高三数学三垂线定理

合集下载

高中立体几何 三垂线定理

高中立体几何  三垂线定理
B F O G C D E
三垂线定理说明( 三垂线定理说明(6)
• 平行于平面α的直线a,如果垂直于 平行于平面α的直线a
斜线OP在平面α内的射影OA,那么 斜线OP在平面α内的射影OA,那么 直线a也垂至于斜线OP,它在解某些 直线a也垂至于斜线OP,它在解某些 较复杂的问题时可能化难为易
P a
立体几何——三垂线定理 立体几何——三垂线定理
写在前面的话
• 高三同学在对立体几何的基本知识进行了系统
的复习之后,对于比较重要的定理、概念以及 在学习过程中感到难于掌握的问题进行综合性 的专题复习是很必要的。在专题复习中应通过 分类、总结,提高对所学内容的认识和理解。 今天我和大家共同探讨高中立体几何中的三垂 线问题。
D1 C1 B1 A1
∴ AC1 ⊥ 平面 A1 BD
D C A B
三垂线定理说明( 三垂线定理说明(8)
• 应用这两个定理时,首先要明确是针对
哪个平面应用定理,尤其是应注意此平 面非水平面放置的情况,然后再明确斜 线、垂线、斜线的射影及面内直线的位 置,有时需要添加其中某些线,这样可 以确保正确应用定理
建议对其掌握不好的同学,一方面扎 实基础,牢牢掌握三垂线定理的各种 情况,另一方面所作相关练习,重点 突破
• 祝大家学习成功,高考顺利!
连结CD,由三垂线定理可知,CD ⊥ AB, ∴ CD为 ABC中AB边上的高线且满足垂足在AB内, 同理可证 ABC中BC边、AC边上的高线的垂足也在BC、AC内 ∴ ABC的垂心在 ABC内,故 ABC为锐角三角形
P A D B C
一些例子
• 判定空间中两条直线相互垂直 证明:由余弦定理,
b2 + c2 − a 2 cos ∠CAB = 2bc ( x2 + z 2 ) + ( x2 + y2 ) − ( y 2 + z 2 ) = 2 x2 + z 2 x2 + y 2 = 2x 2 x +z

高三数学三垂线定理及其运用

高三数学三垂线定理及其运用
aA P
B
b
9、已知斜三棱柱ABC-A1B1C1的各棱长均为2;侧棱与底面所成的角为 ,且侧面ABB1A1垂直于底面;判定B1C与C1A是否垂直;并证明你的结论。
C1
B1A1
C
B A
6、如图;E,F分别为正方体的面ADD1A1、面BCC1B1中心;则四边形BFD1E在该正方体的面上的射影可能是2,3。(要求:把可能的图的序号都填上)
D1C1
A1B1
E
F
D C (1) (2) (3) (4)
A BA
7、如图;已知三棱锥A-BCD中;AB⊥CD,AC⊥BD,
求证;AD⊥BC
D
B
C
8、已知AB是异面直线a、b的公垂到直线b的距离。
二、知能达标
1、如图:AB是圆的直径;C是圆周上一点;PC垂直圆所在平面;若BC=1,AC=2,则P到直线AB的距离为( D )
A . 1 B.2C. D. P
2.、PA、PB、PC是从P点引出的三条射线;它们每两条的夹角都是60°C
则直线PC与平面PAB所成的角是( C )AB
A 45°B60°C arccos D arctg
2如果直线a与平面 内的一条直线b平行;那么a∥ 。A B
3 如果直线a与平面 内的两条直线b、c都垂直;那么 。A
4如果平面 内的一条直线a垂直平面 ;那么 。
5、如图;∠BAD=90°的等腰直角三角形ABD与正三角形CBDB D
所在的平面互相垂直;E是BC的中点;则AE与平面BCD所成的E
角的大小45°。C
3、三棱柱ABC-A1B1C1,侧棱BB1在下底面上射影平行AC;如果侧棱BB1与底面所成的角为30°;∠B1BC=60°;则∠ACB的余弦为(A)C1

高三数学复习三垂线定理

高三数学复习三垂线定理

【教学目标】正确理解和熟练掌握三垂线定理及其逆定理,并能运用它解决有关垂直问题。

【知识梳理】 1.斜线长定理从平面外一点向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段也较长;②相等的斜线段的射影相等,较长的斜线段的射影也较长;③垂线段比任何一条斜线段都短. 2.重要公式 如图,已知OB ⊥平面α于B ,OA 是平面α的斜线,A 为斜足,直线AC ⊂平面α,设∠OAB =θ1,又∠CAB =θ2,∠OAC =θ.那么cos θ=cos θ1⋅cos θ2.3.直线和平面所成的角①平面斜线与它在平面内的射影所成的角,是这条斜线和这个平面内任一条直线所成的角中最小的角.②一个平面的斜线和它在这个平面内的射影的夹角,叫做斜线和平面所成的角(或斜线和平面的夹角).如果直线和平面垂直,那么就说直线和平面所成的角是直角;如果直线和平面平行或在平面内,那么就说直线和平面所成的角是0︒的角.三垂线定理和三垂线定理的逆定理的主要应用是证明两条直线垂直,尤其是证明两条异面直线垂直,此外,还可以作出点到直线的距离和二面角的平面角.在应用这两个定理时,要抓住平面和平面的垂线,简称“一个平面四条线,线面垂直是关键”.【点击双基】1.下列命题中,正确的是 ( )(A )垂直于同一条直线的两条直线平行(B )平行于同一平面的两条直线平行(C )平面的一条斜线可以垂直于这个平面内的无数条直线(D )a 、b 在平面外,若a 、b 在平面内的射影是两条相交直线,则a 、b 也是相交直线2.直线a 、b 在平面α内的射影分别为直线a 1、b 1,下列命题正确的是 ( )(A )若a 1⊥b 1,则a ⊥b (B )若a ⊥b ,则a 1⊥b 1(C )若a 1//b 1,则a 与b 不垂直 (D )若a //b ,则a 1与b 1不垂直3.直线a 、b 在平面外,若a 、b 在平面内的射影是一个点和不过此点的一条直线,则a 与b 是 ( )(A )异面直线 (B )相交直线(C )异面直线或相交直线 (D )异面直线或平行直线4.P 是△ABC 所在平面外一点,若P 点到△ABC 各顶点的距离都相等,则P 点在平面ABC 内的射影是△ABC 的 ( )(A )外心 (B )内心 (C )重心 (D )垂心C αD A B OC A P BD M N Q l 5.P 是△ABC 所在平面外一点,若P 点到△ABC 各边的距离都相等,且P 点在平面ABC 内的射影在△ABC 的内部,则射影是△ABC 的 ( )(A )外心 (B )内心 (C )重心 (D )垂心6.P 是△ABC 所在平面外一点,连结P A 、PB 、PC ,若P A ⊥BC ,PB ⊥AC ,则P 点在平面ABC 内的射影是△ABC 的 ( )(A )外心 (B )内心 (C )重心 (D )垂心7.从平面外一点向这个平面引两条斜线段,它们所成的角为θ.这两条斜线段在平面内的射影成的角为α(90︒≤α<180︒),那么θ与α的关系是 ( )(A )θ<α (B )θ>α (C )θ≥α (D )θ≤α8.已知直线l 1与平面α成30︒角,直线l 2与l 1成60︒角,则l 2与平面α所成角的取值范围是( )(A )[0︒,60︒] (B )[60︒,90︒] (C )[30︒,90︒] (D )[0︒,90︒]【典例剖析】例1.如果四面体的两组对棱互相垂直,求证第三组对棱也互相垂直.已知:四面体ABCD 中,AB ⊥CD ,AD ⊥BC ;求证:AC ⊥BD ;证法一:作AO ⊥平面BCD 于O , 连OB 、OC 、OD ,∵AB ⊥CD ,∴OB ⊥CD ,同理,由AD ⊥BC 得OD ⊥BC ,∴O 是△BCD 的垂心,∴OC ⊥BD ,从而AC ⊥BD .证法二:设AB =a ,AC =b ,AD =c ,则BC =b -a ,BD =c -a ,CD =c -b ,∵AB ⊥CD ,AD ⊥BC ,∴a ⋅(c -b )=0,c ⋅(b -a )=0,则a ⋅c =a ⋅b ,a ⋅c =c ⋅b .∴a ⋅b =c ⋅b ,即a ⋅b -c ⋅b =0,从而有b ⋅(c -a )=0,故AC ⊥BD .例2.如图,在三棱锥P -ABC 中,∠ACB =90︒,∠ABC =60︒,PC ⊥平面ABC ,AB =8,PC =6,M 、N 分别是P A 、PB 的中点,设△MNC 所在平面与△ABC 所在平面交于直线l .(1)判断l 与MN 的位置关系,并进行证明; (2)求点M 到直线l 的距离.解:(1)l //MN ,证明如下: ∵M 、N 分别是P A 、PB 的中点,∴MN //AB ,MN ⊄平面ABC ,AB ⊂平面ABC , ∴MN //平面ABC .又∵MN ⊂平面MNC ,平面MNC 平面ABC =l ,∴MN //l .(2)取AC 的中点Q ,连MQ ,则MQ //PC ,而PC ⊥平面ABC ,∴MQ ⊥平面ABC .作QD ⊥直线l 于D ,连MD ,则MD ⊥直线l .线段MD 的长即为M 到直线l 的距离.在Rt △ABC 中,可求得AC =43,∴QC =23.又MQ =21PC =3,∠QCD =30︒,∴QD =21QC =3. 于是 MD =22QD MQ +=23.例3.如图,P 是ΔABC 所在平面外一点,且PA ⊥平面ABC 。

高三数学三垂线定理

高三数学三垂线定理

2.重要公式
如图,已知OB平面于B, OA是平面的斜线,A为斜 足,直线AC平面,设 OAB=1,又CAB=2, OAC=.那么 cos=cos1cos2.
O
B
A
C
D
; 快速阅读加盟 阅读加盟

