七年级数学月考试题及答案初一数学
七年级数学试卷月考【含答案】
七年级数学试卷月考【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 一个等腰三角形的底边长是10cm,腰长是12cm,那么这个三角形的周长是多少?A. 22cmB. 32cmC. 34cmD. 44cm3. 有理数中,绝对值最小的数是?A. 1B. 0C. -1D. 无法确定4. 下列哪个选项是正确的?A. 0除以任何不为0的数都得0B. 任何数除以0都得0C. 0乘任何数都得0D. 任何数乘0都得任何数5. 如果a、b互为相反数,那么a+b的值为?A. aB. bC. 0D. -1二、判断题(每题1分,共5分)1. 相反数等于它本身的数是0。
()2. 等腰三角形的两腰相等,两底角相等。
()3. 任何数乘以1都等于它本身。
()4. 负数乘以负数等于正数。
()5. 两个负数相加,和一定为负数。
()三、填空题(每题1分,共5分)1. 相反数等于它本身的数是______。
2. 等腰三角形的两腰相等,两底角______。
3. 任何数乘以______都等于它本身。
4. 负数乘以负数等于______。
5. 两个负数相加,和一定为______。
四、简答题(每题2分,共10分)1. 请简述相反数的定义。
2. 请简述等腰三角形的性质。
3. 请简述有理数的乘法法则。
4. 请简述负数乘以负数的结果。
5. 请简述两个负数相加的和的性质。
五、应用题(每题2分,共10分)1. 如果一个数是5,那么它的相反数是多少?2. 一个等腰三角形的底边长是8cm,腰长是10cm,那么这个三角形的周长是多少?3. 如果有两个有理数分别是3和-3,那么它们的乘积是多少?4. 如果有两个负数分别是-2和-3,那么它们的乘积是多少?5. 如果有两个负数分别是-4和-5,那么它们的和是多少?六、分析题(每题5分,共10分)1. 请分析相反数在实际生活中的应用。
2. 请分析等腰三角形在实际生活中的应用。
山西省太原市太原师范学院附属中学2024-2025学年七年级上学期10月月考数学试卷(含答案)
太原师范学院附属中学2024-2025学年第一学期初一年级数学学情导航试题一、选择题(本大题含10个小题,在每个小题给出的四个选项中,只有一项符合题意)1.中国古代数学成就辉煌,数学著作众多,其中的一部记录了“引入负数及正负数的加减运算法则”,这是世界上至今发现的最早记载.这部数学著作是( )A .《九章算术》B .《周髀算经》C .《算法统宗》D .《几何原本》2.足球是全球最具影响力的单项体育运动,它的质量有严格标准,若将超过标准的克数记为正数,不足的克数记为负数,下面四个足球的质量最接近标准的是( )A .B .C .D .3.圆柱可以看成是由长方形绕着它的一边所在直线旋转一周所得到的,那么下面右图的立体图形是由以下四个图中的哪一个绕着直线旋转一周得到的( )A .B .C .D .4.下列各数:,,,5.3,0,中,负分数有( )A .1个B .2个C .3个D .4个5.体育中考女生立定跳远的测试中,以1.97m 为满分标准,若小贺跳出了2.00m ,可记作+0.03m ,则小郑跳出了1.90m ,应记作( )A .-0.07mB .+0.07mC .+1.90mD .-1.90m6.为计算简便,把写成省略括号和加号的和的形式,正确的是12-0.7-31415-7.14-()()()()()1.4 3.70.5 2.4 3.5----++++-( )A .B .D .C .7.用一平面去截如图所示的5个几何体,能得到长方形截面的几何体的个数是( )A .4B .3C .2D .18.设x 是相反数等于本身的数,y 是最大的负整数,z 是最小的正整数,则的值为( )A .B .2C .0D .19.将如图的正方体表面展开图折成正方体后,与点D 重合的点是( )A .点B 和点C B .点A 和点E C .点C 和点ED .点A 和点B10.有理数a ,b 在数轴上的表示如图所示,则下列结论正确的是( )甲:;乙:;丙:.A .只有甲正确B .只有甲、乙正确C .只有甲、丙正确D .只有丙正确二、填空题(本大题共5个小题)11.比较大小:__________.12.将如图的直角三角形分别绕两条直角边所在的直线旋转一周,得到不同的立体图形,其中体积最大的立体图形的体积是__________立方厘米,(结果保留)13.某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6℃.若该地地面温度为21℃,探空气球探测高空某处温度为-39℃,则此处的高度是__________千米.14,有底面为正方形的直四棱柱容器A 和圆柱形容器B ,容器材质相同,厚度忽略不计.如果它们的主视图是完全相同的矩形,那么将B 容器盛满水,全部倒入A 容器,问:结果会__________(“溢出”、“刚好”、“未装满”,选一个)15.如图,将刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上“0cm ”和“3cm ”分别对应数轴上的3和0,那么刻度尺上“5.4cm ”对应数轴上的数为__________.1.4 3.70.52.43.5-+-+- 1.4 3.70.5 2.4 3.5-+++-1.4 3.70.5 2.4 3.5---+- 1.4 3.70.5 2.4 3.5-+-++x y z -+1-b a -<0ab >b a a b -=-67-56-π三、解答题(本大题共7个小题)16.计算(1)(2)(3)(4)17.将下列各数表示的点在数轴上表示出来,并用“<”连接下面各数:,3,,,0,.18.问题情景:七(1)班综合实践小组进行废物再利用的环保小卫士行动,他们准备用废弃的宣传单制作装垃圾用的无盖纸盒.图1 图2 图3(1)若准备制作一个无盖的正方体纸盒,图1中的__________图形经过折叠能围成无盖正方体纸盒;(2)图2是小明的设计图,把它折成无盖正方体纸盒后,与“卫”字相对的是__________;(3)如图3,有一张边长为20cm 的正方形废弃宣传单,小华准备将其四角各剪去一个小正方形,折成无盖长方体纸盒.①请你在图3中画出示意图,用实线剪切线,虚线表示折痕;②若四角各剪去了一个边长为3cm 的小正方形,求这个纸盒的容积.19.用若干大小相同的小正方体搭一个几何体,使得从正面和从上面看到的这个几何体的形状如图所示,完成下列问题:(1)搭成满足如图的几何体最多需要__________个小正方体,最少需要__________个小正方体:(2)请在网格中画出用最多小正方体搭成的几何体的左视图.20.小明家购置了一辆续航为350km (能行驶的最大路程)的新能源纯电汽车,他将汽车充满电后连续7天每天行车电脑上显示的行驶路程记录如下表(单位:km ,以40km 为标准,超过部分记为“+”,不足部23177---()()1218715--+--()()314 3.853 3.1544⎛⎫-+--+- ⎪⎝⎭21113642⎛⎫⎛⎫⎛⎫-+---- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2-112-1233-分记为“-”).已知该汽车第三天行驶了45km ,第六天行驶了34km .第一天第二天第三天第四天第五天第六天第七天■●(1)“■”处的数为__________,“●”处的数为__________;(2)已知小明家这款汽车在行驶结束时,若剩余电量不足续航的15%,行车电脑就会发出充电提示、请通过计算说明该汽车第七天行驶结束时,行车电脑会不会发出充电提示.21.定义☆运算,观察下列运算:,,,,,,.(1)请你认真思考上述运算,归纳☆运算的法则:两数进行☆运算时,同号__________,异号__________.特别地,0和任何数进行☆运算,或任何数和0进行☆运算,__________.(2)计算:__________.(3)若,求a 的值为__________.22.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础,小锦画了一条数轴进行操作探究:操作一:(1)折叠纸面,若使1表示的点与表示的点重合,则表示的点与__________表示的点重合;操作二:(2)折叠纸面,若使2表示的点与表示的点重合,回答以下问题:①3表示的点与__________表示的点重合:②若数轴上A 、B 两点之间距离为16(A 在B 的左侧),且A 、B 两点经折叠后重合则A 点表示的数是__________,B 点表示的数是__________;操作三:(3)在数轴上剪下9个单位长度(从到6)的一条线段,并把这条线段沿某点折叠,然后在重叠部分某处剪一刀得到三条线段(如图).若这三条线段的长度之比为1:1:2,则折痕处对应的点所表示的数可能是__________.6-2+3-8+7+()()51419++=+☆()()13720--=+☆()()21517-+=-☆()()18725+-=-☆()01919-=+☆()13013+=+☆()()()()304347-+=-+=-⎡⎤⎣⎦☆☆☆()()17016+-=⎡⎤⎣⎦☆☆()()2213a a +⨯+-=⎡⎤⎣⎦☆1-3-6-3-2024-2025学年太原师范学校附中七年级(上)10月月考数学答案1-5.ACACA6-10.ABBAC 11.<12.13.1014.未装满15.16.(1);(2)8;(3)1;(4)17.18.(1)C(2)保;(3)①;②19.(1)10 7(2)20.(1) (2)不会发出充电提醒21.(1)得正 得负 得到这个数的绝对值(2)+33(3)或322.(1)3(2)①② 6(3)或或16π 2.4-1-1312-1321032-<-<-<<3588cm 5+6-5-7-10-3832218。
初一数学月考试卷(含解析)
2017-2018(1)第一次限时训练初一数学一、选择题(每题3分,共30分)1.下列各对数中,数值相等的是( ).A .72-与7(2)-B .32-与2(3)-C .332-⨯与232-⨯D .2(3)--与3(2)--【答案】A【解析】2.下列说法正确的是( ).A .如果a b >,那么22a b >B .如果22a b >,那么a b >C .如果||||a b <,那么22a b >D .如果a b >,那么||||a b > 【答案】C【解析】3.绝对值大于或等于1,而小于4的所有的正整数的和是( ).A .8B .7C .6D .5 【答案】C【解析】4.已知一个数的倒数的相反数为135,则这个数为( ). A .165 B .516 C .165- D .516- 【答案】D 【解析】5.如果一个数的平方与这个数的差等于0,那么这个数只能是( ).A .0B .1-C .1D .0或1 【答案】D【解析】6.我国最长的河流长江全长约为6300千米,用科学记数法表示为( ).A .26310⨯千米B .36.310⨯千米C .46.310⨯千米D .26.310⨯千米【答案】B【解析】7.下列运算正确的是( ).A .224-=B .31128⎛⎫-=- ⎪⎝⎭C .31128327⎛⎫-=- ⎪⎝⎭D .3(2)6-=-【答案】B【解析】8.下列判断正确的是( ).A .两个负有理数,大的离原点远B .||a 是正数C .两个有理数,绝对值大的离原点远D .a -是负数 【答案】C【解析】9.当0a <,化简||a a a -得( ). A .2-B .0C .1D .2【答案】A 【解析】10.已知0a <,0b <,0c >,||||c a >,||||b c >,则a ,a -,b ,b -,c ,c -大小关系为( ).A .b c a a c b -<-<<-<<B .c b a a b c -<<<-<-<C .b c a a c b <<<-<-<-D .b c a a c b <-<<-<<-【答案】D【解析】二、填空题(每题3分,若30分)11.在152-,0,( 1.5)--,|5|--,2,114,42中,整数有__________个. 【答案】4【解析】12.A 地海拔高度是30-米,B 地海拔高度是10米,C 地海拔高度是10-米,则地势最高的与地势最低的相差__________米.【答案】40【解析】13.在数轴上距原点3个单位长度的点表示的数是__________.【答案】3±【解析】14.已知P 是数轴上的一点4-,把P 点向左移动3个单位后再向右移1个单位长度,那么P 点表示的数是__________.【答案】6-【解析】15.若2|3|(2)0x y ++-=,则y x =__________.【答案】9【解析】16.如果a 、b 互为倒数,c 、d 互为相反数,且1m =-,则代数式22()ab c d m -++=__________.【答案】3【解析】17.有一次小明在做24点游戏时抽到的四张牌分别是3、4、1、7,他苦思不得其解,相信聪明的你一定能帮他解除困难,请你写出一个成功的算式:__________24=.【答案】3741⨯+-(答案不唯一)【解析】18.计算:11733÷⨯=__________. 【答案】179【解析】19.观察下列数据,按某种规律在横线上填上适当的数:1,34-,59,716-,925,__________, 【答案】1136- 【解析】20.7.6397≈__________(精确到千分位).【答案】7.640【解析】三、解答题(共60分)21.计算(每题5分,共30分)(1)( 5.5)( 3.2)( 2.5) 4.8-+----.(2)422314733⎛⎫⎛⎫-÷-⨯- ⎪ ⎪⎝⎭⎝⎭. (3)1799(9)18⨯-. (4)1557(36)29612⎛⎫-+-⨯- ⎪⎝⎭. (5)324350.2(2)5⎡⎤---÷⨯-⎢⎥⎣⎦. (6)23121(3)242433⎛⎫⎛⎫-÷⨯-+-⨯- ⎪ ⎪⎝⎭⎝⎭. 【答案】(1)11-;(2)10-;(3)18992-;(4)7-;(5)31-;(6)23- 【解析】22.(6分)某人用400元购买了8套儿童服装,准备以一定价格出售.如果以每套儿童服装55元的价格为标准,超出的记作正数,不足的记作负数,记录如下:2+,3-,2+,1+,2-,1-,0,3-(单位:元);请通过计算说明:(1)当他卖完这八套儿童服装后是盈利还是亏损?盈利(或亏损)了多少钱? (2)每套儿童服装的平均售价是多少元?【答案】见解析【解析】(1)23212134-++---=-(元),(554008)8436-÷⨯-=(元),所以盈利了36元.(2)55(4)854.5+-÷=(元),答:平均售价为54.5元.23.(6分)用“☆”定义新运算:对于任意实数a 、b ,都有21a b b =+☆. 例如244117=+=1☆,请你计算:(1)31☆.(2)当m 为任意有理数时,(2)m m ☆☆.【答案】见解析【解析】(1)233110=+=1☆.(2)(2)m m ☆☆2(21)m =+☆5m =☆251=+26=.24.(6分)设a 、b 、c 为非零有理数||0a a +=,||ab ab =,||0c c -=. 化简:||||||||b a b c b a c -+--+-.【答案】见解析【解析】由题得0a ≤,0b ≤,0c ≥,原式()()()b a b c b c a =------+-b a bc b c a =-++-++-b =.25.(6分)甲乙两人玩一种游戏:共20张牌,牌面上分别写有10-,9-,8-,,1-,1,2,,10,洗好牌后,将背面朝上,每人从中任意抽取3张,然后将牌面上的三个数相乘,结果较大者为胜.(1)你认为抽取到哪三张牌时,不管对方抽到其他怎样的三张,你都会赢? (2)你认为抽取到哪三张牌时,不管对方抽到其他怎样的三张,你都会输? (3)结果等于6的可能性有几种?把每一种都写出来.【答案】(1)10-,9-,10(2)10,9,10-(3)5种:123⨯⨯1(2)3-⨯-⨯12(3)-⨯⨯- 1(2)(3)⨯-⨯-1(1)(6)⨯-⨯-【解析】26.(6分)观察按下列规则排成的一列数:1 1,12,21,13,22,31,14,23,32,41,15,24,33,42,51,16,(1)第50个数为__________.(不要写过程,直接写答案)(2)从左起第m个数记为()F m,当2()2001F m=时,求m的值和这m个数的积.(3)未经约分且分母为2的数记为c,它后面的一个数记为d,是否存在这样的两个数c和d,使2001000cd=,如果存在,求出c和d:如果不存在,说明理由.【答案】见解析【解析】(1)56(123945++++=,所以第50个数为第10组第5个数)(2)(1232001)22003003 m=++++=.积为:211 200120022003001⨯=(3)令1200100021n n+⨯=,则2000n=,所以存在,20002c=,20011d=.。
陕西初一初中数学月考试卷带答案解析
陕西初一初中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.下面几种图形:①三角形;②长方形;③正方体;④圆;⑤圆锥;⑥圆柱.其中属于立体图形的是()A.③⑤⑥B.①②③C.③⑥D.④⑤2.﹣2的相反数是()A.2B.﹣2C.D.﹣3.如果向右走5步记为+5,那么向左走3步记为()A.+3B.﹣3C.+D.﹣4.在,﹣2,0,﹣3.4这四个数中,属于负分数的是()A.B.﹣2C.0D.﹣3.45.下列图形中,不属于三棱柱的展开图的是()A.B.C.D.6.最大的负整数和绝对值最小的有理数分别是()A.0 ,﹣1B.0 , 0C.﹣1 , 0D.﹣1 ,﹣17.用一个平面去截一个正方体,截面的形状不可能是()A.梯形B.长方形C.六边形D.七边形8.下列说法错误的是()A.﹣2的相反数是2B.3﹢(﹣3)﹦0C.(﹣3)﹣(﹣5)=2D.﹣11,0,4这三个数中最小的数是09.如图,一个几何体由5个大小相同、棱长为1的正方体搭成,下列关于这个几何体的说法正确的是()A.主视图的面积为4B.左视图的面积为2C.俯视图的面积为5D.搭成的几何体的表面积是2010.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()①a<0<b;②|b|<|a|;③a﹢b<0;A.①②B.①③C.②③D.③二、填空题1.如果收入80元记作+80元,那么支出20元记作____2.三棱柱有5个面、6个顶点、9条棱,四棱柱有6个面、8个顶点、12条棱,五棱柱有7个面、10个顶点、15条棱,……由此可推测n棱柱有____个面、____个顶点、____条棱3.数轴上表示3的点和表示﹣6的点的距离是______.4.已知一个数的绝对值是4,则这个数是__________.5.假如我们把笔尖看作一个点,当笔尖在纸上移动时,就能画出线,说明了______________,时钟秒针旋转时,形成一个圆面,这说明了_______________,三角板绕它的一条直角边旋转一周,形成一个圆锥体,这说明了___________________.三、解答题1.计算:(1)27 + 18﹣﹙﹣3﹚﹣18 (2)15+(﹣5)+ 7﹣(﹣3)(3)﹙﹣11.5﹚﹣﹙﹣4.5﹚﹣3 (4)﹣(﹣)+(﹣3.4)2.把下面的有理数填在相应的大括号里:(★友情提示:将各数用逗号分开)15,﹣,0, ﹣30,﹣0.15,﹣128,, +20,﹣2.6正数集合{ ﹜;负数集合﹛﹜;整数集合﹛﹜;非负数集合﹛﹜.3.六个小立方体搭成的几何体的俯视图如图所示,小正方体中数字表示在该位置的小立方体的个数,请画出这几个几何体的主视图和左视图.4.画出数轴并按要求答题:在数轴上表示下列有理数:﹣3,|﹣2.5|,+4,﹣(+2),0;再用“<”将它们连接起来:5.一个正方体的表面展开图如图所示,已知这个正方体的每一个面上都填有一个数字,且各相对面上所填的数字互为相反数,请写出x、y、z的值并计算x﹣y﹢z.6.在一次数学测验中,七年级(4)班的平均分为86分,•如果把高于平均分的部分记作正数,不足平均分的部分记作负数(1)李洋得了90分,应记作多少?(2)刘红的成绩记作-5分,她实际得分是多少?(3)李洋和刘红相差多少分?7.已知x是最小正整数,y ,z是有理数,且有| y﹣2|+|z+3|=0,计算:(1)求x,y,z的值.(2)求3x﹢y﹣z的值.陕西初一初中数学月考试卷答案及解析一、选择题1.下面几种图形:①三角形;②长方形;③正方体;④圆;⑤圆锥;⑥圆柱.其中属于立体图形的是()A.③⑤⑥B.①②③C.③⑥D.④⑤【答案】A【解析】试题解析:根据立体图形的概念和定义,立体图形是空间图形.因此,在①三角形;②长方形;③正方体;④圆;⑤圆锥;⑥圆柱中属于立体图形的是③⑤⑥故选A.2.