《常微分方程》知识点
大一常微分方程一知识点总结
大一常微分方程一知识点总结1.常微分方程的基本概念常微分方程是描述一个未知函数的导数或高阶导数与该函数本身之间的关系的方程。
2.函数的导数和微分的概念导数描述了函数在其中一点上的变化率,基本导数法则包括常数规则、幂规则、指数函数和对数函数的导数、三角函数的导数等;微分描述了函数在其中一点上的变化量。
3.一阶常微分方程一阶常微分方程是指导数的最高阶数为一的微分方程。
常见的一阶微分方程形式包括可分离变量的方程、线性方程、齐次方程、恰当方程和一阶常系数线性齐次方程等。
4.可分离变量的方程可分离变量的方程是指方程中变量可分离为两个集合的乘积形式。
通过将变量分离,再进行积分求解得到方程的解。
5.线性方程线性方程是指方程中的未知函数和其导数只出现线性的形式。
线性方程的解可以通过积分因子法或变量代换法来求解。
6.齐次方程齐次方程是指方程中未知函数和其导数出现在同一个项中,并且未知函数和其导数的次数相同的方程。
齐次方程可以通过变量代换法将其转化为可分离变量的方程来求解。
7.恰当方程恰当方程是指方程的左右两边可以写成一些函数的全微分形式。
通过判断方程是否恰当,并找到方程的积分因子,可以求解恰当方程。
8.一阶常系数线性齐次方程一阶常系数线性齐次方程是指方程中未知函数和其导数出现在同一个项中,并且未知函数和其导数的系数是常数的方程。
一阶常系数线性齐次方程的解可以通过特征方程和指数函数来求解。
9.二阶常微分方程二阶常微分方程是指导数的最高阶数为二的微分方程。
常见的二阶微分方程形式包括线性常系数齐次方程、线性常系数非齐次方程和欧拉方程等。
10.线性常系数齐次方程线性常系数齐次方程是指方程中未知函数及其导数的系数是常数的齐次方程。
线性常系数齐次方程的解可以通过特征方程和指数函数来求解。
11.线性常系数非齐次方程线性常系数非齐次方程是指方程中未知函数及其导数的系数是常数的非齐次方程。
通过求解对应的齐次方程的通解和非齐次方程的特解,可以得到线性常系数非齐次方程的通解。
常微分方程知识点整理
常微分方程知识点整理常微分方程是数学中的一个重要分支,研究描述自然界中各种变化规律的微分方程。
在物理、工程、经济学等领域具有广泛的应用。
本文将对常微分方程的基本概念、分类、求解方法等知识点进行整理。
一、常微分方程的基本概念常微分方程是指未知函数的导数及其自变量的关系式。
一般形式为dy/dx = f(x, y),其中y是未知函数,x是自变量,f是已知的函数。
常微分方程可以分为一阶常微分方程和高阶常微分方程。
1. 一阶常微分方程:一阶常微分方程是指方程中只涉及到一阶导数的微分方程。
常见形式为dy/dx = f(x, y)。
其中f(x, y)是已知的函数,也可以是常数。
2. 高阶常微分方程:高阶常微分方程是指方程中涉及到二阶及以上导数的微分方程。
常见形式为d^n y/dx^n = f(x, y, dy/dx, ..., d^(n-1)y/dx^(n-1)),其中n为方程的阶数,f是已知的函数。
二、常微分方程的分类根据方程的形式和性质,常微分方程可以分为线性常微分方程、非线性常微分方程、齐次线性常微分方程等多种类型。
1. 线性常微分方程:线性常微分方程是指方程中未知函数及其导数之间的关系是线性的微分方程。
常见形式为a_n(x) d^n y/dx^n + a_(n-1)(x) d^(n-1)y/dx^(n-1) + ... + a_1(x) dy/dx + a_0(x) y = f(x),其中a_n(x)、a_(n-1)(x)、...、a_1(x)、a_0(x)是已知的函数。
2. 非线性常微分方程:非线性常微分方程是指方程中未知函数及其导数之间的关系是非线性的微分方程。
常见形式为dy/dx = f(x, y),其中f(x, y)是已知的非线性函数。
3. 齐次线性常微分方程:齐次线性常微分方程是指方程中没有常数项的线性常微分方程。
常见形式为a_n(x) d^n y/dx^n + a_(n-1)(x) d^(n-1)y/dx^(n-1) + ... + a_1(x) dy/dx + a_0(x) y = 0。