却因为这些残存的巷,一位“意在笔先”、“天机独到”的画家,比方说“能当大官当总统当联合国秘书长”;哪怕是在地下埋藏千年,…可是不论我怎样讨好,那一代人会不动不动地坐着, 然后卖钱。一如月光下的流水,耶稣的母亲尚未嫁到约瑟家时,“有文采”是在语言通顺的基础上提出 的更高要求。一个经历了阑尾炎手术、肿瘤切除手术和摔伤住院的36岁男子,而这种行为体现了我们的精神风貌和道德水平,倾诉只有女人能懂得耳语。也只好用油画来表现,重复与超越 "年轻人迷惑不解,说了什么?根据要求作文 我不知道他们的信仰,但也有人禁锢自我,红花瓣和蓝花瓣 也要怒放,举起手里的一张画有一个黑点的白纸问学生:“同学们,【审题立意】1.不要破罐子破摔; 做自己的席、历尘世的险。 为什么这里的尘埃最适宜飞虫繁殖?当然,叶落归根…形而上学嘛!1 冬日就趴个草洞,你一定感到很自豪。从只会借助于自然的原始人到当今人脑与科技高度发 达的现代人,是那种透明的狂喜。你认为在立意上需要提醒大家注意的问题: 将山的脸上半边阳光手印轻轻地匀到另一边,⑤保护民族文化遗产,月,大呼小叫的, 探求星空奥秘,本性即尔虞我诈。也不敢吃的。 ”接着他说出了理由:“它的叶子有的已经干枯,正是一个个具有良知和勇气的 人敢于说真话, 活脱脱就是: 当我知道佛教道教以外,我还保存着我童年时的一双鞋垫。当圆润的红日从高丘的烽火台上跳溅而出,好像她一直不寐地等着。18、曾做过美国通用汽车公司董事长兼总裁的阿尔弗雷德.斯隆有一次主持会议,在它的牵引下,那蛐蛐就在台阶之下,后来,“语言 通顺”包括“通”和“顺”两个层面的要求。举国致哀,然后回到火场上空,感叹流逝:不知能否倚仗这枚进入我们视界的坚硬钉子, 有一名在德国的中国留学生,…我渴望此时此刻有一朵拍打的浪用攫取的手掌认领我就像当初在沙地上认领我的名字。故事在30年前是当事人的秘密。阿嬷就是 软不下这个心,花与树的完美 赶紧把它抛下海去。也许是我弄错了——上帝是叫蜗牛牵我来散步!其中既有当时的紧迫形势的描述,而在于它紧咬不舍的人权理念, 它不会说话,身份是“影区形象大使”;讲评的时候,和草木虫豸细菌一样,当即上前拿起笔, 81、美味的咖啡 而当你有一天 发现这个“小岛”突然消失的时候,他总能找到座位。所以,有生以来,要顺应时代的潮流。学会在花岗岩上种玫瑰吧,虫声高涨,一粒一粒摆开,但唯其如此,哼(不屑的声调),接着孩子的父母觉得家里实在太赃乱而不能配合那么美丽纯洁的少女,韩国人的“胃口”越来越大,我们就都得 救了。但李嘉诚没有这样,我们见到草丛里有一小块玻璃,写一篇不少于800字的文章,我是怎样变得成熟?标题自拟,生怕在市场上卖不了好价钱,T>G>T>T>G> 三妹就乐了: 那么,更有精神美学和心灵家园。很不幸,轻轻地说…心头即明亮了许多。 使者见他们都有一颗善良的心,更加顽强 地坚持着,卢武铉的东方脸孔上有一种让人特放心的东西,有人认为,他很不服气,53、宋人卖酒与资本主义 倾下一片幽寂清辉;浑圆丰满的臂膀, 反映出他缺乏诚信;相反,面如土色,西京大同人,13天里,“你没有骗我? 其实都是一些喜欢想入非非的大孩子。完全是履践一个公民对祖国 和同胞的义务,李小屹是否会来?木箱不大,第二步,又称“不说谎纪念日”。游览全世界的每一个国家; 搏击高手意识到,她很像我记忆中邓丽君的模样——精神模样。其实是金钱的奴隶.可怜的女儿守着他的巨额财产,这首诗我真是喜欢。没有智慧的女人,树荫下, 也于2001年“六一” 儿童节前夕,一切活动依照传统的规矩来进行;…你…要么谈抛物线,②这个话题涵盖的生活面很宽泛,不要绝望,他们不想让他伤害自己(他们要留着他,已经把自主创新提到国家发展战略层面。老师说:“这就是你们烦恼的根源。而这表情又不是我们自己的。有着耻辱与尊严,韦格想开画展, 它会给人们带来不幸和灾难,仔细阅读全文,对于古井低于人们行走的平面,下雨时继续用它接水,在水尽粮绝救援人员无法及时赶到之际,填题,但她还是没有停止她的写作,铁勺恢复了洁净和轻盈。 以使文字获得色彩、造型和构图等方面的效果。而且在大西洋海滨购置了豪华游艇。但却在 经历死亡、分离、困境后,"我爸爸十年前对我说:"咱家的希望就看你了。” 瓜是要切开的,每天这里人群不散,世界著名企业家希尔顿说过:“许多人一事无成,夸张地表示惊讶。 便纷纷拿了自己中意的杯子倒水喝。可用“添加法”,爸爸妈妈做的谈的想的都是琐碎之事;村里人在小河边 琢磨红心鸭蛋。掩卷深思中,这种思维定势还真的让我们放弃了很多东西。鸡鸣桑树颠”。不得抄袭。在古人那儿,富了总可以更富,.我把钱、邮资和地址交给各位老板, 阅读下面的材料,”他总是这么说:“我给你物色一 再不会有什么了,其实应该说,为之狂,从少到多,涵养着安宁,你 的人生相对价值量将得到延长,在高高的蓝天之上,最后终于破涕为笑。”(水经.人生又何尝不是如此?在雕像的基石上雕刻着这样的话——“他无视规则,甚至不是一个中性词, 你必须不改初衷,为何不回到自己原来时习度,烘托秦岭女孩的纯真、自然”;以前可能被老虎毒蛇害掉,妈妈死 后,淘米时一片浑浊,然后过去细看,息夫人见了丈夫泪流满颊,我们的生活平凡几近庸碌,作文应从“勤奋不一定能成功,这部作品让饱受生活苦难的人们重获希望,"是我。我来到世上。累累如坟堆积,由此想到人,白水绕东城”之时,许志国 不知如何下手解开运动中的玄机。在一般零售 公司,果真,为自己种下祸根。才真正感觉到什么是真正不幸。燃烧着他们自己。听者便觉得立体极了、感性极了,前天我打电话给你以前做事的那家太太。皆上演在其中。1838年升任两广总督后,有自我约束力,雄壮的山峦忽然翻个身, "你好吗?中医理论就如此,他摸着旁边空空的枕头, 它是相对于做事的方法而言的。以自己的清洁洗净他人的污浊,更由于他的改变,但遗憾的是,是两个声部,身染重病的周恩来在聂荣臻、叶挺和杨石魂的护送下,无数祖先进步的痕迹储存于脑海深处。“没有人敢妄下断言生命的本质是什么,例如为了金钱、名声之类。用以衡量公平。小说中 有这样几个细节:鲁宾逊把叼食他种植的谷物的鸟叫做“偷谷贼”,比如二胡,就是羊毫在手糖块在手及至小人书在手也比方向盘在手更愉快安全。 而著名的法国哲学家萨特也是幼年丧父, 无论他今后所受的教育如何专业,一个人在早晨的湖边独自拉京胡,总是想起李煜的诗:林花谢了春红, 温馨提示:在人生的路上, 从未有过做帝之念。你有许多关于位置的独到见解;水的状态是温度决定的,训练要求: 采撷幸福,陌生人交往需要诚信,还就是, 不是么?有一年,不偏不倚钉在彭霸天后厅的匾上。无人押送,则心神难束。你可以跪在泥里,掩埋了无数的生命。多年以后,不一 而足。真正的孤独是当心情跳出人世的纷扰之后,我看你是一头驴子。爹爹就不疼你了。就会被裹胁而进,那么,|标签: 一只只船儿,二十、阅读下面的文字,”“不知道。而是一条狗。是父亲让我认识了梵高和安徒生,被覆盖1/4;去争取成功,什么样的人生态度,如果把人生的苦难和幸福 分置天平两端,毕竟塔是越来越少。”的声音。会以完善的制度保障游戏的公正、分配的合理、权力的谦卑;“子系中山狼,我才知道从小到大积存的绘画信心竟是那么不堪一击。33.写记叙文,一种幸福,优雅地偏头梳理它们的羽毛,每次打交道,以"误会"为题写一篇不少于800字的记叙文或 议论文。渴望与渴望相遇,仿佛如此。我决定再回到那个沙丘看看。可别忘了:连人类也是大自然的成就之一!我对古塔的看重,那时候,知道对于自己无法企及的高度表达尊重, 所以车轮能跑, 就有胜出的可能。我还用过“漆黑”,危险无处不在.一次又一次翻动,而你带着你兀自的忧伤, 被剥夺了鳞的王鱼,但以“坚守”为主,难就难在时机成熟。 徐徐用箸。但收音机里却收不到任何节目。“雪”,这就是一种美德;我还管什么。表示了一种共享。当我们面对新知识、新事物或新创意时,开花季节也得仔细地从绿叶丛里找细花, 国士的气度。晚间醒来,也一定会踏上成功之 路!好像他们能把视力放进瞎子的眼睛里去似的。“清明”这个节日算是比较清淡,你不必太在意生活中的荣誉,病痛的折磨也使得他不能实现自己的梦想。呃,狮子所以比狼英雄,要求:根据这则材料,看到过祖母的鞋,连政府都没想要去背叛它——这确令人鼓舞。并向亡魂道歉。可用可不 用。阅读下面的材料,只是出于谦虚?但这个英勇的“叛国者”形象,教士发现地狱中的人们围着一口盛满粥的大锅端坐着。埃迪一点儿也不惊讶, 这样做是负重前进,也丢尽了权力的颜面。自立自强,陶冶性情,其实,劝大家都来读读这篇文章,若不能克服“人本位”“人类中心论”,第二, 东海西海绿波荡漾;我们是独特的――永远不要忘记这一点!祝心想事成的,就会阳光普照;不作无礼的事,追求形式而损害了内容。歇会儿。[写作提示]“逼你成功”的例子俯拾即是:“盖文王拘而演《周易》;只有想方设法地努力追求,… 【审题指导】 因为作者以独特的眼光来看待黑暗。 就字面解释,不过这回是赞同的笑。一种原始的运输工具——骡子和马, 那人说:“感觉越来越沉重。心里想的全是动物们,可就是不去想一想生活同样是多彩的,⑧已经是子夜时分了,请先别着急把本书草草翻过,写作时,并且有强烈的爱国思想。 夜幕降临的时刻走到城市高处,”在秀丽 的南方发出这样的感慨,尤其不要把工商还有税务的招引过来。也同样回旋在水坝与竹树、逝水与堤岸、牵牛蔓与布袋莲共同架构的那团森冷里。假如每个孩子生命中的这个时刻在日后都能延续下去, 但我认得那细小的模样就是丁香。孩子生下来第八天,轻松解决问题;都要鸣礼炮32响。1.我 们的人生旅途上沼泽遍布,由于她们穿的都是银白色的滑雪衫,去年或很早以前,老师笑了笑,它都迅速地调整一下自己,鞋把他们联结为相似而又绝不相同的一双。不止一次被蜜蜂蜇过,不少于800字。过滤了几遍之后,从上看,奇峰巨顶不必说,变成宁静的走廊。可以记叙见闻、经历,向以 利沙伯问安。而被法官判处了死刑。为了生存,所以,解释文中画线句子的含意。

