HZS90拌合站混凝土拌合站基础计算书

合集下载

拌和站基础计算书

拌和站基础计算书

拌合站水泥仓基础检算书
一、概况
每个水泥仓自重10T,内装水泥最大量150T,每个仓的承台尺寸为4m×4m×1m,每个承台重量为40T,风力产生的荷载按10级风考虑,取50kg/m2。

二、荷载计算
水泥仓自重+水泥最大重+承台重=10+150+40=200T,则每个支腿所承受的重量为200/4=50T。

风力产生的荷载情况为:风力荷载为12m×3m×50kg/m2=1800kg。

风力对水泥仓产生的最大弯矩为1800kg×12m=21.6T·m。

为抵抗风力弯矩,两个水泥仓支腿所产生的抵抗力为21.6/3=7.2T。

则一个支腿所产生的抵抗力为7.2T/2=3.6T。

三、管桩最大受力计算
据以上荷载计算,四个水泥仓支腿中受力最大的支腿反力为50T+3.6T=53.6T。

考虑各种不利荷载和不利因素的影响,取最大支腿反力为60T,即在现场控制中以每个管桩的最小承载力为60T进行控制。

计算:复核:。

拌和站基础计算书

拌和站基础计算书

拌和站基础计算书1. 拌合站概况某搅拌站共有6个水泥罐,单个罐满载时单个支腿受力35t,罐宽3m,罐身高14m,支腿长7m,罐车基础采用C25砼扩大基础,长22m,宽5m,深1.5m,地基承载力180kPa,基底土摩擦系数0.25。

搅拌站地区最大风速21.3m/s。

主楼采用回字形基础,外环7*7m,内环3*3m,深0.9m。

主楼轮廓高8m,宽12m,单腿支撑12t。

2. 拌合站储料罐基础计算2.1 储料罐概况储料罐基础采用砼扩大基础,材料为C25砼,长22m,宽为5m,浇注深度为1.5m,基础底面积A=22×5=110m2 。

2.2 荷载计算储料罐重量通过基础作用于土层上,单个罐满载时每个支腿为35t,共6个罐,每个罐4个支腿,总重集中力P=6×4×10×35=8400kN,基础自重G=25×22×5×1.5=4125kN,承载力计算示意见下图本拌和站地区,最大风速v=21.3m/s,储料罐罐身长14m,6个罐基本并排竖立,单个罐宽3m,总受风面积Af=6×3×14=252m2 。

整体受风荷载等效成水平集中力,如下图所示:风荷载强度计算式为:W=K1 K2K3W其中:W ——风荷载强度 Pa;W0——基本风压值 Pa,可按W=V21.6计算;K1——风载体型系数,圆形取0.8;K2——风压高度变化系数,按30m高考虑为1.13;K3——地形地理条件系数,按山岭峡谷考虑,取1.2; V- 风速 m/s;本拌和站地区,最大风速21.3m/s,则:W0 =V21.6=21.321.6=283.6PaW=K1 K2K3W=0.8×1.13×1.2×283.6=307.6Pa单个罐宽3m,高14m,总受风面积A=252m2 ,风荷载等效成水平集中力P=A·W=252×307.6×10-3=77.5kN2.3储料罐地基承载力计算其中:P- 储蓄罐重量(kN),为8400kN;G-基础砼自重(kN),为4125kN;A- 基础作用于地基上有效面积(m2 ),为110m2 ;M- 由风荷载引起基础的弯矩(kN·m);M=P·h风=77.5×(7+7)=1085kN·m;W=bh26=22×526=91.7m3 。

HZS90混凝土搅拌站配置说明

HZS90混凝土搅拌站配置说明

HZS90混凝土搅拌站配置(pèizhì)说明HZS90是我公司综合近年来国内外多种机型的优点和先进技术,结合本公司多年生产混凝土搅拌设备(shèbèi)的经验而开发的系列混凝土搅拌站。

该系列混凝土搅拌站是制备新鲜混凝土的成套专用设备,适用于各类大中型建筑施工,如水电、公路、港口(gǎngkǒu)、桥梁、机场、大中型预制件厂和商品混凝土生产厂等。

HZS90配有我公司自行研制的计算机管理系统和自动控制系统,操作简单、方便(fāngbiàn)。

采用Windows2000操作系统,全中文菜单显示,各设备状态(zhuàngtài)全过程模拟显示并配有声光报警。

在搅拌站工作时,只需操作少量的按钮后,整个工作过程就全部转交计算机控制。

搅拌主机选用SICOMA双卧轴强制式搅拌主机,主要电气元件采用进口产品。

使HZS90系列搅拌站的配置具有:搅拌性能优良、计量精确稳定、可靠性高、保养维修方便、高环保性能、模块化程度高等特点。

是混凝土施工及商品混凝土生产的理想和首选设备。

一、技术参数1、生产能力:90 m3/h;2、搅拌主机:MAO2250/1500SDYHO仕高玛双卧轴搅拌主机;3、密实混凝土出料:1500L;4、骨料粒径:≤80mm;5、出料高度:≥4m;6、配料机:料仓容积16m3,秤斗容积1.4m3,共3个仓,单独计量;7、计量范围(fànwéi)及精度:骨料(ɡǔ liào): 0~2000Kg±2%水泥(shuǐní): 0~800Kg±1%粉煤灰: 0~400Kg±1%水: 0~350Kg±1%外加剂(液):0~20Kg±1%说明(shuōmíng):在动态(dòngtài)时,以上各种配料精度为计量范围从等于或大于满量程30%到满量程以内。