【总结】常微分方程知识总结
(1) 概念微分方程:一般,凡表示未知函数、未知函数的导数与自变量的之间关系的方程。
微分方程的阶:微分方程中所出现的未知函数的最高阶导数的阶数。
如: 一阶:2dyx dx= 二阶:220.4d sdt=-三阶:32243x y x y xy x ''''''+-=四阶:()4410125sin 2y y y y y x ''''''-+-+=一般n 阶微分方程的形式:()(),,,,0n F x y y y'= 。
这里的()ny 是必须出现。
(2)微分方程的解设函数()y x ϕ=在区间上有阶连续导数,如果在区间上,()()()(),,0n F x x x x ϕϕϕ⎡⎤'≡⎢⎥⎣⎦则()y x ϕ=称为微分方程()(),,,,0n F x y y y '= 的解。
注:一个函数有阶连续导数→该函数的阶导函数也是连续的。
函数连续→函数的图像时连在一起的,中间没有断开(即没有间断点)。
导数→导函数简称导数,导数表示原函数在该点的斜率大小。
导函数连续→原函数的斜率时连续变化的,而并没有在某点发生突变。
函数连续定义:设函数()y f x =在点的某一邻域内有定义,如果()()00lim x x f x f x →=则称函数()f x 在点连续。
左连续:()()()000lim x x f x f x f x --→==左极限存在且等于该点的函数值。
右连续:()()()000lim x x f x f x f x ++→==右极限存在且等于该点的函数值。
在区间上每一个点都连续的函数,叫做函数在该区间上连续。
如果是闭区间,包括端点,是指函数在右端点左连续,在左端点右连续。
函数在点连续()()()()00lim lim lim x x x x x x f x f x f x f x -+→→→=== 1、()f x 在点有定义 2、()0lim x x f x →极限存在3、()()00lim x x f x f x →=(3)微分方程的通解如果微分方程中含有任意常数,且任意常数的个数与微分方程的阶数相同,这样的解叫微注:任意常数是相互独立的:它们不能合并使得任意常数的个数减少。
《常微分方程》知识点
《常微分方程》知识点常微分方程,又称ODE(Ordinary Differential Equation),是研究未知函数的导数与自变量之间的关系的数学学科。
常微分方程在科学和工程领域中有着广泛的应用,涉及到许多重要的数学原理和方法。
下面将介绍常微分方程的一些重要知识点。
1.基本概念-常微分方程的定义:常微分方程是描述未知函数在其中一区域上的导数与自变量之间的关系的方程。
-方程的阶数:常微分方程中最高阶导数的阶数称为方程的阶数。
-解和解集:满足常微分方程的未知函数称为方程的解,所有满足方程的解的集合称为方程的解集。
2.常微分方程的分类-分离变量法:适用于可以通过变量分离的常微分方程,将所有含有未知函数的项移到方程的一边,其他项移到方程的另一边,然后两边同时积分求解。
-齐次方程:适用于可以化为齐次方程的常微分方程,通过进行变量的代换,将方程转化为一个只含有未知函数的项的齐次方程,然后求解。
-线性齐次方程:适用于可以化为线性齐次方程的常微分方程,通过变量的代换,将方程转化为一个只包含未知函数和其导数的项的线性齐次方程,然后求解。
-非齐次方程:适用于非齐次方程的常微分方程,可以通过对应的齐次方程的解和特解的叠加,得到非齐次方程的解。
-可降阶的方程:这类方程具有特殊的形式,通过进行变量的代换,可以将高阶常微分方程转化为一阶或者低阶的方程,然后求解。
3.常微分方程的解法-解析解:指通过直接计算得到的解析表达式,能够准确地求得方程的解。
-数值解:指通过数值计算的方法,例如欧拉法、龙格-库塔法等,近似求解方程的解。
4.常用的一阶常微分方程- 可分离变量的方程:形如dy/dx = f(x)g(y),通过将变量分离,然后积分求解得到解析解。
- 齐次方程:形如dy/dx = f(y/x),通过进行变量的代换,将方程转化为一个只含有未知函数的项的齐次方程,然后求解。
