块大地毯。房檐上挂满了冰凌 ,一根儿一根儿像水晶一样,真美啊!我们一个一个小脚印踩在大地毯上 ,像画上了美丽的图画,踩一步,吱吱声就出来了,原来是雪在告我们: 和你们一起玩儿我感到真开心,是你们把我们这一片寂静变得热闹起来。 对了,还有树。树上挂满了树挂,有的树枝被压弯了腰,真是忽如一夜春 风来,千树万树梨花开。真好看呀! ►冬天,一层薄薄的白雪,像巨大的轻软的羊毛毯子,覆盖摘在这广漠的荒 原上,闪着寒冷的银光。
B.(- 3,2),( 3,-2)
C.(- 3,2),(2,- 3)
D.- 27,
221, 27,-
21 2
14
8.如图,四边形 ABCD 是中心对称图形,对称中心为点 O,过点 O 的直线与 AD、BC 分别交于点 E、F,则图中相等的线段有( C )
A.3 对 C.5 对
B.4 对 D.6 对
►走进颐和园,眼前是繁华的苏州街,现在依稀可以想象到当年的热闹场面, 苏州街围着一片湖,沿着河岸有许多小绿盘子里装着美丽的荷花。这里是 仿照江南水乡--苏州而建的买卖街。当年有古玩店、绸缎店、点心铺等, 店铺中的店员都是太监、宫女妆扮的,皇帝游览的时候才营业。我正享受 着皇帝的待遇,店里的小贩都在卖力的吆喝着。 ►走近一看,我立刻被这美丽的荷花吸引住了,一片片绿油油的荷叶层层叠 叠地挤在水面上,是我不由得想起杨万里接天莲叶无穷碧这一句诗。荷叶 上滚动着几颗水珠,真像一粒粒珍珠,亮晶希望对您有帮助,谢谢 晶的。 它们有时聚成一颗大水珠,骨碌一下滑进水里,真像一个顽皮的孩子!

23.2.1 中心对称(共43张PPT)

23.2.1 中心对称(共43张PPT)


15 8
2

OF

15 8
同理OE 15 ,即 OF OE OF 15
8
4
A
D
C′
D′
O 重合
B′
A′
B
C
(4)将平行四边形ABCD绕中心O逆时针旋 转180°,这两个图形有怎样的位置关系?
有的轴对称, 有的重合。
绕中心旋转180°,旋转后的图 形与原图的位置关系有什么不同?
教学目标
【知识与能力】
了解中心对称、对称中心、关于中心的对称 点等概念。 通过具体实例认识两个图形关于某一点成中 心对称的本质:就是一个图形绕一点旋转180° 而成。 作出中心对称的图形。
它是轴对称图形吗? 不是轴对称图形。
这个图形是否能够通过某种图形运动与自 身重合?
探究
下列图形是否能够通过某种图形运动与自
身重合?图旋Biblioteka 形转绕后中与
线段绕中点旋转180°
心原 旋图
旋转后与原图重合
转重
180 合
°
知识要点
把一个图形绕着某一个点旋转180°, 如果它能够与另一个图形重合,那么就说 这两个图形关于这个点对称或中心对称 (central symmetry),这个点叫做对称中 心。这两个图形中的对应点叫做关于中心 的对称点。
经历对日常生活中与中心对称有关的图形进行 观察、分析、欣赏、动手操作、画图等过程,发 展审美能力,增强对图形的欣赏意识。
从图形变化过程中,树立正确的辩证唯物主义 观点。
认识几何图形的对称美,培养学生热爱数学, 热爱生活。
教学重难点
利用中心对称、对称中心、关于中心的 对称点的概念解决一些问题。 从一般旋转中导入中心对称。 中心对称的性质及初步应用。 中心对称与旋转之间的关系。

人教版数学九年级上册23.2.2中心对称图形课件(29张PPT)

人教版数学九年级上册23.2.2中心对称图形课件(29张PPT)