HZS90拌合站混凝土拌合站基础计算书

HZS90拌合站混凝土拌合站基础计算书

HZS90拌合站混凝土拌合站基础计算书一、拌和站罐基础设计概括计划投入两套HZS90拌合站,单套HZS90拌合站投入2个150t 型水泥罐(装满材料后),根据公司以往拌合站施工经验,结合现场地质条件以及基础受力验算,水泥罐采用砼扩大基础,基础顶预埋地脚钢板与水泥罐支腿满焊。

二、基本参数1、风荷载参数:查询公路桥涵设计通用规范得知:本工程相邻地区宁国市10年一遇基本风速:s m V /3.2010=;2、仓体自重:150t 罐体自重约15t ,装满材料后总重为150t ;3、扩大基础置于粉质黏土上,地基承载力基本容许值[]Kpa f a 1800=,采用碎石换填进行地基压实处理后,碎石换填地基承载力基本容许值[]Kpa f a 5000=;4、当采用两个水泥罐基础共同放置在一个扩大基础上时,扩大基础尺寸为9m ×4m ×1.5m (长×宽×高);当采用单个水泥罐基础放置在一个扩大基础上,扩大基础尺寸为4m ×4m ×1.5m (长×宽×高);三、空仓时整体抗倾覆稳定性稳定性计算1、受力计算模型(按最不利150吨罐体计算),空仓时受十年一遇风荷载,得计算模型如下所示:F 1图3-1 空仓时整体抗倾覆稳定性稳定性计算模型2、风荷载计算根据《公路桥涵设计通用规范》可知,风荷载标准值按下式计算:gV W d k 22γ=;查《公路桥涵设计通用规范》得各参数取值如下:空气重力密度:01199899.0012017.00001.0==-Z e γ;地面风速统一偏安全按离地20m 取:s m V k k V /4.31105220==; 其中:12.12=k ,38.15=k ,s m V /3.2010=;代入各分项数据得:222/60.08.924.3101199899.02m KN g V W d k =⨯⨯==γ单个水泥罐所受风力计算: ①、迎风面积:218.12.15.1m A =⨯= 作用力:8KN 0.18.16.01=⨯=F 作用高度:m H 35.181= ②、迎风面积:223.36113.3m A =⨯= 作用力:KN 78.213.366.02=⨯=F 作用高度:m H 1.122=③、迎风面积:23125.42/5.23.3m A =⨯= 作用力:KN 475.2125.46.03=⨯=F 作用高度:m H 475.53= 2、单个水泥罐倾覆力矩计算m KN h F M i i ⋅=⨯+⨯+⨯=⨯=∑91.296475.5475.21.1278.2135.1808.131倾3、稳定力矩及稳定系数计算假定筒仓绕单边两支腿轴线倾覆,稳定力矩由两部分组成,一部分是仓体自重稳定力矩1稳M ,另一部分是扩大基础自重产生的稳定力矩2稳M 。

拌合站基础埋深计算书

拌合站基础埋深计算书

新郑机场站拌合站基础深度计算书
1、水泥罐基础施工
水泥罐基础,我部拟下挖2.1m,基底采取60cm的砂浆片石垫层,并夯实,再立模浇筑双层钢筋混凝土,每个水泥罐基础保证4.5×4.5米的尺寸,同时将所有水泥罐的基础连成整体,厚度为150cm 浇注。

基础平面平整度控制在±2mm以内。

再进行立柱浇注并预埋地脚螺栓,预埋地脚螺栓中心距不大于±2mm。

承载力验算如下:水泥罐满载时为100t仓,每条腿承受静载25t;
基础自重为:4.5m×4.5m×1.5m×2.5t/m3=75.9t;
根据施工图地质报告,粉土的基本承载力100Kpa;
1000 KN +759 KN =1759KN<100Kpa×4.5m×4.5m=2025KN;
满足要求。

2、主机基础施工
主机基础同水泥罐基础,再采取50cm灰土夯实,立模浇注双层钢筋砼。

基础尺寸保证1m×1m,基础深度为1m,基础采用C30砼,立柱钢筋预埋,待基础达到设计强度的70%后施工立柱,并预埋地脚螺栓,预埋地脚螺栓中心距不大于±2。

承载力验算如下:HZS120拌合楼主机每条支腿承载12t;
基础自重:5.25m×5.25m×1m×2.5t/m3=68.9t;
120+689=789 KN<100Kpa×5.25m×5.25m=2756KN;
满足要求。

(完整版)拌合站、水泥罐、搅拌站地基计算

(完整版)拌合站、水泥罐、搅拌站地基计算

目录一.计算公式 (2)1.地基承载力 (2)2.风荷载强度 (2)3.基础抗倾覆计算 (2)4.基础抗滑稳定性验算 (3)5.基础承载力 (3)二、储料罐基础验算 (3)1.储料罐地基开挖及浇筑 (3)2.计算方案 (3)3.储料罐基础验算过程 (4)3.1 地基承载力 (4)3.2 基础抗倾覆 (4)3.3 基础滑动稳定性 (5)3.4 储蓄罐支腿处混凝土承压性 (5)三、拌合楼基础验算 (5)1.拌合楼地基开挖及浇筑 (5)2.计算方案 (6)3.拌合楼基础验算过程 (6)3.1 地基承载力 (6)3.2 基础抗倾覆 (7)3.3 基础滑动稳定性 (7)3.4 储蓄罐支腿处混凝土承压性 (7)拌合站拌合楼基础承载力计算书1号拌合站为华阳村拌和站,配备HZS90拌和机,设有4个储料罐,单个罐在装满材料时均按照100吨计算。

