模式识别与分类40页PPT
合集下载
《模式识别与分类》课件
总结词
图像分类是一种基于深度学习技术的模式识别应用,用于自动分类和标注图像。
图像分类技术通过训练深度神经网络,学习图像中的特征,实现自动分类和标注。该技术广泛应用于图像检索、社交媒体自动标记等领域。
详细描述
总结词
总结与展望
05
深度学习:随着神经网络的深入研究,深度学习在模式识别中扮演着越来越重要的角色。然而,如何设计更有效的神经网络结构和训练算法,以及解决深度学习中的过拟合和泛化能力等问题,仍是需要面对的挑战。
人脸识别技术通过捕捉和比较人脸特征,如眼睛、鼻子、嘴巴等部位的形状、大小、位置等信息,实现身份识别。该技术广泛应用于安全监控、门禁系统、移动支付等领域。
VS
声音识别是一种基于语音处理技术的模式识别应用,用于语音识别和语音合成。
详细描述
声音识别技术通过分析语音信号的波形、频谱等特征,实现语音到文本的转换。同时,语音合成技术可以将文本转换为语音信号,实现语音输出。该技术广泛应用于语音助手、智能客服等领域。
优点
神经网络分类能够处理复杂的非线性数据,具有较强的泛化能力,且能够自动提取特征,减少人工干预。
缺点
神经网络分类的训练过程需要大量的数据和计算资源,且参数调整较为复杂,容易陷入局部最优解。
模式识别与分类的应用实例
04
总结词
人脸识别是一种基于计算机视觉技术的模式识别应用,用于身份验证和识别。
详细描述
详细描述
SVM具有较强的泛化能力,能够处理非线性可分的数据集,且在多分类问题中表现良好。
优点
SVM对于大规模数据集的处理效率较低,且对于非线性可分的数据集需要采用核函数等技术进行处理,参数选择较为复杂。
缺点
总结词
基于人工神经网络的分类方法
图像分类是一种基于深度学习技术的模式识别应用,用于自动分类和标注图像。
图像分类技术通过训练深度神经网络,学习图像中的特征,实现自动分类和标注。该技术广泛应用于图像检索、社交媒体自动标记等领域。
详细描述
总结词
总结与展望
05
深度学习:随着神经网络的深入研究,深度学习在模式识别中扮演着越来越重要的角色。然而,如何设计更有效的神经网络结构和训练算法,以及解决深度学习中的过拟合和泛化能力等问题,仍是需要面对的挑战。
人脸识别技术通过捕捉和比较人脸特征,如眼睛、鼻子、嘴巴等部位的形状、大小、位置等信息,实现身份识别。该技术广泛应用于安全监控、门禁系统、移动支付等领域。
VS
声音识别是一种基于语音处理技术的模式识别应用,用于语音识别和语音合成。
详细描述
声音识别技术通过分析语音信号的波形、频谱等特征,实现语音到文本的转换。同时,语音合成技术可以将文本转换为语音信号,实现语音输出。该技术广泛应用于语音助手、智能客服等领域。
优点
神经网络分类能够处理复杂的非线性数据,具有较强的泛化能力,且能够自动提取特征,减少人工干预。
缺点
神经网络分类的训练过程需要大量的数据和计算资源,且参数调整较为复杂,容易陷入局部最优解。
模式识别与分类的应用实例
04
总结词
人脸识别是一种基于计算机视觉技术的模式识别应用,用于身份验证和识别。
详细描述
详细描述
SVM具有较强的泛化能力,能够处理非线性可分的数据集,且在多分类问题中表现良好。
优点
SVM对于大规模数据集的处理效率较低,且对于非线性可分的数据集需要采用核函数等技术进行处理,参数选择较为复杂。
缺点
总结词
基于人工神经网络的分类方法
模式识别详细PPT
迁移学习在模式识别中广泛应用于目标检测、图像分类等任务,通过将预训练模 型(如ResNet、VGG等)应用于新数据集,可以快速获得较好的分类效果。
无监督学习在模式识别中的应用
无监督学习是一种从无标签数据中提取有用信息的机器学习方法,在模式识别中主要用于聚类和降维 等任务。
无监督学习在模式识别中可以帮助发现数据中的内在结构和规律,例如在图像识别中可以通过聚类算 法将相似的图像分组,或者通过降维算法将高维图像数据降维到低维空间,便于后续的分类和识别。
通过专家知识和经验,手 动选择与目标任务相关的 特征。
自动特征选择
利用算法自动筛选出对目 标任务最相关的特征,提 高模型的泛化能力。