美丽的中心对称图形
你能设计出中心对称图形吗?
巩固训练
1. 剪纸是我国具有独特艺术风格的民间艺术,反 映了劳动人民对现实生活的深刻感悟. 下列剪纸 图案中,是中心对称图形的有( A )
A. ①②③ B. ①②④ C. ①③④ D. ②③④
2. 下列图形是轴对称图形但不是中心对称 图形的是( D )
A
B
C
D
3. 如图,直线 a⊥b 于点O,曲线 c 关于点 О 成中心对称,点 A 的对称点是 A',AB⊥a 于点B,A'D⊥b 于点 D. 若 OB=3,OD=2,则 阴影部分的面积为___6___.
4. 图①②都是由边长为 1 的小等边三角形构成 的网格,每个网格图中有3个小等边三角形已涂上阴 影. 请在余下的空白小等边三角形中,分别按下列要 求选取一个涂上阴影: (1)使得4个阴影小等边三角形组成一个轴对称图形. (2)使得4个阴影小等边三角形组成一个中心对称图形.
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题.
【画一画】
1. 下图是中心对称图形的一部分及对称中心,请你
补如全何它寻的找另中一心部对分称. A
B
图形的对称中心?
H G
C
D
F
E
2. 如图,请你用无刻度的直尺画一条直线,把下 面的平行四边形分成完全相等的两部分.
几何画板演示
【归纳】过对称中心的直线将中心对称图 形分成全等的两部分.
练习
如图,直线 EF 经过▱ABCD 的对角线的交 点O,若 AE=3,四边形 AEFB 的面积为15, 则 CF=__3___,四边形 EDCF 的面积为__1_5___.
后的图形能够与原来的图形重合,那么这个图形叫

九年级数学上册 23.2.2 中心对称图形 课件(共24张PPT)

九年级数学上册 23.2.2 中心对称图形 课件(共24张PPT)

(2)中心对称图形的对称点
O
连线被_对__称__中__心__平__分__
C
B
性质:中心对称图形上的每一对对称点的连线都经过对称
中心且被对称中心平分.
知识归纳
中心对称图形的性质
知识点二
中心对称与中心对称图形的区别与联系:
中心对称
中心对称图形
1.针对两个图形而言的
1.针对一个图形而言的
区 2.是指两个图形的(位置)关系2.是指具有某种性质的一个图形
探究新知
中心对称图形的概念
【问题】将下面的图形绕O点旋转,你有什么发现?
知识点一
AO B
O
O
O
共同点:(1)都绕一点旋转了180度; (2)都与原图形完全重合.
中心对称图形的定义 注意 中心对称图形是指一个图形.
把一个图形绕某个点旋转180º,如果旋转后的图形能与原来的图 形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中
ABCDEFGH I J KLM
NOPQRSTUVWXYZ
2.在线段、角、等腰三角形、等边三角形、等腰梯形、平行四 边形、矩形、菱形、正方形、正六边形、圆中,既是轴对称图形, 又是中心对称图形的图形有( D ) A.3个 B.4个 C.5个 D.6个
针对训练
中心对称图形的概念
知识点一
3.下列图形中,既是轴对称图形,又是中心对称图形的是( B )
分别交AD和BC于点E,F,AB=2,BC=3,则图中阴影部分的面积为_3__.
A
ED
O
BF
C
针对训练
中心对称图形的性质
知识点二
1.如图,有一个平行四边形请你用无刻度的直尺画一条直线把他

23.2.1中心对称ppt

23.2.1中心对称ppt
23.2.1 中心对称
第1页,共17页。
(1)把其中一个图案绕点O旋转180°,你有什么发现?
(2)线段AC,BD相交于点O,OA=OC,OB=OD.把 △OCD绕点O旋
转180°,你有什么发现?
O
重合
B
(2)
C
重合
第2页,共17页。
中心对称的定义:
C
像这样把一个图形绕着某
一点旋转180度,如果它能够
第5页,共17页。
1、中心对称的两个图形,对称点所连线 段经过对称中心,而且被对称中心所平 分。
2、中心对称的两个图形是全等形。
第6页,共17页。
想一想 中心对称与轴对称有什
么区别?又有什么联系?
类比你能得到 什么结论?
轴对称
中心对称
有一条对称轴---直线 有一个对称中心—点
图形沿对称轴对折(翻 图形绕对称中心旋转
第一步,画出△ABC;
第二步,以三角尺的一个顶点O为中心,
; 把三角尺旋转180度,画出△A′B′C′
第三步,移开三角尺。
A
C
B ● B′
O
A′
C′
第4页,共17页。
探究性质
C
A
B
● B′ O
A′
C′
探究一:分别连接对称点AA′,BB′,CC′。点O在线段AA′ 上吗?如果在,在什么位置?
探究二:△ABC与△A′B′C′有什么关系?。
和另一个图形重合,那么,我们
A
B
A
D
就说这两个图形关于这个 点对称或中心对称,这个点
就叫对称中心,这两个图形中
的对应点,叫做关于中心的
E
对称点.
观察:C、A、E三点的位置关系怎样?线段AC、AE的