拌合楼处于华阳村内,在78省道右侧30m,对应新建线路里程桩号DK208+100。

经过现场开挖检查,在地表往下0.5~1.5米均为粉质粘土,1.5米以下为卵石土。

一.计算公式1 .地基承载力P/A=σ≤σ0P—储蓄罐重量KNA—基础作用于地基上有效面积mm2σ—土基受到的压应力MPaσ0—土基容许的应力MPa通过地质钻探并经过计算得出土基容许的应力σ0=0.108 Mpa(雨天实测允许应力)2.风荷载强度W=K1K2K3W0= K1K2K31/1.6v2W —风荷载强度PaW0—基本风压值PaK1、K2、K3—风荷载系数,查表分别取0.8、1.13、1.0v—风速m/s,取17m/sσ—土基受到的压应力MPaσ0—土基容许的应力MPa3.基础抗倾覆计算K c=M1/ M2=P1×1/2×基础宽/ P2×受风面×(7+7)≥1.5 即满足要求M1—抵抗弯距KN•MM2—抵抗弯距KN•MP1—储蓄罐与基础自重KNP2—风荷载KN4.基础抗滑稳定性验算K0= P1×f/ P2≥1.3 即满足要求P1—储蓄罐与基础自重KNP2—风荷载KNf-----基底摩擦系数,查表得0.25;5 .基础承载力P/A=σ≤σ0P—储蓄罐单腿重量KNA—储蓄罐单腿有效面积mm2σ—基础受到的压应力MPaσ0—砼容许的应力MPa二、储料罐基础验算1.储料罐地基开挖及浇筑根据厂家提供的拌和站安装施工图,现场平面尺寸如下:地基开挖尺寸为半径为10.0m圆的1/4的范围,宽5.0m,浇筑深度为1.4m。

(完整版)拌合站、水泥罐、搅拌站地基计算

(完整版)拌合站、水泥罐、搅拌站地基计算

目录一.计算公式 (2)1.地基承载力 (2)2.风荷载强度 (2)3.基础抗倾覆计算 (2)4.基础抗滑稳定性验算 (3)5.基础承载力 (3)二、储料罐基础验算 (3)1.储料罐地基开挖及浇筑 (3)2.计算方案 (3)3.储料罐基础验算过程 (4)3.1 地基承载力 (4)3.2 基础抗倾覆 (4)3.3 基础滑动稳定性 (5)3.4 储蓄罐支腿处混凝土承压性 (5)三、拌合楼基础验算 (5)1.拌合楼地基开挖及浇筑 (5)2.计算方案 (6)3.拌合楼基础验算过程 (6)3.1 地基承载力 (6)3.2 基础抗倾覆 (7)3.3 基础滑动稳定性 (7)3.4 储蓄罐支腿处混凝土承压性 (7)拌合站拌合楼基础承载力计算书1号拌合站为华阳村拌和站,配备HZS90拌和机,设有4个储料罐,单个罐在装满材料时均按照100吨计算。

拌合楼处于华阳村内,在78省道右侧30m,对应新建线路里程桩号DK208+100。

经过现场开挖检查,在地表往下0.5~1.5米均为粉质粘土,1.5米以下为卵石土。

一.计算公式1 .地基承载力P/A=σ≤σ0P—储蓄罐重量KNA—基础作用于地基上有效面积mm2σ—土基受到的压应力MPaσ0—土基容许的应力MPa通过地质钻探并经过计算得出土基容许的应力σ0=0.108 Mpa(雨天实测允许应力)2.风荷载强度W=K1K2K3W0= K1K2K31/1.6v2W —风荷载强度PaW0—基本风压值PaK1、K2、K3—风荷载系数,查表分别取0.8、1.13、1.0v—风速m/s,取17m/sσ—土基受到的压应力MPaσ0—土基容许的应力MPa3.基础抗倾覆计算K c=M1/ M2=P1×1/2×基础宽/ P2×受风面×(7+7)≥1.5 即满足要求M1—抵抗弯距KN•MM2—抵抗弯距KN•MP1—储蓄罐与基础自重KNP2—风荷载KN4.基础抗滑稳定性验算K0= P1×f/ P2≥1.3 即满足要求P1—储蓄罐与基础自重KNP2—风荷载KNf-----基底摩擦系数,查表得0.25;5 .基础承载力P/A=σ≤σ0P—储蓄罐单腿重量KNA—储蓄罐单腿有效面积mm2σ—基础受到的压应力MPaσ0—砼容许的应力MPa二、储料罐基础验算1.储料罐地基开挖及浇筑根据厂家提供的拌和站安装施工图,现场平面尺寸如下:地基开挖尺寸为半径为10.0m圆的1/4的范围,宽5.0m,浇筑深度为1.4m。

拌合站拌计算书 自己

拌合站拌计算书 自己

拌合站水泥罐基础承载力计算书拌合站配备HZS120拌和机,每个拌和机配置4个水泥罐,单个罐自重按10吨,在装满材料时材料重按照100吨计算。

经过现场开挖检查,在地表往下0~2.0米风化风化岩碎屑。

水泥罐尺寸图一.计算公式1 .地基承载力P1/A=σ≤σ0/1.2(1.2为安全系数)P1—储蓄罐+储存料+基础自重KNA—基础作用于地基上有效面积㎡σ—土基受到的压应力MPaσ0—土基容许的应力MPa2.风荷载强度W=K1K2K3W0= K1K2K31/1.6V2W —风荷载强度PaW0—基本风压值PaK1、K2、K3—风荷载系数,查表分别取0.8、1.13、1.0V—风速m/s,取山东最大风速20.7m/s W =242.097Pa3.基础抗倾覆计算Kc=M1/ M2=P1×1/2×基础宽/ P2×受风面×(7+5.3)≥1.5 即满足要求M1—抵抗弯距KN•MM2—抵抗弯距KN•MP—储蓄空罐+基础自重KNP1—储蓄罐+储存料+基础自重KNP2—风荷载KN4.基础抗滑稳定性验算K0= P1×f/ P2≥1.3 即满足要求P1—储蓄罐与基础自重KNP2—风荷载KNf-----基底摩擦系数,查表得0.25;二、水泥罐基础验算1.水泥罐地基开挖及浇筑根据厂家提供的拌和站安装施工图,现场平面尺寸如下:基础为扇形布置,面积为46.6㎡,基础宽3.3m,开挖及浇筑深度为1.5m,4个水泥罐基础连体浇筑。