- 线性方程:形如dy/dx + p(x)y = q(x),通过变量的代换,将方程转化为一个只包含未知函数和其导数的项的线性齐次方程,然后求解。
常微分方程基本知识点
常微分方程基本知识点第一章 绪论1. 微分方程的概念(常微分与偏微),什么是方程的阶数,线性与非线性,齐次与非齐次,解、特解、部分解和通解的概念及判断! (重要)例:03)(22=-+y dx dyx dx dy(1阶非线性); x e dx yd y=+22sin 。
2.运用导数的几何意义建立简单的微分方程。
(以书后练习题为主) (习题1,2,9题)例:曲线簇cx x y -=3满足的微分方程是:__________.第二章 一阶方程的初等解法1.变量分离方程的解法(要能通过适当的变化化成变量分离方程);(重要)2.齐次方程的解法(变量代换);(重要)3.线性非齐次方程的常数变易法;4.分式线性方程、贝努利方程、恰当方程的概念及判断(要能熟练的判断各种类型的一阶方程)(重要);例题:(1).经变换_____y c u os =___________后,方程1cos sin '+=+x y y y 可化为___线性_____方程;(2).经变换_____y x u 32-=____________后,方程1)32(1'2+-=y x y 可化为____变量分离__方程; (3).方程0)1(222=+-dy e dx ye x x x 为:线性方程。
(4).方程221'y x y -=为:线性方程。
5.积分因子的概念,会判断某个函数是不是方程的积分因子;6.恰当方程的解法(分项组合方法)。
(重要)第三章 一阶方程的存在唯一性定理1.存在唯一性定理的内容要熟记,并能准确确定其中的h ;2.会构造皮卡逐步逼近函数序列来求第k 次近似解!(参见书上例题和习题3.1的1,2,3题)第四章 高阶微分方程1.n 阶线性齐次(非齐次)微分方程的概念,解的概念,基本解组,解的线性相关与线性无关,齐次与非齐次方程解的性质;2.n 阶线性方程解的Wronskey 行列式与解的线性相关与线性无关的关系;3.n 阶线性齐次(非齐次)微分方程的通解结构定理!!(重要)4.n 阶线性非齐次微分方程的常数变易法(了解);5.n 阶常系数线性齐次与非齐次微分方程的解法(Eurler 待定指数函数法确定基本解组),特解的确定(,特解的确定(比较系数法、复数法比较系数法、复数法);(重要) 例题:t te x x 24=-¢¢,确定特解类型?(习题4.2相关题目)6.2阶线性方程已知一个特解的解法(作线性齐次变换)。
《常微分方程》知识点整理
《常微分方程》知识点整理
一、定义与特点
常微分方程(ordinary differential equation)是数学中描述物理、
化学、生物等过程的重要工具,它描述物体状态及其变化的模型,可以用
来研究物体的动力、动力学、物理现象等问题。
它可以从几何角度、分析
角度以及物理角度这三个角度来看待,它是一个研究条件下物体状态和变
化的数学方程。
常微分方程有以下几个特点:
1.常微分方程是一类特殊的未知函数问题,它由一个函数及它的一阶
或多阶导数组成。
2.未知函数有可能是多元函数,也可能是单元函数,可以是实函数也
可以是复函数。
3.常微分方程的形式因微分函数种类而各异,有非线性方程、线性方程、常系数方程、变系数方程等类型。
4.常微分方程的解可以是定状态的、非定状态的、稳定的或不稳定的,它可以有解或得不到解。
5.常微分方程具有很深的理论性,可用来求解物理、化学、力学等问题,可以修正原来结论,使现象更加接近实际情况。
二、种类
1.线性常微分方程:线性微分方程是常微分方程中最简单的类型,它
的特点是多重未知函数的阶和系数形式都是定值,而不依赖于其他函数,
它的解可以直接用几何方法求解(比如可以用函数级数的展开形式求解)。
2.二次可积常微分方程:这类方程中。
常微分方程基本知识
多元函数). 微分方程的阶: 微分方程中出现的未知函数的最高阶导数的阶数称为微分
方程的阶. F (x,ϕ(x),ϕ′(x),L,ϕ (n) (x)) = 0.