23.2中心对称课件

23.2中心对称课件
1800,使旋转前后的图形完全重合吗?
(1)
(2)
旋转图形(1)
旋转图形(3)
(3)
(4)
旋转图形(2)
旋转图形(4)
5
返回
重复
6
返回
重复
7
旋转
返回
8
返回
旋转
9
返回
旋转
10
返回
旋转
11
研究观察
(1)把其中一个图案绕点O旋转180°.你有什么发现? (2)线段AC,BD相交于点O,OA=OC,OB=OD.把 △OCD绕 点O旋转180°.你有什么发现?
A’
A C’
25
解法一:根据观察,B、B’应是对应点,连结BB’, 用刻度尺找出BB’的中点O,则点O即为所求 (如图)
C A’
O B’
B
A
C’
26
解法二:根据观察,B、B’及C、C’应是两组对 应点,连结BB’、CC’,BB’、CC’相交于点O, 则点O即为所求(如图)。
C A’
O B’
B A
四边形A1B1C1D1即为所求的图形。 23
提高练习
你知道怎么 办吗?
画一个与已知四边形ABCD中心对称图形。
(1)以顶点A为对称中心; (2)以BC边的中点为对称中心。 N
F
B
B.
M
A
O
G
CA
C
E
D
D
24
如图,已知△ABC与△A’B’C’中心对称,求出
它们的对称中心O。
C
B’ B
怎么办?可以帮 帮我吗?
第一步,画出△ABC;
第二步,以三角板的一个顶点O为中心,把三角板旋

23.2.1中心对称 (1)PPT课件

23.2.1中心对称  (1)PPT课件
活动1:我观察,我思考!观察
(1)图1中把其中一个图案绕点O旋转180°,你有什么发现? (2)图2中线段AC,BD相交于点O,OA=OC,OB=OD. 把 △OCD绕点O旋转180°,你有什么发现?
A
O
B
D
C
图1
图2
活动2:我自学,我分享!
请阅读课本P64内容,先独立思考,再 在小组内交流完成下列问题:
It'S An Honor To Walk With You All The Way
演讲人:XXXXXX 时 间:XX年XX月XX日
活动4:我掌握,我运用!
(3)如图:如图:选择点M为对称点,画出与 △ABC关于点M对称的△A′B′C′.
B
A′
C′Biblioteka MCAB′
如图,已知△ABC和点D,点A和点D是对称 点,画出△DEF和△ABC成中心对称.
C D
B
A
图2
活动5:我总结,我收获!
1.本节课我学到了什么?我想与大家 分享的收获有哪些?
D)把一个图形绕着某一点旋转,如果它能与另一个图形重合
,那么就说这两个图形中心对称;
活动4:我掌握,我运用!
3.如图,已知△ABC与△A’B’C’中心对称,
求出它们的对称中心O。
C A’
O B’
B A
C’
活动4:我掌握,我运用!
4.(1)已知点A和点O,作出点A关于点O对称的 点.
A
O
A’
连接AO并延长AO到A′,使OA’=OA, 则点A′就是点A关于点O的对称点.
活动4:我掌握,我运用!
(2)已知线段AB和点O,你能作出线段AB关于 点O对称的线段吗?
B’

《23.2 中心对称图形》课件1

《23.2 中心对称图形》课件1
新课导入
从图形变换的角 度考虑,这些图 形有什么共同的 特征? 这三个图形各自旋转180°后都能与本身重合。
平行四边形ABCD绕点O旋转180°后,能 与本身重合。 A D
O
B
C 对称中心是 ______ 点这一类图形本身关于 O , 某点成中心对称。 点 C , 点A的对称点是 ______ 点D的对称点是 ______ 点B ,
6. 正三角形是中心对称图形吗?正方形呢?正 五边形呢?正六边形呢?……你能发现什么规律?
×

×

边数为偶数的正多边形都是中心对称图形。
7. 下面的扑克牌中,哪些牌面是中心对称图形?