﹣2的相反数是()A.2B.﹣2C.D.﹣【答案】A【解析】试题解析:根据相反数的定义得:-2的相反数是2.故选A.3.如果向右走5步记为+5,那么向左走3步记为()A.+3B.﹣3C.+D.﹣【答案】B【解析】试题解析:此题主要用正负数来表示具有意义相反的两种量:向右记为正,则向左就记为负,据此,得如果向右走5步记为+5,那么向左走3步记为-3.故选B.4.在,﹣2,0,﹣3.4这四个数中,属于负分数的是()A.B.﹣2C.0D.﹣3.4【答案】D【解析】试题解析:根据小于0的分数是负分数,得-3.4是负分数.故选D.5.下列图形中,不属于三棱柱的展开图的是()A.B.C.D.【答案】B【解析】试题解析:A、C、D中三个长方形能围成三棱柱的侧面,两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面展开图;B、是两个四边形,不能围成三棱柱,不是三棱柱的表面展开图.故选B.6.最大的负整数和绝对值最小的有理数分别是()A.0 ,﹣1B.0 , 0C.﹣1 , 0D.﹣1 ,﹣1【答案】C【解析】试题解析:最大的负整数是-1;绝对值最小的有理数是0.故选C.7.用一个平面去截一个正方体,截面的形状不可能是()A.梯形B.长方形C.六边形D.七边形【答案】D【解析】根据正方体共有六个面,再依次分析各项即可判断.正方体的截面的形状可能是三角形、梯形、六边形,不可能是七边形,故选D.【考点】正方体的截面点评:本题属于基础应用题,只需学生熟练掌握正方体的性质,即可完成.8.下列说法错误的是()A.﹣2的相反数是2B.3﹢(﹣3)﹦0C.(﹣3)﹣(﹣5)=2D.﹣11,0,4这三个数中最小的数是0【答案】D【解析】试题解析:A. ﹣2的相反数是2,该选项正确;B. 3﹢(﹣3)﹦0,该选项正确;C.(﹣3)﹣(﹣5)=2,该选项正确;D. ﹣11,0,4这三个数中最小的数是-11,该选项错误.故选D.9.如图,一个几何体由5个大小相同、棱长为1的正方体搭成,下列关于这个几何体的说法正确的是()A.主视图的面积为4B.左视图的面积为2C.俯视图的面积为5D.搭成的几何体的表面积是20【答案】A【解析】试题解析:A、从正面看,可以看到4个正方形,面积为4,故A选项正确;B、从左面看,可以看到3个正方形,面积为3,故B选项错误;C、从上面看,可以看到4个正方形,面积为4,故C选项错误;D、搭成的几何体的表面积是22,故D错误.故选A.10.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()①a<0<b;②|b|<|a|;③a﹢b<0;A.①②B.①③C.②③D.③【答案】D【解析】试题解析:如图可知a>0>b,①②显然错误;在a+b中,b的绝对值大于a的绝对值,故和为负号,故③正确.故选D.二、填空题1.如果收入80元记作+80元,那么支出20元记作____【答案】-20【解析】试题解析:“正”和“负”相对,所以如果+80元表示收入80元,那么支出20元表示为-20元.2.三棱柱有5个面、6个顶点、9条棱,四棱柱有6个面、8个顶点、12条棱,五棱柱有7个面、10个顶点、15条棱,……由此可推测n棱柱有____个面、____个顶点、____条棱【答案】 n+2 2n 3n【解析】试题解析:结合三棱柱、四棱柱和五棱柱的特点,根据已知的面、顶点和棱与几棱柱的关系,可知n棱柱一定有(n+2)个面,2n个顶点和3n条棱.3.数轴上表示3的点和表示﹣6的点的距离是______.【答案】9【解析】数轴上表示3的点和表示﹣6的点的距离为3﹣(﹣6)=3+6=9.【考点】数轴上两点之间的距离.4.已知一个数的绝对值是4,则这个数是__________.【答案】4或-4【解析】题中已知一个数的绝对值,求这个数,根据绝对值的意义求解即可,注意结果有两个.解:一个数的绝对值是4,根据绝对值的意义,这个数是:4或﹣4.故答案为:4或﹣4.5.假如我们把笔尖看作一个点,当笔尖在纸上移动时,就能画出线,说明了______________,时钟秒针旋转时,形成一个圆面,这说明了_______________,三角板绕它的一条直角边旋转一周,形成一个圆锥体,这说明了___________________.【答案】点动成线线动成面面动成体【解析】试题解析:根据分析即知:点动成线;线动成面;面动成体.三、解答题1.计算:(1)27 + 18﹣﹙﹣3﹚﹣18 (2)15+(﹣5)+ 7﹣(﹣3)(3)﹙﹣11.5﹚﹣﹙﹣4.5﹚﹣3 (4)﹣(﹣)+(﹣3.4)【答案】(1)30;(2)20;(3)-10;(4)-2.4.【解析】利用减法法则变形,计算即可得到结果.试题解析:(1)27 + 18﹣﹙﹣3﹚﹣18=27+18+3-18=(27+3)+(18-18)=30+0=30;(2)15+(﹣5)+ 7﹣(﹣3)=15+7+3+(-5)=25+(-5)=20;(3)﹙﹣11.5﹚﹣﹙﹣4.5﹚﹣3=-11.5+4.5-3=(-11.5-3)+4.5=-14.5+4.5=-10;(4)﹣(﹣)+(﹣3.4)=-3.4=1-3.4="-2.4."2.把下面的有理数填在相应的大括号里:(★友情提示:将各数用逗号分开)15,﹣,0, ﹣30,﹣0.15,﹣128,, +20,﹣2.6正数集合{ ﹜;负数集合﹛﹜;整数集合﹛﹜;非负数集合﹛﹜.【答案】正数集合{15,,+20,﹜;负数集合﹛﹣,﹣30,﹣0.15,﹣128,﹣2.6﹜;整数集合﹛15,0, ﹣30,﹣128,+20,﹜;非负数集合﹛15,0, , +20,﹜.【解析】按照有理数的分类填写:试题解析:正数集合{15,,+20,﹜;负数集合﹛﹣,﹣30,﹣0.15,﹣128,﹣2.6﹜;整数集合﹛15,0, ﹣30,﹣128,+20,﹜;非负数集合﹛15,0, , +20,﹜.3.六个小立方体搭成的几何体的俯视图如图所示,小正方体中数字表示在该位置的小立方体的个数,请画出这几个几何体的主视图和左视图.【答案】作图见解析.【解析】本题主视图主要是将从前面数最多的块数3、2、2画好即可,左视图主要是将从左面看最多的块数3、2画好即可.试题解析:如图:4.画出数轴并按要求答题:在数轴上表示下列有理数:﹣3,|﹣2.5|,+4,﹣(+2),0;再用“<”将它们连接起来:【答案】(1)数轴见解析;(2)-3<-2<0<|-2.5|<4.【解析】首先根据在数轴上表示数的方法,在数轴上表示出所给的各数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由小到大用“<”号连接起来即可.试题解析:(1)(2)-3<-2<0<|-2.5|<4.5.一个正方体的表面展开图如图所示,已知这个正方体的每一个面上都填有一个数字,且各相对面上所填的数字互为相反数,请写出x、y、z的值并计算x﹣y﹢z.【答案】(1)x=-2 y=-3 z=-1;(2)0.【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.试题解析:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴1与z相对,2与x相对,y与3相对,∵相对表面上所填的数互为相反数,∴x=-2,y=-3,z=-1.∴x﹣y﹢z=-2-(-3)+(-1)=0.6.在一次数学测验中,七年级(4)班的平均分为86分,•如果把高于平均分的部分记作正数,不足平均分的部分记作负数(1)李洋得了90分,应记作多少?(2)刘红的成绩记作-5分,她实际得分是多少?(3)李洋和刘红相差多少分?【答案】(1)+4;(2)81;(3)9.【解析】(1)90-86即可;(2)86-5即可;(3)用李洋的成绩减去刘红的成绩即可.试题解析:(1)90-86=+4;(2)86-5=81;(3)90-81=9.7.已知x是最小正整数,y ,z是有理数,且有| y﹣2|+|z+3|=0,计算:(1)求x,y,z的值.(2)求3x﹢y﹣z的值.【答案】(1)x=1,y=2,z=-3;(2) 3x+y-z=8.【解析】由x是最小正整数,可得x=1,根据绝对值的非负性求出y=2,z=-3.从而可解答出问题. 试题解析:(1)∵x是最小正整数∴x=1∵|y﹣2|≥0,|z+3|≥0,且|y﹣2|+|z+3|=0∴|y﹣2|=0,|z+3|=0∴y﹣2=0,z+3=0∴y=2,z=-3.(2)∵x=1,y=2,z=-3∴3x﹢y﹣z=3×1+2-(-3)=3+2+3=8.。
七年级数学第一次月考卷(人教版2024)(全解全析)【测试范围:第一、二章】A4版
2024-2025学年七年级数学上学期第一次月考卷基础知识达标测(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第一章~第二章(人教版2024)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、单选题1.―12024的相反数是( )A .―2024B .12024C .―12024D .以上都不是【答案】B【分析】本题主要考查了相反数的定义,解题的关键是熟练掌握“只有符号不同的两个数互为相反数”.根据相反数的定义解答即可.【详解】解:―12024的相反数是12024,故选:B .2.今年春节电影《热辣滚烫》《飞驰人生2》《熊出没·逆转时空》《第二十条》在网络上持续 引发热议,根据国家电影局2月18日发布数据,我国2024年春节档电影票房达80.16亿元,创造了新的春节档票房纪录.其中数据80.16亿用科学记数法表示为( )A .80.16×108B .8.016×109C .0.8016×1010D .80.16×1010【答案】B【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:80.16亿=8.016×109,故选:B.3.有下列说法:①一个有理数不是正数就是负数;②整数和分数统称为有理数;③零是最小的有理数;④正分数一定是有理数;⑤―a一定是负数,其中正确的个数是()A.1B.2C.3D.4【答案】B【分析】根据有理数的分类逐项分析判断即可求解.【详解】解:①一个有理数不是正数就是负数或0,故①不正确;②整数和分数统称为有理数,故②正确;③没有最小的有理数,故③不正确;④正分数一定是有理数,故④正确;⑤―a不一定是负数,故④不正确,故选:B.【点睛】本题考查了有理数的分类,掌握有理数的分类是解题的关键.4.两江新区正加快打造智能网联新能源汽车产业集群,集聚了长安、长安福特、赛力斯、吉利、理想等10家整车企业,200余家核心零部件企业.小虎所在的生产车间需要加工标准尺寸为4.5 mm的零部件,其中(4.5±0.2)mm范围内的尺寸为合格,则下列尺寸的零部件不合格的是( )A.4.4mm B.4.5mm C.4.6mm D.4.8mm【答案】D【分析】本题考查正数和负数,根据正数和负数的实际意义求得合格尺寸的范围,然后进行判断即可,结合已知条件求得合格尺寸的范围是解题的关键.【详解】解:由题意可得合格尺寸的范围为4.3mm∼4.7mm,4.8mm不在尺寸范围内,故选:D.5.下列各组数相等的有()A.(―2)2与―22B.(―1)3与―(―1)2C.―|―0.3|与0.3D.|a|与a【答案】B【分析】根据负数的奇次幂是负数,负数的偶次幂是正数,可得答案.【详解】解∶ A.(―2)2=4,―22=―4,故(―2)2≠―22;B.(―1)3=―1,―(―1)2=―1,故(―1)3=―(―1)2;C.―|―0.3|=―0.3,0.3,故―|―0.3|≠0.3;D.当a小于0时,|a|与a不相等,;故选∶B.【点睛】本题考查了有理数的乘方,熟练求解一个数的乘方是解题的关键.6.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“0cm”和“3cm”分别对应数轴上的3和0,那么刻度尺上“5.6cm”对应数轴上的数为()A.―1.4B.―1.6C.―2.6D.1.6【答案】C【分析】本题考查了数轴,熟练掌握在数轴上右边点表示的数减去左边点表示的数等于这两点间的距离是解题关键.利用点在数轴上的位置,以及两点之间的距离分析即可求解.【详解】解:设刻度尺上“5.6cm”对应数轴上的数的点在原点的左边,距离原点有5.6―3=2.6的单位长度,所以这个数是―2.6故选:C.7.观察下图,它的计算过程可以解释( )这一运算规律A.加法交换律B.乘法结合律C.乘法交换律D.乘法分配律【答案】D【分析】根据图形,可以写出相应的算式,然后即可发现用的运算律.【详解】解:由图可知,6×3+4×3=(6+4)×3,由上可得,上面的式子用的是乘法分配律,故选:D.【点睛】本题考查有理数的混合运算,熟练掌握运算律是解答本题的关键.8.如图,A、B两点在数轴上表示的数分别为a,b,有下列结论:①a―b<0;②a+b>0;>0.其中正确的有( )个.③(b―1)(a+1)>0;④b―1|a―1|A.4个B.3个C.2个D.1个【答案】A【分析】本题主要考查了数轴,有理数的加减,乘除运算.先根据a、b在数轴上的位置判断出a、b的取值范围,再比较出各数的大小即可.【详解】解:观察数轴得:―1<a<0<1<b,∴a―b<0,故①正确;a+b>0,故②正确;b―1>0,a+1>0,∴(b―1)(a+1)>0,故③正确;b―1>0故④正确.|a―1|故选:A9.定义运算:a⊗b=a(1―b).下面给出了关于这种运算的几种结论:①2⊗(―2)=6,②a⊗b=b⊗a,③若a+b=0,则(a⊗a)+(b⊗b)=2ab,④若a⊗b=0,则a=0或b=1,其中结论正确的序号是()A.①④B.①③C.②③④D.①②④【答案】A【分析】各项利用题中的新定义计算得到结果,即可做出判断.此题考查了新定义运算,以及整式的混合运算、以及有理数的混合运算,熟练掌握运算法则是解本题的关键.【详解】解:根据题目中的新定义计算方法可得,①2⊗(―2)=2×(1+2)=6,①正确;②a⊗b=a(1―b)=a―ab,b⊗a=b(1―a)=b―ab,故a⊗b与b⊗a不一定相等,②错误;③(a⊗a)+(b⊗b)=a(1―a)+b(1―b)=a+b―a2―b2≠2ab,③错误;④若a⊗b=a(1―b)=0,则a=0或b=1,④正确,故选:A.10.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法,图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A.160B.128C.80D.48【答案】A【分析】先计算出6×6方格纸片中共含有多少个3×2方格纸片,再乘以4即可得.【详解】由图可知,在6×6方格纸片中,3×2方格纸片的个数为5×4×2=40(个)则n=40×4=160故选:A.【点睛】本题考查了图形类规律探索,正确得出在6×6方格纸片中,3×2方格纸片的个数是解题关键.第II卷(非选择题)二、填空题11.甲地海拔高度为―50米,乙地海拔高度为―65米,那么甲地比乙地.(填“高”或者“低”).【答案】高【分析】先计算甲地与乙地的高度差,再根据结果进行判断即可.【详解】解:由题意可得:(―50)―(―65)=―50+65=15>0,∴甲地比乙地高.故答案为:高【点睛】本题考查的是有理数的大小比较,有理数的减法运算的实际应用,理解题意是解本题的关键.12.绝对值大于1且不大于5的负整数有 .【答案】―2,―3,―4,―5【分析】本题考查了绝对值的意义,根据绝对值的意义即可求解,掌握绝对值的意义是解题的关键.【详解】解:绝对值大于1且不大于5的负整数有―2,―3,―4,―5,故答案为:―2,―3,―4,―5.13.若(2a ―1)2与2|b ―3|互为相反数,则a b = .【答案】18【分析】本题考查相反数的概念及绝对值的知识.根据互为相反数的两个数的和为0,可得(2a ―1)2与2|b ―3|的和为0,再根据绝对值和偶次方的非负性即可分别求出a ,b .【详解】∵ (2a ―1)2与2|b ―3|互为相反数∴ (2a ―1)2+2|b ―3|=0∵ (2a ―1)2≥0,2|b ―3|≥0∴2a ―1=0,2|b ―3|=0∴ a =12,b =3∴ a b =(12)3=18.故答案为:18.14.电影《哈利•波特》中,小哈利波特穿越墙进入“934站台”的镜头(如示意图的Q 站台),构思奇妙,能给观众留下深刻的印象.若A 、B 站台分别位于―23,83处,AP =2PB ,则P 站台用类似电影的方法可称为“ 站台”.【答案】159或6【分析】先根据两点间的距离公式得到AB 的长度,再根据AP =2PB 求得AP 的长度,再用―23加上该长度即为所求.【详解】解:AB =|83――=103,AP =|103×22+1|=209,或AP =|103×2|=203,P:―23+209=149=159,或―23+203=183=6.故P站台用类似电影的方法可称为“159站台”或者“6站台”.故答案为:159或6.【点睛】本题考查了数轴,关键是用几何方法借助数轴来求解,非常直观,且不容易遗漏,其中题干表达模糊,并没有明确指出P在AB中间,所以有两个答案(P在AB中间,或者P在AB的右侧).但题目需要用类似电影的方法表达,故而答案可以仅为“159站台”,这个题体现了数形结合的优点.15.若a|a|+b|b|+c|c|+d|d|=2,则|abcd|abcd的值为.【答案】-1【分析】先根据a|a|+b|b|+c|c|+d|d|=2,a|a|,b|b|,c|c|,d|d|的值为1或-1,得出a、b、c、d中有3个正数,1个负数,进而得出abcd为负数,即可得出答案.【详解】解:∵当a、b、c、d为正数时,a|a|,b|b|,c|c|,d|d|的值为1,当a、b、c、d为负数时,a|a|,b |b|,c|c|,d|d|的值为-1,又∵a|a|+b|b|+c|c|+d|d|=2,∴a、b、c、d中有3个正数,1个负数,∴abcd为负数,∴|abcd|abcd=-1.故答案为:-1.【点睛】本题主要考查了绝对值的意义和有理数的乘法,根据题意得出a、b、c、d中有3个正数,1个负数,是解题的关键.16.如图,圆的周长为4个单位长度,在该圆的4等分点处分别标上0,1,2,3,先让圆周上表示数字0的点与数轴上表示―1的点重合,再将圆沿着数轴向右滚动,则圆周上表示数字的点与数轴上表示2023的点重合.【答案】0【分析】圆周上的0点与―1重合,滚动到2023,圆滚动了2024个单位长度,用2024除以4,余数即为重合点.【详解】解:圆周上的0点与―1重合,2023+1=2024,2024÷4=506,圆滚动了506 周到2023,圆周上的0与数轴上的2023重合,故答案为:0.【点睛】本题考查了数轴,找出圆运动的规律与数轴上的数字的对应关系是解决此类题目的关键.三、解答题17.计算.(1)(―59)―(―46)+(―34)―(+73)(2)(―334)―(―212)+(―416)―(―523)―1【答案】(1)―120(2)―34【分析】本题考查了有理数的混合运算.(1)去括号,再计算加减即可.(2)去括号,通分,再计算加法即可.【详解】(1)(―59)―(―46)+(―34)―(+73)=―59+46―34―73=―120(2)(―334)―(―212)+(―416)―(―523)―1=―334―2―416―5―1=―54+32―1=―3418.计算:(1)4×―12―34+2.5―|―6|;(2)―14―(1―0.5)×13―2―(―3)2.【答案】(1)―1;(2)356.【分析】(1)利用乘法分配律、绝对值的性质分别运算,再合并即可;(2)按照有理数的混合运算的顺序进行计算即可求解;本题考查了有理数的混合运算,掌握有理数的运算法则和运算律是解题的关键.【详解】(1)解:原式=4×――4×34+4×2.5―6=―2―3+10―6,=―1;(2)解:原式=―1―12×13―(2―9)=―1―16+7,=6―16,=356.19.如图,数轴上每个刻度为1个单位长度上点A 表示的数是―3.(1)在数轴上标出原点,并指出点B 所表示的数是 ;(2)在数轴上找一点C ,使它与点B 的距离为2个单位长度,那么点C 表示的数为 ;(3)在数轴上表示下列各数,并用“<”号把这些数按从小到大连接起来.2.5,―4,512,―212,|―1.5|,―+1.6).【答案】(1)见解析,4(2)2或6(3)数轴表示见解析,―4<―212<―(+1.6)<|―1.5|<2.5<512【分析】本题主要考查了在数轴上表示有理数以及有理数的比较大小:(1)根据点A 表示―3即可得原点位置,进一步得到点B 所表示的数;(2)分两种情况讨论即可求解;(3)首先在数轴上确定表示各数的点的位置,再根据在数轴上表示的有理数,右边的数总比左边的数大用“<”号把这些数连接起来即可.