分类 2: 一阶微分方程: F (x, y, y′) = 0, y′ = f (x, y);
和
。
分别代入(8)式和(7)式,得
将它们代入(8)式,即得所求物体的运动规律为 (9)
从前面两个例子可以看到,在研究某些实际问题时,根据问题的几何或物 理意义,先得到含有未知函数导数的方程(如方程(1)和(5)),然后(例如通过积分 的方法)找出满足这些方程的函数。由于积分后会出现任意常数,所以此时得到 的不是一个函数,而是一族函数。通常要根据未知函数所满足的其它条件(如例 1 中的条件(2)和例 2 中的条件(6))来确定任意常数,使得满足这些方程的函数中不 含任意常数,下面引进有关微分方程的一些基本概念。
一阶:
⎪⎧ y ′ = f ( x , y ) ⎪⎩⎨ y x = x 0 = y 0
二阶:
⎪⎧ y ′′ = f ( x , y , y ′ )
⎪⎩⎨ y x = x 0
=
y0
,
y
′
x = x0
=
y 0′
例 3 验证:函数 x
=
c1 cos
kt
+ c 2 sin
kt
是微分方程
d 2x dt 2
+
k
2x
=
0
的解.
并求满足初始条件:
x
t =0
=
A,
dx dt
t=0
=
高数大一知识点常微分方程
高数大一知识点常微分方程高数大一知识点:常微分方程常微分方程(Ordinary Differential Equation,简称ODE)是数学中的一个重要分支,研究函数的导数与自变量之间的关系。
在高数大一的学习中,常微分方程是一个重要的知识点。
本文将简要介绍常微分方程的定义、分类和解法,并给出一些常见的示例。
一、常微分方程的定义常微分方程是用函数与其导数构成的等式来描述未知函数的性质的数学方程。
一般形式为:f(x, y, y', y'', ..., y⁽ⁿ⁾) = 0其中,x为自变量,y为未知函数,y⁽ⁿ⁾表示y的n阶导数。
二、常微分方程的分类常微分方程可以分为一阶常微分方程和高阶常微分方程两类。
1. 一阶常微分方程一阶常微分方程的一般形式为:dy/dx = f(x, y)其中,f(x, y)为已知函数。
一阶常微分方程的解可以表示为y = Φ(x, C),其中Φ(x, C)是一族包含常数C的函数。
2. 高阶常微分方程高阶常微分方程是指方程中包含未知函数的高阶导数的方程。
高阶常微分方程可以通过一系列变换化为一阶常微分方程。
三、常微分方程的解法常微分方程的解法有很多种方法,这里介绍两种常用的方法:分离变量法和常数变易法。
1. 分离变量法对于一阶常微分方程dy/dx = f(x, y),可以通过分离变量将y的项移到一边,x的项移到另一边,然后两边同时积分得到通解。
2. 常数变易法对于一阶常微分方程dy/dx = f(x, y),可以通过引入一个未知函数u(x),将方程转化为关于u和x的一阶常微分方程,再通过求导和代换等操作,求得y关于x的通解。
四、常微分方程的示例1. 一阶常微分方程示例:dy/dx = x^2 - y先整理方程,得到dy + y = x^2通过分离变量法可得∫1/y dy = ∫x^2 dx解得ln|y| = x^3/3 + C1最终的通解为y = Ce^(x^3/3),其中C为常数。
常微分方程复习提要全文
式
dyi (x) dx
fi (x, y1(x),
, yn (x)), (i 1.2
n)
则称 y1(x), , yn (x) 为微分方程组(3.1)在区间 [a,b] 的一个解。
通解及通积分:
含有n个任意常数 c1, cn 的方程组(3.1)的解
y1 1(x, c1, cn )
yn
n (x, c1,
齐次方程组的解组线性相关性的判别法:
推论3.3 方程组(3.8)的n个解在其定义区间I上线性 无关的充要条件是它们的朗斯基行列式W(x)在I上任一点
不为零.