8. 在26个英文大写正体字母中,哪些字母是 中心对称图形?
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
教学目标
【知识与能力】
理解关于中心对称的两个图形是全等图形。 掌握这两个性质的运用。 了解中心对称图形及对称中心的概念及其它 们的应用。
能正确区分中心对称与中心对称图形。
A
D O
B
C
知识要点
把一个图形绕着某一个点旋转180°, 如果旋转后的图形能够与原来的图形重合, 那么这个图形叫做中心对称图形(central symmetry figure),这个点就是它的对称 中心。
小练习
哪些是中心对称图形?

√ ×


√ √
小练习
下面的牌中哪些是中心对称图形?



汉代铜镜——中心对称图形
中心对称图形
中心对称图形
课堂小结
中心对称图形与轴对称图形的区别与联系 轴对称图形

23.2.1 中心对称与中心对称图形 课件(人教版九年级上)

23.2.1 中心对称与中心对称图形 课件(人教版九年级上)

∠A′C′B′,∠AOB=∠A′OB′.
【跟踪训练】 1.下列说法:①成中心对称的两个图形形状、大小一样; ②成中心对称的两个图形必须重合;③形状、大小一样的两个 图形成中心对称;④旋转后能够重合的两个图形成中心对称. 其中说法正确的个数是( B ) A.0 个 B.1 个 C.2 个 D.3 个 解析:成中心对称的两个图形经过旋转后能够重合,②不 正确;绕点旋转180°后能够重合的两个图形才成中心对称,当
(1)对称中心是______,点 A 的对称点是______; (2)指出图中相等的线段与相等的角(各写 4 组).
思路点拨:中心对称是旋转的特例,如果两个图形的对称 点连成的线段都经过某一点且被该点平分,那么这两个图形关 于这一点成中心对称. 解:(1)O A′ (2)AB=A′B′,BC=B′C′,AC=A′C′,OA=OA′, ∠BAC=∠B′A′C′,∠ABC=∠A′B′C′,∠ACB=
图形. 3.中心对称图形的概念 把一个图形绕着某一个点旋转 180°,如果旋转后的图形能 中心对称图形. 够与原来的图形重合,那么这个图形叫做____________
4.中心对称与中心对称图形 探究:如图 23-2-1 在
ABCD 中,
图 23-2-1
△COD 关于点 O 成中心对称,△AOD 与 (1) △AOB 与________ △COB 关于点 O 成中心对称; ________ (2)△ABD 与________ △CDB 关于点 O 成中心对称,由这两个成中 中心对称图形 . 心对称的三角形组成的 ABCD 是_____________ 归纳:中心对称是指两个图形间的位置关系,中心对称图 形是指一个图形所具有的性质.
图 D12
CA′C′A.
【跟踪训练】 3.如图 23-2-5,△ABC 与△PMN 是关于某点成中心对称