【详解】(1)如图,O 为原点,点B 所表示的数是4,故答案为:4;(2)点C 表示的数为4―2=2或4+2=6.故答案为:2或6;(3)|―1.5|=1.5,―(+1.6)=―1.6,在数轴上表示,如图所示:由数轴可知:―4<―212<―(+1.6)<|―1.5|<2.5<51220.(1)已知|a |=5,|b |=3,且|a ―b |=b ―a ,求a ―b 的值.(2)已知a 和b 互为相反数,c 和d 互为倒数,x 的绝对值等于2,求式子: x ―(a +b +cd )+a+b cd 的值.【答案】(1)―8或―2;(2)1或―3【分析】本题考查有理数的混合运算,熟练掌握运算法则和运算顺序是解答本题的关键.(1)根据|a |=5,|b |=3,且|a ―b |=b ―a ,可以得到a 、b 的值,然后代入所求式子计算即可;(2)根据a 与b 互为相反数,c 与d 互为倒数,x 的绝对值等于2,可以得到a +b =0,cd =1,x =±2,然后代入所求式子计算即可.【详解】解:(1)∵|a |=5,|b |=3,∴a =±5,b =±3,∵|a ―b |=b ―a ,∴b ≥a ,∴a =―5,b =±3,当a =―5,b =3时,a ―b =―5―3=―8,当a =―5,b =―3时,a ―b =―5―(―3)=―5+3=―2,由上可得,a +b 的值是―8或―2;(2)∵a 与b 互为相反数,c 与d 互为倒数,x 的绝对值等于2,∴a +b =0,cd =1,x =±2,∴当x =2时,x―(a+b+cd)+a+b cd=2―(0+1)+0 =2―1=1;当x=―2时,x―(a+b+cd)+a+b cd=―2―(0+1)+0=―2―1=―3.综上所述,代数式的值为1或―3.21.某风筝加工厂计划一周生产某种型号的风筝700只,平均每天生产100只,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(增产记为正、减产记为负);星期一二三四五六日增减+5―2―4+13―6+6―3(1)根据记录的数据,该厂生产风筝最多的一天是星期______;(2)产量最多的一天比产量最少的一天多生产多少只风筝?(3)该厂实行每周计件工资制,每生产一只风筝可得20元,若超额完成任务,则超过部分每只另奖5元;少生产一只扣4元,那么该厂工人这一周的工资总额是多少元?【答案】(1)四(2)19(3)14225【分析】(1)根据表格中的数据求解即可;(2)最高一天的产量减去最少一天的产量求解即可;(3)根据题意列出算式求解即可.【详解】(1)由表格可得,星期四生产的风筝数量是最多的,故答案为:四.(2)13―(―6)=19,∴产量最多的一天比产量最少的一天多生产19只风筝;(3)700+5―2―4+13―6+6―3=709(只)709×20+9×5=14225(元).∴该厂工人这一周的工资总额是14225元【点睛】本题考查了正数和负数,有理数的加减和乘法运算的实际应用.解决本题的关键是理解题意正确列式.22.阅读下面材料:点A、B在数轴上分别表示数a、b.A、B两点之间的距离表示为|AB|.则数轴上A、B两点之间的距离|AB|=|a﹣b|.回答下列问题:(1)数轴上表示1和﹣3的两点之间的距离是 ;数轴上表示﹣2和﹣5的两点之间的距离是 ;(2)数轴上表示x和﹣1的两点A和B之间的距离是 ,如果|AB|=2,那么x为 ;(3)当|x+1|+|x﹣2|取最小值时,符合条件的整数x有 ;(4)令y=|x+1|+|x﹣2|+|x﹣3|,问当x取何值时,y最小,最小值为多少?请求解.【答案】(1)4;3;(2)|x+1|,1或﹣3;(3)﹣1,0,1,2;(4)x=2时,y最小,最小值为4【分析】(1)根据两点间的距离的求解列式计算即可得解;(2)根据两点之间的距离表示列式并计算即可;(3)根据数轴上两点间的距离的意义解答;(4)根据数轴上两点间的距离的意义解答.【详解】解:(1)数轴上表示1和﹣3的两点之间的距离是:|1―(―3)|=1+3=4;数轴上表示﹣2和﹣5的两点之间的距离是:|―2―(―5)|=5―2=3;(2)∵A,B分别表示的数为x,﹣1,∴数轴上表示x和﹣1的两点A和B之间的距离是|x+1|,如果|AB|=2,则|x+1|=2,解得:x=1或﹣3;(3)当|x+1|+|x﹣2|取最小值时,﹣1≤x≤2,∴符合条件的整数x有﹣1,0,1,2;(4)当|x+1|+|x﹣2|+|x﹣3|取最小值时,x=2,∴当x=2时,y最小,即最小值为:|2+1|+|2﹣2|+|2﹣3|=4.故x=2时,y最小,最小值为4.【点睛】本题考查数轴与绝对值,熟练掌握数轴上两点之间距离的计算方法是解题的关键.23.观察下列三列数:―1、+3、―5、+7、―9、+11、……①―3、+1、―7、+5、―11、+9、……②+3、―9、+15、―21、+27、―33、……③(1)第①行第10个数是,第②行第10个数是;(2)在②行中,是否存在三个连续数,其和为83?若存在,求这三个数;若不存在,说明理由;(3)若在每行取第k个数,这三个数的和正好为―101,求k的值.【答案】(1)+19;―21(2)存在,这三个数分别为85,―91,89(3)k=―49【分析】本题主要考查了数字规律,一元一次方程的应用,做题的关键是找出数字规律.(1)第①和②行规律进行解答即可;(2)设三个连续整数为(―1)n﹣1(2n―3)―2,(―1)n(2n―1)―2,(―1)n+1(2n+1)―2,根据题意列出方程,即可出答案;(3)设k为奇数和偶数两种情况,分别列出方程进行解答.【详解】(1)解:根据规律可得,第①行第10个数是2×10―1=19;第②行第10个数是―(2×10+1)=―21;故答案为:+19;―21;(2)解:存在.理由如下:由(1)可知,第②行数的第n个数是(―1)n(2n―1)―2,设三个连续整数为(―1)n﹣1(2n―3)―2,(―1)n(2n―1)―2,(―1)n+1(2n+1)―2,当n为奇数时,则2n―3―2―2n+1―2+2n+1―2=83,化简得2n―7=83,解得n=45,这三个数分别为85,―91,89;当n为偶数时,则―(2n―3)―2+(2n―1)―2―(2n+1)―2=83,化简得―2n―5=83,解得n=―44(不符合题意舍去),这三个数分别为85,―91,89;综上,存在三个连续数,其和为83,这三个数分别为85,―91,89;(3)解:当k为奇数时,根据题意得,―(2k―1)―(2k+1)+3×(2k―1)=―101,解得:k=―49,当k为偶数时,根据题意得,(2k+1)+(2k―3)―3(2k―1)=―101,解得,k=51(舍去),综上,k=―49.24.如图,数轴上有A,B,C三个点,分别表示数―20,―8,16,有两条动线段PQ和MN(点Q与点A重合,点N与点B重合,且点P在点Q的左边,点M在点N的左边),PQ=2,MN=4,线段MN以每秒1个单位的速度从点B开始向右匀速运动,同时线段PQ以每秒3个单位的速度从点A开始向右匀速运动.当点Q运动到点C时,线段PQ立即以相同的速度返回;当点Q回到点A时,线段PQ、MN同时停止运动.设运动时间为t秒(整个运动过程中,线段PQ和MN保持长度不变).(1)当t=20时,点M表示的数为 ,点Q表示的数为 .(2)在整个运动过程中,当CQ=PM时,求出点M表示的数.(3)在整个运动过程中,当两条线段有重合部分时,速度均变为原来的一半,当重合部分消失后,速度恢复,请直接写出当线段PQ和MN重合部分长度为1.5时所对应的t的值.【答案】(1)8,―8(2)―2.8或2(3)5.5或8.5或18.25或19.75【分析】本题考查一元一次方程的应用,解题的关键是读懂题意,能用含t的代数式表示点运动后所表示的数.(1)当t=20时,根据起点位置以及运动方向和运动速度,即可得点M表示的数为8、点Q表示的数为―8;(2)当t ≤12时,Q 表示的数是―20+3t ,P 表示的数是―22+3t ,M 表示的数是―12+t ,36―3t =|―10+2t|,此时―12+t =―12+465=―145,当12<t ≤24时,Q 表示的数是16―3(t ―12)=52―3t ,P 表示的数是50―3t ,M 表示的数是―12+t ,3t ―36=|62―4t |,(3)当PQ 从A 向C 运动时,―8+32(t ―4)――8+12(t ―4)=1.5或―4+12(t ―4)―[―10+32(t ―4)]=1.5,当PQ 从C 向A 运动时,132+―――=1.5或172――――=1.5,解方程即可得到答案.【详解】(1)解:依题意,∵―8―4+20×1=8,∴当t =20时,点M 表示的数为8;∵16―{20×3―[16―(―20)]}=―8,∴当t =20时,点Q 表示的数为―8;故答案为:8,―8;(2)解:当t ≤12时,Q 表示的数是―20+3t ,P 表示的数是―22+3t ,M 表示的数是―12+t ,∴CQ =16―(―20+3t )=36―3t ,PM =|―22+3t ―(―12+t )|=|―10+2t |,∴36―3t =|―10+2t |,解得t =465或t =26(舍去),此时―12+t =―12+465=―145当12<t ≤24时,Q 表示的数是16―3(t ―12)=52―3t ,P 表示的数是50―3t ,M 表示的数是―12+t ,∴CQ =16―(52―3t )=3t ―36,PM =|50―3t ―(―12+t )|=|62―4t |,∴3t ―36=|62―4t |,解得t =14或t =26(舍去),此时―12+t =―12+14=2,∴当CQ =PM 时,点M 表示的数是―145或2;(3)解:当PQ 从A 向C 运动时,t =4时,PQ 与MN 开始有重合部分,有重合部分时,Q 表示的数为―8+32(t ―4),P 表数为―10+32(t ―4),M 表示的数为―8+12(t ―4),N 表示的数是―4+12(t ―4),若线段PQ 和MN 重合部分长度为1.5则―8+32(t ―4)――8+12(t ―4)=1.5或―4+12(t ―4)―[―10+32(t ―4)]=1.5,解得t =5.5或t =8.5,由―10+32(t ―4)=―4+12(t ―4)得t =10,∴当t =10时,PQ 与MN 的重合部分消失,恢复原来的速度,此时Q 表示的数是1,再过(16―1)÷3=5(秒),Q 到达C ,此时t =15,则M 所在点表示的数是―12+4+10―42+5=0,N 所在点表示的数4,当PQ 从C 向A 运动时,t =352时,PQ 与MN 开始有重合部分,有重合部分时,Q 表示的数为172――P 表示的数为132―M 表示的数为52N 表示的数是132―若线段PQ 和MN 重合部分长度为1.5,132+―――=1.5或172―――=1.5,解得t =18.25或t =19.75,∴重合部分长度为1.5时所对应的t 的值是5.5或8.5或18.25或19.75.。
2024年鲁教版七年级数学上册月考试卷217
2024年鲁教版七年级数学上册月考试卷217考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共8题,共16分)1、下列算式能用平方差公式计算的是()A. (-a+b)(a-b)B. (x+2)(2+x)C. (x-y)(-x-y)D. (x-2)(x+1)2、截止10月31日21时(停止入园),上海世博会历时184天,在会展期间,累计入园参观人数达到约73 000 000多人,此数用科学记数法表示是()A. 7.3×106B. 0.73×108C. 73×107D. 7.3×1073、【题文】若是完全平方式,则常数k的值为A. 6B. 12C.D.4、下列运算正确的是()A.3a2﹣a2=3B.(a2)3=a5C.a3•a6=a9D.a(a﹣2)=a2﹣25、若(1+2x)2+2|y-3|=0,则x y=()A.C. ±1D. -6、如图,AB∥CD,AC⊥BE于点C,∠1=140°,则∠2的度数是()A. 40°B. 50°C. 60°D. 70°7、【题文】已知A,B,C为直线L上的三点;线段AB=9cm,BC=1cm,那么点A与点C之间的距离是() A.8cm B.9cm C 10cm D 8cm 或 10cm8、将如图的正方体展开能得到的图形是()A.B.C.D.评卷人得分二、填空题(共8题,共16分)【题文】计算10、若点C为线段AB上一点,AB=12AC=8点D为直线AB上一点,MN分别是ABCD的中点,若MN=10则线段AD的长为 ______ .11、方程x+y=2的正整数解是 ______ .12、已知|x|=5|y|=1那么|x−y|−|x+y|= ______ .13、图是正方体的平面展开图,每个面上标有一个汉字,与“绿”字相对的面上的字是____.14、【题文】日本媒体报道,日本福田核电站1号和2号两台机组在被9.0级强震及海啸摧毁之前,今年共累计发电142.06亿千瓦时.“142.06亿”用科学记数法可表示为____.15、如图,直线a∥b,三角板的直角顶点A落在直线a上,两条直线分别交直线b于B、C两点.若∠1=42°,则∠2的度数是____.16、若|x+y-1|+(y+3)2=0,则x-y的值为 ______ .评卷人得分三、判断题(共6题,共12分)17、面积相等的两个三角形是全等三角形.()18、(-2)÷(-3)×=2.____.(判断对错)19、(3a-bc)(-bc-3a)=b2c2-9a2;____(判断对错)20、8xy2的系数是8.____.21、若a、b、c是直线,且a∥b,b∥c,则a∥c.____(判断对错)22、3x﹣2= .(判断对错)评卷人得分四、解答题(共2题,共12分)23、如图,在△ABC中,∠ABC=80°,∠ACB=50°,BP平分∠ABC,CP平分∠ACB,求∠BPC的度数.24、某校240名学生参加植树活动;要求每人植树4~7棵,活动结束后抽查了20名学生每人的植树量,并分为四类:A类4棵;B类5棵、C类6棵、D类7棵,将各类的人数绘制成如图所示不完整的条形统计图,回答下列问题:(1)补全条形图;(2)写出这20名学生每人植树量的众数和中位数;(3)估计这240名学生共植树多少棵?评卷人得分五、证明题(共4题,共24分)25、如图,AB∥CD,AE∥DF,求证:∠A=∠D.26、已知:如图;△ABC中,CD⊥AB于D,FG⊥AB于G,DE∥BC.求证:∠EDC=∠GFB.27、如图,∠B=42°,∠A+10°=∠1,∠ACD=64°,求证:AB∥CD.28、已知:在△ABC中;AB=AC,∠BAC=90°,点D是BC的中点,点P是BC边上的一个动点,连接AP.直线BE垂直于直线AP,交AP于点E,直线CF垂直于直线AP,交AP于点F.(1)当点P在BD上时(如图①);求证:CF=BE+EF;(2)当点P在DC上时(如图②);CF=BE+EF还成立吗?若不成立,请画出图形,并直接写出CF;BE、EF之间的关系(不需要证明).(3)若直线BE的延长线交直线AD于点M(如图③),找出图中与CP相等的线段,并加以证明.评卷人得分六、综合题(共2题,共12分)29、一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h)两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图象信息完成以下填空及解答:(1)甲、乙两地之间的距离为____km;(2)快车和慢车行驶____h时相遇;慢车的速度为____km/h;(3)列方程解应用题:根据(1)(2)的结论,求快车的速度.30、如图;△ABC中,∠ABC=45°,点D是边AC上一点,∠DBC=∠BAC;(1)求∠BDC的度数;(2)若在△ABC外取一点E,使∠EBA=∠DBC,∠BEA=135°,试说明:AE∥BD.参考答案一、选择题(共8题,共16分)1、C【分析】【分析】利用平方差公式的结构特征判断即可得到结果.【解析】【解答】解:能用平方差公式计算的是(x-y)(-x-y).故选C2、D【分析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<10时,n是负数.【解析】【解答】解:将73000000用科学记数法表示为7.3×107.故选D.3、D【分析】【解析】试题分析:所以k=考点:完全平方公式。
广东省深圳市龙岗区平安里学校2023-2024学年七年级上学期第一次月考数学试卷(含解析)
2023-2024上学期第一次质量检测初一数学试卷一.选择题(共10小题)1.﹣7的相反数是( )A .﹣7B .﹣C .7D .12.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为( )A .2.1×109B .0.21×109C .2.1×108D .21×1073.某图纸上注明:一种零件的直径是mm ,下列尺寸合格的是( )A .30.05mmB .29.08mmC .29.97mmD .30.01mm4.下列算式正确的是( )A .- 3 - 2 = - 6B .0﹣(﹣3)=3C .(﹣9)×12 =(﹣10﹣)×12D .|3﹣5|=﹣(5﹣3)5.下面各对数中相等的是( )A .﹣32与﹣23B .(﹣3)2与﹣32C .(﹣2)3与﹣23D .﹣(﹣3)与﹣|﹣3|6.已知a ,b 都是实数,若(a +2)2+|b ﹣1|=0,则(a +b )2023的值是( )A .﹣2023B .﹣1C .1D .20237.如图是一个简单的数值运算程序,若开始输入x =﹣1,则最后输出的结果是( )A .﹣3B .﹣5C .﹣11D .﹣198.已知实数a ,b 在数轴上的位置如图所示,下列结论错误的是( )A .1<|a |<bB .1<﹣a <bC .|a |<1<|b |D .﹣b <a <﹣19.下列说法中正确的个数有( )①最大的负整数是﹣1;②相反数是本身的数是正数;1211121③有理数分为正有理数和负有理数;④数轴上表示﹣a 的点一定在原点的左边;⑤几个有理数相乘,负因数的个数是奇数个时,积为负数.A .1个B .2个C .3个D .4个10.用十进制记数法表示正整数,如:365=300+60+5=3×102+6×101+5,用二进制记数法来表示正整数,如:5=4+1=1×22+0×21+1,记作:5=(101)2,14=8+4+2=1×23+1×22+1×21+0×1,记作:14=(1110)2,则(1010110)2表示数( )A .60B .72C .86D .132二.填空题(共4小题)11.如果将“收入50元”记作“+50元”,那么“﹣20元”表示 .12.比较大小-1-1.13.若a 是最小的正整数,b 是最小的非负数,m 表示大于﹣4且小于3的整数的个数,则a ﹣b +m = .14.定义新运算:a ⋆b =a b +1,如2⋆3=23+1.当m =﹣4,n =3时,式子m ⋆2+n ⋆3的值为 .15.为了求1+3+32+33+...+3100的值,小明想到了以下方法:令x =1+3+32+33+ (3100)则3x =3×(1+3+32+33+…+3100)=3+32+33+…+3100+3101,因此3x - x =3101﹣1,所以x =,即1+3+32+33+…+3100 =。
七年级月考试卷含答案数学
一、选择题(每题3分,共30分)1. 下列各数中,不是有理数的是()A. -2B. 0.5C. √2D. -3/42. 下列代数式中,同类项是()A. 3a^2bB. 2a^2b + 4ab^2C. 5a^2 - 3aD. 4a^2b - 2ab^23. 已知一个长方形的周长是20cm,如果长是6cm,那么宽是()A. 2cmB. 3cmC. 4cmD. 5cm4. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 平行四边形D. 等边三角形5. 下列方程中,解为x=2的是()A. 2x - 1 = 3B. 2x + 1 = 3C. 2x - 1 = 1D. 2x + 1 = 16. 下列函数中,自变量x的取值范围是全体实数的是()A. y = x^2B. y = √xC. y = 1/xD. y = |x|7. 下列运算中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^2 = a^2 - 2ab + b^2D. (a - b)^2 = a^2 + 2ab - b^28. 下列图形中,内角和是360°的是()A. 三角形B. 四边形C. 五边形D. 六边形9. 下列命题中,正确的是()A. 对顶角相等B. 相邻角互补C. 同位角相等D. 对应角相等10. 下列函数中,图象是直线的是()A. y = x^2B. y = 2x - 1C. y = √xD. y = 1/x二、填空题(每题3分,共30分)11. 3的平方根是________,它的相反数是________。