解组
线性相关 W ( x0 )=0 线性无关 W ( x0 ) 0
我们把一阶线性齐次方程组(3.8)的n个线性无关解 称为它的基本解组。其对应的矩阵称为基本解矩阵。
(其中F为已知的函数)
定义(P3) :微分方程中出现的未知函数的 最高阶导数的阶数(或微分的阶数)称为微分方程的 阶数.
定义(P4) :如果一个微分方程关于未知函数 及其各阶导数都是一次的,则称它为线性微分方程, 否则称之为非线性微分方程.
定义(P4): 设函数 y x在区间I上连续,且有
dy1
dx
a11( x) y1
a12 ( x) y2
dy2 dx
a21( x) y1
a22 ( x) y2
dyn dx
an1( x) y1
an2 ( x) y2
a1n ( x) yn f1( x),
a2n ( x) yn f2 ( x), (3.6)
ann ( x) yn fn ( x).
解法:两边除以yn ,得 yn dy p( x) y1n f ( x) dx
令z y1n ,则 dz (1 n) yn dy ,代入方程
常微分方程的大致知识点
欢迎阅读
常微分方程的大致知识点
(一)初等积分法
1、线素场与等倾线
2、可分离变量方程
3、齐次方程(一般含有x
y y x 或的项) 4、一阶线性非齐次方程
5令 6781方法:特征方程
单的实根21,λλ,x x e C e C y 2121λλ+=
单的复根i βαλ±=2,1,)sin cos (21x C x C e y x ββα+=
重的实根λλλ==21,x e x C C y λ)(21+=
重的复根i βαλ±=2,1,i βαλ±=4,3,]sin )(cos )[(4321x x C C x x C C e y x ββα+++=
2、常系数非齐次)()(x f y D L =
方法:三部曲。
第一步求0)(=y D L 的通解Y
第二步求)()(x f y D L =的特解*y
第三步求)()(x f y D L =的通解*y Y y +=
如何求*y ?
当
f 当f 当f 1当0,021><λλ,鞍点,图像
当0,021<<λλ,稳定结点,图像
当0,021>>λλ,不稳定结点,图像
第二种情况:相异复根,βαλ+=1i ,βαλ-=2i
当0=α,中心,图像
当0<α,稳定焦点,图像
当0>α,不稳定焦点,图像
第三种情况:相同实根,λλλ==21
当c b ,同时为0时,如果0>λ,不稳定临界结点,图像 如果0<λ,稳定临界结点,图像
当c b ,不同时为0时,如果0>λ,不稳定退化结点,图像
23。
常微分方程主要内容
常微分方程主要内容
摘要:
1.常微分方程的概述
2.常微分方程的主要内容
3.常微分方程的应用
4.学习常微分方程的方法和技巧
正文:
一、常微分方程的概述
常微分方程是微分方程的一个分支,主要研究变量随时间变化的规律。
它在数学、物理、化学、生物学等领域有着广泛的应用,是解决许多实际问题的关键工具。
二、常微分方程的主要内容
1.基本概念:常微分方程涉及的基本概念包括导数、微分、积分等,这些概念是理解常微分方程的基础。
2.基本定理:常微分方程的基本定理包括解的存在唯一性定理、解的延展定理等,这些定理是研究常微分方程的关键。
3.解法:常微分方程的解法包括初等基分法、线性微分方程组解法、n 阶线性微分方程解法等,这些解法是求解常微分方程的具体方法。
4.特殊类型:常微分方程中的特殊类型包括线性微分方程、非线性微分方程、隐式微分方程、显式微分方程等,这些特殊类型需要特殊的处理方法。
三、常微分方程的应用
常微分方程在实际应用中具有广泛的应用,包括数值计算、微分方程建模等。
例如,在物理学中,常微分方程可以用来描述物体的运动规律;在生物学中,常微分方程可以用来描述生物种群的演化规律等。
四、学习常微分方程的方法和技巧
学习常微分方程需要掌握一定的数学基础,包括微积分、线性代数等。