中心对称图形课件(共20张PPT)人教版数学九年级上册

中心对称图形课件(共20张PPT)人教版数学九年级上册
(中心对称图形的特点:绕某一点旋转180°后能与自身重合.中心对称图形 上每一对对称点所连线段都被对称中心平分(合理即可);中心对称图形是 指一个图形本身是中心对称的,反映了一个图形的本质特征,而中心对称 是指两个图形关于某一点对称,表示的是两个图形之间的一种关系)
小组讨论 1.我们已经知道,平行四边形是中心对称图形,你能根据中心 对称图形的性质验证平行四边形的哪些性质? (平行四边形的对边互相平行且相等; 平行四边形的对角相等; 平行四边形的对角线互相平分) 2.试着总结中心对称图形的性质
【题型二】中心对称与中心对称图形的区别和联系 例3: 下列说法中,正确的是( A) ①中心对称与中心对称图形是两个不同的概念;②中心对称与 中心对称图形都只有一个对称中心;③中心对称图形是指两个 图形之间的一种关系;④中心对称的两个图形 ,对称点所连线段 的中点刚好是对称中心. A.①②④ B.①②③ C.①③④ D.②③④
(点A,B,C,D的对应点分别是点C,D,A,B ; 重合)
③上述两个旋转的共同点是什么? (都是绕某一点旋转180°,旋转后的图形能与原图形重合)
自主探究
2.请同学们阅读课本67页,并勾画中心对称图形的概念. 3.你还能说出其他的中心对称图形吗?
(正方形 长方形 正六边形等) 4.说说中心对称图形具有哪些特点?它与中心对称有什么区 别和联系?
图形名称 线段 角 等腰三 等边三 直角三 平行四 矩形 菱形 正方 等腰 直角 圆
角形 角形 角形 边形
形 梯形 梯形
是否是轴对 是 是 是 是 否 否 是 是 是 是 否 是
称图形
是否是中心 是 否 否
对称图形
否 否是 是 是 是否 否 是
板书设计
联 ①把中心对称的两个图形看成一个“整体”,则为中心对称图形; 系 ②把中心对称图形的两部分看成两个图形,则它们中心对称

23.2.2中心对称图形(1)ppt

23.2.2中心对称图形(1)ppt
ABCD 点O 图中_________是中心对称图形 对称中心是______ 点B 点C 点A的对称点是______ 点D的对称点是______
1.下列图形哪些是中心对称图形
下面的扑克牌中,哪些牌面是中心对称图形?
2.在一次游戏当中,小明将下面左图的四张 扑克牌中的一张旋转180O后,得到右图,小 亮看完,很快知道小明旋转了哪一张扑克, 你知道为什么吗?
三官殿中学
已知四边形ABCD和点O(下图),画四边形 A’B’C’D’,使它与已知四边形关于点O对称.
D A C
画法:1. 连接AO并延长到A’,使
OA’=OA,得到点A的对称点A’. 2. 同样画B、C、D的对称 点 B’、C’、D’.
B’ A’
B
.o
C’
3. 顺次连接A’、B’、C’、D’ 各点.
∴四边形BDB’D’是平行四边形
D’
C’

BDB’D’是菱形
C
A
B’
D
课堂练习:已知:如图AD是△ABC中∠A的平分线, DE//AC交AB于E.DF//AB交AC于F 求证:点E,F关于直线AD对称
证明:∵DE//AC DF//AB ∴四边形AEDF是平行四边形 ∵AD平分∠BAC ∴∠1=∠2 ∵∠1=∠3 ∴∠2=∠3 ∴AF=DF ∴ AEDF是菱形
问题:我们平时见过的几何图形中,有 哪些是中心对称图形?并指出对称中心.
怎样的正多边形是中心对称图形?
二、轴对称图形与中心对称图形的比较
对 图 形 称
轴对称图形
图形 对称轴条数
中心对称图形
图形 对称中心

