CRH3-380BL型动车组列车网络控制系统
CRH3型动车组旅客信息系统与列车网络控制系统通信接口分析-论文
在 发生 火灾 、 阻塞 及 恐 怖 袭 击 等 意外 情 况 下 , 旅 客信 息 系统 发挥 的作 用 是 不 可 替代 的 。在 我 国城 市轨 道 交 通 高 速增 长期 , 在满 足旅 客 基 本 需求 的 同时 , 更 好 地 提 高 服务 水平 提升 出行 质量 也 日益重 要 J 。C RH。型 动车
取代 现 有的 内外 显示 器 不 会 影 响 P I S与 C C U 之 间 的 通信 接 口。 根据 I E &- 6 2 5 8 0 — 2草 案 , 车载 C C T V 视 频 监 控 系
动 车组 P I S组成 、 功能, 以及 与 列 车 网络 控制 系统 通 信 接 口方 面存 在 的差 异 。本 文 以 C RH。型 动 车 组 为 例 ,
响P I S与 C C U 的通信 接 口。旅 客娱 乐 系 统 中 , 用 数 字 传输 系统 取代 模拟 分 配 系统 和 用媒 体 服务 器 取 代 声 频 和视 频 源 不 会 影 响 P I S与 C C U 之 间 的通 信 接 口。 内 外显 示 系统 中 , 用 薄膜 晶体 管 液 晶显 示 器 ( T F T— L C D)
工 程 ,2 0 1 1, 1 9 ( 7 ):1 0 7 — 1 1 1 .
统必 须接 人列 车通 信 网络 , 这 将需 要增 加新 的 P I S通 信
接 口来 满足此 需求 _ 6 ] 。 ( 2 ) 技术 发展趋 势
今后 P I S系统 的发展 趋势有 以下 几个 : ① 网络 化 。P I S系 统 和 列 车通 信 网 络 之 间将 进 一 步 网络 化 。例 如 , I P视 频 监 控 系 统 会 取 代 传 统 C C T V 视 频监 控 系统l 6 接 入到 列车 通信 网络 。 在新 I E C 6 1 3 7 5 标准中, 列 车通 信 网络包 括 了基 于 实 时 以太 网的列 车 骨干 网和 列 车 编组 网 。将 来 动 车 组
CRH380B系动车组列车网络系统的调试与诊断
CRH380B 系动车组列车网络系统的调试与诊断摘要:现在,我国的高铁运营逐渐现代化,但车辆运行中有很多不确定因素,影响了列车网络系统的正常运行。
描述了技术要求和硬件选择以及CRH380B列车的概况。
介绍故障诊断和检查,最后根据铁路列车的实际工作环境,以CAN总线数字通信模块为基础,构建新型高速列车乘务员通信实时监视管理系统,实现乘务员的控制,各种信息和数据传输获得了有效的记录和快速的更新。
关键词:CRH380B型动车组:;列车网络系统;调试;诊断作为新型高速、自动化、舒适的车辆群,CRH380B车辆群在运行中会产生大量的数据和信息(状态读取、监控、故障诊断、乘客服务等信息),这些信息是所有车辆的安全、快速、如何保证准确的传递是我国车辆修理的重要组成部分,本文分析介绍了CRH380B车辆网络系统的配置和调整方法,并说明了一些典型的故障原因和对应的处理方法。
一、CRH380B动车组概况1.1编组形式CRH380B和车辆群是8次组的形式相同,但是网络构造与其他同一组不同,CRH380B有2个动力单元。
首先由牵引车、变压器车、中间车和餐车组成。
由变压器车、中级车、第一等车组成。
如图所示,不同动力单位之间的通信连接主要通过列车总线进行。
1.2CRH380B系动车组列车网络系统的概述CRH380B的手推车是8辆编组4动4拖分散型动力车的构造。
整个编组列车由两个四轴牵引传动单元共同组成。
每4节车厢分别构成一个四轴牵引传动单元。
所有机车牵引机内部的所有动力系统配置和网络结构都应该是一样的。
包括两辆高速铁路列车、两辆电力牵引车、一个司机主辅助变压器、三个司机辅助的主变压器、以及一台中央电力控制器等动力设备的配套基础设施。
CRH380B的车辆网络系统以现有的CRH3小型车为基础进行了改进,EC01~BC05和IC06~EC08分别构成了两个完全的列车网络系统。
在每套独立的中央网络管理系统中,有一个中央网络控制管理单元和主网关、中继器、分布式网络输入端和输出控制站、人机交互界面(等整套网络基础设备,共同发挥着充分的作用。
CRH3-380动车组技术培训教材-控制系统
5
2. 安全可靠
• (4)采用独特的干线型MVB网络结构
动车单元内车辆间的MVB通信采用独立的MVB网段作为干线,各 车MVB网段通过中继器与之连接; 克服了MVB通信距离短,同时将网络通信故障以车为单位隔离。
8
9
• 连接到列车网络控制系统的设备主要有:
中央控制单元(主和从CCU)和附属网关; 司机显示屏(司机的MMI); 列车保护系统(CTCS); 牵引控制单元(TCU); 制动箱的制动控制单元(BCU); 蓄电池充电机(BC)控制系统; 辅助变流器控制单元(ACU); 车门控制装置(车门); 采暖、通风和空调控制单元(HVAC); 旅客信息系统(PIS)的中央系统控制器(STC); 列车员显示屏(TA-MMI); 受电弓; 分布式输入/输出设备(包括SIBAS® KLIP 和 MVBCompact I/O);