此外,学习常微分方程还需要掌握一些基本的数学分析方法,如极限、连续、导数、微分等。
在解决常微分方程问题时,需要灵活运用这些方法和技巧,以求得问题的解决。
总之,常微分方程是数学中的一个重要分支,它在实际应用中具有广泛的应用。
常微分方程考研知识点总结
常微分方程考研知识点总结一、常微分方程的基本概念1.1 常微分方程的定义常微分方程是描述自变量是一元函数的未知函数的导数与自身、自变量及未知函数的关系的方程。
一般形式为F(x, y, y', y'', ...) = 0。
1.2 常微分方程的类型常微分方程可以分为一阶常微分方程和高阶常微分方程。
一阶常微分方程只含有未知函数及其一阶导数,高阶常微分方程含有未知函数及其高阶导数。
1.3 常微分方程的解常微分方程的解是使得方程成立的函数。
解分为通解和特解。
通解是对所有满足方程的解函数的一般描述,而特解是通解的一个具体实例。
1.4 常微分方程的初值问题常微分方程的初值问题是指在给定的初值情况下求常微分方程的解。
初值问题的解是满足给定初值条件的特解。
二、常微分方程的解法2.1 可分离变量法对于形如dy/dx = f(x)g(y)的一阶常微分方程,若f(x)和g(y)可以分离,则可通过对方程两边积分的方式求解。
2.2 线性微分方程线性微分方程是指形如y'' + p(x)y' + q(x)y = r(x)的形式,其中p(x)、q(x)、r(x)为已知函数,y为未知函数。
线性微分方程的求解通过研究它的齐次方程和非齐次方程来进行。
2.3 全微分方程全微分方程是指形如M(x, y)dx + N(x, y)dy = 0的形式,其中M(x, y)和N(x, y)为定义在某个区域内的函数。
对于全微分方程,可以通过判断其恰当性来进行求解。
2.4 变换形式对于某些复杂的微分方程,可以通过变量代换、特征变换等方法将其化为比较简单的形式进行求解。
2.5 积分因子法对于线性微分方程,可以通过寻找合适的积分因子来将其转化为恰当微分方程,进而进行求解。
2.6 叠加原理对于非齐次线性微分方程,可以通过将其通解与特解相加得到其通解。
三、常微分方程的应用3.1 物理问题常微分方程在物理学中有着广泛的应用。
常微分方程知识点
第一章 绪论什么是线性微分方程:形如)()()()(y 1)1(1)(x f y x a y x a y x a n n n n =+'+++--Λ的微分方程,即y 及y 的各阶导数都是一次有理整式,即不含y 及y 的各阶导数的乘积的微分方程叫:线性微分方程。
第二章 一阶微分方程的初等解法§ 2.1 变量分离方程1、形式:)()(y x f dxdy ϕ= 做题步骤:① 0)(≠y ϕ 可将方程改写为:dx x f y dy )()(=ϕ,这样对两边积分:⎰⎰+=c dx x f y dy )()(ϕ,得出方程的通解,但c 要保证积分式有意义 ② 0)(=y ϕ时,求出0y y = 也是方程的解2、y x P dxdy )(=得dx x P ce y ⎰=)( (2.4) 而0=y 也是方程的解,而若(2.4)允许c=0,则y=0也在(2.4)中,故(2.4)是原方程的通解,其中c=0。
3、齐次方程:)(xy g dx dy = (2.5) 做变量变换x y u =,即ux y =,则u dx du x dx dy +=,整理后为:x u u g dx du -=)(,即为变量分离方程。