12. 如果a + b = 5,a - b = 1,那么a的值是________,b的值是________。
13. 一个数的绝对值是4,那么这个数是________或________。
14. 下列函数中,是正比例函数的是________。
2024-2025学年七年级数学上学期第一次月考卷及答案(人教版)
2024-2025学年七年级数学上学期第一次月考卷02(考试时间:120分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版2024七上第一章~第二章。
5.难度系数:0.8。
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列说法中不正确的是( ).A .-3.14既是负数,分数,也是有理数B .0既不是正数,也不是负数,但是整数C .-2 000既是负数,也是整数,但不是有理数D .0是正数和负数的分界2.中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果支出100元记作100−元,那么80+元表示( ) A .支出80元B .收入80元C .支出20元D .收入20元3.在数轴上表示2−与8的点的距离是( ) A .6B .10C .10−D .15−4.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为( ) A .2.1×109B .0.21×109C .2.1×108D .21×1075.将()()()3652−−+−−+−写成省略括号和加号的形式是( )A .1B .1−C .10D .10−8.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,例如将2(101),2(1011)换算成十进制数应为: 2102(101)1202124015=×+×+×=++=;32102(1011)12021212802111=×+×+×+×=+++=.按此方式,将二进制2(1001)换算成十进制数的结果为( ) A .17B .9C .10D .189.下列说法中正确的个数有( ).①最大的负整数是1−;②相反数是本身的数是正数;③有理数分为正有理数和负有理数:④数轴上表示a −的点一定在原点的左边:⑤几个有理数相乘,负因数的个数是奇数个时,积为负数. A .1个B .2个C .3个D .4个abc19.(9分)上午八时,张、王两同学分别从A、B两地同时骑摩托车出发,相向而行.已知张同学每小时比王多行2千米,到上午十时,两人仍相距36千米的路程.相遇后,两人停车闲谈了15分钟,再同时按各自的方向和原来的速度继续前进,到中午十二时十五分,两人又相距36千米的路程.A、B两地间的路程有多少千米?20.(10分)操作与探索:请你自己画出数轴并表示有理数:52−,3.①大于3−并且小于3的整数有哪几个?②在数轴上表示到1−的点的距离等于2个单位长度的点表示的数是什么?21.(10分)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,222÷÷,()()()()3333−÷−÷−÷−等,类比有理数的乘方,我们把222÷÷记作2③,读作“2的圈3次方”, ()()()()3333−÷−÷−÷−记作()3−④,读作:“()3−的圈4次方”.一般地,把n 个a 相除记作a ⓝ,读作“a 的圈n 次方”.22.(12分)递等式计算,能简便计算的要简便计算:×,请在下面长方形内写出相应的算式.请你按照小布的方法计算2.4 2.1有理数x的点与表示6的点之间的距离.这种数形结合的方法,可以用来解决一些问题.如图,已知数之间的距离PA=________(用含2024-2025学年七年级数学上学期第一次月考卷02(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2024-2025学年初中七年级上学期(第1-2章) 数学月考试题及答案(新浙教版)
2024-2025学年七年级上学期第一次月考试卷数学试题考试内容:第1至2章,满分120分,难度系数:0.65一、选择题(本大题共10小题,每小题2分,共20分)1.中国是世界上最早提出和采用“正负数表示相反意义的量”的国家,关于正负数的记载最早见于公元一世纪的中国数学著作《九章算术》中,比欧洲早一千余年.如果将“向东走40米”记作“40+米”,那么“向西走30米”记作( ) A .30−米B .30+米C .10−米D .10米2.2024年巴黎奥运会开幕式选择在塞纳河举行.塞纳河包括支流在内的流域总面积为78700平方公里.其中数据78700用科学记数法表示为( ) A .278710×B .37.8710×C .47.8710×D .50.78710×3.在23−、2(3) 、(2)−−、|5|−−、0中,负数的个数是( ) A .1个B .2个C .3个D .4个4.中国人最早使用负数,可追溯到两千多年前的秦汉时期,下列关于负数的计算正确的是( ) A .2=2−−B .()32=8−C .2−的相反数是2D .2−的倒数是0.2−5.下列各对数中,互为相反数的是( ) A .(5)−+与(5)+− B .12−与(0.5)+C .-|-0.01|与1100−−D .13−与0.3 6.在数轴上,点A ,B 在原点O 的同侧,分别表示数a ,1,将点A 向左平移3个单位长度,得到点C .若点C 与点B 互为相反数,则a 的值为( ) A .3B .2C .1−D .07.下列运算过程中,有错误的是( )A .(3﹣412)×2=3﹣412×2B .﹣4×(﹣7)×(﹣125)=﹣(4×125×7)C .91819×16=(10﹣119)×16=160﹣1619D .[3×(﹣25)]×(﹣2)=3×[(﹣25)×(﹣2)]8.定义一种新的运算:如果0a ≠,则有2a b a b =+▲,那么722−▲的值( ) A .34B .32−C .152D .129.如图所示,下列关于a ,b ,c 的说法中正确的个数是( ) ①12a <<②1c <−③2b >−④b a <⑤12c −<<⑥a 到原点的距离大于b 到原点的距离 ⑦在a 与c 之间有2个整数A .3个B .4个C .5个D .6个10.分形的概念是由数学家本华·曼德博提出的.如图是分形的一种,第1个图案有2个三角形;第2个图案有4个三角形;第3个图案有8个二角形;第4个图案有16个三角形;……,下列数据中是按此规律分形得到的三角形的个数是( )A .126B .513C .980D .1024二、填空题(本大题共10小题,每小题3分,共30分)11.12024−的相反数是 . 12.某粮店出售的两种品牌的面粉袋上分别标有质量为()250.1kg ±,()250.2kg ±的字样,从中任意拿出两袋,它们的质量最多相差 kg .1314.按照如图所示的操作步骤,若输入x 的值为10−,则输出的值为 .15.比较两数大小: −76−16.把算式()()()579−−−−+写成省略加号和括号的形式 ,读作 17.比2−小6的数是 .18.当||2,||4x y ==,且2x y +=−,则xy = . 19.已知1xyz xyz =,则x zy x y z++值为 .20.在学习有理数乘法时,李老师和同学们做了这样的游戏,将2023这个数说给第一位同学,第一位同学将它减去它二分之一的结果告诉第二位同学,第二位同学再将听到的结果减去它的三分之一的结果告诉第三位同学.第三位同学再将听到的结果减去它的四分之一的结果告诉第四位同学,…照这样的方法直到全班48人全部传完,则最后一位同学告诉李老师的正确结果是 .三、解答题(本大题共8小题,共70分)21.(本题16分)计算下列各题: (1)()()43772743+−++−;(2)12433−÷−×;(3)()()32211234−+×−+−;(4)()235363412−+×−.22.(本题6分)对于有理数a 、b ,定义新运算:“✞”,a b ab a b ⊗−−. (1)计算:()42⊗−________()24−⊗;()()53−⊗−________()()35−⊗−; 152 −⊗ ________152 ⊗−(填“>”或“=”或“<”); (2)我们知道:有理数的加法运算和乘法运算满足交换律,那么,由(1)计算的结果,你认为这种运算:“✞”是否满足交换律?若满足,请说明理由;若不满足,请举例说明.23.(本题6分)在数轴上画出表示下列各数的点,并用“<”连接下列各数.0,112,3−,()0.5−−,34−−,133+−.24.(本题8分)如图,在数轴上有A、B、C这三个点.回答:(1)A、B、C这三个点表示的数各是多少?A:;B:;C:.(2)A、B两点间的距离是,A、C两点间的距离是.(3)应怎样移动点B的位置,使点B到点A和点C的距离相等?25.(本题8分)“滴滴”司机沈师傅从上午800915:~:在东西方向的江平大道上营运,共连续运载十批乘客.若规定向东为正,向西为负,沈师傅营运十批乘客里程如下:(单位:千米)8636848433+−+−++−−++,,,,,,,,,.(1)将最后一批乘客送到目的地时,沈师傅距离第一批乘客出发地的东面还是西面?距离出发地多少千米?(2)若汽车每千米耗油0.4升,则800915:~:汽车共耗油多少升?(3)若“滴滴”的收费标准为:起步价11元(不超过3千米),超过3千米,超过部分每千米2元.则沈师傅在上午800915:~:一共收入多少元?26.(本题8分)观察下列各式: 第1个等式:11111222−×=−+=−;第2个等式:1111123236−×=−+=−; 第3个等式:11111343412−×=−+=−;…… (1)根据上述规律写出第5个等式: ;(2)第n 个等式: ;(用含n 的式子表示) (3)计算:111111112233420222023−×+−×+−×+⋅⋅⋅⋅⋅⋅+−×.27.(本题8分)阅读下列材料:计算111503412÷−+.解法一:原式11150505050350450125503412=÷−÷+÷=×−×+×=.解法二:原式4312505050630012121212÷−+÷×.解法三:原式的倒数为111503412−+÷111111111113412503504501250300=−+×=×−×+×=. 故原式300=.(1)上述得出的结果不同,肯定有错误的解法,你认为哪个解法是错误的. (2)请你选择两种合适的解法解答下列问题:计算:113224261437−÷−+−28.(本题10分)【概念学习】定义新运算:求若干个相同的有理数(均不等于0)的商的运算叫做除方.比加222÷÷,()()()()3333−÷−÷−÷−等,类比有理数的乘方,我们把222÷÷写作2③,读作“2的圈3次方”,()()()()3333−÷−÷−÷−写作()3−④,读作“()3−的圈4次方”.一般地,把n aa a a a ÷÷÷ 个记作:a ⓝ,读作“a 的圈n 次方”.特别地,规定:a a =①.【初步探究】(1)直接写出计算结果:2023=② ;(2)若n 为任意正整数,下列关于除方的说法中,正确的有 ;(横线上填写序号) A .任何非零数的圈2次方都等于1 B .任何非零数的圈3次方都等于它的倒数 C .圈n 次方等于它本身的数是1或1−D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢?(3)请把有理数()0a a ≠的圈n (3n ≥)次方写成幂的形式:a =ⓝ ;(4)计算:()2111472−−÷−×−④⑥⑧.2024-2025学年七年级上学期第一次月考试卷数学试题考试内容:第1至2章,满分120分,难度系数:0.65一、选择题(本大题共10小题,每小题2分,共20分)1.中国是世界上最早提出和采用“正负数表示相反意义的量”的国家,关于正负数的记载最早见于公元一世纪的中国数学著作《九章算术》中,比欧洲早一千余年.如果将“向东走40米”记作“40+米”,那么“向西走30米”记作( ) A .30−米 B .30+米 C .10−米 D .10米【答案】A【分析】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,根据向东走记为正,则向西走就记为负,直接得出结论即可. 【详解】解:∵向东走40米记作40+米, ∴向西走30米可记作30−米, 故选A .2.2024年巴黎奥运会开幕式选择在塞纳河举行.塞纳河包括支流在内的流域总面积为78700平方公里.其中数据78700用科学记数法表示为( ) A .278710× B .37.8710×C .47.8710× D .50.78710×【答案】C【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ×的形式,其中≤<110a ,n 为整数,表示时关键要正确确定a 的值以及n 的值.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:将78700用科学记数法表示为:47.8710× 故选:C .3.在23−、2(3) 、(2)−−、|5|−−、0中,负数的个数是( ) A .1个 B .2个 C .3个 D .4个【答案】B【分析】将每个数进行化简后,得出判断.【详解】解:239−=−,2(93) ,(2)2−−=,|5|5−−=−,因此负数有:23−和|5|−−,共有2个, 故选:B .4.中国人最早使用负数,可追溯到两千多年前的秦汉时期,下列关于负数的计算正确的是( ) A .2=2−− B .()32=8−C .2−的相反数是2D .2−的倒数是0.2−【答案】C【分析】本题考查了绝对值、有理数的乘方、相反数、倒数,熟练掌握这几个定义是解题的关键.根据绝对值、有理数的乘方、相反数、倒数的定义分别计算判断即可. 【详解】解:A 、22−=,故此选项不符合题意; B 、()328−=−,故此选项不符合题意; C 、−2的相反数是2,故此选项符合题意; D 、−2的倒数是0.5−,故此选项不符合题意; 故选:C .5.下列各对数中,互为相反数的是( ) A .(5)−+与(5)+− B .12−与(0.5)−+C .-|-0.01|与1100−−D .13−与0.3 【答案】C【分析】先化简,根据相反数的定义:只有符号不同的两个数即可求解. 【详解】解:A .−(+5)=−5−5)=−5,选项A 不符合题意; B .−(+0.5)=−0.5,与12−相等,选项B 不符合题意;C .−|−0.01|=−0.01,−(1100−)=1100=0.01,−0.01与0.01互为相反数,选项C 符合题意; D .13−与0.3不是相反数,选项D 不符合题意;故选:C .6.在数轴上,点A ,B 在原点O 的同侧,分别表示数a ,1,将点A 向左平移3个单位长度,得到点C .若点C 与点B 互为相反数,则a 的值为( ) A .3 B .2 C .1− D .0【答案】B【分析】先用a 的式子表示出点C ,根据点C 与点B 互为相反数列出方程求解即可. 【详解】解:由题可知:A 点表示的数为a ,B 点表示的数为1, ∵C 点是A 向左平移3个单位长度,∴C 点可表示为:3a −, 又∵点C 与点B 互为相反数,∴310a −+=, ∴2a =. 故选:B .7.下列运算过程中,有错误的是( )A .(3﹣412)×2=3﹣412×2B .﹣4×(﹣7)×(﹣125)=﹣(4×125×7)C .91819×16=(10﹣119)×16=160﹣1619D .[3×(﹣25)]×(﹣2)=3×[(﹣25)×(﹣2)] 【答案】A【分析】各式计算得到结果,即可作出判断.【详解】解:A 、原式=3×2﹣92×2=6﹣9=﹣3,符合题意;B 、原式=﹣(4×125×7),不符合题意;C 、原式=(10﹣119)×16=160﹣1619,不符合题意; D 、原式=3×[(﹣25)×(﹣2)],不符合题意. 故选:A .8.定义一种新的运算:如果0a ≠,则有2a b a b =+▲,那么722−▲的值( ) A .34 B .32− C .152 D .12【答案】C【分析】本题主要考查了有理数的乘方运算,求一个数的绝对值,有理数的加法运算等知识点,熟练掌握相关运算法则是解题的关键. 先计算乘方和绝对值,然后相加即可. 【详解】解:722−▲2722=+−742=+152=,故选:C .9.如图所示,下列关于a ,b ,c 的说法中正确的个数是( ) ①12a << ②1c <− ③2b >− ④b a < ⑤12c −<<⑥a 到原点的距离大于b 到原点的距离 ⑦在a 与c 之间有2个整数A .3个B .4个C .5个D .6个【答案】B【分析】此题考查了利用数轴比较有理数的大小,由a ,b ,c 在数轴上的位置得到1012b c a <−<<<<<,进而逐项求解即可.【详解】解:由题意得,1012b c a <−<<<<<, ∴12a <<,①正确;1c >−,②错误; 2b <−,③错误;b a <,④正确; 12c −<<,⑤正确;a 到原点的距离小于b 到原点的距离,⑥错误;在a 与c 之间有2个整数,⑦正确.∴正确的有4个.故选:B .10.分形的概念是由数学家本华·曼德博提出的.如图是分形的一种,第1个图案有2个三角形;第2个图案有4个三角形;第3个图案有8个二角形;第4个图案有16个三角形;……,下列数据中是按此规律分形得到的三角形的个数是( )A .126B .513C .980D .1024【答案】D【分析】根据前面图案中三角形的个数,找出规律,即可求解. 【详解】解:第1个图案有2个三角形,即12个; 第2个图案有4个三角形,即22个; 第3个图案有8个二角形,即32个; 第4个图案有16个三角形,即42个; 则第n 个图案有2n 个三角形,只有D 选项,当21024n =时,10n =符合题意,其余选项n 都不符合题意, 故选:D二、填空题(本大题共10小题,每小题3分,共30分)11.12024−的相反数是 . 【答案】12024【分析】本题考查了相反数,熟练掌握相反数的概念:“只有符号不同的两个数叫做互为相反数”,是解题的关键. 【详解】解:12024−的相反数是12024. 故答案为:12024. 12.某粮店出售的两种品牌的面粉袋上分别标有质量为()250.1kg ±,()250.2kg ±的字样,从中任意拿出两袋,它们的质量最多相差 kg . 【答案】0.4【分析】本题主要考查正负数的意义,有理数的加减混合运算,根据题意质量相差最多的是()250.2kg ±,再根据有理数的加减运算即可求解,解题的关键理解并掌握正负数的意义,进行有理数的混合运算.【详解】解:根据题可得,质量最少的是少了0.2kg ,质量最多的是多了0.2kg ,∴质量最多相差0.20.20.4(kg)+=, 故答案为:0.4.13 【答案】2−【分析】根据绝对值的意义进行化简即可求解. 【详解】解:2−−=2−, 故答案为:2−.14.按照如图所示的操作步骤,若输入x 的值为10−,则输出的值为 .【答案】25−【分析】本题考查了有理数的混合运算,根据操作步骤列出式子进行计算即可求解. 【详解】解:依题意,()()310529 −÷−×−−()289=×−− 169=−− 25=−故答案为:25−.15.比较两数大小: −76−【答案】>【分析】本题主要考查的是比较有理数的大小,依据两个负数比较大小,绝对值大的反而小比较即可; 【详解】解:∵6677−=,7766−=,6776<, ∴−>−6776, 故答案为:>.16.把算式()()()579−−−−+写成省略加号和括号的形式 ,读作 【答案】 579−+− 负5加7减9【分析】本题主要考查了有理数的加减混合运算,熟练掌握有理数的加减法法则是解题的关键.利用有理数的减法法则和有理数的加法法则解答即可.【详解】()()()()()()579579579−−−−+=−+++−=−+−, 读作:负5加7减9;故答案为:579−+−;负5加7减9. 17.比2−小6的数是 . 【答案】8−【分析】本题考查了有理数的减法,理解题意,根据题意正确列出式子,进行计算即可. 【详解】解:比2−小6的数是268−−=−, 故答案为:8−.18.当||2,||4x y ==,且2x y +=−,则xy = . 【答案】8−【分析】根据绝对值先求出x ,y 的值,再根据2x y +=−得出符合条件的值,计算即可. 【详解】解:∵||2,||4x y ==, ∴2x =±,4y =±, ∵2x y +=−, ∴2,4x y ==−, ∴8xy =−, 故答案为:8−. 