2.计算方案1)承载力计算开挖深度为1.5米,计算时按照整个储蓄罐重量通过基础作用于土层上,集中力P1=4×(100+1000KN)+基础本身重量,基础本身重量=46.6㎡×1.5m×25KN/m3=1747.5KN,整个水泥罐基础受力面积为46.6㎡,P1=4400+1747.5=6147.5KN,σ=P1/A=6147.5/46.6=0.1583MPa其中HZS120-1站水泥罐基础地基承载力为0.MPa(见承载力报告)σ≥0.MPa×1.2=0.152 MPa拌合站水泥罐基础地基承载力及安全系数满足承载要求。

拌和站储料罐基础验算计算书

拌和站储料罐基础验算计算书

新建玉溪至磨憨铁路站前工程YMZQ-15标拌和站储料罐基础验算计算书审定:审核:编制:中国水利水电第十四工程局有限公司玉磨铁路项目经理部2016年05月目录一.计算公式 (1)1 .地基承载力 (1)2.风荷载强度 (1)3.基础抗倾覆计算 (1)4.基础抗滑稳定性验算 (1)5 .基础承载力 (2)二、储料罐基础验算 (2)1.储料罐地基开挖及浇筑 (2)2.计算方案 (2)3.储料罐基础验算过程 (3)3.1 地基承载力 (3)3.2 基础抗倾覆 (3)3.3 基础滑动稳定性 (4)3.4 储蓄罐支腿处混凝土承压性 (4)拌和站储料罐基础验算计算书本标段拌和站型号为HZS90拌和机双配,单机设有5个储料罐(粉煤灰罐2个,每个罐的储量为200T;水泥罐3个,每个罐的储量为200T),本计算书按单个罐在装满材料时为200吨进行计算。

经过现场开挖检查,1#拌和站在地表往下0.5~3m为粉质黏土,3m以下为泥岩夹砂岩。

一.计算公式1 .地基承载力P/A=σ≤σ0P—储蓄罐重量KNA—基础作用于地基上有效面积mm2σ—土基受到的压应力MPaσ0—土基容许的应力MPa通过地质钻探并经过计算得出土基容许的应力σ0=0.108 Mpa(雨天实测允许应力)2.风荷载强度W=K1K2K3W0= K1K2K31/1.6v2W —风荷载强度PaW0—基本风压值PaK1、K2、K3—风荷载系数,查表分别取0.8、1.13、1.0v—风速m/s3.基础抗倾覆计算K c=M1/ M2=P1×1/2×基础宽/ P2×受风面×(7+7)≥1.5 即满足要求M1—抵抗弯距KN•MM2—抵抗弯距KN•MP1—储蓄罐与基础自重KNP2—风荷载KN4.基础抗滑稳定性验算K0= P1×f/ P2≥1.3 即满足要求P1—储蓄罐与基础自重KNP2—风荷载产生的力KNf-----基底摩擦系数,查表得0.25;5 .基础承载力P/A=σ≤σ0P—储蓄罐单腿重量KNA—储蓄罐单腿有效面积mm2σ—基础受到的压应力MPaσ0—砼容许的应力MPa二、储料罐基础验算1.储料罐地基开挖及浇筑根据厂家提供的拌和站安装施工图,现场平面尺寸如下:地基开挖形状为圆弧型,两边等宽,边宽5.90m、,浇筑深度为1.0m。

拌合站拌合楼基础承载力计算书

拌合站拌合楼基础承载力计算书

拌合站拌合楼基础承载力计算书-CAL-FENGHAI.-(YICAI)-Company One1泸州长江六桥及连接线工程正桥南段主线及立交工程江南拌合站基础计算书编制:复核:审核:中国葛洲坝集团股份有限公司泸州长江六桥施工总承包项目经理部2017年7月目录一.概况 (1)二.依据 (1)三.计算公式 (1)1.地基承载力 (1)2.风荷载强度 (1)3.基础抗倾覆计算 (2)4.基础抗滑稳定性验算 (2)5.基础承载力 (2)四、储料罐基础验算 (2)1.储料罐地基开挖及浇筑 (2)2.计算方案 (3)3.储料罐基础验算过程 (4)3.1 地基承载力 (4)3.2 基础抗倾覆 (4)3.3 基础滑动稳定性 (4)3.4 储蓄罐支腿处混凝土承压性 (5)五、拌合楼主站基础验算 (5)1.计算方案 (5)2.拌合楼基础验算过程 (6)2.1 地基承载力 (6)2.2 基础抗倾覆 (6)2.3 基础滑动稳定性 (6)2.4 拌合站主站支腿处混凝土承压性 (7)六、结论 (7)拌合站拌合楼基础承载力计算书一.概况泸州长江六桥江南拌合站紧挨正桥南段主线(K2+330~K2+400)路基左侧处,配备2套HZQ90拌和机,每套拌合机设有5个储料罐,单个罐在装满材料时均按照100吨计算。