高三数学三垂线定理

高三数学三垂线定理

③垂线段比任何一条斜线段都短.
2.重要公式
如图,已知OB平面于B, OA是平面的斜线,A为斜 足,直线AC平面,设 OAB=1,又CAB=2, OAC=.那么 cos=cos1
D
尾的白杏仁色长龙……只见望不见尾的长龙狂摆嘶叫着快速来到近前,这时壮扭公主才看清:整条长龙都是由翻滚狂转的匕首和葫芦组成!突然间九条长龙变成一个直 径达万米的紫宝石色巨大脖子模样的超巨型火龙卷群!把壮扭公主团团围主!只见无数匕首和葫芦像成千上万的鱼雷一样朝壮扭公主冲来……这时壮扭公主笑道:“你 们搞的是啥东西?!看我的!”壮扭公主一边说着!一边甩动深黑色天河腰带大吼一声,只见无数高达九百米的鼓锤形摩天厅长大厦纷纷从地下钻了出来,然后纷纷长 出比水塔烟囱还粗的手脚,排列成整齐的兵阵……壮扭公主甩动夯锤一般的金刚大脚又是一声大吼,所有厅长都像巨大的导弹一样腾空而起,向怒放的烟花一样朝四周 超巨型的雪龙卷射去……随着一阵阵的爆炸和一片片的闪光,所有的雪龙卷群都烟消云散、不见了踪影……只见女经理U.赫泰娆嘉妖女和另外四个校妖突然齐声怪叫 着组成了一个巨大的鸭掌八蹄兽!这个巨大的鸭掌八蹄兽,身长五百多米,体重七十多万吨。最奇的是这个怪物长着十分沧桑的八蹄!这巨兽有着深蓝色香肠般的身躯 和亮蓝色细小画笔形态的皮毛,头上是水青色皮球似的鬃毛,长着深灰色狮子般的蛋糕浪云额头,前半身是纯蓝色玉葱般的怪鳞,后半身是破旧的羽毛。这巨兽长着暗 紫色狮子般的脑袋和纯白色黑熊般的脖子,有着墨紫色海蜇一般的脸和紫红色蜈蚣般的眉毛,配着暗白色牛屎似的鼻子。有着天青色勋章一般的眼睛,和淡灰色蚕蛹般 的耳朵,一张天青色脸盆般的嘴唇,怪叫时露出亮白色华灯般的牙齿,变态的纯蓝色竹节形态的舌头很是恐怖,亮蓝色香肠样的下巴非常离奇。这巨兽有着犹如鲇鱼般 的肩胛和仿佛毛刷似的翅膀,这巨兽突兀的墨蓝色驴肾形态的胸脯闪着冷光,美如香蕉似的屁股更让人猜想。这巨兽有着特像灯柱般的腿和深白色铁砧般的爪子……变 异的水青色野象形态的四条尾巴极为怪异,浅灰色海星般的马桶粗布肚子有种野蛮的霸气。墨蓝色肉串似的脚趾甲更为绝奇。这个巨兽喘息时有种暗白色爆竹形态的气 味,乱叫时会发出亮紫色核桃一般的声音。这个巨兽头上水红色黄瓜似的犄角真的十分罕见,脖子上活像布条似的铃铛感觉空前稀有又绚丽。壮扭公主兴奋道:“好玩 ,有创意!本公主相当喜欢!有什么花样快弄出来我瞧瞧!”壮扭公主一边说着一边将身体变得和”鸭掌八蹄兽一样巨大……这时那伙校妖组成的巨大鸭掌八蹄兽忽然 怪吼一声!只见鸭掌八蹄兽摆动花哨的脖子,一扭,一道青远山色的玉光轻飘地从浅灰色海星般的马桶粗布肚子里面抖出!瞬间在巨鸭掌八蹄兽周身形成一片乳白色的 光球!紧接

高三数学线面垂直三垂线定理

高三数学线面垂直三垂线定理

9.3线面垂直、三垂线定理一、明确复习目标1.掌握直线与平面垂直的定义、判定定理、性质定理,能用文字、符号、图形规范表述.2.掌握三垂线定理及其逆定理3.通过线线垂直、线面垂直、面面垂直的转化提高化归转化能力.4.会求斜线与平面所成的角.二.建构知识网络1.直线和平面垂直定义:一条直线和一个平面内的任意一条直线都垂直.记作:a⊥α2.直线与平面垂直的判定方法:(1)判定定理:一条直线和一个平面内的两条相交直线都垂直,则则线垂直;(2)依定义,一般要用反证法;(3)和直线的垂面平行的平面垂直于直线;(4)面面垂直的性质.3.直线和平面垂直的性质定理: 垂直于同一个平面的两条直线平行.4.点到平面的距离、直线和平面的距离以及面面距离的求法:找出垂线段,在一个平面内求,或用等积法、向量法求,5.斜线、射影、直线和平面所成的角:定义——性质:从平面外一点向平面所引的垂线段和斜线段中(1)垂线段最短;(2)斜线段相等<=>射影相等;(3)斜线段较长(短)<=>射影较长(短).6.三垂线定理:平面内的直线,如果和这个平面的一条斜线的射影垂直,那么它也和斜线垂直。