交互式特征选择
结合手动和自动特征选择 的优势,先通过自动方法 筛选出一组候选特征,再 由专家进行筛选和优化。
特征提取算法
主成分分析(PCA)
通过线性变换将原始特征转换为新的特征, 保留主要方差,降低数据维度。
将分类或离散型特征进行编码 ,如独热编码、标签编码等。
特征选择与降维
通过特征选择算法或矩阵分解 等技术,降低特征维度,提高 模型效率和泛化能力。
特征生成与转换
通过生成新的特征或对现有特 征进行组合、转换,丰富特征
表达,提高模型性能。
04
分类器设计
分类器选择
线性分类器
基于线性判别分析,适用于特征线性可 分的情况,如感知器、逻辑回归等。
结构模式识别
总结词
基于结构分析和语法理论的模式识别方法,通过分析输入数据的结构和语法进行分类和 识别。
详细描述
结构模式识别主要关注输入数据的结构和语法,通过分析数据中的结构和语法规则,将 输入数据归类到相应的类别中。这种方法在自然语言处理、化学分子结构解析等领域有
无监督学习在模式识别中的应用
无监督学习是一种从无标签数据中提取有用信息的机器学习方法,在模式识别中主要用于聚类和降维 等任务。
无监督学习在模式识别中可以帮助发现数据中的内在结构和规律,例如在图像识别中可以通过聚类算 法将相似的图像分组,或者通过降维算法将高维图像数据降维到低维空间,便于后续的分类和识别。
通过专家知识和经验,手 动选择与目标任务相关的 特征。
自动特征选择
利用算法自动筛选出对目 标任务最相关的特征,提 高模型的泛化能力。
交互式特征选择
结合手动和自动特征选择 的优势,先通过自动方法 筛选出一组候选特征,再 由专家进行筛选和优化。
特征提取算法
主成分分析(PCA)
通过线性变换将原始特征转换为新的特征, 保留主要方差,降低数据维度。
将分类或离散型特征进行编码 ,如独热编码、标签编码等。
特征选择与降维
通过特征选择算法或矩阵分解 等技术,降低特征维度,提高 模型效率和泛化能力。
特征生成与转换
通过生成新的特征或对现有特 征进行组合、转换,丰富特征
表达,提高模型性能。
04
分类器设计
分类器选择
线性分类器
基于线性判别分析,适用于特征线性可 分的情况,如感知器、逻辑回归等。
结构模式识别
总结词
基于结构分析和语法理论的模式识别方法,通过分析输入数据的结构和语法进行分类和 识别。
详细描述
结构模式识别主要关注输入数据的结构和语法,通过分析数据中的结构和语法规则,将 输入数据归类到相应的类别中。这种方法在自然语言处理、化学分子结构解析等领域有
模式识别与分类课件
05
分类模型的应用案例
图像分类与目标检测
01
图像分类
利用分类模型对图像进行分类, 例如将图片分类为猫、狗、鸟等
类别。
03
图像分割
将图像分割成不同的区域,并对 每个区域进行分类,例如医学图
像分割、农业图像分割等。
02
目标检测
通过检测图像中的特定目标,实 现对图像的识别和分类,例如人
脸检测、物体检测等。
它通过将数据映射到高维空 间,并找到一个超平面来最
大化两个类别之间的间隔。
优点:适用于二分类和多分 类问题、对数据分布和特征 选择不敏感、具有较好的泛
化能力。
缺点:对大规模数据集训练 时间较长、不易解释、需要 手动调整参数。
决策树与随机森林
决策树是一种树形结构,用于分类和回归问题。 它通过将数据拆分成不同的分支来构建一棵树, 并使用信息增益或基尼指数等指标进行特征选择。
常见的模式识别算法
贝叶斯分类器
01 基于贝叶斯定理进行分类的算法,具有简单、易于理
解和实现等优点。
支持向量机
02 基于统计学习理论的分类算法,能够处理高维数据和
解决非线性分类问题。
决策树和随机森林
03
基于树结构的分类算法,能够处理各种类型的数据,
并且具有较好的可解释性和可视化性。
深度学习在模式识别中的应用
根据给定的主题或要求,生成符合语法和语义规则的文本内容, 例如机器翻译、智能客服等。
语音识别与音频分类
语音识别 将语音转换为文字,实现对语音的识别 和转写,例如电话语音识别、实时语音
识别等。 声音事件检测 从音频中检测出特定的事件或行为, 例如异常声音检测、语音命令识别等。