19.已知1xyz xyz =,则x zy x y z++值为 . 【答案】1−或3【分析】此题考查了绝对值,以及有理数的除法,熟练掌握运算法则是解本题的关键.根据已知等式得到||xyz xyz =,确定出x ,y ,z 中负因式有0个或2个,原式利用绝对值的代数意义化简即可得到结果. 【详解】解:由1||xyzxyz =,得到||xyz xyz =,x ∴,y ,z 中有0个或2个负数,当2个都为负数时,原式1111=−−+=−; 当0个为负数时,原式1113=++=.∴1x zy xy z++=−或3 故答案为:1−或320.在学习有理数乘法时,李老师和同学们做了这样的游戏,将2023这个数说给第一位同学,第一位同学将它减去它二分之一的结果告诉第二位同学,第二位同学再将听到的结果减去它的三分之一的结果告诉第三位同学.第三位同学再将听到的结果减去它的四分之一的结果告诉第四位同学,…照这样的方法直到全班48人全部传完,则最后一位同学告诉李老师的正确结果是 . 【答案】202348【分析】根据题意列出算式进行计算即可. 【详解】解:根据题意可得:11112023111123448×−×−×−− ……12347202323448=××××……1202348× 202348=. 故答案为:202348. 三、解答题(本大题共8小题,共70分)21.(本题16分)计算下列各题: (1)()()43772743+−++−; (2)12433−÷−× ;(3)()()32211234−+×−+−;(4)()235363412−+×−. 【答案】(1)50− (2)38(3)6(4)12−【分析】(1)根据有理数的加法法则计算即可; (2)根据有理数的混合运算法则解答即可;(3)根据含有乘方的有理数的混合运算法则解答即可; (4)根据乘法运算律解答即可.本题考查了有理数的混合运算,运算律的应用,熟练掌握法则和预算律是解题的关键. 【详解】(1)解:()()43772743+−++− ()43277743=++−− ()70120=+−50=−.(2)解:12433−÷−×()2433=−×−×236=+ 38=.(3)解:()()32211234−+×−+−()11894=−+×−+129=−−+ 6=.(4)解:()235363412−+×−()()()2353636363412=×−−×−+×− 242715=−+−12=−.22.(本题6分)对于有理数a 、b ,定义新运算:“✞”,a b ab a b ⊗−−. (1)计算:()42⊗−________()24−⊗;()()53−⊗−________()()35−⊗−; 152 −⊗ ________152 ⊗−(填“>”或“=”或“<”); (2)我们知道:有理数的加法运算和乘法运算满足交换律,那么,由(1)计算的结果,你认为这种运算:“✞”是否满足交换律?若满足,请说明理由;若不满足,请举例说明. 【答案】(1)=,=,= (2)满足交换律,理由见解析【分析】本题考查有理数的混合运算,新定义,理解新定义是关键. (1)按照题中新定义的运算进行计算即可作出判断; (2)就一般情况根据新定义进行计算即可.【详解】(1)解:∵()424(2)4(2)10⊗−=×−−−−=−,()24(2)4(2)410−⊗=−×−−−=−; ∴()42(2)4⊗−=−⊗;∵()()53(5)(3)(5)(3)23−⊗−=−×−−−−−=,()()35(3)(5)(3)(5)23−⊗−=−×−−−−−=,∴(5)(3)(3)(5)-⊗-=-⨯-;∵1115557222 −⊗=−×−−−=− ,1115557222⊗−=×−−−−=− ; ∴115522 −⊗=⊗− ; 故答案:=,=,=(2)解:运算:“✞”满足交换律 理由如下:由新定义知:a b ab a b ⊗−−,b a ba b a ⊗−−, ∴a b b a ⊗=⊗,表明运算“✞”满足交换律.23.(本题6分)在数轴上画出表示下列各数的点,并用“<”连接下列各数.0,112,3−,()0.5−−,34−−,133+−.【答案】见解析,()11300.5133234<<−−<+−<−<−−【分析】本题考查了有理数的大小比较,解题的关键是先将所给各数化简,在数轴上表示出各数,再根 【详解】解:()33110.50.5,,334433−−=−−=−+−=− . 画出数轴并在数轴上表示出各数如图:根据数轴的特点从左到右用“<”把各数连接起来为: ()1313300.51342+−<−<−−<<−−<24.(本题8分)如图,在数轴上有A 、B 、C 这三个点.回答:(1)A 、B 、C 这三个点表示的数各是多少?A : ;B : ;C : .(2)A 、B 两点间的距离是 ,A 、C 两点间的距离是 . (3)应怎样移动点B 的位置,使点B 到点A 和点C 的距离相等? 【答案】(1)6−、1、4 (2)7;10(3)点B 向左移动2个单位【分析】本题考查了是数轴,运用数轴上点的移动和数的大小变化规律是左减右加是解答此题的关键. (1)本题可直接根据数轴观察出A 、B 、C 三点所对应的数; (2)根据数轴的几何意义,根据图示直接回答;(3)由于10AC =,则点B 到点A 和点C 的距离都是5,此时将点B 向左移动2个单位即可. 【详解】(1)解:根据图示可知:A 、B 、C 这三个点表示的数各是6−、1、4, 故答案为:6−;1;4.(2)解:根据图示知:AB 的距离是()167−−=;AC 的距离是6410−−=, 故答案为:7;10;(3)解:∵A 、C 的距离是10, ∴点B 到点A 和点C 的距离都是5,∴应将点B 向左移动2B 表示的数为1−,5ABBC ==. 25.(本题8分)“滴滴”司机沈师傅从上午800915:~:在东西方向的江平大道上营运,共连续运载十批乘客.若规定向东为正,向西为负,沈师傅营运十批乘客里程如下:(单位:千米)8636848433+−+−++−−++,,,,,,,,,.(1)将最后一批乘客送到目的地时,沈师傅距离第一批乘客出发地的东面还是西面?距离出发地多少千米?(2)若汽车每千米耗油0.4升,则800915:~:汽车共耗油多少升?(3)若“滴滴”的收费标准为:起步价11元(不超过3千米),超过3千米,超过部分每千米2元.则沈师傅在上午800915:~:一共收入多少元? 【答案】(1)将最后一批乘客送到目的地时,沈师傅在第一批乘客出发地的东面,距离是5千米 (2)800915:~:汽车共耗油21.2升(3)沈师傅在上午800915:~:一共收入156元【分析】本题考查了正数和负数在实际问题中的应用,明确正负数的含义及题中的数量关系,是解题的关键.(1)把记录的数字相加即可得到结果,结果为正则在东面,结果为负则在西面; (2)把记录的数字的绝对值相加,再乘以0.4,即可得答案;(3)先计算起步费总额,再将超过3千米的路程相加,所得的和乘以2,将起步费加上超过3千米的费用总额,即可得答案.【详解】(1)解:∵(8)(6)(3)(6)(8)(4)(8)(4)(3)(3)5++−+++−+++++−+−++++=, ∴将最后一批乘客送到目的地时,沈师傅在第一批乘客出发地的东面,距离是5千米; (2)解:|8||6||3||6||8||4||8||4||3||3|+−+++−+++++−+−++++8636848433=+++++++++ 53=,∴0.45321.2×=(升),∴800915:~:汽车共耗油21.2升. (3)解:∵共营运十批乘客, ∴起步费为:1110110×=(元), 超过3千米的收费总额为:[](83)(63)(33)(63)(83)(43)(83)(43)(33)(33)246−+−+−+−+−+−+−+−+−+−×=(元),∴11046156+=(元),∴沈师傅在上午800915:~:一共收入156元 26.(本题8分)观察下列各式: 第1个等式:11111222−×=−+=−;第2个等式:1111123236−×=−+=−; 第3个等式:11111343412−×=−+=−;…… (1)根据上述规律写出第5个等式: ;(2)第n 个等式: ;(用含n 的式子表示) (3)计算:111111112233420222023−×+−×+−×+⋅⋅⋅⋅⋅⋅+−× .【答案】(1)11111565630−×=−+=− (2)()11111111n n n n n n −×=−+=−+++ (3)20222023−【分析】本题考查了有理数的乘法运算,(1)根据题干,模仿写出第5个等式,即可作答;(2)由(1)以及题干条件,即得第n 个等式:()11111111n n n n n n −×=−+=−+++;(3) 由(2)的结论,先化简再运算,即可作答,掌握第n 个等式:()11111111n n n n n n −×=−+=−+++是解题的关键. 【详解】(1)解:依题意,第5个等式: 11111305656−×=−+=−; (2)解:第1个等式:11111222−×=−+=−; 第2个等式:1111123236−×=−+=−; 第3个等式:11111343412−×=−+=−; 第4个等式:11111454520−×=−+=−; 第5个等式:11111565630−×=−+=−; ……故第n 个等式:()11111111n n n n n n −×=−+=−+++; (3)解:由(2)知第n ()11111111n n n n n n −×=−+=−+++;则111111112233420222023−×+−×+−×+⋅⋅⋅⋅⋅⋅+−×111111112233420222023=−++−++−++⋅⋅⋅⋅⋅⋅+−+111111112022202322334=−+−+−++⋅⋅⋅⋅⋅⋅−+112023=−+ 20222023=−27.(本题8分)阅读下列材料:计算111503412÷−+.解法一:原式11150505050350450125503412=÷−÷+÷=×−×+×=.解法二:原式4312505050630012121212÷−+÷×.解法三:原式的倒数为111503412−+÷111111111113412503504501250300=−+×=×−×+×= . 故原式300=.(1)上述得出的结果不同,肯定有错误的解法,你认为哪个解法是错误的. (2)请你选择两种合适的解法解答下列问题:计算:113224261437−÷−+−【答案】(1)没有除法分配律,故解法一错误; (2)过程见解析,114−.【分析】本题考查了有理数的除法乘法分配律; (1)根据有理数的运算法则进行判断,可得答案;(2)根据有理数的运算顺序,计算原式的倒数,和按照先计算括号内的,最后计算除法,两种方法求解,即可得出答案.【详解】(1)解:没有除法分配律,故解法一错误; (2)解法一:原式的倒数为: 132216143742 −+−÷− , ()132********=−+−×−()()()()13224242424261437=×−−×−+×−−×− 14=−;所以原式114=−; 解法二:原式=17928124242424242 −÷−+−17928124242−+− =−÷1424214=−×114=−. 28.(本题10分)【概念学习】定义新运算:求若干个相同的有理数(均不等于0)的商的运算叫做除方.比加222÷÷,()()()()3333−÷−÷−÷−等,类比有理数的乘方,我们把222÷÷写作2③,读作“2的圈3次方”,()()()()3333−÷−÷−÷−写作()3−④,读作“()3−的圈4次方”.一般地,把n aa a a a ÷÷÷ 个记作:a ⓝ,读作“a 的圈n 次方”.特别地,规定:a a =①.【初步探究】(1)直接写出计算结果:2023=② ;(2)若n 为任意正整数,下列关于除方的说法中,正确的有 ;(横线上填写序号) A .任何非零数的圈2次方都等于1B .任何非零数的圈3次方都等于它的倒数C .圈n 次方等于它本身的数是1或1−D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢?(3)请把有理数()0a a ≠的圈n (3n ≥)次方写成幂的形式:a =ⓝ ;(4)计算:()2111472 −−÷−×− ④⑥⑧. 【答案】(1)1;(2)ABD ;(3)21n a − ;(4)1149− 【分析】(1)根据题意,计算出所求式子的值即可;(2(3)根据题意,可以计算出所求式子的值.(4)根据题意,可以计算出所求式子的值.【详解】解:(1)由题意可得,2023202320231=÷=②,故答案为:1;(2)A .因为()10a a a a =÷=≠②,所以任何非零数的圈2次方都等于1,正确;B .因为()10a a a a a a=÷÷=≠③,所以任何非零数的圈3次方都等于它的倒数,正确; C .圈n 次方等于它本身的数是1或1−,说法错误,()11−=②;D .根据新定义以及有理数的乘除法法则可知,负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数,正确;故答案为:ABD ;(3)21111n a a a a a a a a a a − =÷÷÷÷=⋅⋅= ⓝ,故答案为:21n a −; (4)解:()2114172 −−÷−×− ④⑥⑧ ()()()()711111111967772222− =−÷÷⋅⋅⋅÷−÷−÷−÷−÷−×−÷−÷⋅⋅⋅÷−8个16个 41119647=−−÷×1149=−−4950=−.。
2024-2025学年初中七年级上学期第一次月考数学试题及答案(人教版)
2024-2025学年人教版七年级上册第一次月考数学模拟试卷(范围:第一章~第二章)一、单选题1. 水位上升2米记为2+米,那么水位下降3米记为( )A. 3−米B. 2−米C. 3+米D. 2+米 2. 我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为11800千米,用科学记数法表示为( )A. 51.1810×B. 311.810×C. 211810×D. 41.1810× 3. 如图,数轴上点P 表示的有理数可能是( )A. 1.6−B. 1.4−C. 0.6−D. 0.4− 4. 下列各数中,最小数是( )A. 0B. 153C. ()32−D. 23−5. 在计算11()()23++−时,按照有理数加法法则,需转化成( ) A. 11()23+−B. 1)3+C. 11()23−− D. 1123 −+6. 下列各组数中,互为相反数是( )A. 2与12B. ()21−与1C. 21−与()21−D. 2与|2|− 7. 小明和同学们共买了4种标注质量为450g 的食品各一袋,他们对这4种食品的实际质量进行了检测,用正数表示超过标注质量的克数,用负数表示不足标注质量的克数,检测结果如下表: 食品种类 第一种 第二种 第三种 第四种检测结果 +10 -20 +15 -15则这四种食品中质量最标准的是( )A. 第一种B. 第二种C. 第三种D. 第四种 8. 有理数a ,b 在数轴上的位置如图,那么下列选项正确的是( )的的A. ||||a b −<−B. 0ab >C. 22a b >D. 0a b +>9. 定义一种新运算:*a b ab b =−.例如:1*21220=×−=.则()()4*2*3 −− 的值为( )A. 3−B. 9C. 15D. 2710. 设a 是绝对值最小的数,b 是最小的正整数,c 是最大的负整数,则a 、b 、c 三数之和为( )A. 1−B. 0C. 1D. 2二、填空题 11. 23−的相反数是__________,23−的绝对值是________. 12. 1363−÷×=______. 13. 比较大小:25−______1−(填“>”或“<”). 14. 近似数1.35是由数a 四舍五入得到的,那么数a 的取值范围是________.15. 已知|x |=2,|y |=6,若x +y <0,则x ﹣y =_____.16. 如图,这是一种数值转换机的运算程序,若输入的数为5,则第2021次输出的数是_____.17. 若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4,则22022()a b cd m +−+=__.18. 已知数轴上的点A ,B 表示的数分别为2−,4,P 为数轴上任意一点,表示的数为x ,若点P 到点A ,B 的距离之和为7,则x 的值为 _____.三、解答题19. 已知有理数:-0.5,0,2,122−,( 3.5)−−,2−. (1)把以上各数在下列数轴上用点表示出来:(2)把这些数按照从小到大的顺序排列,并用“<”号连接.20. 计算:(1)()()3996−−−+−;(2)()2023223145−+÷−−−×; (3)115486812 −+×; (4)()()32482233−−−÷×−.21. 阅读下面的解题过程,再解答问题.因为a ÷b 与b ÷a 互为倒数.所以在计算123724348 −÷−+的值时可采用下列方法: 解:因237134824 −+÷−=()23724348 −+×−=()()()237-24--24+-24348××× =-16+18-21=-19, 所以,原式=119− .根据上述方法,计算:151176061512 −÷−−. 22. 某足球守门员练习折返跑,从初始位置出发,向前跑记作正数,向后跑记作负数,他练习记录如下(单位:m):+5,-3,+10,-8,-6,+13,-10(1)守门员最后否回到了初始位置?(2)守门员离开初始位置达到10m 以上(包括10m)的次数是多少?23. 观察下列三行数:2,-4, 8,-16, 32,-64,… ①0,-6, 6,-18, 30,-66,… ②-1, 2,-4, 8,-16, 32,… ③(1)第①行的第n 个数是_______(直接写出答案,n 为正整数)(2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第8个数,计算这三个数的和.24. 在庆祝新中国72周年华诞的重要时刻,电影《长津湖》上映可谓恰逢其时、意义重大.电影《长津为的是湖》讲述了中国人民志愿军第9兵团某部穿插七连参加长津湖战役的过程,展现了人民军队炽烈的爱国情怀、对党和人民的无比忠诚,生动诠释了伟大的抗美援朝精神.昆明市9月30日该电影的售票量为1.3万张,10月1日到10月7日售票的变化如下表(正数表示售票量比前一天多,负数表示售票量比前一天少):日期1日2日3日4日5日6日7日售票量的变化单位(万张)+0.6 +0.1 −0.3 −0.2 0.4 −0.2 +0.1(1)这7天中,售票量最多的是10月日,售票量最少的是10月日;(2)若平均每张票价为60元,这7天昆明市《长津湖》的票房共多少万元?2024-2025学年人教版七年级上册第一次月考数学模拟试卷(范围:第一章~第二章)一、单选题1. 水位上升2米记2+米,那么水位下降3米记为( )A. 3−米B. 2−米C. 3+米D. 2+米 【答案】A【解析】【分析】本题考查正负数的意义,根据规定方向为正相反方向为负直接求解即可得到答案;【详解】解:∵上升2米记为2+米,∴下降3米记为3−米,故选:A .2. 我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为11800千米,用科学记数法表示为( )A. 51.1810×B. 311.810×C. 211810×D. 41.1810× 【答案】D【解析】【分析】本题考查了科学记数法,根据科学记数法:10n a ×(110a ≤<,n 为正整数),先确定a 的值,再根据小数点移动的数位确定n 的值即可解答,根据科学记数法确定a 和n 的值是解题的关键.【详解】解:411800 1.1810=×,故选:D .3. 如图,数轴上点P 表示的有理数可能是( )A. 1.6−B. 1.4−C. 0.6−D. 0.4−【答案】A【解析】【分析】根据点A 在数轴上的位置,先确定A 的大致范围,再确定符合条件的数.【详解】解:因为点A 在−2与1−之间,且靠近−2,所以点A 表示的数可能是 1.6−.故选:A .为【点睛】本题考查了数轴上的点表示有理数.题目比较简单.原点左边的点表示负数,原点右边的点表示正数.4. 下列各数中,最小的数是( )A. 0B. 153C. ()32−D. 23−【答案】D【解析】【分析】本题考查了有理数的乘方、有理数的比较大小,先计算出()32−、23−,再根据有理数的大小比较法则:正数大于0,负数小于0,正数大于负数,两个负数进行比较,绝对值大的反而小,进行比较即可得出答案,熟练掌握有理数的大小比较法则是解此题的关键.【详解】解:()328−=−,239−=−, 88−= ,99−=,98>,()32305321∴−<<−<,故选:D .5. 