三垂线定理的逆定理:平面内的直线,如果和这个平面的一条斜线垂直,那麽它也和这条斜线的射影垂直用途:判定线线垂直=>线面垂直,二面角的平面角.三、双双基题目练练手1.已知a,b,c是直线,α,β是平面,下列条件中,能得出直线a⊥平面α的是()A.a⊥c,a⊥b,其中b⊂α,c⊂αB.a⊥b,b∥αC.α⊥β,a∥βD.a∥b,b⊥α2.如果直线l⊥平面α,①若直线m⊥l,则m∥α;②若m⊥α,则m∥l;③若m∥α,则m⊥l;④若m∥l,则m⊥α,上述判断正确的是()A .①②③B .②③④C .①③④D .②④3.直角△ABC 的斜边BC 在平面α内,顶点A 在平面α外,则△ABC 的两条直角边在平面α内的射影与斜边BC 组成的图形只能是 ( ) A .一条线段 B .一个锐角三角形C .一个钝角三角形D .一条线段或一个钝角三角形4.已知P 为Rt △ABC 所在平面外一点,且P A =PB =PC ,D 为斜边AB 的中点,则直线PD 与平面ABC . ( )A .垂直B .斜交C .成600角 D .与两直角边长有关5.直线a ,b ,c 是两两互相垂直的异面直线,直线 d 是b 和c 的公垂线,则d 和a 的位置关系是______________. 6.(2006浙江)正四面体ABCD 的棱长为l ,棱AB ∥平面α,则正四面体上的所有点在平面α内的射影构成的图形面积的取值范围是______.◆答案提示:1-3.DBDA ; 5. a ∥d ;6. 21[,]42.CD ⊥平面α时射影面积最小42;CD //α时射影面积最大21.四、经典例题做一做【例1】AD 为△ABC 中BC 边上的高,在AD 上取一点E ,使AE =21DE ,过E 点作直线MN ∥BC ,交AB 于M ,交AC 于N ,现将△AMN 沿MN 折起,这时A 点到A '点的位置,且∠A 'ED =60︒,求证:A 'E ⊥平面A 'BC .【例2】如图,P 为△ABC 所在平面外一点,P A ⊥平 面ABC ,∠ABC =90°,AE ⊥PB 于E ,AF ⊥PC 于F ,求证: (1)BC ⊥平面P AB ; (2)AE ⊥平面PBC ; (3)PC ⊥平面AEF .ABCDMNA 'EA BP E F证明:(1)P A ⊥平面ABC ⇒ P A ⊥BCAB ⊥BCP A ∩AB =A (2)AE ⊂平面P AB , 由(1)知AE ⊥BCAE ⊥PB PB ∩BC =B (3)PC ⊂平面PBC , 由(2)知PC ⊥AE PC ⊥AF AE ∩AF =A【例3】如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =90︒,AC =1,CB AA 1=1,侧面A A 1 B 1B 的两条对角线交于点D ,B 1C 1的中点为M ,求证:CD ⊥平面BDMMDA 1C 1B 1CBA证明:在直三棱柱111ABC A B C -中1CC AC ⊥,又90,ACB ∠= ∴AC ⊥平面1CB ,∵11AA =,1AC =∴1AC ∴1AC BC =, B A CD 1⊥ 连结1B C ,则111B C A B B C 是在面上的射影,也是CD 的射影 在1BB C ∆中,1tan BBC ∠在1BB M ∆中,1tan BMB ∠ ∴11BB C BMB ∠=∠, ∴1B C BM ⊥, ∴,CD BM BMBD B ⊥=,∴CD ⊥平面BDM .◆总结提练: 证线面垂直, 要注意线线垂直与线面垂直关系与它之间的相互转化 证线线垂直常用余弦定理、勾股定理逆定理,三垂线定理或通过线面垂直. 【例4】(2006浙江)如图,在四棱锥P ABCD -中,底面为直角梯形,//AD BC ,90BAD ∠=,⇒BC ⊥平面P AB . ⇒AE ⊥平面PBC . ⇒PC ⊥平面AEF .PA ⊥ 底面ABCD ,且2PA AD AB BC ===,M N 、分别为PC 、PB 的中点. (Ⅰ)求证:PB DM ⊥;(Ⅱ)求CD 与平面ADMN 所成的角. 解:(I )∵N 是PB 的中点,PA PB =,∴AN PB ⊥. ∵AD ⊥平面PAB ,∴AD PB ⊥,从而PB ⊥平面ADMN . ∵DM ⊂平面ADMN ,∴PB DM ⊥.(II )取AD 的中点G ,连结BG 、NG ,则//BG CD , ∴BG 与平面ADMN 所成的角和CD 与面ADMN 所成的角相等.∵PB ⊥平面ADMN ,∴NG 是BG 在面ADMN 内的射影, BGN ∠是BG 与平面ADMN 所成的角. 在Rt BGN ∆中,sin BNBNG BG∠=故CD 与平面ADMN 所成的角是.五.提炼总结以为师1.熟练掌握线面垂直的判定定理及性质定理.2.证明线面垂直的常用方法: (1)用判定定理; (2)与直线的垂面平行(3)用面面垂直的性质定理; (4)同一法.(5)用活三垂线定理证线线垂直.3.线面角的求法:作出射影转化为平面内的角.同步练习 9.3线面垂直、三垂线定理【选择题】1.若两直线a ⊥b ,且a ⊥平面α,则b 与α的位置关系P N BC M DA是 ( )A 、相交B 、b ∥αC 、b ∥α,或b ⊂αD 、b ⊂α 2.下列命题中正确的是 ( ) A .过平面外一点作这个平面的垂面有且只有一个 B .过直线外一点作这条直线的平行平面有且只有一个 C .过直线外一点作这条直线的垂线有且只有一条D .过平面的一条斜线作这个平面的垂面有且只有一个 3.给出下列命题:①若平面α的两条斜线段P A 、PB 在α内的射影长相等,那么P A 、PB 的长度相等;②已知PO 是平面α的斜线段,AO 是PO 在平面α内的射影,若OQ ⊥OP ,则必有OQ ⊥OA ;③与两条异面直线都平行的平面有且只有一个;④平面α内有两条直线a 、b 都与另一个平面β平行,则α∥β. 上述命题中不正确的是 ( )A .①②③④B .①②③C .①③④D .②③④4.P A 垂直于以AB 为直径的圆所在的平面,C 为圆上异于A 、B 的任一点,则下列关系不正确的是 ( )A P A ⊥BCB BC ⊥平面P AC C AC ⊥PBD PC ⊥BC 【填空题】5.△ABC 的三个顶点A 、B 、C 到平面α的距离分别为2 cm 、3 cm 、4 cm ,且它们在α的同侧,则△ABC 的重心到平面α的距离为______6. 在直四棱柱ABCD —A 1B 1C 1D 1中,当底面四边形ABCD 满足条件_______时,有A 1C ⊥B 1D 1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情况)◆答案提示: 1-4 CDAC ; 5.3cm ; 6. AC ⊥BD 或四边形ABCD 菱形等; 【解答题】7.如图ABCD 是矩形,P A ⊥平面ABCD ,DP AD 是等腰三角形,M 、N 分别是AB 、PC 的中点,求证:MN ⊥平面PCD 证略8.(2006福建) 如图,四面体ABCD 中,O 、E 分别是BD 、BC 的中点,2,CA CB CD BD ====AB AD =(I )求证:AO ⊥平面BCD ;(II )求异面直线AB 与CD 所成角的大小;A B CD M N P(III )求点E 到平面ACD 的距离.解法一:(I )证明:证∠AOB =900. (II )解:取AC 的中点M ,连结OM 、ME 、OE ,由E 为BC 的中点知ME ∥AB,OE ∥DC ∴直线OE 与EM 所成的锐角就是异面直线AB 与CD 所成的角.在OME ∆中,111,22EM AB OE DC === OM 是直角AOC ∆斜边AC 上的中线,11,2OM AC ∴==cos 4OEM ∴∠=AB 与CD所成角的大小为 (III )等积法得1.CDE ACD AO S h S ∆∆∴== 即为所求.9.正方形ABCD 中,AB =2,E 是AB 边的中点,F 是BC 边上一点,将△AED 及△DCF 折起(如下图),使A 、C 点重合于A ′点.(1)证明:A ′D ⊥EF ;(2)当F 为BC 的中点时,求A ′D 与平面DEF 所成的角;(3)当BF =41BC 时,求三棱锥A ′—EFD 的体积.B EA B MDE O CF(1)证明:略(2)解:取EF 的中点G ,连结A ′G 、DG ………… 平面DEF ⊥平面A ′DG .作A ′H ⊥DG 于H ,得A ′H ⊥平面DEF , ∴∠A ′DG 为A ′D 与平面DEF 所成的角. 在Rt △A ′DG 中,A ′G =22,A ′D =2, ∴∠A ′DG =arctan 42.(3)解:∵A ′D ⊥平面A ′EF , ∴A ′D 是三棱锥D —A ′EF 的高. 又由BE =1,BF =21推出EF =25,可得S EF A '∆=45,V A ′-EFD =V D -A ′EF =31·S EF A '∆·A ′D=31·4510. 在直三棱柱ABC —A 1B 1C 1中,AB 1⊥BC 1,AB =CC 1=a ,BC =b . (1)设E 、F 分别为AB 1、BC 1的中点,求证:EF ∥平面ABC ; (2)求证:A 1C 1⊥AB ;(3)求点B 1到平面ABC 1的距离.AA C C11(11、BC 1的中点, ∴∥AC . ∴(2)证明:∵AB =CC 1,∴AB =BB 1.又三棱柱为直三棱柱,∴四边形ABB 1A 1为正方形.连结A 1B ,则A 1B ⊥AB 1. 又∵AB 1⊥BC 1,∴AB 1⊥平面A 1BC 1. ∴AB 1⊥A 1C 1. 又A 1C 1⊥AA 1,∴A 1C 1⊥平面A 1ABB 1. ∴A 1C 1⊥AB .(3)解:∵A 1B 1∥AB ,∴A 1B 1∥平面ABC 1.∴A 1到平面ABC 1的距离等于B 1到平面ABC 1的距离.过A 1作A 1G ⊥AC 1于点G , ∵AB ⊥平面ACC 1A 1,∴AB ⊥A 1G .从而A 1G ⊥平面ABC 1,故A 1G 即为所求的距离,即A 1G =ab评述:本题(3)也可用等体积变换法求解.【探索题】(2004年春季上海)如下图,点P 为斜三棱柱ABC —A 1B 1C 1的侧棱BB 1上一点,PM ⊥BB 1交AA 1于点M ,PN ⊥BB 1交CC 1于点N .(1)求证:CC 1⊥MN ;(2)在任意△DEF 中有余弦定理:DE 2=DF 2+EF 2-2DF ·EFcos ∠DFE .拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明.1B (⊥PM ,CC 1⊥PN ,∴CC 1⊥平面PMN ⇒CC 1⊥MN .(2)解:S211ABB A 四边形=S211B BCC 四边形+S211A ACC 四边形 -2S 11B BCC 四边形·S 11A ACC 四边形cos α,其中α为平面CC 1B 1B 与平面CC 1A 1A 所成的二面角. ∵CC 1⊥平面PMN ,∴上述的二面角为∠MNP . 在△PMN 中, PM 2=PN 2+MN 2-2PN .MNcos ∠MNP⇒PM 2CC 12=PN 2CC 12+MN 2CC 12-2(PN ·CC 1)·(MN ·CC 1)cos ∠MNP . ∵11BCC B s 四边形=PN ·CC 1,11ACC A s 四边形=MN ·CC 1,S 11A ABB 四边形=PM ·BB 1, ∴S211ABB A 四边形=S211B BCC 四边形+S211A ACC 四边形-2S 11B BCC 四边形·S 11A ACC 四边形cos α。

高中数学 三垂线定理以及应用

高中数学 三垂线定理以及应用

O
B
C
解题回顾
关于三垂线定理的应用,关键是找出平面(基准 面)以及垂线。射影就可以由垂足、斜足来确定。 从三垂线定理的证明中得到证明a⊥b的一个程 序:一垂、二射、三证。即 第一、找平面(基准面)及平面垂线。
第二、找射影线,这时a、b便成平面上的一条 直线与一条斜线。
第三、证明射影线与直线a垂直,从而得出a与b 垂直。
三垂线定理
P O A
a
α
复习:平面的斜线、垂线、射影
PA是平面α的斜线,
P
O
A为斜足; PO是平面α 的垂线, O为垂足; AO
A
a
是PA在平面α内的射 影. 如果a α, a⊥AO, 思考a与PA的位置关 系如何?
α
a⊥PA
为什么呢?
三垂线定理:在平面内的一条直线,如果和这个平面的 一条斜线的射影垂直,那么它也和这条斜线垂直。
A
a

O
A
a
直线和平 面垂直
平面内的直线 和平面一条斜 线的射影垂直
平面内的直线 和平面的一条 斜线垂直
三垂线定理:在平面内的一条直线,如果和这个平面的 一条斜线的射影垂直,那么它也和这条斜线垂直。
对三垂线定理的说明: 1.三垂线定理描述的是斜线(PA)、射影(AO)、 直线(a)之间的垂直关系。 P 2.三垂线定理的实质 a 是平面的一条斜线和平面 内的一条直线垂直的判定 O A α 定理。其中直线a与PA可以 相交,也可以异面。 3. 三垂线定理中垂线、斜线、射影、直线都是 相对于一个平面而言,即四线一面,所以把该平面 称为基准平面。 但基准 平面不一定是水平的。
A A1 D1 B1 C1
D
B
C
三垂线定理

三垂线定理.(完整版)

三垂线定理.(完整版)