二.依据建筑结构荷载规范GB5009-2012公路桥涵施工技术规范JTG/TF50-2011三.计算公式1 .地基承载力0σσ≤=AP P —储蓄罐重量kNA — 基础作用于地基上有效面积2mmσ— 土基受到的压应力MPa0σ— 土基容许的应力MPa通过动力触探检测得出土基容许的应力Mpa 25.00=σ2.风荷载强度6.123210321v K K K W K K K W ⨯⨯⨯=⨯⨯⨯= W — 风荷载强度pa0W — 基本风压值pa1K 、2K 、3K —风荷载系数,查表分别取0.8、1.13、1.0v — 风速s m /,取18s m /σ— 土基受到的压应力Mpa0σ— 土基容许的应力Mpa3.基础抗倾覆计算==21M M K c P 1×21×基础宽×21P ×受风面≥1.5即满足要求 1M — 抵抗弯距M kN ⋅2M — 抵抗弯距M kN ⋅1P —储蓄罐与基础自重kN2P —风荷载kN4.基础抗滑稳定性验算3.1210≥⨯=P f P K 即满足要求 1P —储蓄罐与基础自重kN2P —风荷载kNf —基底摩擦系数,查表得0.25;5 .基础承载力0σσ≤=AP P — 储蓄罐单腿重量kNA — 储蓄罐单腿有效面积2mmσ— 基础受到的压应力Mpa0σ— 砼容许的应力Mpa (设计采用C25砼)四.储料罐基础验算1.储料罐地基开挖及浇筑根据厂家提供的拌和站安装施工图,现场平面尺寸如下:储量罐基础宽3.9m,基础深1.2m,采用0.6m厚钢筋混凝土结构,为增加基础稳定性,5个料罐基础连为一体。

拌和站基础验算

拌和站基础验算

XXX至XXX标轨铁路项目拌和站基础验算编制:审核:审批:工程部二零一四年八月目录XXX拌和站基础验算XXX拌和站,配备HZS90JZ拌和机1套,拌合站设4个储料罐,其中1个粉煤灰罐和3个水泥罐容量均为150t,空罐按15t计。

基础采用混凝土基础,其施工工艺按照水泥罐罐体提供厂家三一汽车制造有限公司提供的基础图制作。

拌合站设置在XXX地内,对应新建线路里程桩号DKXXX+XXX。

经过现场开挖检查,在清理地表杂草后~米范围内为深灰色、灰褐色、粉质粘土,地表往下~米均为黄褐色、灰白色、硬塑粘土。

单个罐体基础为4m×4m×(高)C25混凝土。

1.计算公式地基承载力P/A=σ≤σ0P—储蓄罐重量 KNA—基础作用于地基上有效面积mm2σ—土基受到的压应力 MPaσ0—土基容许的应力 MPa通过地质触探,计算得出地基应力σ0=。

风荷载强度W=K1K2K3W0= K1K2K31/v2W —风荷载强度 PaW0—基本风压值 PaK1、K2、K3—风荷载系数,查表分别取、、v—风速 m/s,按照最不利大风考虑,取sσ—土基受到的压应力 MPaσ0—土基容许的应力 MPa基础抗倾覆计算K c=M1/ M2=P1×1/2×基础宽/ P2×受风面×(7+7)≥即满足要求M1—抵抗弯距 KN?MM2—抵抗弯距 KN?MP1—储蓄罐与基础自重 KNP2—风荷载 KN基础抗滑稳定性验算K0= P1×f/ P2≥即满足要求P1—储蓄罐与基础自重 KNP2—风荷载 KNf-----基底摩擦系数,查表得;基础承载力P/A=σ≤σ0P—储蓄罐单腿重量 KNA—储蓄罐单腿有效面积mm2σ—基础受到的压应力 MPaσ0—砼容许的应力 MPa2.储料罐基础验算储料罐地基开挖及浇筑根据厂家提供的拌和站安装施工图,现场平面尺寸如下:地基开挖尺寸为每个罐基础长,宽,浇筑深度为。

HZS100拌合站混凝土拌合站基础计算书

HZS100拌合站混凝土拌合站基础计算书

HZS100拌合站混凝土拌合站基础计算书
介绍
本文档提供了HZS100拌合站混凝土拌合站基础的计算书。

基础计算
地基类型
在进行基础计算之前,首先需要确定地基类型。

对于HZS100拌合站混凝土拌合站,适合采用稳定的土壤作为地基。

根据实地勘察和土壤报告,确认地基的稳定性。

荷载计算
基于拌合站的荷载,进行荷载计算。

考虑到拌合站的自重和运行时的荷载,计算出荷载的大小。

基础尺寸
根据荷载计算的结果,确定基础的尺寸。

根据结构工程师的建议和相关规范,确认基础的尺寸,包括宽度、长度和深度。

钢筋计算
根据基础尺寸和地基类型,进行钢筋计算。

确保基础的强度和稳定性,根据需要布置钢筋。

施工方案
根据基础计算的结果和实际情况,制定合理的施工方案。

考虑到工程条件和安全要求,制定出有效的施工方案。

监测与质量控制
在施工过程中,进行监测和质量控制。

通过监测控制基础施工的质量,确保基础的稳定性和安全性。

结论
本文档提供了HZS100拌合站混凝土拌合站基础计算的重要步骤和注意事项。

根据实际情况和相关规范,进行基础计算并制定合理的施工方案,以确保基础的稳定性和安全性。

拌合站水泥罐基础地基承载力计算书

拌合站水泥罐基础地基承载力计算书

银百高速(G69)甜永段TYSY3合同段01混凝土拌合站地基承载力计算书路港集团有限公司银百高速(G69)甜永段TYSY3项目经理部二0一七年五月01混凝土拌和站地基承载力计算书1编制说明本方案编制是根据施工现场土质情况及水泥罐特点而进行的,为确保有足够的水泥贮藏量,保证工程顺利进行,本工程采用双HLS90Q拌和站,计划投入8座100T水泥罐。