音频分类 利用分类模型对音频进行分类,例如 音乐分类、环境噪声分类等。
模式识别培训教程PPT(94张)
线条透视
结构密度
遮盖关系
(二)建构性知觉理论 (Constructive perception)
知觉是一个积极的和建构的过程
知觉并不是由刺激输入直接引起的,而 是所呈现刺激与内部假设、期望、知识以 及动机和情绪因素交互作用的产物
知觉有时可受到不正确的假设和期望影 响,因而也会发生错误
邻近物 体大小 对大小 知觉的 影响
现代观点则认为,知觉是主动 和富有选择性的构造过程。
黄希庭:“知觉是直接作用于感觉器 官的事物的整体在脑中的反映,是人对感 觉信息的组织和解释的过程。”
梁宁建:“知觉是人脑对客观事物的 各种属性、各个部分及其相互关系的综合 的整体的反映,它通过感觉器官,把从环 境中得到的各种信息,如光、声音、味道 等转化为对物体、事件等的经验的过程。”
2. “泛魔堂”模型(“魔城”模型)
通过特征分析识别一个字母R
3.特征分析的生理学依据
1981年诺贝尔医学奖获得者:Hubel & Wiesel
4.特征分析的行为学证据
Neisser(1964)英文字母扫描实验 固定影像与静止影像的实验
5.特征分析说的评论 优点:避开预加工、减轻记忆负担、带有学习
由有关知觉对象的一般知识开始的加工, 由此可以形成期望或对知觉对象形成假 设,这种期望或假设制约着加工的所有 阶段或水平。又称之为概念驱动加工 (Concept-Driven Processing)
•Tulving, Mandler & Baumal的实验
自变量
上下文情况:无上下文、4字上下文、8字上下文 (考察自上而下加工)
1982年他在《科学》杂志上原创性地提出 了“拓扑性质初期知觉”的理论,向半个世纪 以来占统治地位的理论提出了挑战。随后20多 年的时间里,在与国际上持不同学术观点的学 者的争论与交流中,他以令人信服的系列科学 实验不断地完善和论证着这一假说,使之成为 被越来越多的国际同行所接受的学说,进而成 为有国际影响力的理论,他的成果也被《科 学》、《美国科学院院报》等著名学术刊物多 次刊登。2004年,著名知觉杂志《Visual Cognition》以专辑的形式刊载了陈霖教授的 成果并配发了大量国际著名学者的评论性文章。
模式识别及其分类课件
模式识别及其分类课件
目录
• 引言 • 模式识别的基本概念 • 模式识别的分类方法 • 模式识别的应用案例 • 模式识别的未来趋势与挑战 • 总结与展望
01
引言
什么是模式识别
• 模式识别是指通过计算机自动识别和分类对象的技术。它通过 收集、处理和分析数据,从中提取出对象的特征和模式,并对 这些模式进行分类和识别。模式识别技术广泛应用于图像识别 、语音识别、自然语言处理等领域。
的挑战。
06
总结与展望
回顾模式识别的历史与成就
01 02 03
模式识别概念的起源
模式识别是指对输入的图像、声音、文本等数据进行分析 ,从中提取出有用的信息,并对其进行分类和识别的过程 。这个概念最早可以追溯到20世纪初,当时科学家们就开 始研究如何通过机器来识别和理解图像和声音等数据。
模式识别技术的发展历程
语音识别技术主要基于信号处理和机 器学习技术。通过对语音信号进行特 征提取和学习,实现语音识别。其中 ,关键的技术包括声学模型、语言模 型、解码器等。
发展趋势
随着深度学习技术的不断发展,语音 识别技术的准确性和稳定性不断提高 。未来,语音识别技术将更加注重隐 私保护和安全性,同时,也将与自然 语言处理等技术进一步融合,推动智 能化应用的发展。
手写数字识别
应用场景
手写数字识别技术主要用于银行支票、快递单据等手写文字的识别,以及各种需要手写输 入的应用场景。
技术原理
手写数字识别技术主要基于图像处理和机器学习技术。通过对手写数字图像进行特征提取 和学习,实现对手写数字的识别。其中,关键的技术包括特征提取、模型训练、数字识别 等。
发展趋势
随着深度学习技术的不断发展,手写数字识别技术的准确性和稳定性不断提高。未来,手 写数字识别技术将更加注重实时性和鲁棒性,同时,也将与自然语言处理等技术进一步融 合,推动智能化应用的发展。