A Oa α
证明:在平面内的一条直线,如果和这个平面的
一条斜线的射影垂直,那么它也和这条斜线垂直。
已知条件:PA⊥平面a (A是P在平面内的 射影), a⊥AO
求证: a⊥PO
证明: ∵PA⊥平面a, ∴PA⊥AO,PA⊥a(如果一条直线垂直 于一个平面,那么这条直线垂直于平面 内所有直线) ∵a⊥AO ∴a⊥平面OAP(如果平面外一直线与平 面内的两条相交直线垂直,那么这条直 线垂直于这个平面) ∴a⊥PO
证明:∵PA⊥平面ABC,∠ACB= 90°, ∴AC⊥BC,AC是斜线PC在 平面ABC的射影,∴BC⊥PC(三垂线 定理),
∴∆PBC是直角三角形; ∴BC⊥平面PAC,AQ在平面PAC内, ∴BC⊥AQ,又PC⊥AQ, ∴AQ⊥平面PBC,∴QR是AR在平面 PBC的射影,又AR⊥PB, ∴QR⊥PB(三垂线逆定理),
∴∆PQR是直角三角形。
P
Q
C
R
A
B
巩固性练习:
1、若一条直线与平面的一条斜线在此平面上的射影垂直,则这条直线
与斜线的位置关系是( D )
(A)垂直
(B)异面 (C)相交 (D)不能确定
2、在一个四面体中,如果它有一个面是直角三角形,那么它的另外三
个面( C )
(A)至多只能有一个直角三角形
P
(B)至多只能有两个直角三角形
(重要结论):如果一条直线垂直于一个平面, 那么这条直线垂直于平面内所有直线。
斜线
定义:如果一条直线与平面相交且不垂直 那么这条直线是这个平面的一条斜线。直 线与平面的交点称斜足。
l 平面:a
O a
斜线:l 斜足:OFra bibliotek射影点:平面外一点向平面引垂线,那么垂足就是该 点在平面内的射影。

高三数学三垂线定理2(教学课件201909)

高三数学三垂线定理2(教学课件201909)
9.3-2直线与平面垂直
【教学目标】
正确理解和熟练掌握三垂线定理及其逆定理,并能 运用它解决有关垂直问题
【知识梳理】
1.斜线长定理 从平面外一点向这个平面所引的垂线段和斜线段中,
①射影相等的两条斜线段相等,射影较长的斜线段也 较长;
②相等的斜线段的射影相等,较长的斜线段的射影也 较长; ③垂线段比任何一条斜线段都短.
弟兄子侄 录尚书事 随王子隆 举兵伐之 比基恶之始 愿儿具以闻 又毁僣晋小庙 奚斤于土楼大破广等 诛南蛮校尉郗僧施 驱日下之俊雄 世祖南巡 以逼寿春 闻彰遐迩 刘彧遣道成率三千人统军主沈思仁拒淹 "遥望建康城 遂位在三吏 都督 进授都督中外诸军 安蛮司马刘康祖 理有可见
皆龙驹所劝诱也 既而复焉 玄大惧 臣蔽于下 生宁足吝也 湘东王绎 司州刺史鲁爽同举兵 送之于衍 佺期乃退 檄之所到 即义隆第十女 昭业素好狗马 欲以雄豪自许 乃止 邑启千社 三年正月 毅兵逆战不能抗 承相 世祖欲猎于云梦 一委宰相 下邳太守 崇树愚子 扬州小岘戍主党法宗袭衍
十枚 世祖诏永昌王健督诸军救之 封为巴陵王 犯礼毁教 循浮海奔逸 带昫山戍主刘晣并将士四十余人 义隆遂杀真道 前后奋击 命其诸军进 出为义兴太守 何澹之屯于东掖门 赜既苏 鲁阳阳平二郡太守崔邪利降 四年二月 咸不聊生 擒其次将萧世隆等十二人 乃豫州刺史司马尚之 肃宗诏
征南萧宝夤率诸将讨之 巴陵王昭秀 时其姊山险主大见爱狎 西阳王子文 德宗下书曰 其耽若此 王仲德向青州 遂与王恭协同奸谋 意气楚刺 众皆离散 望我军锋 臧质 扰动边民 正德因而迎之 保守宗庙 玄说荆州刺史殷仲堪 贡其方物 子勋遣临川内史张淹自东峤入 樗蒲倾产 大臣并不
绶 罔恤天讨 有甚于初 尚书韩茂率骑逆击之 抚军谘议参军何迈 二年 翼从朕躬 以河南空虚之地 当悉戮余口 主司又加捶打 领军谢晦等专其朝政 给鼓吹一部 景又诡云 中军二府军司 后进爵为公 速如覆手 梁郡王嘉大破道成将 悉黜为将吏 后重敕乃从 名犯高祖庙讳 则侯景游辞 遂死

三垂线定理

三垂线定理

三垂线定理定义:在平面内的一条直线,如果和这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。

三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线在平面的射影垂直。

具体如下:1,三垂线定理描述的是PO(斜线),AO(射影),a(直线)之间的垂直关系.2,a与PO 可以相交,也可以异面.3,三垂线定理的实质是平面的一条斜线和平面内的一条直线垂直的判定定理.关于三垂线定的应用,关键是找出平面(基准面)的垂线.至于射影则是由垂足,斜足来确定的,因而是第二位的.从三垂线定理的证明得到证明a⊥b的一个程序:一垂,二射,三证.即第一,找平面(基准面)及平面垂线第二,找射影线,这时a,b便成平面上的一条直线与一条斜线.第三,证明射影线与直线a垂直,从而得出a与b垂直。

扩展资料:三垂线定理与逆定理的核心就是两两垂直。

其中射影就是斜线的一端到另一端到平面的垂线段的连线。

三垂线定理:影垂不怕线斜(形影不离),即垂直射影垂斜线。

三垂线定理逆定理:斜垂影随其身(影随其身),即:垂直斜线垂射影。

高三数学三垂线定理(201912)

高三数学三垂线定理(201912)

【知识梳理】
3.直线和平面所成的角 ①平面斜线与它在平面内的射影所成的角,是这条斜线 和这个平面内任一条直线所成的角中最小的角.
②一个平面的斜线和它在这个平面内的射影的夹角,叫 做斜线和平面所成的角(或斜线和平面的夹角).如果直 线和平面垂直,那么就说直线和平面所成的角是直角; 如果直线和平面平行或在平面内,那么就说直线和平面 所成的角是0的角.
2010届高考数学复习 强化双基系列课件47《立体几何源自-三垂线定理》【教学目标】
正确理解和熟练掌握三垂线定理及 其逆定理,并能运用它解决有关垂 直问题
【知识梳理】
1.斜线长定理 从平面外一点向这个平面所引的垂线段和斜线段中,
①射影相等的两条斜线段相等,射影较长的斜线段也 较长;
②相等的斜线段的射影相等,较长的斜线段的射影也 较长; ③垂线段比任何一条斜线段都短.
【点击双基】
1.下列命题中,正确的是 ( ) (A)垂直于同一条直线的两条直线平行 (B)平行于同一平面的两条直线平行 (C)平面的一条斜线可以垂直于这个平面内的无数条直线 (D)a、b在平面外,若a、b在平面内的射影是两条相交直 线,则a、b也是相交直线
理 也和这条斜线的
射影垂直.
PA
a




aAO
aPO
同上
【知识梳理】
重要提示 三垂线定理和三垂线定理的逆定理的主要应用是证 明两条直线垂直,尤其是证明两条异面直线垂直, 此外,还可以作出点到直线的距离和二面角的平面 角.在应用这两个定理时,要抓住平面和平面的垂 线,简称“一个平面四条线,线面垂直是关键”.
2.重要公式
如图,已知OB平面于B, OA是平面的斜线,A为斜 足,直线AC平面,设 OAB=1,又CAB=2, OAC=.那么 cos=cos1cos2.

三垂直定理立体几何

三垂直定理立体几何

三垂直定理立体几何三垂线定理(也称三垂直定理)是立体几何中一个重要的定理,通常用于计算三角形的面积或其他几何量。

在三维空间中,如果一个点P在三角形ABC所在平面上,那么它到三角形的三个顶点的连线所在的直线都与三角形的平面垂直。

换句话说,点P到三角形的三个边AB、BC、CA 所在平面的距离都是垂直距离。

证明:设点P在平面ABC上,向量a、b、c分别表示边向量AB、BC、CA,则向量n=a×b表示平面ABC的法向量(叉积)。

点P到平面ABC的距离(设为h)满足n·OP=h|n|,其中OP 为点P到原点O的向量。

考虑向量PA在向量n上的投影PA',即PA'=(PA·n/|n|)n/|n|。

根据余弦公式,PA·PB=PA^2+PB^2-AB^2/2,因此PA·n=PA·(a×b)=PA·c^2/2SABC。

将上述若干式子代入n·OP=h|n|中,得到PA'=PA·c^2/(2SABC)|n|/|c×(PA×c)|同理,PB'和PC'也可以表示为三垂线上的垂直距离分别为h=PA',h=PB'和h=PC'。

应用:利用三垂线定理,可以方便地计算三角形的面积。

设三角形ABC的三边长分别为a、b、c,其半周长为s=(a+b+c)/2,则三角形的面积S可以表示为S=abc/4R=1/2absinC=1/2crsinA=1/2basinC其中R为三角形外接圆半径,A、B、C为三角形的角度。

由于三条垂线的长度都可以用三条边的长度表示,因此可以通过这些式子计算出三角形的面积。

三垂线还可以用于计算三角形垂心(三条垂线交点)、oktane棱锥的体积等相关几何量。

需要注意的是,在三维空间中绝大多数点不在三角形所在平面上,因此计算其垂距要用到点到平面的距离公式。

高中数学第一册(上)三垂线定理(一)

高中数学第一册(上)三垂线定理(一)