4
2. 安全可靠
依据总体对列车网络控制系统提出的能力性指标、安全性指标、 可靠性指标和可用性指标,CRH3-380型动车组网络控制系统在设计 时重点考虑了有以下几点: • (1)符合IEC61375-1《列车通信网络》标准要求; • (2)符合UIC556《列车通信网络上的信息传输》标准要求; • (3)列车级、车辆级总线及重要控制设备或装置采用冗余结构; 当上述总线和控制设备或装置单个故障时,动车组能正常运营, 提高了系统的可用性。主要有以下冗余:
11
2. 网络控制系统硬件组成
CRH3-380型动车组的列车网络控制系统硬件主要 包括:中央控制单元CCU、人机界面HMI、输入/输出 设备KLIP、紧凑式I/O模块、紧凑式Pt100模块、MVB 中继器、数据记录仪、MVB/WTB连接器及电缆、无限 传输设施等。
CRH3型动车组网络控制系统常见故障及其改进措施
可靠 运 行 直 接关 系 到动 车 组 的 可用 性 和安 全 性 。唐 1 1 1 轨 道 客 有 限 责 任公 司 ( 以下 简称 “ 唐 车公 司 ” ) 在生产 C R H 3
型动 车组 的过 程 中 ,时而 出现 网络 系
- _ 一牵引变压器 ; 一辅助变流器 : 鞠 一充电机; 00 ~拖车轮对 。 圆 ~牵引变流器 ; 田 一制动 电阻器 ; 圈 一蓄电池 ;●● 一 动车轮对
Ke y wo r d s :EMU;Ne t wo r k ;C o n t r o l S y s t e m;F a i l u r e A n a l y s i s ;I mp r o v e me n t
0 引 言 对 于 动车 组 而 言 ,网络 控 制 系 统
相 当于 人 的 中枢 神 经 系统 ,它 的稳 定
备一 列车总线一 第l 部分 :列 车通信网络》的要 求。 WT B 传输数据的速率为 1 . 0 M b i t / s ,M V B传输数据
的速 率为 1 . 5 Mb i t / s 。
C R H3型动 车组 由 8辆 车 编组 而成 ,分为 2 个
动力单元。第 1 个动力单元 南头车 ( E C 0 1 ) 、变压 器车 ( T C 0 2 ) 、中 间 车 ( I C 0 3 )和 餐 车 ( B C 0 4 )组 成 ;第 2个 动力单元 由头车 ( E C 0 8 ) 、变压器 车
能 终 端 、MV B 中继 器 、 网关 、牵 引变 流 器 的牵 引 控 制装 置 ( T C U) 、辅 助 变 流 器装 置 ( A C U) 、制 动
t h e a u t h o r a n a l y s e s t h e d e f e c t o f c a b l e s ,q u a l i t y p r o b l e ms n d h a r d wa r e o f t h e n e t wo r k c o n t r o l s y s -
第七章 CRH3列车网络控制系统
• 这些信息主要是:卫生间的错误信息、净水箱空故障 信息、污水箱满95%故障信息、卫生设施的加热系统 温度过高、紧急呼叫信息。
• 一个MVB网段内采用构架式的网络结构,即每辆车形 成一个MVB分支网通过中继器与一牵引单元的MVB主干 网相连接,这种结构的优点是一个MVB分支网的故障 时不致影响其它车辆的MVB分支网,在端车上由于冗 余的原因有两个MVB分段,分别通过两个中继器接入 整个MVB网段,在每个分段的两端都接有终端电阻 (120欧姆) 。
七、电池充电机控制单元
• CRH3动车组上共有两个电池充电机,分 别位于餐车和一等车,如图7-9所示, 电池充电机控制系统就位于充电机中。 电池充电机的输入电源为3相 AC440 V/60Hz,输出为直流110V,是动车组 110V负载的供电电源。它有两个主要控 制模块,一个是充电机的核心控制模 块,同时还负责和车辆总线MVB进行通 信,另一个是主要用于充电的功率模 块。充电机的基本结构入图7-10所示。
• 每个牵引单元内的MVB网段均设有两个互为冗余的中央控制单元 CCU(以下简称CCU),除此之外在MVB网段上还有牵引控制单元 TCU、制动控制单元BCU、辅助控制单元ACU、以及充电机单元 BC、空调控制单元HVAC、门控制单元、旅客信息中央控制器 PIS—STC、人机显示接口MMI、分布式输入输出站SIBAS KLIP STATION (SKS) 和紧凑式输入输出站MVB COMPACT IO 等。
CRH380BL动车组门系统的网络控制
CRH380BL动车组门系统的网络控制
CRH380BL动车组门系统的网络控制
李文斌;冀云;王景波;郭凤媛;鲁彦男
【期刊名称】《科技信息》
【年(卷),期】2013(000)007
【摘要】随着我国铁路事业的蓬勃发展,高速动车组技术发展得到了前所未有的机遇.基于目前列车采取网络控制,如何实现列车网络的实时性、稳定性成为了研究的重点.本文针对在京广线运行的国产CRH380BL动车组门系统的网络控制进行了深入的研究,并根据国内外列车网络技术的发展以及结合我国列车网络技术的发展状况,提出了未来适合国情列车的列车网络.