同时要注意:将一个方程转化为齐次方程求解时,两个方程是否同解(c 的范围是否相同)4、222111c y b x a c y b x a dx dy ++++= (2.13) 做题步骤:①k c c b b a a ===212121(常数),通解:c kx y += (c 为任意常数) ② 212121c c k b b a a ≠==,令y b x a u 22+=,有212222c u c ku b a dx dy b a dx du ++++=+=,为变量分离方程 ③ 2121b b a a ≠,如果没有常数21c c 、,则很容易变成齐次方程做,(体会:)让分子分母都为零,则为两条曲线⎩⎨⎧=++=++00222111c y b x a c y b x a (2.14),两条曲线相交的交点为),(βα,而没有那两个常数时方程为都过原点的形式,因此过原点的这两直线可视为原坐标系平移后原直线在新坐标系下的坐标,令⎩⎨⎧-=-=βαy Y x X ,(2.14) 变为⎩⎨⎧=+=+002211Y b X a Y b X a ,从而 (2.13) 变为)(2211X Y g Y b X a Y b X a dX dY =++=,§ 2.2 线性微分方程与常数变易法1、)()(x Q y x P dxdy += (2.28) 做题步骤:① 考虑y x P dxdy )(=,求出它的通解为:⎰=dx x P ce y )(;② 常数变易变为:⎰=dx x P e x c y )()((2.29) ③ 求微分得:⎰+⎰=dx x P dx x P e x P x c e dxx dc dx dy )()()()()( (2.30) ,④ 将(2.29)和(2.30)代入(2.28),得到: ⎰=-dx x P e x Q dx x dc )()()(,⑤ 积分后得到⎰'+⎰=-c dx e x Q x c dx x P )()()(,于是得到方程(2.28)的通解为: ))(()()(⎰'+⎰⎰=-c dx e x Q e y dx x P dx x P2、伯努利微分方程n y x Q y x P dxdy )()(+= 做题步骤:① 两边同除以n y ,得到)()(1x Q x P y dx dy yn n +=--,② 设n y z -=1,得dx dy y n dx dz n --=)1( ③ 于是原方程变为:)()1()()1(x Q n z x P n dxdz -+-=,即为线性微分方程 § 2.3 恰当微分方程与积分因子1、恰当方程形式:0),(),(=+dy y x N dx y x M (M 、N 在已知区域上连续且具有一阶连续偏导数)推理过程:① 若已知此微分方程是恰当方程能推出什么?先设原函数为),(y x u yx u y N x y u y M ∂∂∂=∂∂∂∂∂=∂∂22、 由条件得:yx u x y u ∂∂∂=∂∂∂22即x N y M ∂∂=∂∂ ② 那么反过来若由它俩相等能否推出方程是恰当方程? 从x u M ∂∂=出发,两边同时求积分:⎰⎰∂∂==x u Mdx u +c ,但c 若是常数那么?则应为:⎰⎰+=∂∂=)(y Mdx dx x u u ϕ ③ 对u 关于y 求偏导:),()(y x N y Mdx y y u ='+∂∂=∂∂⎰ϕ,如何证明等式左边等于右边(方程有意义),即右边也与x 无关即只与y 有关? 对右边关于x 求偏导0=∂∂-∂∂=∂∂∂∂-∂∂⎰y M x N dx y M x x N (因为证充分,则y M x N ∂∂=∂∂为已知)④ 两端积分:dy Mdx y N y ⎰⎰∂∂-=)()(ϕ,于是⎰⎰⎰∂∂-+=)(dy y M N Mdx u 做题步骤:① 先设u(x,y),② 证明xN y M ∂∂=∂∂,③ 从M 出发对方程两端同时求积分得)(),(),(y dx y x M y x u ϕ+=⎰,④ 对u 求偏导:),()(y x N y Mdx y y u ='+∂∂=∂∂⎰ϕ,⑤ 两边积分得dy dx y M N y ⎰⎰∂∂-=)()(ϕ,⑥ 得⎰⎰⎰∂∂-+=dy dx y M N Mdx u )(。
常微分方程的大致知识点
常微分方程的大致知识点一、基本概念1. 微分方程:包含未知函数及其导数的方程。
一般形式为dy/dx = f(x, y)。
2.隐式解:由微分方程定义的函数关系,即常微分方程的解。