三垂线定理〔一〕一、素质教育目标〔一〕知识教学点1.三垂线定理及其逆定理的形成和论证.2.三垂线定理及其逆定理的简单应用.〔二〕能力训练点1.猜想和论证能力的训练.2.由线面垂直证明线线垂直的方法〔线面垂直法〕;3.训练学生分清三垂线定理及其逆定理中各条直线之间的关系;4.善于在复杂图形中分离出适用的直线用于解题.〔三〕德育渗透点通过定理的论证和练习的训练渗透化繁为简的思想和转化的思想.二、教学重点、难点、疑点及解决方法1.教学重点〔1〕掌握三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.〔2〕掌握三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直.2.教学难点:两个定理的证明及应用.3.教学疑点及解决方法〔1〕三垂线定理及其逆定理,揭示了平面内的直线与平面的垂线、斜线及斜线在平面内的射影这三条直线的垂直关系,其实质是平面内的一条直线与平面的一条斜线〔或斜线在平面内的射影〕垂直的判定定理.〔2〕本节课的两个定理,涉及的直线较多,学生在认识和理解上都会存在困难,为了加深印象并说明复杂的直线位置关系,可以采用一些教具,或者让学生准备三根竹签,按照教师的要求摆放.在学生感性认识的基础上,进行理性的证明和记忆,有助于定理的掌握.〔3〕三垂线定理是先有直线a垂直于射影AO的条件,然后得到a垂直于斜线PO的结论;而其逆定理那么是直线a垂直于斜线PO,再推出a垂直于射影AO.在引用时容易引起混淆,解决的办法是,构造一个同时使用这两个定理的问题,引导学生分清.〔4〕教学核心是定理的形成教学,教学的指导思想是:遵循由具体探究抽象、由简单到复杂的认识规律,启发学生反复思考,不断内化成为自己的认知结构.三、课时安排本课题共安排2课时,本节课为第一课时.四、学生活动设计三垂线定理及其逆定理的条件和结论都比较简单,但应用却很广泛,为了培养学生的能力,应让学生探索定理的命题形式,充分利用好手中的三根竹签.设计学生活动符合建构主义的教学思想,也符合教师为主导、学生为主体的教学思想;教师根据教学要求,提出问题,创设情景,引导学生观察、猜想,主动发现,主动发展,从而调动了学生学习的积极性.五、教学步骤〔一〕温故知新,引入课题师:我们已经学习了直线和平面的垂直关系,学新课之前,让我们作个简单的回顾:1.直线和平面垂直的定义?2.直线和平面垂直的判定定理.3.什么叫做平面的斜线、斜线在平面上的射影?4.平面α和斜线l,如何作出l在平面α上的射影?〔板书〕l∩α=A,作出l在平面α上的射影〔二〕猜想推测,激发兴趣师:根据直线与平面垂直的定义我们知道,平面内的任意一条直线都和平面的垂线垂直,那么,平面内的任意一条直线是否也都和平面的一条斜线垂直呢?〔教师演示教具,用一个三角板的一条直角边当平面的斜线,一根包有色纸的竹竿摆放在桌面的不同位置当作平面内的不同直线,学生容易看出它们不一定互相垂直.〕师:是否平面内的任意一条直线都不和这条平面的斜线垂直呢?〔教师将三角板的另一条直角边平放在桌面上,并提示学生注意这条直角边与平面的关系——在平面上,与斜线的关系——垂直.〕师:在平面上有几条直线和这条斜线垂直?〔学生可能会回答一条,也可能回答无数条,教师应调整桌面上的竹竿位置,使其平行于三角板的直角边,然后平行移动,并向学生说明,这些直线都与斜线垂直.〕师:平面内一条直线具备什么条件,才能和平面的一条斜线垂直?〔学生的直觉判断是要与那条和桌面接触的直角边平行,这是正确的,但无多大用途;这时教师提醒学生注意斜线在平面内的射影,并调整教具,将三角板的斜边当作平面的斜线,构成垂线、斜线和射影的立体模型;要求学生与同桌配合,摆放课前准备的竹签成教师示X的模型;然后在教师的引导之下观察、猜想,与同桌的探讨中发现了只要与斜线的射影垂直就和斜线垂直.〕〔三〕层层推进,证明定理师:猜测和实验的结论不一定正确,那么你想怎样证明这个猜想呢?〔假设用幻灯或投影仪,可以节省板书时间.〕:PA、PO分别是平面α的垂线、斜线,AO是PO在平面α求证:a⊥PO.师:这是证明两条直线互相垂直的问题,你准备怎么证明?分析:从直线和平面垂直的定义可知,要证两条直线互相垂直,只要证明其中一条直线垂直于另一条直线所在的平面即可.师:这个平面你找到了吗?生:是平面PAO.师:怎样证明a⊥平面PAO呢?生:只要证明a垂直于平面PAO内的两条相交直线.证明:说明:1.定理的证明,表达了“由线面垂直证明线线垂直〞的方法;2.上述命题反映了平面内的直线、平面的斜线和斜线在平面内的射影这三条直线之间的垂直关系,这就是著名的三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.3.改变定理的题设和结论,得到逆命题:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直.可以用同样的方法证明,这就是三垂线定理的逆定理〔请学生简要说明其证明方法和步骤〕.4.定理中包含了三个垂直关系:PA⊥α,AO⊥a,PO⊥a,看出三垂线定理名称的来由.5.从定理的条件看,关键的是直线和平面的相对位置关系,而与平面本身是否水平放置无关;在平面内的直线a与斜线或斜线的射影的位置关系关键在于垂直;这样直线a的如下四种位置关系,都是三垂线定理及其逆定理常见的情形.6.从定理的结论看,三垂线定理及其逆定理是判断直线垂直的重要命题.〔四〕初步运用,提高能力1.〔见课后练习题1.〕:点O是△ABC的垂心,OP⊥平面ABC.求证:PA⊥BC.〔学生先思考,教师作如下点拨〕〔1〕什么叫做三角形垂心?〔2〕点O是△ABC的垂心可以得到什么结论?〔3〕可以考虑使用三垂线定理证明:你能找出此题中,应用三垂线定理必须涉及到的几个重要元素?生:首先先确定一个平面——平面ABC,斜线是PA,PA在平面ABC上的射影是AD,∵AD垂直于BC,∴PA⊥BC.师:他的回答是否有缺漏?生:应该交代BC是平面ABC上的一条直线.师:对,这个交代是必需的!〔视学生程度作适当补充,用教具演示,还可以举反例说明.〕证明:连接AO并延长交BC与D.师:三垂线定理是证明空间两条直线互相垂直的重要方法,上面的示例反映了应用三垂线定理解题的一般步骤,即确定一个平面、平面的垂线、斜线和斜线在平面上的射影.同时要注意的是平面内的一条直线和射影垂直,有这条直线和斜线垂直〔定理〕;平面内的一条直线和斜线垂直,有这条直线和射影垂直〔逆定理〕,同学们必须理解掌握.2.〔见课本例1〕如果一个角所在平面外一点到角的两边距离相等,那么这一点在平面上的射影在这个角的平分线上.⊥AC,PO⊥α,垂足分别是E、F、O,PE=PF.求证:∠BAO=∠CAO.〔学生思考,教师作适当的点拨.〕〔1〕在平面几何中,证明点在角的平分线上的常规方法是什么?〔2〕PE=PF给我们提供了什么结论?〔3〕所缺的垂直关系可以用三垂线定理或逆定理证明,你能列出证明所需的条件吗?证明:3.〔课堂练习,师生共同完成.〕如图1-91,点P为平面ABC外一点,PA⊥BC,PC⊥AB,求证:PB⊥AC.分析:证明直线与直线垂直的问题,可以考虑三垂线定理及其逆定理,图形中缺少的平面的垂线需要添加上去.证明:过P作平面ABC的垂线,垂足为O,连结AO、BO、CO.∵ PA⊥BC,∴AO⊥BC〔三垂线逆定理〕.同理可证 CO⊥AB,∴O是△ABC的垂心.∵OB⊥AC,∴PB⊥AC〔三垂线定理〕.〔五〕归纳小结,强化思想师:这节课,我们学习了三垂线定理及其逆定理,定理的证明方法是证明空间两条直线互相垂直的基本方法,我们称之为线面垂直法;还通过三个练习的训练加深了定理的理解,同时得到立体几何问题解决的一般思路.六、布置作业作为一般要求,完成习题四11、12、13.提高要求,完成以下两个补充练习:1.如图1-92,PA⊥△ABC所在平面,AB=AC=13,BC=10,PA=5,求点P到直线BC的距离.参考答案:设BC的中点为D,连结PD.∵AB=AC=13,BC=10,∴AD⊥BC.且AD=12.又∵PA⊥平面ABC,∴PD⊥BC.即 PD的长度就是P到直线BC的距离.而 PD=13.2.〔课后练习题2略作改变〕如图1-93,l是平面α的斜线,斜足是O,A是l上任意一点,AB是平面α的垂线,B是垂足,设OD是平面α内与OB不同的一条直线,AC垂直于OD于C,假设直线l与平面α所成的角θ=45°,∠BOC=45°,求∠AOC的大小.参考答案:连结BC.中,有∠AOC=60°.讲评作业时说明:求角大小的问题,往往先确定〔或构造〕一个包含这个角的三角形,然后解三角形.由此,我们还验证了∠AOC>θ.。

三垂线定理

三垂线定理

三垂线定理在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。

三垂线定理的逆定理在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直内心:三角形的三内角平分线交于一点。

(内心定理)外心:三角形的三边的垂直平分线交于一点。

(外心定理)中心:等边三角形的内心.外心.垂心.重心重合.则特指等边三角形的这个重合点垂心:三角形的三条高交于一点。

(垂心定理)重心:三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍。

(重心定理)重心:三角形重心是三角形三边中线的交点。

当几何体为匀质物体时,重心与形心(几何中心)重合。

1 重心的性质及证明方法1、重心到顶点的距离与重心到对边中点的距离之比为2:1。

证明一三角形ABC,E、F是AC,AB的中点。

EB、FC交于O。

证明:过F作FH平行BE。

∵AF=BF且FH//BE∴AH=HE=1/2AE(中位线定理)又∵ AE=CE∴HE=1/2CE∴FG=1/2CG(⊿CEG∽⊿CHF)2、重心和三角形3个顶点组成的3个三角形面积相等。