在计算11()()23++−时,按照有理数加法法则,需转化成( )A. 11()23+−B. 1)3+C. 11()23−−D. 1123 −+ 【答案】A【解析】【分析】根据有理数的加法法则计算即可求解. 【详解】解:1123 ++− =1123 +− , 故选:A .【点睛】本题考查了有理数的加法,关键是熟练掌握异号两数相加的计算法则.6. 下列各组数中,互为相反数的是( )A. 2与12B. ()21−与1C. 21−与()21−D. 2与|2|− 【答案】C【解析】【分析】本题主要考查相反数以及绝对值,根据相反数以及绝对值的定义解决此题,熟练掌握相反数以及绝对值的定义是解决本题的关键.【详解】解:A 、2与12互为倒数,故此选项不符合题意;B 、()211−= ,()21∴−与1相等,故此选项不符合题意; C 、211−=− ,()211−=,∴21−与()21−互为相反数,故此选项符合题意; D 、|2|2−=,2∴与|2|−相等,故此选项不符合题意; 故选:C .7. 小明和同学们共买了4种标注质量为450g 的食品各一袋,他们对这4种食品的实际质量进行了检测,用正数表示超过标注质量的克数,用负数表示不足标注质量的克数,检测结果如下表: 食品种类 第一种 第二种 第三种 第四种检测结果 +10 -20 +15 -15则这四种食品中质量最标准的是( )A. 第一种B. 第二种C. 第三种D. 第四种 【答案】A【解析】【分析】求出各种高于或低于标准质量的绝对值,根据绝对值的大小做出判断.【详解】解:∵|+10|<|-15|=|+15|<|20|,∴第1种最接近标准质量.故选:A .【点睛】本题主要考查正数、负数的意义,理解绝对值的意义是正确判断的前提.8. 有理数a ,b 在数轴上的位置如图,那么下列选项正确的是( )A. ||||a b −<−B. 0ab >C. 22a b >D. 0a b +>【答案】A【解析】【分析】根据原点左边的数为负数,原点右边的数为正数.从图中可以看出01a <<,1b <−,||||b a >,再选择即可.【详解】解:由数轴可得:01a <<,1b <−,||||b a >,∴||||a b <−,故A 符合题意;0ab <,故B 不符合题意;22a b <,故C 不符合题意;0a b +<,故D 不符合题意;故选:A .【点睛】本题考查了数轴,绝对值和有理数的运算,数轴上右边表示的数总大于左边表示的数. 9. 定义一种新运算:*a b ab b =−.例如:1*21220=×−=.则()()4*2*3 −− 的值为( )A. 3−B. 9C. 15D. 27【答案】C【解析】【分析】先求出()2*3−值,再计算()()4*2*3 −− 即可.【详解】解:∵*a b ab b =−,∴()2*3−=()()233×−−−=63−+=3−,∴()()4*2*3 −−=()()4*3−−=()()()433−×−−−=123+=15.故选:C .【点睛】本题考查了新定义下的有理数运算,熟练掌握运算法则是解题的关键.10. 设a 是绝对值最小的数,b 是最小的正整数,c 是最大的负整数,则a 、b 、c 三数之和为()A. 1−B. 0C. 1D. 2【答案】B的【分析】绝对值最小的数是0,最小的正整数是1,最大的负整数是1−,依此可得a b c 、、,再相加可得三数之和.【详解】解:由题意可知:011a b c ===−,,,∴()0110a b c ++=++−=.故选:B .【点睛】本题主要考查了有理数的加法,此题的关键是知道绝对值最小的数是0,最小的正整数是1,最大的负整数是1−.二、填空题 11. 23−的相反数是__________,23−的绝对值是________. 【答案】 ①. 23−②. 23 【解析】【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据负数的绝对值是它的相反数,可得一个负数的绝对值. 【详解】解:2233−=,23的相反数是23−,23−的绝对值是23. 故答案为(1)23−;(2)23. 【点睛】本题考查了相反数、绝对值的定义.a 的相反数是a −,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0. 12. 1363−÷×=______. 【答案】16− 【解析】【分析】根据有理数的乘除法运算即可. 【详解】解:原式111=236−×=−, 故答案为:16−. 【点睛】本题主要考查有理数的乘除运算,按照乘除为同级运算从左至右求解.13. 比较大小:25−______1−(填“>”或“<”).【解析】【分析】本题考查了有理数的大小比较;根据两个负数比较大小,绝对值大的反而小可得答案. 【详解】解:∵215−<−, ∴215−>−, 故答案为:>.14. 近似数1.35是由数a 四舍五入得到的,那么数a 的取值范围是________.【答案】1.345≤a <1.355【解析】【分析】根据近似数1.35精确到百分位,是从千分位上的数字四舍五入得到的,若干分位上的数字大于或等于5,则百分位上的数字为4;若千分位上的数字小于5,则百分位上的数字为5,即可得出答案.【详解】解:∵近似数1.35是由数a 四舍五入得到的,∴数a 的取值范围是1.345≤a <1.355;故答案为:1.345≤a <1.355.【点睛】本题考查了近似数,用到的知识点是近似数,一个数最后一位所在的数位就是这个数的精确度. 15. 已知|x |=2,|y |=6,若x +y <0,则x ﹣y =_____.【答案】8或4##4或8【解析】【分析】先根据绝对值的含义求解,x y 的值,再根据0,x y +< 分两种情况讨论即可.【详解】解:∵|x |=2,|y |=6,∴x =±2,y =±6,∵x +y <0,∴当x =2,y =﹣6时,x ﹣y =2+6=8;当x =﹣2,y =﹣6时,x ﹣y =﹣2+6=4;故答案为:8或4.【点睛】本题考查的是绝对值的含义,有理数加法的符号的确定,代数式的值,根据绝对值的含义求解,x y 的值,再分类是解本题的关键.16. 如图,这是一种数值转换机的运算程序,若输入的数为5,则第2021次输出的数是_____.【答案】4【解析】【分析】由程序图可得第一次输出的数为8,第二次输出的数为4,第三次输出的数为2,第四次输出的数为1,第五次输出的数为4,由此可得规律,进而问题可求解.【详解】解:由程序图可得第一次输出的数为5+3=8,第二次输出的数为1842×=,第三次输出的数为1422×=,第四次输出的数为1212×=,第五次输出的数为1+3=4,第六次输出的数为1422×=,……;由此可得规律为从第二次开始每三次一循环, ∴()202113673.......1−÷=, ∴第2021次输出的数是4;故答案为4.【点睛】本题主要考查有理数的运算及数字规律问题,解题的关键是根据程序图得到数字的一般规律即可.17. 若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4,则22022()a b cd m +−+=__. 【答案】15【解析】【分析】根据题意得到0a b +=,1cd =,216m =,代入代数式计算即可.【详解】解:a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4,0a b ∴+=,1cd =,216m =,22022()a b cd m ∴+−+20220116=×−+0116=−+15=,故答案为:15.【点睛】此题考查了代数式的求值,熟练掌握相反数、倒数、绝对值等知识是解题的关键.18. 已知数轴上的点A ,B 表示的数分别为2−,4,P 为数轴上任意一点,表示的数为x ,若点P 到点A ,B 的距离之和为7,则x 的值为 _____.【答案】 2.5−或4.5【解析】【分析】根据数轴上两点间的距离公式列出方程,求出方程的解即可得到x 的值.【详解】解:根据题意得:|x +2|+|x -4|=7,当x <-2时,化简得:-x -2-x +4=7,解得:x =-2.5;当-2≤x <4时,化简得:x +2-x +4=7,无解;当x ≥4时,化简得:x +2+x -4=7,解得:x =4.5,综上,x 的值为-2.5或4.5.故答案为:-2.5或4.5.【点睛】此题考查了数轴,弄清数轴上两点间的距离公式是解本题的关键.三、解答题19. 已知有理数:-0.5,0,2,122−,( 3.5)−−,2−. (1(2)把这些数按照从小到大的顺序排列,并用“<”号连接.【答案】(1)见解析 (2)()1220.502 3.52−<−<−<<<−− 【解析】【分析】(1)利用数轴上表示有理数的方法表示即可.(2)根据数轴上有理数的特点即可求解.【小问1详解】解:0.5−,0,2,122−,( 3.5)−−,2−在数轴上表示为:【小问2详解】由(1)数轴可得:()1220.502 3.52−<−<−<<<−−. 【点睛】本题考查了用数轴表示有理数及利用数轴比较有理数的大小,熟练掌握数轴上有理数的特点:左边的数比右边小是解题的关键.20. 计算:(1)()()3996−−−+−;(2)()2023223145−+÷−−−×; (3)115486812 −+×; (4)()()32482233−−−÷×−.【答案】(1)3−(2)27−(3)22(4)11【解析】【分析】(1)根据有理数加减运算法则计算即可求解;(2)根据有理数的运算法则计算即可求解;(3)利用有理数的乘法分配律进行计算即可求解;(4)根据有理数的运算法则计算即可求解;本题考查了有理数的混合运算,掌握有理数的运算法则和运算律是解题的关键.【小问1详解】解:原式3996=−+− 36=-,3=−;【小问2详解】解:原式()43145=−+÷−−×()4320=−+−−,720=−−,27=−;的【小问3详解】 解:原式1154848486812=×−×+× 8620=−+,220=+,22=;【小问4详解】解:原式()168398=−−−×× ()1639=−−−×,()1627=−−−,1627=−+,11=.21. 阅读下面的解题过程,再解答问题.因为a ÷b 与b ÷a 互为倒数.所以在计算123724348 −÷−+的值时可采用下列方法: 解:因为237134824 −+÷−=()23724348 −+×−=()()()237-24--24+-24348××× =-16+18-21=-19, 所以,原式=119− . 根据上述方法,计算:13511760461512 −÷+−−. 【答案】116−【解析】 【分析】仿照阅读材料中的方法求出所求即可.【详解】解:111()()41535761260+−−÷− 11()(60)415357126=+−−×− 45504435=−−++16=−, 则13511711660461512 −÷+−−=−. 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22. 某足球守门员练习折返跑,从初始位置出发,向前跑记作正数,向后跑记作负数,他的练习记录如下(单位:m):+5,-3,+10,-8,-6,+13,-10(1)守门员最后是否回到了初始位置?(2)守门员离开初始位置达到10m 以上(包括10m)的次数是多少?【答案】(1)守门员最后没有回到初始位置;(2)2次【解析】【分析】(1)根据题意可把记录的数据进行相加,然后问题可求解;(2)根据题意分别得出每次离初始位置的距离,进而问题可求解.【详解】解:(1)由题意得:(+5)+(-3)+(+10)+(-8)+(-6)+(+13)+(-10)=1(m).答:守门员最后没有回到初始位置.(2)第一次离开初始位置的距离为5m ,第二次离开初始位置的距离为5-3=2m ,第三次离开初始位置的距离为2+10=12m ,第四次离开初始位置的距离为12-8=4m ,第五次离开初始位置的距离为4-6=-2m ,第六次离开初始位置的距离为-2+13=11m ,第七次离开初始位置的距离为11-10=1m ,∴守门员离开初始位置达到10m 以上(包括10m)的次数是2次.【点睛】本题主要考查有理数加减混合运算的应用,熟练掌握有理数的加减运算是解题的关键. 23. 观察下列三行数:2,-4, 8,-16, 32,-64,… ①0,-6, 6,-18, 30,-66,… ②-1, 2,-4, 8,-16, 32,… ③(1)第①行的第n 个数是_______(直接写出答案,n 为正整数)(2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第8个数,计算这三个数的和.【答案】(1)2n −−()(2)第②行的数是第①行相对应的数减2;第③行的数是第①行相对应的数乘以0.5−()(3)每行的第8个数的和是386−【解析】【分析】(1)第①行的每个数是2−的乘方的相反数,其幂指数为数的个数n ;(2)将第①行各项的数减2即得第②行的数,第③行数等于第①行数相应的数乘以0.5−(),即可求解;(3)分别找出每行第8个数,进而计算这三个数的和即可.【小问1详解】解:首先2,4,8,16 很显然后者是前者2倍.由各数符号是交替出现,故考虑到数值的变化可以用(2)n −−表示.【小问2详解】第②行数等于第①行数相应的数减去2,第③行数等于第①行数相应的数乘以0.5−(); 【小问3详解】解:每行的第8个数的和是()()()()88822220.5 −−+−−−+−−×−()2562582560.5=−−−×−386=−.【点睛】本题主要考查了探索数字变化规律,找规律时,善于发现数字之间的共同点,或者是隐藏关系,培养学生的数感是解题的关键.24. 在庆祝新中国72周年华诞的重要时刻,电影《长津湖》上映可谓恰逢其时、意义重大.电影《长津湖》讲述了中国人民志愿军第9兵团某部穿插七连参加长津湖战役的过程,展现了人民军队炽烈的爱国情怀、对党和人民的无比忠诚,生动诠释了伟大的抗美援朝精神.昆明市9月30日该电影的售票量为1.3万的张,10月1日到10月7日售票的变化如下表(正数表示售票量比前一天多,负数表示售票量比前一天少):日期1日2日3日4日5日6日7日售票量的变化单位(万张)+0.6 +0.1 −03 −0.2 0.4 −0.2 +0.1(1)这7天中,售票量最多的是10月日,售票量最少的是10月日;(2)若平均每张票价为60元,这7天昆明市《长津湖》的票房共多少万元?【答案】(1)2;4 (2)750万元【解析】【分析】(1)把表格中的数据相加,即可得出结论;(2)根据表格得出1日到7日每天的人数,相加后再乘以60即可得到结果.【小问1详解】10月1日的售票量为:1.3+0.6=1.9(万张);10月2日的售票量为:1.9+0.1=2(万张);10月3日的售票量为:2-0.3=1.7(万张);10月4日的售票量为:1.7-0.2=1.5(万张);10月5日的售票量为:(万张);10月6日的售票量为:1.9-0.2=1.7(万张);10月7日的售票量为:1.7+0.1=1.8(万张);所以售票量最多的是10月2日,售票量最少的是10月4日;故答案为:2;4;【小问2详解】由题意得,7天的售票量(单位:万张)分别为:1.9,2.0,1.7,1.5,1.9,1.7,1.8则7日票房:60(1.9+2.0+1.7+1.5+1.9+1.7+1.8)10000=7500000××(元)答:这7天昆明《长津湖》票房共750万元【点睛】本题考查了正数和负数以及有理数的混合运算,掌握正数和负数表示相反意义的量是解答本题的关键..。
2024年粤人版七年级数学下册月考试卷465
2024年粤人版七年级数学下册月考试卷465考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏一、选择题(共7题,共14分)1、用一个平面去截一个正方体,截面不可能是()A. 四边形B. 五边形C. 六边形D. 七边形2、为了奖励学习有进步的学生,老师请小杰帮忙到文具店买了20本练习簿和10支水笔,共花了36元.已知每支水笔的价格比每本练习簿的价格贵1.2元,如果设练习簿每本为x元,水笔每支为y元,那么下面列出的方程组中正确的是()A. {20x+10y=36x−y=1.2B. {20x+10y=36y−x=1.2C. {10x+20y=36x−y=1.2D. {10x+20y=36y−x=1.23、两条直线相交构成四个角;给出下列条件:①有三个角都相等;②有一对对顶角互补;③有一个角是直角;④有一对邻补角相等;其中能判定这两条直线垂直的有()A. 4个B. 3个C. 2个D. 1个4、函数y=x−1+3中自变量x的取值范围是()A. x>1B. x≥1C. x≤1D. x≠15、下列命题是真命题的有()①若a2=b2则a=b②内错角相等;两直线平行.③若ab是有理数,则|a+b|=|a|+|b|④如果∠A=∠B那么∠A与∠B是对顶角.A. 1个B. 2个C. 3个D. 4个6、已知4a5b2和是同类项.则代数式12m-24的值是()A. -3B. -4C. -5D. -67、据杭州市统计局公布的第六次人口普查数据,本市常住人口870.04万人,其中870.04万人用科学记数法表示为()A. 8.7004×105人B. 8.7004×106人C. 8.7004×107人D. 0.87004×107人评卷人得分二、填空题(共7题,共14分)8、在函数y=中,自变量x的取值范围是____.9、已知-x m+3y6与3x5y2n是同类项,则m n的值是 ______ .10、某一电子昆虫落在数轴上的某点K0,从K0点开始跳动,第1次向左跳1个单位长度到K1,第2次由K1向右跳2个单位长度到K2,第3次由K2向左跳3个单位长度到K3,第4次由K3向右跳4个单位长度到K4依此规律跳下去,当它跳第100次落下时,电子昆虫在数轴上的落点K100表示的数恰好是2013,则电子昆虫的初始位置K0所表示的数是 ______ .11、已知和互为相反数,且x-y+4的平方根是它本身,则x=____,y=____.12、(2014秋•达州月考)使图中平面展开图折叠成正方体后,相对面上两个数互为相反数,则x=____,y=____.13、(2013春•西昌市校级月考)如图:想在河堤两岸搭建一座桥,图中搭建方式中,最短的是____,理由____.14、写出一个点的坐标,其积为-10,且在第二象限为______。
七年级下第二次月考数学试题及答案
七年级第二次月水平测试数学试卷时间100分钟 满分120分一、选择题(每题3分,共30分)1.有下列长度的三条线段,能组成三角形的是( )A 、3cm 4cm 8cm 、、 B 、4cm 4cm 8cm 、、 C 、5cm 6cm 10cm 、、 D 、2cm 5cm 10cm 、、 2.已知有长为1、2、3的线段若干条,任取其中三条构造三角形,则最多能构成形状或大小不同的三角形个数是( )A 、5B 、6C 、7D 、83.下列说法①任意一个三角形的三条高至少有一条在此三角形内部;②一个多边形从一个顶点共引出三条对角线,此多边形一定是五边形;③一个三角形中,至少有一个角不小于060;④以a 为底的等腰三角形其腰长一定大于2a ;⑤以cb a ,,为边,且c b a >+能构成一个三角形 ;⑥一个多边形增加一条边,那么它的外角均增加0180.其中正确的是( )A 、①②③④B 、①③④⑤C 、③④⑤⑥D 、①②③⑥4.如图所示,下列图案是我国几家银行的标志,其中不是轴对称图形的有( )5.下列结论错误的是( )A 、等边三角形是轴对称图形B 、轴对称图形的对应边相等,对应角相等C 、成轴对称的两条线段必在对称轴同侧D 、成轴对称的两个图形的对应点的连线被对称轴垂直平分6.两个图形关于某直线对称,对称点一定是( )A 、这条直线的两旁B 、这条直线的同旁C 、这条直线上D 、这条直线两旁或这条直线上7.甲、乙、丙、丁四名同学在讨论数学问题时作了如下发言:甲:因为三角形中最多有一个钝角,因此三角形的外角之中最多只有一个锐角;乙:在求n 个角都相等的n 边形的一个内角的度数时,可用结论: 180°-n 1×360°; 丙:多边形的内角和总比外角和大;丁:n 边形的边数每增加一条,对角线就增加n 条.四位同学的说法正确的是( ).A 、甲、丙B 、乙、丁C 、甲、乙D 、乙、丙8.如果三角形的一个外角与它不相邻的两内角的和为180º,那么与这个外角相邻的内角等于( )A 、30ºB 、60ºC 、90ºD 、120º9.一个多边形的内角和比它的外角和的3倍少0180,这个多边形的边数是( )A 、5条B 、6条C 、 7条D 、8条10.下列正多边形的组合中,能够铺满地面的是( )A 、正八边形和正方形B 、正五边形和正八边形C 、正六边形和正三角形D 、正五边形和正六边形二、填空题(每题3分,共30分)11.把一张正方形纸沿两对角线对折两次,形成了四个同样大小的三角形.12.工人师傅在做完门框后.为防小变形常常像图1中所示的那样上两条斜拉的木条(即图1中的AB ,CD ),这样做根据的数学道理是 .13.如图2 ,⊿ABC 中,AD 是∠BAC 的平分线,AE 是BC 边上的高,已知∠B=47º∠C=73º,则∠DAE= .14.如图3,AD 是△ABC 的外角平分线,∠B=30º,∠DA E=55º,则∠ACD= .15.等腰三角形的周长为12,则腰长a 的取值范围是 .16.一个多边形减少一条边,它的内角和减少 度,如果一个多边形减少一条边后,内角和为1260度,那么原来的多边形的边数为 .17.n边形的内角和等于t边形的外角和的2倍,则n= .18.已知一个多边形的边数恰好是从一个顶点出发的对角线条数的2倍,则这个多边形的边数是,内角和是.19.一个多边形的每一个内角都相等,并且它的一个外角与一个内角之比为2:3,则这个多边形是边形.20.如图4三、解答题(7个小题,共60分)21.(10分)如图,四边形ABCD中,∠A=∠C=90°,B E平分∠ABC,DF平分∠ADC,试问BE与DF平行吗?为什么?22.(10分)如图,∠ACD是△ABC的一个外角,∠ABC和∠ACD的平分线BE、CE交于一点E,试说明∠A=2∠E.23.(9分)过m边形的一个顶点有8条对角线,n边形没有对角线,p边形有p条对角线,试求n( 的值.pm)24.(8分)已知等腰三角形的周长为28厘米,①底边长和腰长之比为3:2,求各边长;②底边比腰小2厘米,求各边长.25、(6分)请用1个等腰三角形,2个长方形,3个圆设计一个轴对称图形,并用简炼的文字说明你的创意。