【总页数】2页(96,113)
【关键词】CRH380BL;列车通信网络;门系统;网络控制
【作者】李文斌;冀云;王景波;郭凤媛;鲁彦男
【作者单位】中国北方机车车辆工业集团公司唐山轨道客车有限责任公司,河北唐山063035;中国北方机车车辆工业集团公司唐山轨道客车有限责任公司,河北唐山063035;中国北方机车车辆工业集团公司唐山轨道客车有限责任公司,河北唐山063035;中国北方机车车辆工业集团公司唐山轨道客车有限责任公司,河北唐山063035;中国北方机车车辆工业集团公司唐山轨道客车有限责任公司,河北唐山063035 【正文语种】中文
【中图分类】
【相关文献】
1.CRH380B、CRH380BL动车组客室空调系统故障的一些应急处理方法 [J], 张。
CRH380B型动车组网络控制及诊断分析
长春轨道客车股份有限公司 二○一五年四月
1.概述
列车的高级通讯控制系统、子系统和车辆控制系统共同形成了列车控制系统 “列车通讯和控制”概念是以IEC 61375中要求的列车通讯网络(TCN)为 依据据,IEC 61375是1988年在欧洲开始创办的列车通讯网络标准。 TCN通讯标准为不同生产商设备的控制、调整、监视和诊断提供了一般 数据交换的统一标准。
☆ CCU硬件结构(SIBAS® 32) 动车组的每个牵引单元已经分配了两个SIBAS® 32系统的冗余可编程逻辑 控制器,作为中央控制装置(CCU),形成列车通讯和控制的基础。
除了进行CCU-MVB通讯连接和MVB总线管理器功能以外,在车辆总线(MVB) 和列车总线(WTB)之间连接的网关还形成网架的一部分。列车的中央控 制单元CCU按照IEC 60571, EN 50155, EN 50124-1 以及 EN 50121-3-2 的要求生产制造。
☆ 主CCU功能 主CCU负责其本牵引单元内的车辆控制。它从外围和列车总线(WTB)读 取命令和信息,并向列车总线(WTB)发送控制信号和反馈信息,在其他 情况下,主CCU进行下列工作:
(1)主断路器和受电弓控制; (2)牵引控制单元(TCU)的牵引设置点生成; (3)变压器保护; (4)车载电源控制; (5)前端车钩和车钩远端控制; (6)各种装置的更高级命令的发出和控制,例如车门、HVAC、照明等; (7)安全环、火警系统和转向架诊断监视; (8)通过分布式输入/输出网站(SIBAS® KLIP, MVB-Compact I/O)数字和模拟 输入和输出的控制; (9)静态检测和自动整备控制; (10)CCU诊断和列车总线和车辆总线(WTB和MVB)的CCU通讯诊断 (11)通过辅助网关连接到列车总线(WTB),确定配置和检测动车组和车辆
CRH380B(L)动车组信息网络
第六章动车组信息网络为实现车载数据通信的国际标准化,国际电工技术委员会IEC于1999年通过了一项列车通信网络专用标准TCN(IEC-61375-1)。
该标准将列车通信网络分为列车级通信网络WTB (绞接式列车总线)和车辆级通信网络MVB(多功能车辆总线)。
第一节信息及网络系统一、通信与网络原理CRH380B(L)动车组列车通信和控制网络以及子系统和传统电路技术形成了列车总体网络控制系统。
列车控制网络TCN包括列车级通信网络WTB(绞接式列车总线)和车辆级通信网络MVB(多功能车辆总线),这两个系统都采用了双路冗余线传输。
列车级通信网络WTB用于经常联挂和解编的重联车辆,具有可变的拓扑结构。
多功能车辆总线MVB用于每辆车或一个牵引单元内设备之间的数据通信,具有固定的拓扑结构。
为了提高可用性,使用一个主链结构实现车辆总线 MVB 的拓扑结构,MVB分支段通过中继器连接至主链上。
该结构的优点在于如果车内一个MVB分支段出现故障,不会对本牵引单元其他车的通信产生影响。
CRH380B(L)动车组网络拓扑结构如图6-1所示。
图6-1 CRH380B(L)动车组网络拓扑结构示意图(头车)二、列车通信网络的构成与功能CRH380B(L)型网络控制系统设备包括:中央控制单元、人机接口显示屏、牵引控制单元、制动控制单元、辅助控制单元、输入输出模块及温度采集单元、中继器等,如图6-2所示。
图6-2 动车组网络系统设备示意图(局部)(一)中央控制单元(CCU)U的组成CRH380B(L)动车组每个牵引单元内有两个CCU,其中一个CCU以主控CCU方式工作,另一个以从控CCU方式工作。
中央控制单元(CCU)由MVB32板卡、各控制板卡及网关板卡等元件组成,如图8-3所示。
图6-3 动车组中央控制单元CCU(1)网关:每个牵引单元有两个网关,但只有加载在主CCU上的网关参与WTB和MVB 通讯,从CCU上的网关不工作。
网关负责从列车总线(WTB)到车辆总线(MVB)的处理数据的信号编辑和信息数据发送,反过来也一样。
试论CRH380B系动车组列车网络系统的调试与诊断
试论CRH380B系动车组列车网络系统的调试与诊断作者:刘洪迎来源:《科学与财富》2019年第08期摘要:经济的不断发展推动了我国铁路事业的快速发展,并且CRH380B动车组得到了铁路行业的广泛应用,但是在该动车组中,经常会出现一些列车网络系统故障。