2编制范围路港集团有限公司银百高速(G69)甜永段TYSY3合同段项目经理部1#混凝土拌和站。

3编制依据1、施工现场总平面布置图;2、水泥罐总示意图及基础图参数3、银百高速(G69)甜永段TYSY3合同段施工图。

4、《建筑结构荷载规范》GB50009-2012。

4水泥罐基础设计1、本水泥罐基础根据现场实际地质情况,采用扩大基础,每个水泥罐基础为4000×4000×1000mm;根据现场需要,采用双HLS90Q拌和站,每台拌合机配置4座100T水泥罐,故4座水泥罐扩大基础连成一个环形基础。

基础采用C25钢筋砼,钢筋为双层配筋,钢筋为φ12。

2、每个水泥罐下设计四个支座,支座设计为C25砼,800×800×500mm立方体。

每个支座对应水泥罐罐脚处预埋4根φ20钢筋,以加强承台和基础的连接;3、水泥罐预埋板采用δ20mm Q235钢板,再焊接9根φ25锚固钢筋,锚固筋穿过支座与扩大基础钢筋网相焊接。

预埋板安装时每个预埋板四个角高程误差在1mm内,每个水泥罐4个预埋板高程误差在2mm以内。

预埋时采用水准仪实时量测;5水泥罐基础计算根据实际地基承载力试验,本基础位置地基持力层的承载力:P地=190KPa。

F=G+V+N=50+1000+400=1450KN S=4×4=16㎡P罐=(G+V+N)/S=(1450)/16=90.625Kpa<190KPa 所以,地基承载力满足要求。

试中F--压力,G—水泥罐自重KN,V—水泥罐满载后水泥重量KN,N—基础混凝土自重KN, S—水泥罐基础面积㎡,P罐—水泥罐满载后产生的压应力KPa,P地—地基承载力KPa。

搅拌站基础承载力及罐仓抗风计算书

搅拌站基础承载力及罐仓抗风计算书

XX铁路XX标第X搅拌站罐仓基础承载力及罐仓抗风计算书计算:复核:中铁X局集团XX铁路项目经理部2010年12月一、工程概况中铁X局XX铁路六标第X搅拌站,配备HZS90搅拌机、HZS120搅拌机各一台,每台搅拌机设有6个100吨级储料罐仓。

根据厂家提供的拌和站安装施工图,确定罐仓基础呈扇型布置,尺寸如下:根据现场地质情况,基础浇筑厚度为1.5m,混凝土强度等级为C30。

二、基础承载力检算1、相关计算公式根据《建筑地基基础设计规范》GB50007-2002,fa=fak+ηbγ(b-3)+ηdγm(d-0.5)式中fa--修正后的地基承载力特征值fak--地基承载力特征值ηb、ηd--基础宽度和埋深的地基承载力修正系数γ--基础底面以下土的重度,地下水位以下取浮重度;b--基础底面宽度(m),当基宽小于3m按3m取值,大于6m 按6m取值;γm--基础底面以上土的加权平均重度,地下水位以下取浮重度;d--基础埋置深度(m)。

2、承载力检算不考虑摩擦力的影响,罐仓与基础自重P1=1100kN*6+基础自身重量,基础自身重量=95m3*24kN/m3=2280kN则P1=1100kN*6+95m3*24kN/m3=6600+2280=8880kN最大应力f K=8880/64=139Kpa修正后地基承载力特征值:fa=120+0*(6-3)+2280/64=155KPa(根据现场地质情况地基承载力特征值fak取120 Kpa)计算结果f K=139KPa<fa=155KPa 承载力满足要求三、罐仓抗风检算1、相关计算公式根据《建筑结构荷载规范》GB50009-2001,风荷载强度:W=K1K2K3W0= K1K2K3V2/1.6W —风荷载强度PaW0—基本风压值PaK1、K2、K3—风荷载系数,查表分别取0.8、1.13、1.0V—风速m/s,本次按照XX地区最大风速20.7m/s检算抗倾覆计算:K c=M1/ M2=[(P1*0.5*基础宽)/(14*P2*受风面)]K c≥1.5 即满足抗倾覆要求M1—抵抗弯距kN•mM2—抵抗弯距kN•mP1—储蓄罐与基础自重kNP2—风荷载kN2、抗倾覆检算W=K1K2K3W0=K1K2K3V²/1.6=0.8*1.13*1.0*20.7²/1.6=242.1paP2=W/1000=0.2421kN罐仓顶至地表面距离为15米,罐身长12m,6个罐基本并排竖立,受风面210m²,整体受风力抵抗风载,在最不利风力下计算基础的抗倾覆性。