2024年沪科新版七年级数学上册月考试卷262
2024年沪科新版七年级数学上册月考试卷262考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共8题,共16分)1、小明根据下列语句,分别画出了图形(a)、(b);(c)、(d)并将图形的标号填在了相应的“语句”后面的横线上;其中正确的是()①直线l经过点A、B、C三点,并且点C在点A与B之间②点C在线段AB的反向延长线③点P是直线a外一点,过点P的直线b与直线a相交于点Q④直线l、m、n相交于点DA. ①、②、③、④B. ①、②、④C. ①、③、④D. ②、③2、下列各式①m ②x+2=7 ③2x+3y ④a>3 ⑤中,整式的个数有()A. 1个B. 2个C. 3个D. 4个3、下列运算中不正确的是()A. -2x2(x+5y)=-2x3+10x2yB. x(x-3)=x2-3xC. (3x2+x+1)4x=12x3+4x2+4xD.4、如图;AD;BC是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O的路线匀速运动.设∠APB=y (单位:度),那么y与点P运动的时间x(单位:秒)的关系图是()A.B.C.D.5、下列语句中,假命题的是()A. 对顶角相等B. 若直线a、b、c满足b∥a,c∥a,那么b∥cC. 两直线平行,同旁内角互补D. 互补的角是邻补角6、下列计算中正确的是()A. (-5)-(-3)=-8B. (+5)-(-3)=2C. (-5)-(+3)=-8D. (-5)-(+3)=27、如图,AB∥EF,∠C=90°,则α、β、γ的关系是()A. β+γ-α=90°B. α+β+γ=180°C. α+β-γ=90°D. β=α+γ8、【题文】估算的值是在().A. 和之间B. 和之间C. 和之间D. 和之间评卷人得分二、填空题(共7题,共14分)9、水位升高3米时水位变化记作+3米,水位下降5米时水位变化记作____米.10、在实数:1,-,,,π,3.1313313331 (两个1之间一次多一个3)中,无理数有____个.11、若3y3与(n-2)xy1-2m是同类项,则m+n=____.12、长度相等而粗细不同的两支蜡烛,其中一支可燃2小时,另一支可燃3小时,将这两支蜡烛同时点燃,当余下的长度中,一支是另一支的2倍时,蜡烛点燃了____小时.13、现规定一种新的运算,那么时,x=____.14、写出一个大于-的数是____.15、【题文】如图,在等腰中,点是底边上一个动点,分别是的中点.若的最小值是2,则周长是____.评卷人得分三、判断题(共9题,共18分)16、3a4•(2a2-2a3)=6a8-6a12.____.(判断对错)17、-a3的相反数是a3.____.(判断对错)18、如果两个数a、b满足|a|=|b|,那么a=b.____.(判断对错)19、一元一次方程有且只有一个解.____.20、﹣x2(2y2﹣xy)=﹣2xy2﹣x3y.________.(判断对错)21、互为相反数的两个数的积必为负数.____.(判断对错)22、线段AB和线段BA是同一条线段.____.(判断对错)23、判断:过直线上一点不存在直线与已知直线垂直. ()24、有命题“若x=y,则x2=y2”的逆命题是个假命题.评卷人得分四、证明题(共4题,共32分)25、如图,EF∥AD,∠1=∠2.求证:DG∥AB.26、如图,在△ABC中,∠B=∠C,D、E、F分别在AB、BC、AC上,且BD=CE,∠DEF=∠B,问:DE和EF是否相等?并说明理由.27、已知,AB∥CD,∠A=∠C,说明AD∥BC的理由.28、如图;已知AC平分∠BAD,CF⊥AD于F,CE⊥AB于E,DC=BC.求证:△CFD≌△CEB.评卷人得分五、解答题(共2题,共20分)29、运用乘法公式计算:(1)103×97(2)1022.30、某车间全体工人要完成甲、乙两项任务,甲任务的工作量是乙任务的倍.上午做甲任务的人数是做乙任务的人数的4倍,下午甲任务的工人占总人数的.一天下来,甲任务已完成,乙任务还需5名工人再做一天,求该车间工人的总人数.(工人工作效率一样)参考答案一、选择题(共8题,共16分)1、B【分析】【分析】根据直线是向两方无限延伸、射线是向一方无限延伸和线段的定义分析.【解析】【解答】解:①直线l经过点A、B、C三点,并且点C在点A与B之间正确;②点C在线段AB的反向延长线正确;③点P是直线a外一点,过点P的直线b与直线a相交于点Q 图中没有P点,错误;④直线l、m、n相交于点D 正确;故选B2、B【分析】【分析】单项式和多项式统称为整式.【解析】【解答】解:①m是单项式;属于整式;②x+2=7是方程;不属于整式;③2x+3y是多项式;属于整式;④a>3是不等式;不属于整式;⑤是分式;不属于整式.综上所述;整式的个数是2个.故选:B.3、A【分析】【分析】A;利用单项式乘多项式法则计算得到结果;即可作出判断; B;利用单项式乘多项式法则计算得到结果;即可作出判断;C;利用单项式乘多项式法则计算得到结果;即可作出判断;D、利用完全平方公式展开得到结果,即可作出判断.【解析】【解答】解:A、-2x2(x+5y)=-2x3-10x2y;本选项错误;B、x(x-3)=x2-3x;本选项正确;C、(3x2+x+1)4x=12x3+4x2+4x;本选项正确;D、(a-2b)2= a2-2ab+4b2;本选项正确;故选A4、B【分析】【解答】解:(1)当点P沿O→C运动时;当点P在点O的位置时;y=90°;当点P在点C的位置时;∵OA=OC;∴y=45°;∴y由90°逐渐减小到45°;(2)当点P沿C→D运动时;根据圆周角定理;可得。
人教版数学七年级第一次月考答案
七年级数学试题(答案)
一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给的四个选项中,只有一项是符合题目要求的.
1——5 CACBA6——10ADDBA
二、填空题(本大题共6小题,每小题4分,共24分)
11.答案为 12.【答案】2,
13.答案为:2614.答案为:百
15.【答案】116.【答案】①④⑤
三、解答题(本大题共6小题,共66分)
17.(14分)
【解析】
(1)
(2分)
;(1分)
(2)
(2分)
;(1分)
(3)
(3分)
;(1分)
(4)
(3分)
.(1分)
18.(10分)
(5分)
在数轴上表示为:
(3分)
由数轴可知: .(2分)
19.(7分)
【解析】(1)故答案为:<;>;<.(3分)
(2)∵a<0,c﹣a>0,b+c<0,
∴ .(4分)
20.(9分)
【解析】(1) .
故这10袋小麦总计超过 ;(4分)
(2) (元 .
故10袋小麦一共可以卖2263.5元来自(5分)21.(12分)
【解析】(1)4,1(2分)
(2)5, (2分)
(3)这样的整数点有 , ,0,1,2,3,4,5(4分)
(4) 表示数轴上有理数 所对应的点到 的距离和到2的距离的和,
则当 时, 的值最小为5(4分)
22.(14分)
【解析】(1)答案为 (3分)
(2)
(3分)
(2分)
(3)
(4分)
.(2分)
北京师范大学附属实验中学2023-2024学年七年级下学期月考数学试题(含答案)
北师大实验中学2023—2024学年度第二学期初一数学阶段练习试卷说明:1.本试卷考试时间为90分钟,总分数为110分.2.本试卷共7页,四道大题,26道小题.3.请将答案都写在答题纸上.4.一律不得使用涂改液及涂改带,本试卷主观试题铅笔答题无效.5.注意保持卷面整洁,书写工整.A 卷一、选择题(每小题3分,共24分,在每小题给出的四个选项中,只有一个选项符合题意)1.的立方根是()A .2 B . C .4 D .2.通过平移图中的吉祥物“海宝”得到的图形是()A . B . C . D .3中,无理数是( )ABC .3.1415D .4.如图,点E ,B ,C ,D 在同一条直线上,,则的度数是( )A .B .C .D .5.下列说法正确的是()A .经过一点有且只有一条直线与已知直线平行;8-2-4-237237,50A ACF DCF ∠=∠∠=︒ABE ∠50︒130︒135︒150︒B .直线外一点到这条直线的垂线段,叫做点到直线的距离;C .“相等的角是对顶角”是真命题;D .同一平面内,不相交的两条直线是平行线.6.下列式子正确的是()ABC .D .7.如图,两直线平行,则().A . B . C .D .8.如图,如果将图中任意一条线段沿方格线的水平或竖直方向平移1格称为“1步”,那么通过平移要使图中的3条线段首尾相接组成一个三角形,最少需要()A .4步 B .5步 C .6步 D .7步二、填空题:(每小题2分,共16分)9.已知是方程的解,则k 的值是__________.10.如图,直线交于点平分,则__________°.11.对于命题“若,则”,举出能说明这个命题是假命题的一组a ,b 的值,则__________,__________.12.如图,直径为1个单位长度的圆从点A 沿数轴向右滚动(无滑动)一周到达点B ,则的长度为3=±2=-2=4=AB CD 、123456∠+∠+∠+∠+∠+∠=630︒720︒800︒900︒42x y =⎧⎨=-⎩4y kx =+,AB CD ,O OE ,123BOC ∠∠=︒AOD ∠=a b >22a b >a =b =AB__________;若点A 对应的数是,则点B 对应的数是__________.13.已知,则的值是__________.14.如图,在长为50米,宽为30米的长方形地块上,有纵横交错的几条小路,宽均为1米,其它部分均种植花草,则种植花草的面积为__________平方米.15.如果与的两边分别垂直,比的2倍少,则的度数是__________.16.如图,直线,直线l 与直线相交于点E ,F ,点P 是射线上的一个动点(不包括端点E ),将沿折叠,使顶点E 落在点Q 处.若,点Q 恰好落在其中一条平行线上,则的度数为__________.备用图三、解答题(共60分)17.(本题8分)计算:(1(218.(本题10分)(1) (2)19.(本题6分)如图,过三角形的顶点B 画直线,过点C 画的垂线段.1-2|2|(25)0x y x y -++-=x y -α∠β∠α∠β∠42︒α∠AB CD ∥,AB CD EA EPF △PF 52PEF ∠=︒EFP ∠-26x y x y =⎧⎨-=⎩2207441x y x y ++=⎧⎨-=-⎩ABC BE AC ∥AB CF20.(本题8分).如图,的平分线交于点F ,交的延长线于点.求证:.请将下面的证明过程补充完整:证明:,∴__________.(理由:__________)平分,∴__________=__________..,.∴____________________.(理由:__________).(理由:__________)21.(本题8分)已知:如图,四边形中,为对角线,点E 在边上,点F 在边上,且.(1)求证:;(2)若平分,,求的度数.22.(本题7分)列方程组解应用题学校计划在某商店购买秋季运动会的奖品,若买5个篮球和10个足球需花费1150元,若买9个篮球和6个足球需花费1170元.(1)篮球和足球的单价各是多少元?,AD BC BAD ∠∥CD BC ,E CFE E ∠=∠180B BCD ∠+∠=︒AD BC ∥E =∠AE BAD ∠BAE E ∴∠=∠CFE E ∠=∠ CFE BAE ∴∠=∠∥180B BCD ∴∠+∠=︒ABCD ,AD BC AC ∥BC AB 12∠=∠EF AC ∥CA ,50BCD B ∠∠=︒120D ∠=︒BFE ∠(2)实际购买时,正逢该商店进行促销,所有体育用品都按原价的八折优惠出售,学校购买了若干个篮球和足球,恰好花费1760元,请直接写出学校购买篮球和足球的个数各是多少.23.(本题6分)已知有序数对及常数k ,我们称有序数对为有序数对的“k 阶结伴数对”.如的“1阶结伴数对”为,即.(1)有序数对的“3阶结伴数对”为__________;(2)若有序数对的“2阶结伴数对”为,求a ,b 的值;(3)若有序数对的“k 阶结伴数对”是它本身,则a ,b 满足的等量关系是__________,此时k 的值是__________.24.(本题7分)如图,已知线段,点C 是线段外一点,连接,.将线段沿平移得到线段.点P 是线段上一动点,连接.图1 图2 备用图(1)依题意在图1中补全图形,并证明:;(2)过点C 作直线,在直线l 上取点M ,使.①当时,在图2中画出图形,并直接用等式表示与之间的数量关系;②在点P 运动的过程中,当点P 到直线l 的距离最大时,的度数是__________(用含的式子表示)B 卷四、探究题(本题共10分)25.一副三角板按如图所示叠放在一起,若固定,将绕着公共顶点A ,按顺时针方向旋转度,当的一边与的某一边平行时,相应的旋转角的值是____________________.26.已知,直线,点E 为直线上一定点,射线交于点平分(),a b (),ka b a b +-(),a b ()3,2()132,32⨯+-()5,1()2,1-(),a b ()1,5()(),0a b b ≠AB AB AC ()90180CAB αα∠=︒<<︒AC AB BD AB ,PC PD CPD PCA PDB ∠=∠+∠l PD ∥12MDC CDP ∠=∠120α=︒BDM ∠BDP ∠BDP ∠αAOB △ACD △α()0180α︒<<︒ACD △AOB △αAB CD ∥CD EK AB ,F FG.图1 图2 备用图(1)如图1,当时,__________°;(2)点P 为线段上一定点,点M 为直线上的一动点,连接,过点P 作交直线于点N .①如图2,当点M 在点F 右侧时,求与的数量关系;②当点M 在直线上运动时,的一边恰好与射线平行,直接写出此时的度数(用含α的式子表示).,AFK FED α∠∠=60α=︒GFK ∠=EF AB PM PN PM ⊥CD BMP ∠PNE ∠AB MPN ∠FG PNE ∠北师大实验中学2023—2024学年度第二学期初一数学阶段练习参考答案一.选择题1.B 2.D 3.A 4.B 5.D 6.C 7.D 8.B二.填空题9.;10.46;11.答案不唯一,如:;12.;13.;14.1421;15.或;16.或三.解答题17.(1)原式 4分 (2)原式4分18.(1) 5分 (2)5分19.平行线2分,垂线段4分20.每空1分,.(理由:两直线平行,内错角相等)平分,..,..(理由:同位角相等,两直线平行).(理由:两直线平行,同旁内角互补)21.(1)证:又 3分(2)解:,,平分1.5-1,2a b ==-,1ππ-1-42︒106︒38︒64︒16313=⨯-=-4120.9554=-+=-126x y =⎧⎨=⎩532x y =-⎧⎪⎨=⎪⎩AD BC ∥DAE E ∴∠=∠AE BAD ∠DAE BAE ∴∠=∠BAE E ∴∠=∠CFE E ∠=∠ CFE BAE ∴∠=∠AB CD ∴∥180B BCD ∴∠+∠=︒AD BC∥2ACB∴∠=∠12∠=∠ 1ACB∴∠=∠EF AC ∴∥,50AD BC B ∠=︒ ∥120D ∠=︒180130BAD B ∴∠=︒-∠=︒18060BCD D ∠=︒-∠=︒CA BCD ∠1302ACB BCD ∴∠=∠=︒230∴∠=︒又. 5分22.(1)解:设篮球x 元/个,足球y 元/个,根据题意,得,解得答:蓝球80元/个,足球75元/个 5分(2)篮球5个,足球24个或篮球20个,足球8个. 2分23.(1); 1分(2)根据题意,得,解得 3分(3). 2分24.(1)证明:补全图形如图所示,作, 1分∵将线段沿平移得到线段,,,,,即3分(2)解:①点M 在直线的上方时,如图所示:; 1分点M 在直线的下方时,如图所示:; 1分2100BAC BAD ∴∠=∠-∠=︒EF AC∥100BFE BAC ∴∠=∠=︒5101150961170x y x y +=⎧⎨+=⎩8075x y =⎧⎨=⎩(5,3)--215a b a b +=⎧⎨-=⎩23ab =⎧⎨=-⎩12,2a b k ==PQ AC ∥AC AB BD ,BD AC BD AC ∴=∥PQ BD ∴∥,PCA CPQ PDB DPQ ∴∠=∠∠=∠CPD CPQ DPQ PCA PDB ∴∠=∠+∠=∠+∠CPD PCA PDB∠=∠+∠CD 2360BDM BDP ∠+∠=︒CD 2120BDM BDP ∠-∠=︒②. 1分B 卷:25.,,,,5分26.(1)60; 1分(2)①过点P 作,则,如图,,,,即,,,,,2分②如图,当时,延长交于点H ,,当时,如图所示,过点P 作,则,,故的度数为或. 2分90α-︒30︒45︒75︒135︒165︒PQ AB ∥PQ AB CD ∥∥180BMP MPQ ∴∠+∠=︒QPN PNE ∠=∠PN PM ⊥90MPN ∴∠=︒90MPQ QPN ∠+∠=︒9090MPQ QPN PNE ∴∠=-∠=︒-∠180BMP MPQ ∠+∠=︒ 901)80(BMP PNE ∴∠+︒-∠=︒90BMP PNE ∴∠-∠=︒PN FG ∥GF CD 902PNC GHC α∴∠=∠=︒-PM FG ∥PQ AB ∥PQ AB CD ∥∥2PNE α∠=PNE ∠902α︒-2α。
重庆市第十一中学校2023-2024学年七年级上期12月月考数学试题(含答案)