基于此,本文将从当前列车网络系统的概况出发,对诊断和调试列车网络系统的策略进行分析与探究,希望为相关人员提供一些帮助和建议。
关键词:动车组;列车网络;网络系统引言:CRH380B动车组是由中国北车集团唐山轨道客车有限责任公司、长春轨道客车股份有限公司在CRH3C型电力动车组基础上自主研发的CRH系列高速动车组,也是“中国高速列车自主创新联合行动计划”的重点项目之一,并将以此为基础研制时速400公里的CIT400B检测车。
由于CRH380B动车组运行中会有大量信息数据需要传输,确保其传输的准确、快速、安全成为维护车辆的重要环节。
因此,研究诊断和调试列车网络系统的策略具有一定现实意义。
一、当前列车网络系统的概况目前,CRH380B动车组是一种分散型的动力电动车组,其结构是四动四拖、八辆编组。
整个列车包括两个不同的牵引单元,每个牵引单元由4节车厢组成。
同时,各牵引单元的网络结构与动力配置基本相同,都是1个中央控制单元、3个辅助变流器、1台主变压器、2节拖车、2节动车。
在CRH380B动车组中,列车的网络系统对CRH3系列车型进行了改进,从ec01到bc05、从ic06到ec08的列车网络系统都十分完整。
二、诊断和调试列车网络系统的策略(一)软件上载通常来讲,软件上载会在CRH380B动车组的调试初期进行,这样一来,不但能够使接下来的功能试验需求得到满足,还可以让工作人员根据软件上载状态来进行单车网络系统的检车工作,确保其准备就绪。
如果CRH380B动车组网络线缆与设备处于正常状态,则klip绿灯为常亮,如果右边mvb指示灯或中间I/O指示灯亮起,则CRH380B动车组出现了一些网络问题。
CRH3-380动车组技术培训教材-控制系统
• 给水卫生系统的故障诊断
• 雨刷风笛装置的故障诊断 辅助运行设备
31
第三部分
网络控制系统优化比较
32
网络控制系统自身优化
对CRH3-380型动车组的网络控制系统优化主要有: 网络拓扑结构的优化; 网络IO触点根据设计方案进行相应调整; 控制逻辑和故障诊断的调整; 优化司机台和乘务员室监视器显示界面。
11
2. 网络控制系统硬件组成
CRH3-380型动车组的列车网络控制系统硬件主要 包括:中央控制单元CCU、人机界面HMI、输入/输出 设备KLIP、紧凑式I/O模块、紧凑式Pt100模块、MVB 中继器、数据记录仪、MVB/WTB连接器及电缆、无限 传输设施等。
12
(1)中央控制单元 中央控制单元CCU主要包括MVB32板卡、各控制 板卡及网关板卡等组成。CCU通过收集分布式输入/输 出设备和连接到MVB总线上的其他设备信号,进行逻 辑判断后发布指令,对动车组实施控制。
13
(2)人机界面 人机界面HMI位于司机室和乘务员室,主要承担的任务有: 动车组的人机操作接口; 为动车组和牵引单元提供诊断系统; 通过发出声音信号,通知司机有关列车控制方面的特殊情况;
14
(3)分布式输入/输出设备 KLIP 由带有许多不同模块组成的数字 I/O ( 110V DC)分布式输入、输出设备。通过车辆总线(MVB) 与 CCU 进行通讯,可以将被监控设备的状态信息传输 给CCU,或执行CCU的指令。
33
(1)网络拓扑结构的优化
增加数据记录仪
增 加 数 据 记 录 仪
CRH3-380在EC01/EC16车增加数据记录仪,用于记录重要事件 和故障记录信息。
CRH380BL型动车组列车网络控制系统解读
KLIP站
(2) 软件所实现的功能
系统 • • • • • • • • • • 正常运行 运行方向设定 牵引设定值处理 TCU及冷却装置监控 自动速度控制 紧急制动指令 常用全制动及停放制动指令 自动速度控制 全列撒砂指令 监测紧急制动阀 受电弓、主断、车顶高压线路 分离开关控制 主变压器冷却装置监控 紧急运行
⑥诊断与报警的方式
SKS报故障(如火灾报警)
子系统的故障诊断信号(如制动系统) CCU故障诊断(如高压系统故障)
⑤诊断系统的协议数据
代码开始 9001 9100 9201 53C1 代码结束 90FF 9108 9297 53D3 代码范围 9000~90FF 9100~91FF 9200~92FF 53C0~53DF 合计 代码所属系统 CCU 协议数据 BCU协议数据 MMI 协议数据 特殊协议数据 代码统计(种) 242 8 72 10 332
CRH380BL型动车组
列车网络控制系统
一、总体情况
1.CRH380BL型动车组列车网络控制系统的特点 采用TCN两级总线,满足IEC61375标准;
列车级总线为 WTB ,车辆级总线为MVB;
实时性强、可靠性高; 总线和重要设备完全冗余; 采用模块化设计,产品通用性强,易扩展; 故障诊断功能强大;
②诊断监视范围
主电流系统 牵引系统 车载辅助电源、充电机 加热、通风、空调 照明 火灾报警 安全环路 人机接口MMI 厕所卫生系统 制动系统 供风系统 齿轮箱,转向架
CCU
车门 旅客信息系统 ETCS列控系统 数据记录DR
③诊断与报警的分类 • 面向司机的诊断和报警信息
与列车运行相关的诊断和报警信息都会向司机显示。
紧急牵引 禁止外部供电 禁止AC冗余供电连接