线段 角 等腰三角形 等边三角形 平行四边形 矩形 菱形 正方形
2条 1条 1条 3条

人教版九年级上册数学中心对称图形优秀ppt课件

人教版九年级上册数学中心对称图形优秀ppt课件
中心对称图形形状匀称美观,很多建筑物和工艺品上 常采用这种图形作装饰图案.另外,具有中心对称图形形 状的物体,能够在平面内绕对称中心平稳地旋转,在生 产中旋转的零部件的形状常设计成中心对称图形,如水 泵叶轮等.
人教版九年级上册数数学学中心对23称.2图.2形中优心秀对p称pt图课形件(共36张PPT)
人教版九年级上册数数学学中心对23称.2图.2形中优心秀对p称pt图课形件(共36张PPT)
返回
旋转
人教版九年级上册数数学学中心对23称.2图.2形中优心秀对p称pt图课形件(共36张PPT) 人教版九年级上册数数学学中心对23称.2图.2形中优心秀对p称pt图课形件(共36张PPT)
o O
人教版九年级上册数数学学中心对23称.2图.2形中优心秀对p称pt图课形件(共36张PPT)
人教版九年级上册 数学 23.2.2中心对称图形(共36张PPT) 人教版九年级上册 数学 23.2.2中心对称图形(共36张PPT)
人教版九年级上册 数学 23.2.2中心对称图形(共36张PPT) 人教版九年级上册 数学 23.2.2中心对称图形(共36张PPT)
人教版九年级上册 数学 23.2.2中心对称图形(共36张PPT)
中心对称图形
1什么是中心对称?
2中心对称有什么性质?
A
定义: 把一个图形绕着 某一点旋转180 °,如 果它能够与另一个图 形重合,那么就说这 两个图形关于这个点 对称或中心对称,这 个点叫做对称中心, 能够互相重合的一对 点叫做对称点。
C`
B`
O
B
C
A`
性质: ①两个图形全等;
②对应点所连线段都经过对称中 心,并且被对称中心平分
中心对称与中心对称图形有什么区别与联系?

23-2 中心对称 课件(共34张PPT)

23-2 中心对称 课件(共34张PPT)
S△ABC=S△FBC,即S△ACE=S△FCE;即四个三角形的面积相等,
所以S四边形ABFE=4×S△ABC,可求得面积是12cm2。
(3)当∠ACB=60°,AB=AC=BC,可得AF=BE,即四边形ABFE是矩形。
教学新知
知识点2:中心对称作图。
作出每一个点关于对称中心的对称点,顺次连接各对称
A(4,0),B(0,-3),C(2,1),D(-1,2),E(-3,-4)
关于原点对称时,①它们的横坐标与横
坐标绝对值有什么关系?纵坐标与纵坐
标的绝对值又有什么关系?②坐标与坐
标之间符号又有什么特点?
教学新知
两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)
关于原点o的对称点P’(-x,-y)。
解析:根据关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为
相反数,得出P1的坐标是(-3,2);根据关于原点对称的点的坐标特
点:横坐标与纵坐标都互为相反数,得出P2的坐标是(-3,-2)。
教学新知
知识点2:在直角坐标系中画出中心对称图形。
一般是画出关于原点的对称图形。先根据关于原点对称的点
的坐标规律,写出它们的对称点,然后在直角坐标系中描出
12cm2
60
∠ACB____°时,四边形ABFE为矩形。
解析:(1)根据AB=AC,△FEC是由△ABC绕点C顺时
针旋转180°产生的,可知,AC=CF,BC=CE,所以得到
四边形ABFE是平行四边形;由平行四边形的性质可
知AE//BF且AE=BF。
小练习
如图所示,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋
小练习
如图所示,在平面直角坐标系中,△PQR是△ABC经过某种变

23.2.2 中心对称图形课件(共30张PPT)