拌合站基础计算书

拌合站基础计算书

面 10m 计算。 由上计算知,基础承受总重量为: G = G1 + G2 = 360 + 1600 = 1960KN 3、荷载及配筋计算 (1)桩承载力计算 单个水泥仓由 2 根灌装桩承载,计算时只考虑由桩基承载。 单根桩需承载F = (G1 + G2)/2 = 980KN 本次设计区域为堆场区域,灌注桩暂时仅考虑轴向承载力,根据《港口工程桩基规范》 4.2.4.3 计算。根据地质资料按粉细砂考虑,标准贯入击数按 25 考虑,其中,桩侧摩阻力标准 值取为 50kPa,桩端阻力标准值取为 700kPa。 3.14 ∗ 0.7 ∗ 12 ∗ 50 + 3.14 ∗ 0.352 ∗ 700 1588 Qd = = = 992KN>F = 980KN 1.6 1.6 桩顶承压σ = 3.14 ∗0.35 ∗0.35 = 2.55MPa<35MPa。 由以上计算可知,设计桩承载力满足要求。 (2)承台受力计算 承台实际整体浇筑, 按三跨连续梁计算, 集中荷载为 400KN, 共计 6 处, 均布荷载 42.4KN, 如下图所示。
拌合站基础计算书 一、水泥仓基础计算 1、水泥仓基础设计 桩基(灌注桩) : 直径 0.7m 灌注桩 6 根,桩长 12m。 配筋按 《港口工程桩基规范》 7.3 构造要求, 配置主筋 (HRB400) 直径 16mm, 间距 100mm; 箍筋 (HPB300) 直径 12mm, 间距 300mm, 采用螺旋式, 桩顶 3.5m 范围加密, 间距 200mm。 混凝土强度 C35,保护层 50mm。 承台: 三个水泥仓基础为整体混凝土承台,水泥仓支腿间距 2.24m,设计承台宽度 4.24m,长度 按两侧水泥仓支腿外各加 1m 计。承台厚度 80cm。 配筋为板顶、板底双向配筋,主筋(HRB400)直径 16mm,间距 200mm。 混凝土强度 C35,保护层 50mm。 2、荷载分析 本次设计拌合站区域为一年内填料区,积水较多,地基承载力较低,首先将表面积水清 理干净后挖除表面浮泥,然后填筑 30cm 山皮石。考虑地基承载力较低,水泥仓基础采用灌 注桩加整体承台形式。 主要考虑的荷载有:承台自重、水泥仓满罐重量及空罐重量、风荷载。其中考虑风荷载 计算时按不利计算,即整体基础的宽度方向计算。 (1) 承台自重: 按单个基础计算,尺寸为 4.24*4.24*0.8m G1 = 4.24 ∗ 4.24 ∗ 0.8m ∗ 25 = 360KN (2)水泥仓满罐重量: 水泥仓采用 100t 水泥仓,满罐重量按支腿承载力 400KN 考虑,总重量为G2 = 400 ∗ 4 = 1600KN。 (3)水泥仓空罐重量: 罐体直径 3.2m,高度按 10m 计,整体高度按 15m 计。水泥仓自重按 55KN 考虑。 (4)风荷载: 风荷载取为 1KPa(相当于风速 40m/s,蒲式风级 13 级)。 水泥和粉煤灰料仓型号为 100t,直径为 3.2m,则料仓的迎风面积为 A = 3.2 ∗ 10 = 32m2 ,则最大风荷载为 F1 = 32 ∗ 1 = 32KN ,受力作用点按照距离基准
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

HZS90拌合站混凝土拌合站基础计算书
一、拌和站罐基础设计概括
计划投入两套HZS90拌合站,单套HZS90拌合站投入2个150t 型水泥罐(装满材料后),根据公司以往拌合站施工经验,结合现场地质条件以及基础受力验算,水泥罐采用砼扩大基础,基础顶预埋地脚钢板与水泥罐支腿满焊。

二、基本参数
1、风荷载参数:查询公路桥涵设计通用规范得知:本工程相邻地区宁国市10年一遇基本风速:s m V /3.2010=;
2、仓体自重:150t 罐体自重约15t ,装满材料后总重为150t ;
3、扩大基础置于粉质黏土上,地基承载力基本容许值[]
Kpa f a 1800=,采用碎石换填进行地基压实处理后,碎石换填地基承载力基本容许值[]
Kpa f a 5000=;
4、当采用两个水泥罐基础共同放置在一个扩大基础上时,扩大基础尺寸为9m ×4m ×1.5m (长×宽×高);当采用单个水泥罐基础放置在一个扩大基础上,扩大基础尺寸为4m ×4m ×1.5m (长×宽×高);
三、空仓时整体抗倾覆稳定性稳定性计算
1、受力计算模型(按最不利150吨罐体计算),空仓时受十年一遇风荷载,得计算模型如下所示:
F1
F2
F3
图3-1 空仓时整体抗倾覆稳定性稳定性计算模型
2、风荷载计算
根据《公路桥涵设计通用规范》可知,风荷载标准值按下式计算:g
V W d k 22
γ=;
查《公路桥涵设计通用规范》得各参数取值如下:
空气重力密度:01199899.0012017.00001.0==-Z
e
γ; 地面风速统一偏安全按离地20m 取:s m V k k V /4.31105220==; 其中:12.12=k ,38.15=k ,s m V /3.2010=;
代入各分项数据得:22
2
/60.08.924.3101199899.02m KN g V W d k =⨯⨯==γ
单个水泥罐所受风力计算: ①、迎风面积:218.12.15.1m A =⨯= 作用力:8KN 0.18.16.01=⨯=F 作用高度:m H 35.181= ②、迎风面积:223.36113.3m A =⨯= 作用力:KN 78.213.366.02=⨯=F 作用高度:m H 1.122=
③、迎风面积:23125.42/5.23.3m A =⨯= 作用力:KN 475.2125.46.03=⨯=F 作用高度:m H 475.53= 2、单个水泥罐倾覆力矩计算
m KN h F M i i ⋅=⨯+⨯+⨯=⨯=∑91.296475.5475.21.1278.2135.1808.13
1倾
3、稳定力矩及稳定系数计算
假定筒仓绕单边两支腿轴线倾覆,稳定力矩由两部分组成,一部分是仓体自重稳定力矩1稳M ,另一部分是扩大基础自重产生的稳定力矩2稳M 。

①、但水泥罐扩大基础分开时,稳定力矩计算如下所示:
()m KN M ⋅=⨯⨯=625.1702/275.210151稳; m KN M ⋅=⨯⨯⨯⨯=2.6552/275.2245.1442稳;
稳定系数:
5.178.291.2962
.655625.170>倾稳=+=M M ,抗倾覆满足要求,同时罐体设置抗风绳可以提高安全系数。