(完整版)CRH380BL_CRH350电气系统原理分析TCN与MVB介绍
第5章功能组分析5.1 TCN发展概述高速列车为保证旅客乘车的安全与舒适,需对机车和车辆的各种设备进行可靠地控制、监测和诊断。
随着现场总线技术的发展,这种过程控制已从集中型的直接控制系统发展成为基于网络的分布式控制系统。
现场控制总线出现于上世纪80年代,是一种开放式数字化多点通信的底层控制网络。
这种总线技术把单个分散的测量控制设备变成网络节点,以现场总线为纽带,完成现场自动化设备之间的多点数字通信。
相互共享信息。
它打破了原来孤立的直接控制系统的信息孤岛局面,既是一个分布式控制系统,又是一个开放的通信网络。
所以非常适合在列车上应用,既可用于车辆控制,又可传输旅客信息和进行故障诊断。
目前已发展出了很多总线技术,如WorldFIP、LonWorks、CAN总线及Profibus等,它们各有特点,在各个方面发挥着重要的作用。
但由于多方面的原因,而未被业界一致接受作为列车通信网的行业标准。
为实现车载数据通信的国际标准化,国际电工技术委员会IEC于1999年通过了一项列车通信网络专用标准TCN(IEC-61375-1)。
该标准将列车通信网络分成用于连接各节可动态编组的列车级通信网络WTB(绞接式列车总线)和用于连接车辆内固定设备的车辆通信网络MVB(多功能车辆总线)。
5.1.1 TCN网络列车通信网络是一种面向控制、连接车载设备的数据通信系统,是分布式列车控制系统的核心,其集列车控制系统、故障检测与诊断系统以及旅客信息服务系统于一体,以车载微机为主要技术手段,并通过网络实现列车各个系统之间的信息交换,最终达到对车载设备的集散式监视、控制和管理目的,实现列车控制系统的智能化、网络化与信息化。
列车通信网络即列车控制、诊断信息数据通信网络,其将列车微机控制系统的各个层次、各个单元之间连接起来,作为系统信息交换和共享的渠道,从而实现全列车环境下的信息交换。
列车通信网络是铁路列车车辆之间和车辆内部可编程设备互连传送控制、检测与诊断信息的数据通信网络。
CRH3列车通信网络系统
元件完成卫生间相应功能外,还与列车控制系统进行信息交
互。作为主的卫生间本身没有与MVB直接通信的能力,它通 过SIBAS®-KLIP连接到列车网络,将二进制的状态信息反馈 到列控系统,然后这些信息可以在列车员MMI上显示。这些 信息主要是:卫生间的错误信息、净水箱空故障信息、污水
通过MVB车辆总线,向更列车控制系统发送三相电压输出 的短路或过载情况
多功能车辆总线中继器MVB-Repeater
MVB-Repeater本身并不具有与MVB总线其它设备进行 信息交互的能力,它只是延长MVB总线的通信距离。在 CRH3动车组中共有10这样的中继器,其中两个端车内各有2 个,其它每个车内各有1个。它同时还有故障隔离的作用, 因为每个车的MVB总线上的设备都是通过MVB中继器接入到 整个列车通信网络的干线上的,一旦某个车的MVB总线或
备可用于列车行驶和制动的操作中。
二、中央控制单元
每个牵引单元有两个TCN网关,位于两端车的司机室中,
分别集成在两个中央控制单元(CCU)内,互为冗余,但只
有在作为主的中央控制单元中的网关才参与WTB和MVB通信。 每个牵引单元的主CCU负责其本牵引单元内的车辆控制,它 从车辆总线MVB和列车总线WTB(通过其附属网关)读取命 令和信息,并向列车总线WTB和车辆总线MVB发送控制信号
拓扑结构,MVB分支段通过中继器连接至主线(主链)上。
该结构的优点在于如果车内一个MVB分支段出现故障,
通常不会对牵引单元其他车的通信产生影响。对动车组以及
输入输出设备(CCU、司机MMI、SIBAS-KLIP和MVB袖珍型 I/O模块)的可用性很重要的冗余控制和操作设备均位于 EC01/EC08车内。因此,EC01/EC08车内安装有两个独立的 MVB分支段,冗余设备分给了各分支段,如有必要,冗余设
(完整版)CRH380BL_CRH350电气系统原理分析TCN与MVB介绍
第5章功能组分析5.1 TCN发展概述高速列车为保证旅客乘车的安全与舒适,需对机车和车辆的各种设备进行可靠地控制、监测和诊断。
随着现场总线技术的发展,这种过程控制已从集中型的直接控制系统发展成为基于网络的分布式控制系统。
现场控制总线出现于上世纪80年代,是一种开放式数字化多点通信的底层控制网络。
这种总线技术把单个分散的测量控制设备变成网络节点,以现场总线为纽带,完成现场自动化设备之间的多点数字通信。
相互共享信息。
它打破了原来孤立的直接控制系统的信息孤岛局面,既是一个分布式控制系统,又是一个开放的通信网络。
所以非常适合在列车上应用,既可用于车辆控制,又可传输旅客信息和进行故障诊断。
目前已发展出了很多总线技术,如WorldFIP、LonWorks、CAN总线及Profibus等,它们各有特点,在各个方面发挥着重要的作用。
但由于多方面的原因,而未被业界一致接受作为列车通信网的行业标准。
为实现车载数据通信的国际标准化,国际电工技术委员会IEC于1999年通过了一项列车通信网络专用标准TCN(IEC-61375-1)。