目录
• 引言 • 模式识别的基本概念 • 模式识别的分类方法 • 模式识别的应用案例 • 模式识别的未来趋势与挑战 • 总结与展望
01
引言
什么是模式识别
• 模式识别是指通过计算机自动识别和分类对象的技术。它通过 收集、处理和分析数据,从中提取出对象的特征和模式,并对 这些模式进行分类和识别。模式识别技术广泛应用于图像识别 、语音识别、自然语言处理等领域。
的挑战。
06
总结与展望
回顾模式识别的历史与成就
01 02 03
模式识别概念的起源
模式识别是指对输入的图像、声音、文本等数据进行分析 ,从中提取出有用的信息,并对其进行分类和识别的过程 。这个概念最早可以追溯到20世纪初,当时科学家们就开 始研究如何通过机器来识别和理解图像和声音等数据。
模式识别技术的发展历程
语音识别技术主要基于信号处理和机 器学习技术。通过对语音信号进行特 征提取和学习,实现语音识别。其中 ,关键的技术包括声学模型、语言模 型、解码器等。
发展趋势
随着深度学习技术的不断发展,语音 识别技术的准确性和稳定性不断提高 。未来,语音识别技术将更加注重隐 私保护和安全性,同时,也将与自然 语言处理等技术进一步融合,推动智 能化应用的发展。
手写数字识别
应用场景
手写数字识别技术主要用于银行支票、快递单据等手写文字的识别,以及各种需要手写输 入的应用场景。
技术原理
手写数字识别技术主要基于图像处理和机器学习技术。通过对手写数字图像进行特征提取 和学习,实现对手写数字的识别。其中,关键的技术包括特征提取、模型训练、数字识别 等。
发展趋势
随着深度学习技术的不断发展,手写数字识别技术的准确性和稳定性不断提高。未来,手 写数字识别技术将更加注重实时性和鲁棒性,同时,也将与自然语言处理等技术进一步融 合,推动智能化应用的发展。
模式识别——非线性分类器 ppt课件
PPT课件
Then yiT y j ( xiT x j )2
16
Mercer 定理
Let x y φ(x)H
• H空间内积定义为
K(x, x') (φ(x) φ(x'))
• 则对任意函数 g(x) 0 and g2(x)dx
• 下式成立
Κ(x, x')g( x)g( x')dxdx' 0 (5-50)
K(PxP,Tx课'件) tanh(v(x x') c)
17
非线性支持向量机分类步骤
• Step 1: 选择核函数。隐含着一个到高维空间的映射,虽然 不知道具体形式。
• Step 2: 求解优化问题
ቤተ መጻሕፍቲ ባይዱ
maxQ(α) α
N
i
i 1
1 2
i,
N
i
j 1
j
yi y jK(xi,
maxQ(α) α
N
i
i 1
1 2
N
i
i, j1
j
yi
y
j(
yi
yj
)
需要在高维空间计算内积,计算复杂性增加
解决方法:高维空间内积表示成低维空间内积的函数
Let x x1, x2 T R2
Let
x
y
x12 2 x1x2
R3
x22
如果是这样得到则存在超平面wrkk得到如下分类器0102if00ttww????????wyxwyx?因此可以把判别函数近似表示为010kiiigwwf??????xx11?径向基函数网络radialbasisfunctionnetworksrbf?选择非线性函数为径向基函数22exp2iiif????????????xcx径向基函数示意图12???????????222expiiicxxf??等价于激活函数为rbf函数的单层神经网络131212110102??????????????????cc2122expexp?????????????xcyxc????????????????????????????????????????????????????368
模式识别及其分类PPT(40张)
方差-协方差矩阵,简称协方差矩阵如下:
Ccos1v221,(1) covp(,1)
cov1,(2) s222
covp(,2)
cov1,(p)
cov2,(p)
s2pp
对称矩阵
模式识别与分类 数据预处理
相关矩阵如下:
1 r12
R