重庆十一中2023-2024学年初一上期12月月考数学试题(时间:120分钟总分:150分)一、选择题(每小题4分,共40分)1.笔尖在纸上快速滑动写出一个又一个字,用数学知识解释为( )A.点动成线 B.线动成面 C.面动成体 D.以上都不对2.下列说法正确的是()A.-2的相反数是2 B.3的倒数是-3C. (-3)-(-2)=5D. -20,0,3这三个数中最小的数是03.已知2x n+1y2与25x5y2是同类项,则的值是( )A.2B.3C.4D.54.下列变形错误的是( )A.(a+b)―(a―3b)=a+b―a+3bB. a―[b―(c―d)]=a―b+c―dC. m―n+p―q=m―(n+q―p)D. (m+1)―(―n+p)=―(―1+n―m+p)5.下列说法错误的是( )A.如果ax=bx,那么a= b B.如果a=b,那么ac2+1=bc2+1C.如果a=b,那么ac-d=bc- d D.如果x=3,那么x2=3x6.已知线段AB及一点P,若PA+PB=AB,则()A.P为线段AB的中点B.P在线段AB上C.P在线段AB外 D.P在线段AB的延长线上7. 点B在点A的北偏东60°的方向上,点C在点A的正西方,则∠BAC的度数是( )A.30°B.90°C.120°D.150°8.甲乙两人同时从A到B地,甲比乙每小时多行1km,若甲每小时行10km,结果甲比乙早到0.5h,设A,B两地的路程为x km,根据题意,列方程为( )nA.B .C .D .9.如图是用小圆摆成的图案,按照这样的规律摆下去,第⑩个图案需要的小圆个数为( )A .66B .83C .102D .13210.关于的多项式:其中为正整数,各项系数各不相同且均不为0.当时,交换任意两项的系数,得到的新多项式我们称为原多项式的“兄弟多项式”.给出下列说法:①多项式共有6个不同的“兄弟多项式”;②若多项式则的所有系数之和为;③若多项式则④若多项式则.则以上说法正确的个数为( )A .1B .2C .3D .4二、填空题(每小题4分,共32分)11.华为公司发布去年的营业业绩达642300000000元,642300000000用科学记数法可表示为.12.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是今有两数,若其意义相反,则分别叫做正数与负数.如果某水果的销售量比前一天增加8kg 记作+8kg ,那么销售量比前一天减少3kg ,应记作kg .13.的倒数的绝对值是.21910+=x x 211110-=x x 21910-=x x 211110+=x x x ,01222211a x a x a x a x a x a A n n n n n n n +++∙∙∙+++=----n 3=n .0122333a x a x a x a A +++=3A (),-nn x A 21=n A 1±(),-4412x A =;41024=++a a a (),-2023202321x A =23120231320212023--=++∙∙∙++a a a a 23-14.数学课上,老师编制了一个程序,当输入任意一个有理数时,显示屏上的结果总是输入的有理数的平方与1的差的2倍.若输入-2,并将显示的结果再次输入,则这时显示的结果是.15.计算:.16.已知线段,延长到点,使,中为中点.若,则.17.已知关于的方程的解比关于的方程的解大3,则=.18.将图(1)中的长方形纸片剪成1号、2号、3号、4号、5号五个正方形和6号长方形,将它们拼在周长为150的长方形图(2)中,若图(1)的大长方形周长为96,则图(2)阴影部分的周长为.三、解答题19. 计算(每题3分,共12分)(1)(2).(3)解方程:4x ﹣3(20﹣x )=﹣4 (4)解方程:20. (1问3分,2问5分,共8分)(1)化简:9m 2﹣4(2m 2﹣3mn +n 2)+4n 2;(2)先化简多项式,再求值:,其中a =﹣1,b =.21. (8分)作图题:='-'-23678235180 AB AB C AB BC 31=D AC cm AB 9==DC x 531m x x +=+x 23x m m +=m ()13-7.7--4-2+5.75410⎛⎫ ⎪⎝⎭()()32412453⎡⎤-+-÷⨯--⎣⎦2151136x x +--=如图,在平面上有四个点A,B,C,D,根据下列语句画图:(1)画线段AB;(2)连接BD,并将其反向延长至点E,使得DE=2BD;(3)在平面内找到一点F,使点F到A,B,C,D四点距离最短.22.(10分)【问题情境】小圣所在的综合实践小组准备制作一些无盖纸盒收纳班级讲台上的粉笔.【操作探究】(1)图1中的哪些图形经过折叠能围成无盖正方体纸盒? (填序号).(2)小圣所在的综合实践小组把折叠成6个棱长都为2dm的无盖正方体纸盒摆成如图2所示的几何体.①请计算出这个几何体的体积;②如果在这个几何体上再添加一些相同的正方体纸盒,并保持从上面看到的形状和从左面看到的形状不变,最多可以再添加 个正方体纸盒.23(10分).如图,在同一平面内∠AOB=90°,∠AOC=60°,OD平分∠BOC,OE平分∠AOC.(1)求∠DOE的度数;(请填全所给的求解过程)解:∵∠AOB=90°,∠AOC=60°,∴∠BOC=∠AOB+∠ ① = ② °,∵OD平分∠BOC,OE平分∠AOC,∴ ③ = ④ °, ⑤ = ⑥ °,∴∠DOE=∠COD﹣∠ ⑦ = ⑧ °.(2)如果将题目中∠AOC=60°改成∠AOC=α(α<90°),其他条件不变,你能求出∠DOE的度数吗?若能,请直接写出∠DOE的度数及∠DOE与∠AOB的数量关系;若不能,请说明理由.24(10分).已知点D为线段AB的中点,点C在线段AB上.(1)如图1,若AC=8cm,BC=6cm,求线段CD的长;(2)如图2,若BC=2CD,点E为BD中点,AE=18cm,求线段AC的长.25(10分). 某服装店第一次用8000元购进A、B两种服装共100件.这两种服装的进价,标价如下表所示.A种服装B种服装进价(元/件)60100标价(元/件)100160(1)求第一次分别购进这两种服装多少件?(2)该服装店再次以相同的进价购进同样数量的A,B两种服装.但将A种服装在标价的基础上涨价20%,B种服装在标价的基础上打折销售.结果销售第二批服装比第一批服装所获总利润多了520元,求B种服装在标价的基础上打了几折销售?26(10分). 如图,O是数轴的原点,A、B是数轴上的两个点,A点对应的数是﹣1,B点对应的数是8,C是线段AB上一点,满足.(1)求C点对应的数;(2)动点M从A点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,当点M到达C点后停留2秒钟,然后继续按原速沿数轴向右匀速运动到B 点后停止.在点M 从A 点出发的同时,动点N 从B 点出发,以每秒1个单位长度的速度沿数轴匀速向左运动,一直运动到A 点后停止.设点N 的运动时间为t 秒.①当MN =4时,求t 的值;②在点M ,N 出发的同时,点P 从C 点出发,以每秒3个单位长度的速度沿数轴向左匀速运动,当点P 与点M 相遇后,点P 立即掉头按原速沿数轴向右匀速运动,当点P 与点N 相遇后,点P 又立即掉头按原速沿数轴向左匀速运动到A 点后停止.当PM =2PN 时,请直接写出t 的值.重庆十一中七上12月答案一、选择题(每小题4分,共40分)1-5AACDA6-10BDCCD二、填空题(每小题4分,共32分)11.6.423×101112.-313.14.7015.77°16.6CM17.18.126三、解答题19. 计算(每题3分,共12分)(1)解:原式=0(2)解:原式=7(3)解:x=8 (4)解:x=-320. (1问3分,2问5分,共8分)2357解:(1)原式=9m2﹣(8m2﹣12mn﹣4n2)+4n2=9m2﹣8m2+12mn﹣4n2+4n2=m2+12mn;(2)原式=5ab﹣2(3ab﹣4ab2﹣ab)﹣5ab2=5ab﹣6ab+8ab2+ab﹣5ab2=3ab2;当a=﹣1,b=时,原式=3×(﹣1)×()2=﹣3×=﹣.21. (8分)22. (10分)解:(1)①③④;(2)①这个几何体的体积=2×2×2×6=48;②3.23(10分).解:(1)AOC,150,BOC,75,AOC,30,COE,45;(2)∠DOE=∠DOC﹣∠COE=45°.24(10分)(1)∵点D是AB的中点,∴AD=BD=AB=(AC+BC)=7,∴CD=BD﹣BC=7﹣6=1;(2)∵点D是AB的中点,∴AD=BD=AB,∵点E为BD中点,∴BE=DE﹣BD,∴AE=AB,∵AE=18,∴AB=24,∴BD=AD=12,又∵BC=2CD,∴CD=BD=4,∴AC=AD+DC=12+4=16.25(10分)解:(1)设第一次购进A种服装x件,则购进B种服装(100﹣x)件,依题意得:60x+100(100﹣x)=8000,解得:x=50,∴100﹣x=50.答:第一次购进A种服装50件,B种服装50件.(2)设B种服装在标价的基础上打了y折销售,依题意得:[100×(1+20%)﹣60]×50+(160×﹣100)×50=(100﹣60)×50+(160﹣100)×50+520,解得:y=9.4,答:B种服装在标价的基础上打了9.4折销售.26(10分). (1)∵A点对应的数是﹣1,B点对应的数是8,∴AB=9,∵=,∴AC=5,BC=4,∴C点对应的数是8﹣BC=8﹣4=4,答:C点对应的数是4;(2)①设运动t秒时,MN=4当M、N未相遇,则M在AC上运动,M表示的数是﹣1+2t,N在BC上运动,N表示的数是8﹣t,∴8﹣t﹣(﹣1+2t)=4,解得t=,当M、N相遇后,M在BC上运动,M表示的数是4+2(t﹣﹣2)=2t﹣5,N在AC上运动,N 表示的数是8﹣t,∴2t﹣5﹣(8﹣t)=4,解得t=,综上所述,t的值为或;②P与M还未第一次相遇时,P表示的数是4﹣3t,M表示的数是﹣1+2t,N表示的数是8﹣t,∴4﹣3t﹣(﹣1+2t)=2[8﹣t﹣(4﹣3t)],解得t=﹣(舍去),此种情况不存在,由已知得,P与M在t=1时第一次相遇,相遇后P掉头按原速沿数轴向右匀速运动,在未遇到N前,P表示的数是(4﹣3×1)+3(t﹣1)=3t﹣2,∴3t﹣2﹣(﹣1+2t)=2[8﹣t﹣(3t﹣2)],解得t=,由已知可知,当P与M在表示1的点处相遇,此时N运动到表示7的点处,再经过=1.5秒,即t=2.5时,P与N相遇,此时M正好运动到C,P与N相遇后又立即掉头按原速沿数轴向左匀速运动,未与M第二次相遇,此时P表示的数是(8﹣2.5)﹣3(t﹣2.5)=13﹣3t,∴13﹣3t﹣4=2[8﹣t﹣(13﹣3t)],解得t=,当P与M第二次相遇后,P表示的数是13﹣3t,M在BC上运动,M表示的数是2t﹣5,∴2t﹣5﹣(13﹣3t)=2[8﹣t﹣(13﹣3t)],解得t=8,此时13﹣3t=﹣11<﹣1,∴t=8舍去,这种情况不存在,当P运动到A后,若N为PM的中点,此时PM=2PN,∴﹣1+(2t﹣5)=2(8﹣t),解得t=5.5,综上所述,t的值为或或5.5.。
2024七年级数学月考卷
2024七年级数学月考卷一、有理数。
1. 有理数的概念。
- 整数和分数统称为有理数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。
- 例如:3(正整数)、0、 - 5(负整数)、1/2(分数)、0.333…(无限循环小数,也是分数)都是有理数。
2. 有理数的运算。
- 加法。
- 同号两数相加,取相同的符号,并把绝对值相加。
例如:3 + 5=8,(-3)+(-5)= - 8。
- 异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
例如:3+( - 5)= - 2,(-3)+5 = 2。
- 一个数同0相加,仍得这个数,如0+3 = 3。
- 减法:减去一个数,等于加上这个数的相反数。
例如:3 - 5=3+( - 5)= - 2。
- 乘法。
- 两数相乘,同号得正,异号得负,并把绝对值相乘。
例如:3×5 = 15,(-3)×(-5)=15,3×(-5)= - 15。
- 任何数同0相乘都得0。
- 除法:除以一个不等于0的数,等于乘这个数的倒数。
例如:6÷3 = 6×1/3 = 2,6÷(-3)=6×(-1/3)= - 2。
- 乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
例如:2³表示3个2相乘,即2×2×2 = 8。
3. 有理数的混合运算顺序。
- 先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的。
例如:2×(3 + 2²)=2×(3 + 4)=2×7 = 14。
二、整式的加减。
1. 单项式。
- 由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式。
例如:3x、 - 5、a都是单项式。
- 单项式的系数是指单项式中的数字因数,单项式的次数是指单项式中所有字母的指数和。
例如:3x的系数是3,次数是1; - 5的系数是 - 5,次数是0;a²b的系数是1,次数是3。
初一数学月考试卷及答案
初一数学试题(考试时间:100分钟 满分:100分)一、精心选一选:(每题只有一个正确答案,将序号填在表格内,每题2分,共20分)1.2-的相反数是 A. 2- B. 2 C. 21-D. 212.下列各组运算中,结果为负数的是A .)3(--B .|3|--C .)2()3(-⨯-D .2)3(-3.自上海世博会开幕以来,中国馆以其独特的造型吸引 了世人的目光.据预测,在会展期间,参观中国馆的人次数估计可达到14 900 000,此数用科学记数法表示是( )A .61049.1⨯B .810149.0⨯C .7109.14⨯D .71049.1⨯4.下列说法中不正确的有( )个 ①.最大的负有理数是1- ②.0是最小的数③. 如果两个数互为相反数,那么它们的绝对值相等 ④.任何有理数的绝对值都是正数A .1个B .2个C .3个D .4个 5.下列说法正确的是A .倒数等于它本身的数只有1B .正数的绝对值是它本身C .平方等于它本身的数只有1D .立方等于它本身的数只有1 6.数轴上在原点以及原点右侧的点所表示的数是A 、正数B 、负数C 、非负数D 、非正数 7.下列计算错误的是A .0001.01.04=B .39193-=⎪⎭⎫⎝⎛-⨯÷C .32418-=⎪⎭⎫⎝⎛-÷ D .24233=⨯8.下列比较大小正确的是A .5465-<-B .(21)(21)--<+-C .1210823-->D .227(7)33--=--9.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg ,(25±0.2)kg ,(25±0.4)kg 的字样,从中任意拿出两袋,它们的质量最多相差A .0.8kgB .0.6kgC .0.5kgD .0.4kg10.观察下列各式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯()1343452343⨯=⨯⨯-⨯⨯……计算:3×(1×2+2×3+3×4+…+100×101)=A .97×98×99B .98×99×100C .99×100×101D .100×101×102 二、静心填一填:(每空2分,共24分)11.15-的绝对值是 .12.写出一个比2-小的负数: . 13. 平方等于16的数是 .14.我市冬季某一天的最高气温为-3℃,最低气温为-6℃,那么这一天的日温差是______℃. 15.绝对值不小于3且小于5的所有整数和是 . 16.若│x ∣=3,y 2=4, 且xy <0,则x+y= .17.某初级中学为每个学生编号,设定末尾用1表示男生,用2表示女生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
123
(第三题)1
A B
O
F
D E
C (第18题)
第17题
A B C
D
M
N
12
A B C
D E F G H 第13题
A B C D 1234(第2题)12345678(第4题)
a b c A
E
D
B C A B C
D
E (第10题)
A B C
D E
F
14
23第19题)
2019年3月份月考七年级
数 学 试 题
一、单项选择题(每小题3分,共 30 分)
1、如图所示,∠1和∠2是对顶角的是( ) A B C D 12121212
2、如图AB ∥CD 可以得到( ) A 、∠1=∠2 B 、∠2=∠3 C 、∠1=∠4 D 、∠3=∠4
3、直线AB 、CD 、EF 相交于O ,则∠1+∠2+∠3=( ) A 、90° B 、120° C 、180° D 、140°
4、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件: ①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断 是a ∥b 的条件的序号是( ) A 、①② B 、①③ C 、①④ D 、③④
5、一辆汽车在笔直的公路上行驶,在两次转弯后,仍在原来的 方向上平行前进,那么这两次转弯的角度可以是( )。
A 、先右转80°,再左转100° B 、先左转80°,再右转80° C 、先左转80°,再右转100° D 、先右转80°,再右转80°
6、下列哪个图形是由左图平移得到的( )
B
D
7、点P 为直线l 外一点,点A 、B 、C 为直线l 上三点,PA =4cm ,PB=5cm ,PC=2cm , 则点P 到直线l 的距离为( )。
A 、4cm
B 、5cm
C 、小于2cm
D 、不大于2cm 8、下列现象属于平移的是( )
① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门, ⑤ 汽车在一条笔直的马路上行走
A 、③
B 、②③
C 、①②④
D 、①②⑤ 9、下列命题中,真命题有( )。
(1)有且只有一条直线与已知直线平行 (2)垂直于同一条直线的两条直线互相垂直 (3)两条直线被第三条直线所截,内错角相等
(4)在平面内过一点有且只有一条直线与已知直线垂直。
A 、1个 B 、2个 C 、3个 D 、4个
10、直线AB ∥CD ,∠B =23°,∠D =42°,则∠E =( ) A 、23° B 、42° C 、65° D 、19°
二、填空题(本大题共8小题,每小题3分,共24分)
11、直线AB 、CD 相交于点O ,若∠AOC =100°,则∠AOD =___________。
12、若AB ∥CD ,AB ∥EF ,则CD _______EF ,其理由
是_______________________。
13、如图,在正方体中,与线段AB 平行的线段有_______________。
14、如图,AB CD ⊥于点B BE ,是ABD ∠的平分线, 则CBE ∠的度数为 .
15、把命题“等角的补角相等”写成如果……那么……” 的形式是:___________________________________。
16、如果两条平行线被第三条直线所截,一对同旁内角的
度数之比是2:7,那么这两个角分别是_______。
三 、(简答题,共72分) 17、(本题7分)如图所示,直线AB ∥CD ,∠1=75°,求∠2的度数。
18、(本题7分)如图,直线AB 、CD 相交于O ,OD 平分∠AOF ,OE ⊥CD 于点O ,∠1=50°,求∠COB 、∠BOF 的度数。
19、(本题6分)如图,E 点为DF 上的点,B 为AC 上的点,∠1=∠2, ∠C =∠D ,那么DF ∥AC ,请完成它成立的理由 ∵∠1=∠2,∠2=∠3 ,∠1=∠4 ∴∠3=∠4
∴________∥_______ ( )
∴∠C =∠ABD ( )
A O D
B E C
A
B C
∵∠C =∠D ( ) ∴∠D =∠ABD ( ) ∴DF ∥AC ( )
20、(本题7分)△ABC 经过平移后,点A 移到了点A ,请表格中作出平移后的△A ′B ′C ′.
'
21、(本题8分)如图,已知:AE 平分∠BAC ,CE 平分∠ACD ,且AB ∥CD .
求证:∠1+∠2=90°
22、(本题9分把一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G ,D 、C 分别在M 、N 的位置上,若∠EFG =55°,求∠1和∠2的度数。
23、(本题8分)如图,AB ∥CD ,AE 交CD 于点C ,DE ⊥AE ,垂足为E ,∠A =37º,求∠D 的度
数.
24、(本题9分)如图,直线CD 与直线AB 相交于C ,根据下列语句画图
(1)过点P 作PQ ∥CD ,交AB 于点Q (2)过点P 作PR ⊥CD ,垂足为R (3)若∠DCB =1200,猜想∠PQC 是多少度?并说明理由
26、(本题12分)如图,DO 平分∠AOC ,OE 平分∠BOC ,若OA ⊥OB , (1)当∠BOC =30°,∠DOE =_______________(2分) 当∠BOC =60°,∠DOE =_______________(2分)
(2)通过上面的计算,猜想∠DOE 的度数与∠AOB 有什么关系, 并说明(8分)
B A
C D E
F G M
N 1
2
A B C D E
A'
P D
C B A
参考答案
一、单项选择题
1、D;
2、C
3、C;
4、A;
5、B;
6、C;
7、D;
8、D;
9、A 10C
二、填空题
11、80°;
12、∥,平行于同一条直线的两条直线互相平行;
13、EF、HG、DC;
14、135°
15、如果两个角相等,那么这两个角的补角也相等;
16、40°,140°。
三、(简答题)
17、105°
18、∠COB=40°,∠BOF=100°;
19、DB∥EC
内错角相等,两直线平行
两直线平行,同位角相等
已知
等量代换
内错角相等,两直线平行
21、略
22、∠1=70°,∠2=110°
23、∠D=53°24、(1)略(2)略(3)∠PQC=60°
25、、(1)45°,45°,
(2)∠DOE=
2
1∠AOB。