该标准将列车通信网络分成用于连接各节可动态编组的列车级通信网络WTB(绞接式列车总线)和用于连接车辆内固定设备的车辆通信网络MVB(多功能车辆总线)。
5.1.1 TCN网络列车通信网络是一种面向控制、连接车载设备的数据通信系统,是分布式列车控制系统的核心,其集列车控制系统、故障检测与诊断系统以及旅客信息服务系统于一体,以车载微机为主要技术手段,并通过网络实现列车各个系统之间的信息交换,最终达到对车载设备的集散式监视、控制和管理目的,实现列车控制系统的智能化、网络化与信息化。
列车通信网络即列车控制、诊断信息数据通信网络,其将列车微机控制系统的各个层次、各个单元之间连接起来,作为系统信息交换和共享的渠道,从而实现全列车环境下的信息交换。
列车通信网络是铁路列车车辆之间和车辆内部可编程设备互连传送控制、检测与诊断信息的数据通信网络。
列车运行控制系统CRH380B(L)
2006年7月,采用关键设备和技术引进、主要设备自主研发、既有设备结合改造的模式,主要依靠国内技术力量、借助国外先进经验进行系统集成的CTCS-2级列控系统通过原铁道部技术审查。
(二)我国列控系统的发展概况
20世纪80年代末期,我国相继在京广线郑武段、京哈线京秦段引进了法国的UM71轨道电路和TVM300列控系统;在京哈线秦沈段引进了法国的UM2000轨道电路和TVM430列控系统,在京九线、广深线试验和小范围使用了国内研究开发的LCF模式曲线超防系统和LSK分级速度控制系统。
速度-距离模式曲线控制是根据目标速度、线路参数、列车参数、制动性能等确定的反映列车允许速度与目标距离间关系的曲线,速度-距离模式曲线反映了列车在各点允许运行的速度值。列控系统根据速度距离模式曲线实时给出列车当前的允许速度,当列车超过当前允许速度时,设备自动实施常用制动或紧急制动,保证列车能在停车地点前停车。
图8-1中入口检查方式就是列车在闭塞分区入口处接收到允许速度后立即依此速度进行检查,没有目标速度指示,一旦列车速度超过允许速度,则列控设备自动实施制动使列车运行降低到目标速度以下。入口检查方式中本区段的入口速度就是本区段的允许速度。较滞后式控制方式可有效提高间隔能力。
(2)速度-距离模式曲线控制方式
2007年,原铁道部在总结近年来既有线提速和高速铁路CTCS-2级列控系统建设和运用经验的基础上,颁布了《既有线CTCS-2列车运行控制系统技术规范(暂行)》和《高速铁路CTCS-2级列控系统配置及运用技术原则(暂行)》等文件,用于指导200-250km/h高速铁路的CTCS-2级列车运行控制系统和作为300-350km/h高速铁路的后备模式的CTCS-2级列车运行控制系统的工程设计、施工,设备研发、生产,运行试验、运用及维护。
380B简答
专业简答
简述动车组升级为V5.1版本,牵引系统轴承温度报警变更原因、方案及影响
变更原因: 为避免TCU因故障被切除后,牵引系统轴温(牵引电机轴承、齿轮箱轴承)失去监控,同一单元的每个TCU负责对整个单元内牵引系统轴承温度进行监控,在两个TCU都正常的情况下,当发生轴承温度报警故障后,本车TCU故障置位并产生诊断代码,相邻TCU故障置位,但不产生诊断代码,列车维护时容易忘记复位相邻TCU,再次上线的列车因相邻TCU的轴温报警状态仍在置位状态,再次触发报警并限速,影响列车运行。 变更方案:牵引系统轴承温度报警,相邻TCU同样报出故障子代码(维护代码),用于提示维护人员复位时需同时复位相邻TCU。 司机操作、应急处置及检修影响:此项变更涉及应急处置及列车检修,应急处置及检修时应注意:在处理牵引系统轴承温度报警故障时,需要同时复位本单元两个TCU。
2
专业简答
简述KWD 联轴器检查作业程序?
(1)检查两个法兰接头无泄漏。 (2)检查联轴器及螺栓应无裂纹,腐蚀。如果损坏和严重腐蚀,必须更换。 (3)对联轴器零件上较轻的腐蚀点和损坏的面漆涂层进行修复补漆。 (4)检查各螺栓、螺堵的防松标记漆无脱落,螺栓无裂纹、防松标记无错位。如果检查出有松动的螺栓,不允许单个更换,必须成套更换。
25
专业简答
简述BCU复位的操作方法。
1.断开空开:BCU1供电空开[=28-F11]、BCU2供电空开[=28-F12],只断开相应车厢与故障相关的BCU空开;2.恢复空开:10s后,闭合空开
26
专业简答
简述空簧连接组成检查的作业程序?
(1)对空气弹簧控制系统进行检查,检查空气弹簧组成各部件应无机械损伤(例如裂缝,变形等),检查各部件应无松动或者丢失; (2)检查空气弹簧控制系统各紧固件无松动或者缺失; (3)检查空气弹簧控制阀体等应无漏气等现象; (4)检查高度阀调整杆应无变形或弯曲,高度阀柱头螺栓应无松动或缺失部件。
动车_列车网络控制系统
⑤诊断系统的协议数据
代码开始 9001 9100 9201 53C1 代码结束 90FF 9108 9297 53D3 代码范围 9000~90FF 9100~91FF 9200~92FF 53C0~53DF 合计 代码所属系统 CCU 协议数据 BCU协议数据 MMI 协议数据 特殊协议数据 代码统计(种) 242 8 72 10 332
为更直观更快速的判断目标轴温,按车辆轴端位置显示 轴温。
显示16编组的各车厢号信息。
例:停放制动。
谢
谢 !