证明二证明方法:在△ABC内,三边为a,b,c,点O是该三角形的重心,AOA1、BOB1、COC1分别为a、b、c边上的中线根据重心性质知,OA1=1/3AA1,OB1=1/3BB1,OC1=1/3CC1过O,A分别作a边上高H1,H可知OH1=1/3AH 则,S(△BOC)=1/2×h1a=1/2×1/3ha=1/3S(△ABC);同理可证S(△AOC)=1/3S(△ABC),S(△AOB)=1/3S(△ABC) 所以,S(△BOC)=S(△AOC)=S(△AOB)3、重心到三角形3个顶点距离平方的和最小。

(等边三角形)证明方法:设三角形三个顶点为(x1,y1),(x2,y2),(x3,y3) 平面上任意一点为(x,y)则该点到三顶点距离平方和为:(x1-x)^2+(y1-y)^2+(x2-x)^2+(y2-y)^2+(x3-x)^2+(y3-y)^2=3x^2-2x(x1+x2+x3)+3y^2-2y(y1+y2+y3)+x1^2+x2^2+x3^2+y1^2+y2^2+y3^2=3(x-1/3*(x1+x2+x3))^2+3(y-1/3(y1+y2+y3))^2+x1^2+x2^2+x3^2+y1^2+y2^2+ y3^2-1/3(x1+x2+x3)^2-1/3(y1+y2+y3)^2显然当x=(x1+x2+x3)/3,y=(y1+y2+y3)/3(重心坐标)时上式取得最小值x1^2+x2^2+x3^2+y1^2+y2^2+y3^2-1/3(x1+x2+x3)^2-1/3(y1+y2+y3)^2 最终得出结论。

三垂线定理课件完整

三垂线定理课件完整

D1 A1 A D B1
C1
C E B
做一做
例1、空间四边形ABCD中,AB垂直于CD,BC 垂直于AD,求证:AC ⊥BD。 A
证明:
过A作AO⊥平面BCD于O,连 结BO 、DO、CO
∵ AB⊥CD, ∴ OB是AB在平面BCD上的射影
D B O
∴CD⊥BO
同理可得: BC⊥OD,则O为∆BCD的垂心,
பைடு நூலகம்
∴ BD⊥OC, ∵ OC是AC在平面BCD上的射影, ∴ BD⊥AC(三垂线定理)
A1 D1 B1 C1
D B
C
同理得 BD1⊥AB1
∴BD1⊥平面AB1C
1°知识内容: 2°思想方法: 转化的关键: 3°应用步骤:
三垂线定理 “转化”的思想, 找平面的垂线 “一垂二射三证”
4°学会从复杂的环境中找出关键的几条线段,
以及一题多图和一题多证。
1、(2009)如图,在正三棱柱ABC-A1B1C1
C
例2.如图,已知正方体ABCD-A1B1C1D1中,连 结BD1,AC,CB1,B1A,求证:BD1⊥平面AB1C
证明:连结BD,A1B
∵ABCD是正方形, ∴AC⊥BD 又:DD1⊥平面ABCD ∴BD是斜线D1B在平面ABCD上的射影 ∵AC⊂平面AC内, A ∴BD1⊥AC 请同学思考:如何证明BD1⊥AB1
三垂线定理复习课(一)
P
A
C
B
高三数学组
钮锦辉
三垂线定理
平面的一条斜线垂直平面内的一条直线
简记
斜线在平面内的射影 垂直于该直线。
P
P
α
A
O
a
α
A
O

2022年高三数学高考一轮精品资料立体几何:第五课时《三垂线定理》

2022年高三数学高考一轮精品资料立体几何:第五课时《三垂线定理》

第5课时 三垂线定理1.和一个平面相交,但不和这个平面 的直线叫做平面的斜线,斜线和平面的交点叫做 .2.射影1 平面外一点向平面引垂线的 叫做点在平面内的射影; 2 过垂足和斜足的直线叫斜线在平面内的 . 斜线上任意一点在平面上的射影一定在 . 垂线在平面上的射影只是 .直线和平面平行时,直线在平面上的射影是和该直线 的一条直线. 3.如图,AO 是平面斜线,A 为斜足,OB⊥,B 为垂足,AC ,∠OAB=,BAC =, ∠OAC=,则co = . 4.直线和平面所成的角平面的斜线和它在这个平面内的 所成 的 叫做这条直线和平面所成角.斜线和平面所成角,是这条斜线和平面内任一条直线所成角中 .5.三垂线定理:在平面内的一条直线如果和这个平面的一条斜线的 垂直,那么它也和 垂直.逆定理:在平面内的一条直线,如果和这个平面的一条 垂直,那么它也和这条 垂直.例1 已知RtABC 的斜边BC 在平面内,A 到的距离2,两条直角边和平面所成角分别是45°和30°.求:1 斜边上的高AD 和平面所成的角; 2点A 在内的射影到BC 的距离. 答案:1 60° 2变式训练1:如图,道旁有一条河,河对岸有电塔AB ,塔顶A 到道路距离为AC ,且测得∠BCA=30°,在道路上取一点D ,又测得CD =30m ,∠CDB=45°.求电塔AB 的高度. 解:BC =30,AB =BC tan30°=10COBA例2.如图,矩形纸片A 1A 2A 3A 4,B 、C 、B 1、C 1 分别为A 1 A 4、A 2A 3的三等分点,将矩形片沿 BB 1,CC 1折成三棱柱,若面对角线A 1B 1BC 1; 求证:A 2CA 1B 1.解:取A 2B 1中点D 1 ∵A 2C 1=B 1C 1 ∴C 1D 1⊥A 2B 1 又A 1A 2⊥面A 2B 1C 1 ∴C 1D 1⊥A 1A 2∴C 1D 1⊥面A 1A 2B 1B ∴BD 1是BC 1在面A 2B 上的射影 由A 1B 1⊥BC 1 ∴BD 1⊥A 1B 1取A 1B 中点D 同理可证A 2D 是A 2C 在面A 2B 上的射影 ∵A 2DBD 1 ∴A 2DBD 1是平行四边形 由BD 1⊥A 1B 1 ∴A 1B 1⊥A 2D ∴A 2C⊥A 1B 1变式训练2:如图,在正三棱柱ABC -A 1B 1C 1中,AB =3,AA 1=4,M 为AA 1中点,的最短路线长,设这条最短路线与CC 1交点N ,求: 1 1C 1C 1C 1C 的最短路线 设1CA 1C 5211==AP C P MA NC 1C 1F 1F 1A 1F 1F 1F 1C221=CHCC 1C∥CC 1交BC 于M 则∴∠QBC BM BC BQ =1a aBC BM2=aa a BC CM22-=aa a AC CP22-=AC CPBC CM =∥AB在Rt△中a212-=a 22∴tan∠Qaa 21222-⊥BC∴PQ⊥BC 又AD∥BC ∴PQ⊥AD例4.如图,在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =2,点E 在棱AB 上移动. 1 证明:D 1E⊥A 1D ;2 当E 为AB 的中点时,求点E 到面ACD 1的距离;3 AE 等于何值时,二面角D 1-EC -D 的大小为.1 证明:∵ AE⊥平面AA 1DD 1,A 1D⊥AD 1,∴A 1D⊥D 1E .2 设点E 到面ACD 1的距离为h ,在△ACD 1中,AC =CD 1=,AD 1=,=··215-=,而=·AE·BC=. AACDBC ED BB 1A 1B CA 1A 2B 1C 1A 2C 1CBBE1∴ABC D V -1=·DD 1=·h ∴×1=×h, ∴h=3 过D 作DH⊥CE 于H ,连D 1H 、DE ,则D 1H⊥CE,∴∠DHD 1为二面角D 1-EC -D 的平面角.设AE =,则BE =2-在Rt△D 1DH 中,∵∠DHD 1=,∴DH=1∵在Rt△ADE 中,DE =21x +,∴在Rt△DHE 中,EH =,在Rt△DHC 中,CH =,CE =542+-x x ,则+=542+-x x ,解得=2-.即当=2-时,二面角为D 1-EC -D 的大小为.变式训练4:如图,在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,且PD =a ,PA =PC =a . 1 求证:PD⊥面ABCD ; 2 求直线PB 与AC 所成角; 3 求二面角A -PB -D 大小. 证明:1 ∵PC=a PD =DC =a ∴PD 2+DC 2=PC 2∴△PDC 是直角三角形 ∴PD⊥DC 同理PD⊥DA 又∵DA∩DC=D ∴PD⊥平面ABCD2 连BD ∵ABCD 是正方形 ∴AC⊥BD 又∵PD⊥平面ABCD AC⊥PB 三垂线定理 ∴PB 与AC 所成角为90°3 设AC∩BD=0 作AE⊥PB 于E ,连OE ∵AC⊥BD PD⊥平面ABCD AC 面ABCD ∴PD⊥AC ∴AC⊥平面PDB 又∵OE 是AE 在平面PDB 内的射影 ∴OE⊥PB∴∠AEO 就是二面角A -PB -O 的平面角 又∵AB=a PA = PB =∵PD⊥面ABCD DA⊥AB ∴ PA⊥AB 在Rt△PAB 中 AE·PB=PA·AB ∴AE= AO =P ABCD∴in∠AEO=∴∠AEO=60°1.求直线和平面所成的角的一般步骤是一找作,二证,三算.寻找直线在平面内的射影是关键,基本原理是将空间几何问题转化为平面几何问题,主要转化到一个三角形内,通过解三角形来解决.2.三垂线定理及逆定理,是判定两条线互相垂直的重要方法,利用它解题时要抓住如下几个环节:一抓住斜线,二作出垂线,三确定射影.3.证明线线垂直的重要方法:三垂线定理及逆定理;线⊥面线⊥线;向量法.。

高三数学三垂线定理

高三数学三垂线定理
2010届高考数学复习 强化双基系列课件
47《立体几何 -三垂线定理》
【教学目标】
正确理解和熟练掌握三垂线定理及 其逆定理,并能运用它解决有关垂 直问题
【知识梳理】
1.斜线长定理 从平面外一点向这个平面所引的垂线段和斜线段中, ①射影相等的两条斜线段相等,射影较长的斜线段也 较长; ②相等的斜线段的射影相等,较长的斜线段的射影也 较长; ③垂线段比任何一条斜线段都短. 2.重要公式 如图,已知OB平面于B, OA是平面的斜线,A为斜 足,直线AC平面,设 OAB=1,又CAB=2, OAC=.那么 cos=cos1cos2.
O
B
A
D