r12
1
r1p r2 p
r1p
r2
p
1
其中
rjk
3
7.2
0.32 2750 65.3 3.4
4
10.2 0.36 1500 3.4
5.3
5
10.1 0.50 1040 39.2 1.9
6
6.5
0.20 2490 90.0 4.6
7
5.6
0.29 2940 88.0 5.6
8
11.8 0.42 867 43.1 1.5
9
8.5
0.25 1620 5.2
3个λ,仅1个>1
2.57,0.38,0.05
一维投影结果
t2
tt22
主 成 分 图 形 解 释
原始数据
模式识别与分类 PCA实例1
主
成
双重图 biplot
分 图
2 9
4
形
t1各元素均有贡献 解
t2由Br和I表征
释
1
1
I
Cu/Mn/Cl/I
Cu
0
Mn
8
2
5 -1
Cl
67
Br
1
将对象聚为2组 Br 将对象聚为另2组
110.54 32.719 3.9913 10.645
0
模式识别之二次和线性分类器PPT(92张)
ω2
定义 hx 2ln lx,-2倍自然对数,则: ω1
hx x m1T K11x m1 x m2 T K2 1 x m2 ln
K1 K2
T 2ln
ω2
6
• 上式是二次分类器。计算x到各类均值mi的
Mahalanobis距离,然后和阈值
3x12 3x2 2 4x2 4
12
3 x2 2
4 3
x2
x1 2
4 3
3
x2
22
3
x12
4 3
4
9
假定T=0,h(x)=T=0化为:
x2
2 2 3
x1 2
4 2 3
,是一双曲线。
gk
x
x mk
2
2
2n ln
2 ln
Pr ωk
• 后两项对所有类是共同的,可以省略。分母
中的 2也可以去掉,因而有等价的判别函数:
gk x x mk 2
• 这时的决策规则的含义是:x离哪类的均值
最近,就把它分到哪类。
24
• 例3 :内积分类器(相关分类器)
假定 Kk 2I,k 1,2,,Nc。利用线性判别函数
• * 可以把上面的线性分类器的讨论再进一步。在 线性分类器
gk x 2mkT K 1 x mkT K 1mk 2lnPr ωk ,k 1,2,,Nc
中,如果把向量在K的特征向量的坐标系下表示(作 变换),并作比例变换使所有分量的方差变为1,这 时,线性分类器将作mkTx相关运算。在通信问题中, 如果噪声信号是相关的,而且方差是变化的,那么最 优的信号检测是使噪声变为不相关的,然后作相关或 匹配滤波器运算。
模式识别 :模式识别概述.ppt
2019/11/2
15
n
dij
| Xik Xjk |
k 1
② 欧几里德距离
dij
n Xik Xjk 2
k 1
③明考夫斯基距离
| | dij(q) n Xik Xjk q 1 q
k 1
其中当q=1时为绝对值距离,当q=2时为欧氏距离
2019/11/2
询,侦听,机器故障判断。
8. 军事应用
2019/11/2
9
§1-4 模式识别的基本问题
一.模式(样本)表示方法 1. 向量表示 : 假设一个样本有n个变量(特征)
Ⅹ= (X1,X2,…,Xn)T 2. 矩阵表示: N个样本,n个变量(特征)
变量
样本
x1
x2
X1
X11
X12
X2
X21
X22
…
…
…
XN
2019/11/2
11
4. 基元(链码)表示: 在右侧的图中八个基元 分别表示0,1,2,3, 4,5,6,7,八个方
向 和基元线段长度。 则右侧样本可以表示为
X1=006666
这种方法将在句法模式识 别中用到。
2019/11/2
12
二.模式类的紧致性
1. 紧致集:同一类模式类样本的分布比较 集中,没有或临界样本很少,这样的模 式类称紧致集。
16
④ 切比雪夫距离 dij() max | Xik Xjk | 1k n
q趋向无穷大时明氏距离的极限情况 ⑤ 马哈拉诺比斯距离
T
dij(M ) Xi Xj
1 Xi Xj
其中xi ,xj为特征向量, 为协方差。使用的条件是
第一章模式识别-绪论PPT课件