代码开始
4002 519F 5443 5680 600B 7102
代码结束
402D 51A3 5443 5682 6CF6 71F8
代码范围
4000~4FFF 5100~51FF 5400~54FF 5600~56FF 6000~6CFF 7100~71FF 合计:
代码所属系统
PIS 旅客信息 CCU 中央控制(列车) BRAKE 制动系统(列车) TCU 牵引系统 (列车) CCU 中央控制 HVAC 空调
紧急牵引 禁止外部供电 禁止AC冗余供电连接
辅助供电
空调
门
系统
正常运行 •外部信号灯控制 •内部紧急照明监控 •内部主照明监测 •阅读灯测试 •自动速度控制 •过分相信号处理 •雨刷 •水箱 •撒砂装置 •轮缘润滑 •卫生间设备
紧急牵引 •紧急照明指令 •主照明指令
照明
列控系统
辅助装置
10)CRH380BL型动车组诊断与报警 ①诊断原理
牵引
• •
运行方向设定 牵引设定值处理
制动
• • • •
禁止紧急制动指令 常用全制动指令 停放制动指令 断开车顶高压线路分 离开关
CRH380B型动车组网络控制及诊断解析复习进程
连接到车辆总线(MVB)的每个控制装置要完成下列工作
(1)子系统控制; (2)处理来自中央控制装置(CCU)或其他MVB设备的MVB控制信号; (3)评估由下级传感器和/或下级控制装置(如,车门控制装置)提供 的信息; (4)通过MVB把操作状态反馈到中央控制装置(CCU); (5)通过MVB把诊断、故障信息传输到动车组中央诊断系统;
4.1 中央控制单元
每辆头车的司机室内,有两个中央控制装置(CCU)。其中一个CCU在主 控CCU方式下工作,另一个在从控CCU方式。在主导司机室的主CCU叫做主 导主控CCU。
☆ 主CCU功能
主CCU负责其本牵引单元内的车辆控制。它从外围和列车总线(WTB)读 取命令和信息,并向列车总线(WTB)发送控制信号和反馈信息,在其他 情况下,主CCU进行下列工作:
列车中的牵引单元通过和控制系统的装置 (1)中央控制单元(CCU)和网关(GATEWAY); (2)人机接口(MMI); (3)牵引控制单元(TCU)和辅助控制单元(ACU); (4)制动控制单元(BCU); (5)充电机控制单元(BC); (6)车门控制单元(DCU); (7)采暖、通风和空调控制单元(HVAC); (8)旅客信息系统(PIS); (9)列车控制系统(ETCS); (10)输入输出模块(Compact I/O、Compact Pt100、KLIP Station)
通过分布式输入/输出站(SIBAS KLIP or MVB-Compact I/O)将下列装 置连接到列车通讯和控制系统。
(1)WC系统; (2)火灾报警系统和烟雾探测器; (3)内门; (4)厨房。
4 列车通讯设备
车辆控制等级实际上通过车辆总线(MVB)和列车总线(WTB)由相互连 接的装置(子系统)组成。此外,基于安全和冗余原因考虑,还使用了 普通电路的列车控制电缆
CRH380B型高速动车组车载监控数据网络技术升级浅析
CRH380B型高速动车组车载监控数据网络技术升级浅析摘要:为能够实时监控高速动车组高速运行中的各种运行参数及其故障信息,及时发现和处置相关故障,保证高速动车组能够安全稳定可靠的工作,提出一种升级的4G无线网络传输技术。
通过高速无线传输网络技术对高速动车组进行全天候的实时监控,是保证车组正常运行的必要条件。
关键词:高速动车组;4G网络;无线传输技术;实时监控;中图分类号:TN919 文献标识码:A引言随着高速动车组技术的飞速发展,我国高速动车组以其高速、稳定、安全、舒适等优势赢得了全球的青睐;高速动车组集合了各学科的大量高新技术,包括牵引系统、制动系统、网络系统、转向架系统、辅助系统等。
其中网络系统是高速动车组各个系统数据的载体和媒介,通过车载远程网络系统能够实时监控动车组运行中的各个系统参数和信息,保证动车组维护人员和客户对动车组的实时监控和响应,保证动车组正常稳定运行。
因此一套高效稳定、速度快的车载网络传输系统尤其必要,现阶段部分车载远程网络数据系统传输还处于2G网络系统,亟待更新车载远程数据网络传输系统。
以满足日常动车组维护和客户的需求。
1现状及意义高速动车组车载远程数据传输网络系统是保障车组正常运行和日常维护的重要手段之一。
也是车组运行故障信息处置时效的必要条件之一;一旦出现故障或者故障信息有延时,都将影响车组正常稳定运行。
车载远程数据传输系统受限于车组网络系统和地面网络系统的影响。
CRH380B型动车组上部分使用的网络系统还是2G网络。
随着移动网络技术的迅猛发展,高速动车组急需更新换代车载无线数据传输系统,以满足日益增长的车载数据监控系统,及其客户对动车组实时监控的需求。
本文针对原有CRH380B型动车组车载远程数据传输系统进行了系统升级的方案设计,通过试验验证方案的正确性和可行性,对于解决动车组监控数据的无线传输系统的要求有重要的意义。
2高速动车组车载数据无线传输系统概述:适用于中国高速动车组的远程无线传输装置采用MVB网络技术、以太网技术、GPRS无线传输技术、WLAN无线局域网技术,能够满足检修部门对运行动车组动态跟踪监控、提供远程技术支持和故障应急指导并即时组织维修的实际需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
支持4095个设备,其中有256个是能参与消息传送的站。
Data 据 节点 MVB 数 节点 列车总线 WTB 节点
MVB
MVB
设备总 线
车 辆 总 线
列车通信网络拓扑结构
(1)车辆总线MVB的特点
传输速率 时 介 延 质
1.5Mbits/s 0,001 秒 双绞线、光纤 255 个可编程设备 4095 简单的传感器/执行器