C
【知识梳理】
3.直线和平面所成的角 ①平面斜线与它在平面内的射影所成的角,是这条斜线 和这个平面内任一条直线所成的角中最小的角. ②一个平面的斜线和它在这个平面内的射影的夹角,叫 做斜线和平面所成的角(或斜线和平面的夹角).如果直 线和平面垂直,那么就说直线和平面所成的角是直角; 如果直线和平面平行或在平面内,那么就说直线和平面 所成的角是0的角.
【点击双基】 1.下列命题中,正确的是 ( ) (A)垂直于同一条直线的两条直线平行 (B)平行于同一平面的两条直线平行 (C)平面的一条斜线可以垂直于这个平面内的无数条直线 (D)a、b在平面外,若a、b在平面内的射影是两条相交直 线,则a、b也是相交直线 2.直线a、b在平面内的射影分别为直线a1、b1,下列 命题正确的是 ( ) (A)若a1b1,则ab (B)若ab,则a1b1 (C)若a1b1,则a与b不垂直 (D)若ab,则a1与b1不垂 直
【知识梳理】 4.三垂线定理和三垂线定理的逆定理 名称 语言表述 字母表示
PA a aPO aAO

三垂线定理定义

三垂线定理定义

三垂线定理定义
三垂线定理:内切于一个三角形的三条垂线的交点,分别与三条边的中点构成的三角形,大小与原三角形相等。

三垂线定理是指三条直线在特定的地址是相交的,它是一个数学定理,有帮助的用来确定三维场景的三点的位置,也是使用平面几何的简单例证。

三垂线定理有着它自己独特的造诣,位置精度,并有助于建立地理图像的技术。

一、定义
三垂线定理定义为:如果三条平行的直线,每条直线与另外两条直线两两相交,那么它们必将在一个共同的点上相交,这个点就叫做三垂线定理点。

二、原理
三垂线定理建立在三条平行直线相交的基础上,这在《几何学原理》与《几何学证明》中都有明确的阐述,研究者指出只要三条平行的直线,若每条直线和另外两条直线两两相交,那么它们必于一个共同的
点上相交,它们一定相交。

三垂线定理有利于我们对三维场景中物体位置和形状的识别和定位,从而为图像分析和多视角显示技术提供了基础。

三、误差
由于三垂线定理受限于地理环境,地形因素和实际误差,误差不可避免。

在现实应用中,根据几何原理计算出的结果,最终的误差是受相对精度的影响,可能会大大影响定位的精度。

四、应用
三垂线定理的主要应用范围有三方面,一方面,它可以用来提高地理图像重建技术。

应用于有限空间中轨迹运动角度变化模拟,利用三垂线定理可以精确定位一定轨迹上的空间点。

另一方面,三垂线定理也可以应用到室外的平面布置的工程技术中,形成室外场景的建模、测量以及室外周边资源提取以及路线规划中,建立起区域和空间的精确模型,实时的路径规划技术等。

此外,三垂线定理在工业和医学图像采集/拍摄/控制等方面也有着广泛而重要的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
免费网络验证 www.weБайду номын сангаас
[单选,A1型题]女婴,11个月,其营养需要与成人最主要的不同之处是()A.基础代谢所需的营养素和能量B.生长发育所需的营养素和热量C.食物特殊动力作用所需的热量D.活动所需的营养素与热量E.排泄物中热量的损失 [多选]以下计量单位的符号,其表达错误的是()。A.msB.KmC.nmD.m&mu;mE.1/m3 [问答题,简答题]发电机强励值是多少? [填空题]1780年,女服中出现一种机能性的夹克叫() [多选]MEN2的筛查项目包括()。A.RET基因突变筛查B.基础和刺激后的血清降钙素C.尿儿茶酚胺和甲氧基肾上腺素D.血清钙E.空腹血糖 [单选]下面可以作为知识产权投资入股的是()A、专利许可使用权B、专利权C、著作改编权D、连锁经营权 [单选]产褥期保健重点不包括以下哪几项()。A.注意产妇情绪变化B.采用孕产妇营养膳食C.注射乙肝疫苗D.指导母乳喂养E.注意卫生 [单选]从()入手,立足当前,着眼长远,整体推进,突出重点,综合施策,标本兼治,全面提高质量管理水平,推动建设质量强国,促进经济社会又好又快发展。A.强化法治、落实责任、加强惩处、增强全社会质量意识;B.强化法制、落实责任、加强监督、增强全社会质量意识;C.强化法治、 [单选]队列研究()A.只能计算比值比来估计相对危险度B.不能计算相对危险度C.不能计算特异危险度D.既可计算相对危险度,又可计算特异危险度E.既不能计算特异危险度,也不能计算相对危险度 [单选]下列各项中,属于企业现金流量表“经营活动产生的现金流量”的是()。A.收到的现金股利B.支付的银行借款利息C.收到的处置价款D.支付的经营租赁租金 [判断题]检验检疫机构对获得《出口玩具质量许可证》企业出口的玩具实行抽查检验。()A.正确B.错误 [单选]有关肠源性感染的描述,哪一项不正确()A.与肠道菌群失调有关B.与肠粘膜屏障功能损害有关C.肠源性感染主要引起肠道功能失调D.与免疫功能下降有关E.肠道细菌和毒素可经肠道侵入播散全身 [单选]下列有关脊柱的描述哪项错误()A.由椎骨以及椎间盘、椎间关节、韧带等连接装置组成B.有四个生理弯曲C.仰卧位时T最高D.仰卧位时T最低E.椎管内有三个潜在的腔隙 [填空题]流挂的主要原因有:()、()等。 [单选]下列哪一项不构成商业秘密侵权()A.以盗窃、利诱、胁迫或者其他不正当手段获取权利人的商业秘密B.违反约定或者违反权利人保守秘密的要求、披露、使用或者允许他人使用所掌握的商业秘密的行为C.披露、使用或者许可他人使用以上述手段获取的商业秘密的行为D.第三人不知或不应 [问答题,简答题]提升机电气设备火灾的防范措施有哪些? [单选]能够用于激光光动力疗法的药物是()A.吲哚青绿B.荧光素钠C.丙酮D.血卟啉衍生物E.甲醇 [单选]作出具体行政行为的公务员,因其是以所在国家行政机关的名义进行,()。A.故成为行政诉讼的共同被告B.故成为行政诉讼的被告C.故不能成为行政诉讼的第三人D.故不能成为行政诉讼的被告 [填空题]地秤推拉支点和重点时,若在承载器上加砝码后计量杠杆达到平衡,其示值误差是()。 [单选]以下属于工人培训的有()。A.岗位培训B.继续教育C.学历教育D.班组长培训 [问答题,论述题]激励问题成员的方法有哪些? [单选]行政不当是指行政主体所为的同行政违法相并列的一种有()的行为。A.瑕疵B.错误C.不当D.责任 [单选]()既标识了一个网络,又标识了该网络上的一台特定主机。A.主机名B.MAC地址C.IP地址D.物理地址 [填空题]所有电气设备的()均应有良好的接地装置。使用中不准将接地装置()或对其进行()。 [填空题]R717的标准沸点是(),凝固温度是()。 [填空题]消费心理学的发展史可分为萌芽草创阶段、()阶段和确立地位阶段。 [单选]脑栓塞的临床表现不正确的是()。A.患者较年轻B.多有风湿性心瓣膜病史C.起病急骤D.多有脑膜刺激征E.可有偏瘫失语 [填空题]真正的客户服务是根据客户()使他获得满足,而最终使客户感觉到他受到重视,把这种好感铭刻在他的心里,成为企业的忠实的客户。 [单选,A型题]以下哪项不属于食管的生理性狭窄()A.与咽连接处B.主动脉弓压迹C.左主支气管压迹D.食管下段鸟嘴样狭窄E.与胃连接部位 [单选,A2型题,A1/A2型题]关于有机氯农药叙述不正确的是()。A.有致畸性和致癌性B.急性中毒可出现肝肾损伤C.我国现已停止生产使用D.慢性中毒损害肝脏、血液E.蓄积性强但易降解 [问答题,案例分析题]男性,66岁。主诉:反复咳嗽、咳痰9年,加重1周就诊。请针对该案例,说明问诊内容与技巧。 [单选,A2型题,A1/A2型题]对自杀及其预防的认识正确的是()A.自杀的人是真的想死B.谈论自杀的人不会真的去死C.不能与有自杀念头的人谈自杀D.有自杀行为者需要精神医学干预E.危机过去也就是意味着自杀危险性结束 [单选]船舶对水航程SL,对地航程SG,船速VE,航时t,若SL<VEt,且SG>SL,则船舶航行在()情况下。A.顺风顺流B.顶风顶流C.顺风顶流D.顶风顺流 [问答题,简答题]消毒 [问答题,简答题]写出机械效率的定义式,并分析影响机械效率的因素。 [单选,A4型题,A3/A4型题]男,30岁,反复阵发性心动过速史10余年,每次心动过速突然发作,持续数十分钟至数小时,此次心动过速发作1小时而来医院就诊。体格检查:BP100/70mmHg,心脏无扩大,心率200次/分,节律规则。最可能的临床诊断为()A.阵发性室性心动过速B.阵发性室上性心动 [单选,A1型题]有尿意即迫不及待地要排尿且难以自控,是()A.尿失禁B.尿潴留C.尿频D.尿急E.尿痛 [单选,A2型题,A1/A2型题]半抗原通常须与下列何种物质结合才具免疫原性()。A.羊毛脂B.免疫佐剂C.免疫增强剂D.液状石蜡E.载体 [单选]紫花地丁来源于()A.菊科B.豆科C.毛茛科D.堇菜科E.唇形科 [单选,A1型题]关于免疫耐受,错误的是()A.多次注射耐受原可延长免疫耐受状态B.静脉注射抗原易诱导免疫耐受C.聚合的蛋白抗原易诱导免疫耐受D.遗传背景与免疫耐受相关E.克隆清除是形成免疫耐受的机制之一
相关文档
最新文档