一般输入对象的信息有三种类型: ➢ 二维图象,如文字、指纹、地图、照片等 ➢ 一维波形,如脑电图、心电图、机械震动波形等 ➢ 物理参量和逻辑值,如疾病诊断中病人体温,各种化验数据;或对症 状有无描述,如疼与不疼(0/1)
第18页/共46页
§1.4 模式识别系统的典型构成
(2)预处理
➢ 去除所获取信息中的噪声,增强有用的信息,及一切必要的使信 息纯化的处理过程。
• 待识别的模式:性别(男或女) • 测量的特征:身高和体重 • 训练样本:15名已知性别的样本特征
2. 模式与模式类:
模式:需要识别且可测量的对象的描述。 这些对象与实际的应用有关,如: 字符识别的模式——每个字符图像 人脸识别的模式——每幅人脸图像
模式类:当用一定的度量来衡量两个模式,而找不出它们之间的差别时, 它们在这种度量条件下属于同一等价类,就说它们是同一模式类。
➢ 例如:数字识别有10个类别,每个数字就是一个类。 ➢ 不同模式类之间是可以区分的,应有明确界限。
• 国内组织:中国自动化学会:模式识别与机器智能(PRMI)专业委 员会,1981年成立,IAPR成员组织;人工智能与模式识别专业委 员会;中国人工智能学会
• 国内学术机构:中科院模式识别国家重点实验室,中科院计算所,
模微式软识研别究学院科,位清置华 大 学 等 。
• 模式识别:计算机科学与电子工程交叉学科 • 中国:“控制科学与工程”一级学科
➢ 分类决策:分类器在分界形式及其具体参数都确定后,用相应的决策分界对 待分类样本进行分类决策的过程。
第21页/共46页
1.5 模式识别系统实例 模式识别系统实例(一)
• 19名男女同学进行体检,测量了身高和体重,但 件下)这4人是男是女?体检数值如下:
第18页/共46页
§1.4 模式识别系统的典型构成
(2)预处理
➢ 去除所获取信息中的噪声,增强有用的信息,及一切必要的使信 息纯化的处理过程。
• 待识别的模式:性别(男或女) • 测量的特征:身高和体重 • 训练样本:15名已知性别的样本特征
2. 模式与模式类:
模式:需要识别且可测量的对象的描述。 这些对象与实际的应用有关,如: 字符识别的模式——每个字符图像 人脸识别的模式——每幅人脸图像
模式类:当用一定的度量来衡量两个模式,而找不出它们之间的差别时, 它们在这种度量条件下属于同一等价类,就说它们是同一模式类。
➢ 例如:数字识别有10个类别,每个数字就是一个类。 ➢ 不同模式类之间是可以区分的,应有明确界限。
• 国内组织:中国自动化学会:模式识别与机器智能(PRMI)专业委 员会,1981年成立,IAPR成员组织;人工智能与模式识别专业委 员会;中国人工智能学会
• 国内学术机构:中科院模式识别国家重点实验室,中科院计算所,
模微式软识研别究学院科,位清置华 大 学 等 。
• 模式识别:计算机科学与电子工程交叉学科 • 中国:“控制科学与工程”一级学科
➢ 分类决策:分类器在分界形式及其具体参数都确定后,用相应的决策分界对 待分类样本进行分类决策的过程。
第21页/共46页
1.5 模式识别系统实例 模式识别系统实例(一)
• 19名男女同学进行体检,测量了身高和体重,但 件下)这4人是男是女?体检数值如下:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模式识别与分类
36、“不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔恩来
39、没有不老的誓言,没有不变的承 诺,踏 上旅途 ,义无 反顾。 40、对时间的价值没有没有深切认识 的人, 决不会 坚韧勤 勉。
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
36、“不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔恩来
39、没有不老的誓言,没有不变的承 诺,踏 上旅途 ,义无 反顾。 40、对时间的价值没有没有深切认识 的人, 决不会 坚韧勤 勉。
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