• 从CCU功能
从CCU和主CCU的运行程序相同,但没有主动控制过程。从 CCU监视主CCU的状态,并在主CCU发生故障时,接管主CCU 的工作。但主、从CCU对高压设备硬件的保护功能除外。
• 列车主CCU功能 除了主CCU的工作之外,列车主CCU还执行整车更高 等级的控制:
• • • • 评估司机操作台上的控制元件; 整车的牵引设置点生成; 速度自动控制; 更高等级的列车控制功能,例如司机安全装置(DSD)、 中心距离和速度记录(CDS); • 列车保护系统与列车控制系统的接口; • 更高等级的静态检测和自动整备控制;
从站数量
传输距离
双绞线< 200 m,光纤<2000m
(2)MVB传输介质
• ESD 电气短距离介质传送距离≤20米,使用标准的RS-485收发器,每段最多支持32个设备;
• EMD 电中距离介质传送距离≤200米,每段最多支持32个设备,屏蔽双绞线,变压器隔离;
• OGF 光学玻璃纤维介质,星型连接或点到点方式下最大距离2000米。 不同的介质间通过耦合器连接
•网关
每个牵引单元有两个网关,但只有指定给主CCU的网关才参与 WTB和MVB通讯。从CCU网关不工作。 网关负责从列车总线(WTB)到车辆总线(MVB)的过程数据编 组和消息数据发送。 网关进行初始化工作,包括“TCN初始化”和“逻辑初始化” (UIC初始化),并提供经计算验证的配置。
CRH3-380BL动车组 列车网络控制系统
中国北车长春轨道客车股份有限公司 二○一一年二月
一.概述
CRH380BL型动车组由四个牵引单元组成,列车 网络控制系统采用TCN两级总线,在每个牵引单元内 由MVB总线通讯,传递过程数据、消息数据等,控制 各子系统执行相应的功能;牵引单元间通讯由网关 通过WTB总线通讯,实现各个中央控制单元间传递列 车级数据及实现数据交换。
是主控器用以进行设备状态校验、静态设备检测、 主控转移以及同一总线上其它监视功能的短帧数据 。
二.系统的构成及主要功能 列 车 网 络 控 制 系 统 拓 扑 图
1
硬件构成
CRH3-380BL动车组的列车网络控制系统由中央控 制单元CCU(附带网关GW) 、司机台和乘务员室 显示器MMI、中继器REP以及KLIP站等硬件构成。
1. WTB列车总线 WTB列车总线特性: (1) 列车总线支持UIC556所规定的列车组成:车辆数22个,列车总 线距离小于860m; (2) 列车总线至少支持32个节点;
(3) 列车总线节点能接收位置地址,认别它们在列车中的取向(右/左
,前/后)以及知道其它节点的位置;
(4) 列车总线使用屏蔽双绞线作为传输介质,传输速率为1Mbps; (5) 由于列车的端节点或中间节点都可能由于损坏或无电而不工作, 列车总线将告知所有车辆上其他设备它的节点号和类型,以验证它 是否与列车组成相匹配; (6) 当车辆数发生改变或在总线上进行添加或移除设备时,列车总 线应能连续工作而无需人工干预;
•
WTB数据轮询 每个节点的轮询周期与车辆的类型有关,如牵引车辆的轮询周 期短于拖车在两个周期相之间轮询消息数据和监督数据。数据 传输方式如下图
:
2. MVB多功能车辆总线 MVB是特定用于连接同一车厢或不同车厢(最多6 节)的标准设备 到列车通信网络的车厢总线。它既提供了可编程设备之间的互连, 也提供可编程设备与其传感器和执行机构之间的互连。 MVB 最多
中央控制单元
中央控制单元CCU通过分布式输入输出站和连接到MVB总线上的其他设备 接收信号,经过逻辑判断后发布指令,对动车组进行控制。
每辆头车的司机室或8、9车的控制柜内,有两个中央控制装置(CCU)。 其中一个CCU在主控CCU方式下工作,另一个在从控CCU方式。在主导 司机室的主CCU叫做主导主控CCU。除了主CCU的工作外,它还进行整 个车组更高等级的控制。邻近牵引单元的主控CCU被称为引导主控CCU。
星耦器
设备
光纤 耦合器 光纤
双绞线部分
传感器
(3)MVB总线串行连接方式
(4)MVB双绞线、连接器
(5)MVB总线三类数据
1)过程数据(Process_Data) 过程数据表示高速列车状态,如列车速度、电机电 流等。过程数据是短促而紧急的,它们的传输时间 2)消息数据(Message_Data) 必须是确定的。 消息数据在时间上较不紧迫,也是不经常出现的但 可能是较长的数据。消息数据的发送是零星的。 3)监督数据(Supervisory_Data )
• 安全环、火警系统和转向架诊断监视; • 通过分布式输入/输出网站(SIBAS® KLIP, MVB-Compact I/O)数字和模拟输入和输出的控制; • 静态检测和自动整备控制;
• CCU诊断和列车总线和车辆总线(WTB和MVB)的CCU 通讯诊断;
• 通过辅助网关连ຫໍສະໝຸດ 到列车总线(WTB),确定配置和检测 动车组和车辆;
• •
WTB在给定时间内由单一主设备控制。 在主设备控制下,WTB周期性广播用于诸如牵引、控制列车的过 程数据。它也按需求传送可能较长但不太紧急的用于旅客信息、 列车诊断和维护的消息数据。 主设备权可以因为组成变化或节点失败而被转移。列车组成变 化时,例如车厢连挂,WTB自动重新配置,给节点分配地址和方 位,给所有节点发布新构形。
• 主CCU功能
主CCU负责其本牵引单元内的车辆控制。它从外围和列车总线 (WTB)读取命令和信息,并向列车总线(WTB)发送控制信号 和反馈信息。在其他情况下,主CCU进行下列工作: • • • • • • 主断路器和受电弓控制; 牵引控制单元(TCU)的牵引设置点生成; 变压器保护; 车载电源控制; 前端车钩和车钩远端控制; 各种装置的更高级命令的发出和控制,例如车门、HVAC、 照明等;