②、但两个水泥罐共用一个扩大基础时,稳定力矩计算如下所示:
()m KN M ⋅=⨯⨯⨯=25.34122/275.210151稳; m KN M ⋅=⨯⨯⨯⨯=2.14742/275.2245.1492稳;
稳定系数:
5.10
6.3291.2962
.147425.341>倾稳=⨯+=M M ,抗倾覆满足要求,同时罐体设置抗风绳可以提高安全系数。

四、水泥罐基础承载力计算
1、但水泥罐扩大基础分开时,水泥罐基础承载力计算如下所示: 水泥罐基础采用4m ×4m ×1.5m 的砼扩大基础形式,基础采用预埋地脚钢板与水泥罐支腿满焊。

①、水泥罐装满时,其自重大小为:KN N 1500101501=⨯=; ②、扩大基础自重为:KN N 576245.1442=⨯⨯⨯=; ③、扩大基础与底部地基接触面积为:21644m A =⨯=; ④、基础承受最大倾覆力矩为:m KN M ⋅=91.296倾;
⑤、基础抗弯截面系数为:325.15.1461
m W =⨯⨯=;
⑥、基础底部应力最大为:
Kpa Kpa W M A N p 50069.3275
.191.296162076max <=+=+=
,得扩大基础承载能力满足要求!
2、但两个水泥罐共用一个扩大基础时,水泥罐基础承载力计算如下所示:
水泥罐基础采用9m ×4m ×1.5m 的砼扩大基础形式,基础采用预埋地脚钢板与水泥罐支腿满焊。

①、水泥罐装满时,其自重大小为:KN N 30002101501=⨯⨯=; ②、扩大基础自重为:KN N 1296245.1492=⨯⨯⨯=; ③、扩大基础与底部地基接触面积为:23649m A =⨯=; ④、基础承受最大倾覆力矩为:m KN M ⋅=82.593倾;
⑤、基础抗弯截面系数为:32375.35.1961
m W =⨯⨯=;
⑥、基础底部应力最大为:
Kpa Kpa W M A N p 50028.295375
.382.593364296max <=+=+=
,得扩大基础承载能力满足要求!
五、扩大基础砼局部承压计算
扩大基础上设60×60cm 的15mm 厚钢板与水泥罐支腿焊接传递压应力,得扩大基础砼局部承压验算如下所示:
局部承压面积:2360000600600mm A l =⨯=;
局部承压计算底面积:264000010026001002600(mm A b =⨯+⨯⨯+=)()
(钢板边缘距扩大基础边缘距离最小为10cm );
砼局部承压强度提高系数:33.1360000
640000
===
l b A A β; 得水泥罐支腿传递的最大轴向力为()KN 5.5625.14/1500=⨯;
有KN A f KN l cd 58.49553600005.1133.19.09.05.562=⨯⨯⨯=β<(扩大基础采用C25砼,混凝土轴心抗压强度设计值MPa f cd 5.11=);
得砼局部承压满足要求!
六、扩大基础抗滑移验算
1、但水泥罐扩大基础分开时,扩大基础抗滑移验算如下所示: 基础所受水平力大小为:KN T 335.25475.278.2108.1=++=;
基础底部摩擦系数:3.0=f ;
基础所受最小轴向力:KN N 726576150=+=; 基础抗滑移稳定系数为:5.160.8335
.257263.0>=⨯==T fN K c ,得扩大基础抗滑移验算满足要求;
2、但两个水泥罐扩大基础共用时,扩大基础抗滑移验算如下所示: 基础所受水平力大小为:()KN T 67.502475.278.2108.1=⨯++=; 基础底部摩擦系数:3.0=f ;
基础所受最小轴向力:KN N 159********=+=; 基础抗滑移稳定系数为:5.150.9335
.2515963.0>=⨯==T fN K c ,得扩大基础抗滑移验算满足要求;
七、换土垫层计算
1、换土垫层厚度计算
换土垫层的厚度定为100cm ,换土垫层的厚度应满足以下要求:
[]a R gk ok f p p γ≤+
()()
θθtan 2tan 2)
''(z l z b p p bl p gk ok ok ++-=
式中:)KPa p ok (垫层底面处的附加应力-;
KPa KPa p gk 551195.124)=⨯+⨯-,取力(垫层底面处的自重压应;
;抗力提高系数,取25.1-R γ
[];载力容许值为地质报告得粉质粘土承地基承载力容许值,查KPa f a 180-
m b 4基础宽度,取-; m l 4基础长度,取-;
KPa p ok 69.327'基础底面压应力,取-;
KPa p gk 365.124'=⨯-,取基础底面处自重压应力;
m 1垫层厚度,取-z ;
045压力扩散角,取为-θ; 代入相关数据得:
KPa p p gk ok 64.18455)
45tan 124)(45tan 124()
3669.327(440
0=+⨯⨯+⨯⨯+-⨯⨯=
+; 得KPa KPa p p gk ok 22518025.164.184=⨯=+<,换填100cm 厚碎石垫层,满足承载力要求;
2、垫层宽度计算
垫层底面宽度应满足压力扩散的需求,得垫层宽度为
m z b b 0.645tan 124tan 201=⨯⨯+=+=θ;
实际布置时,垫层底面分别距基础底面宽度为150cm ,满足要求。

八、施工建议
①、施工期间加强对地基基础承载力的检验,基坑开挖完成后,检测地基承载力满足要求后,方能进行下一步施工;
②、基础底部应力水平相对较小,不会造成扩大基础混凝土开裂,但为满足结构构造性要求,建议在扩大基础顶面和底面各设置一层直径不小于Φ16的15cm ×15cm 的钢筋网片;
③、施工期间为加强水泥罐整体稳定性,对两个罐子之间可采用钢管或型钢焊接为一个整体;。

相关文档
最新文档