23.2.2 中心对称图形课件(共30张PPT)
B C 答:观察图2可以发现,平行 四边形ABCD绕它的两条对角线的 0 点 交O旋转1 8 0后与它本身重合。
广东省怀集县怀城镇城东初级中学 梁伟
观察总结
A
D
O
B
C
把一个图形绕着某一个点旋转180,如果旋转后的 图形能够与原来的图形重合,那么这个图形叫做 中心对称图形;这个点叫做它的对称中心;互相 重合的点叫做对称点.
心的对称点.
中心对称性质
A C B O A'
B' C'
(1)关于中心对称的两个图形是全等形; (2)关于中心对称的两个图形,对称点 所连线段都经过对称中心,而且被对称中 心平分.
中心对称与轴对称有什么区别?又有什么联系?
观察思考
(1)这些图形有什么共同的特征? 都是旋转对称图形。
后三个图形都是旋转1800后能与自身重合
梁伟 广东省怀集县怀城镇城东初级中学
探索发现
正三角形是中心对称图形吗?正方形呢?正五边 形呢?正六边形呢?……你能发现什么规律?
边数为偶数的正多边形都是中心对称图形。
还有其它英文字 母是中心对称的
练一练
知识点一 5、在英文字母VWXYZ中,是 中 心对称的英文字母的个数有( B)个. A . 1 B . 2 C . 3 D. 4 6、所有的平行四边形都是
【小组讨论1】 (1)判断一个图形是否是中心对称 图形的关键是什么 ?
探索
(1)平行四边形是中心对称图形吗?如果是,
请找出它的对称中心,并设法验证你的结论。
(2)根据上面的过程,你能验证平行四边形的 哪些性质?
O
(1)平行四边形是中心对称图形,对称中心是两 条对角线的交点。 (2)能验证平行四边形的对边相等、对角相等、 对角线互相平分等性质。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课件说明
• 学习目标: 1.知道中心对称的概念,能正确表述中心对称的性 质; 2.会画一个图形关于某一点中心对称的对称图形.
• 学习重点: 中心对称的概念题1 (1)如图,把其中一个图案绕点 O 旋转 180°,你有什么发现?
两个图案能够完全重合在一起.
1.了解中心对称的概念
F
E
A
D
B
C
4.应用中心对称性质画图
例1 (1)如左图,选择点 O 为对称中心,画出点 A 关于点 O 的对称点 A';
(2)如右图,选择点 O 为对称中心,画出与 △ABC关于点 O 对称的△A'B'C'.
C
A O
A
B
O
5.小结
(1)本节课学了哪些主要内容? (2)怎样画一个图形关于一个点的对称图形?
2.探究中心对称的性质
(1)中心对称的两个图形, 对称点所连线段都经 过对称中心,而且被对称中心所平分;
(2)中心对称的两个图形是全等图形.
3.练习、巩固中心对称性质
(1)如图,以顶点 A 为对称中心,画一个与已知 四边形 ABCD 成中心对称的图形.
D
C
A
B
3.练习、巩固中心对称性质
(2)如图,已知△ABC 与△DEF 中心对称,点 A 和点 D 是对称点,画出对称中心 O.
问题1 (2)如图,线段 AC,BD 相交于点 O,OA =OC,OB=OD.把 △OCD 绕点 O 旋转 180°,你有什 么发现?
两个图案能够完全重合在一起.
A
D
O
B
C
1.了解中心对称的概念
问题2 你能说说上述两个旋转的共同点吗?
(1)图形中旋转中心是哪一点? (点 O)
(2)旋转的角度是多少?
感谢你的阅览
Thank you for reading
温馨提示:本文内容皆为可修改式文档,下载后,可根据读者的需求 作修改、删除以及打印,感谢各位小主的阅览和下载
日期:
演讲者:蒝味的薇笑巨蟹
九年级 上册
23.2 中心对称(第1课时)
课件说明
• 本节课从旋转变换引入中心对称的概念,先让学生从 旋转的角度观察两个图形之间的关系,类比旋转得出 中心对称的定义,渗透了从一般到特殊的思想方法. 在此基础上,通过探究成中心对称的两个图形的对称 中心与对应点所连线段之间的关系得到中心对称的性 质,并能运用中心对称的性质画出一个图形关于某一 点中心对称的对称图形.
(180°)
(3)两个图形的关系?
(重合)
1.了解中心对称的概念
像这样,把一个图形绕着某一点旋转 180°,如果 它能够与另一个图形重合,那么就说这两个图形关于这 个点对称或中心对称.这个点叫做对称中心.
这两个图形在旋转后能重合的对应点叫做关于对称 中心的对称点.
1.了解中心对称的概念
问题3 中心对称与一般的旋转的联系和区别? 联系:中心对称和一般的旋转都是绕着某一点进行 旋转; 区别:中心对称的旋转角度都是180°,一般的 旋转的旋转角度不固定,中心对称是特殊的旋转.
1.了解中心对称的概念
问题4 对称中心和对称点是如何确定的? 你能指 出下图中的对称点吗?
D A
O C
B
2.探究中心对称的性质
问题5 中心对称是特殊的旋转,它有哪些性质?
C
A
B
O B′
A′
C'
2.探究中心对称的性质
画好图形后思考: (1)点 O 在线段 AA'上吗?如果在,在什么位置? (2)△ABC 和△A'B'C'有什么关系? (3)你能从这个探究中得到什么结论?
相关文档
最新文档