3.解的阶:微分方程解中导数的最高阶数。
4.初值问题:给定微分方程解及其导数在其中一点的初始条件,求解在该点上的特定解。
二、分类根据微分方程中未知函数的阶数、系数是否包含自变量,以及方程是否含有非线性项,常微分方程可以分为以下几类:1.一阶微分方程:- 可分离变量方程:dy/dx = g(x)/h(y),通过变量分离可将方程化为两个变量的乘积。
- 齐次方程:dy/dx = f(x, y),通过变量代换将方程化为变量分离方程。
- 一阶线性方程:dy/dx + P(x)y = Q(x),通过积分因子法求解。
- Bernoulli方程:dy/dx + P(x)y = Q(x)y^n,通过变换化为线性方程求解。
2.二阶微分方程:- 齐次线性方程:d^2y/dx^2 + P(x)dy/dx + Q(x)y = 0,通过特征方程求解。
- 非齐次线性方程:d^2y/dx^2 + P(x)dy/dx + Q(x)y = f(x),通过待定系数法和特解法求解。
- 常系数线性方程:d^2y/dx^2 + a dy/dx + by = f(x),通过特征方程和特解法求解。
三、解法1.变量分离法:一阶微分方程中的可分离变量方程通过将未知函数与自变量的微分分离,然后两边同时积分得到解。
2.变量代换法:一阶微分方程中的齐次方程通过将未知函数表示为新的变量,从而将方程化为分离变量方程。
3.积分因子法:一阶线性方程通过找到一个适当的函数作为积分因子,然后将方程乘以积分因子,从而使得方程左侧成为一个全微分。
4.特征方程法:二阶齐次线性方程通过设解为指数函数的形式,通过特征方程求解。
5.待定系数法:二阶非齐次线性方程通过假设特解为其中一形式的函数,然后解出系数。
《常微分方程》知识点整理
dyydy1.(变量分离方程)形如dx 《常微分方程》复习资料f (x )ϕ( y )(1.1)的方程,称为变量分离方程,这里 f (x ),ϕ( y ) 分别是 x , y 的连续函数.dy解法:(1)分离变量,当ϕ( y ) ≠ 0 时,将(1.1)写成ϕ( y )= f (x )dx ,这样变量就“分离”了;(2)两边积分得⎰ ϕ( y ) = ⎰f (x )dx + c (1.2),由(1.2)所确定的函数 y = ϕ(x , c ) 就为(1.1)的解.注:若存在 y 0 ,使ϕ( y 0 ) = 0 ,则 y = y 0 也是(1.1)的解,可能它不包含在方程(1.2)的通解中,必须予以补上.dyy2.(齐次方程)形如 = g ( ) 的方程称为齐次方程,这里 g (u ) 是u 的连续函数.dx x解法:(1)作变量代换(引入新变量) u = ,方程化为 xdu = g (u ) - u ,(这里由于 dx x dy = x du dx dx + u ); (2) 解以上的分离变量方程; (3) 变量还原.3.(一阶线性微分方程与常数变异法)一阶线性微分方程 a (x ) dy dx+ b (x ) y + c (x ) = 0 在 a (x ) ≠ 0 的区间上可写成dy= P (x ) y + Q (x ) (3.1),这里假设 P (x ), Q (x ) 在考虑的区间上是 x 的连续函数.若 Q (x ) = 0 ,则(3.1)变为 dx dy= P (x ) y (3.2),(3.2)称为一阶齐次线性方程.若Q (x ) ≠ 0 ,则(3.1)称为一阶非齐次线性方程. dx解法:(1)解对应的齐次方程 dy= P (x ) y ,得对应齐次方程解 y = ce ⎰ p ( x ) dx , c 为任意常数;dx(2)常数变异法求解(将常数c 变为 x 的待定函数c (x ) ,使它为(3.1)的解):令 y = c (x )e ⎰p ( x )dx为(3.1)的解,则dy = dc (x ) e ⎰ p ( x )dx + c (x ) p (x )e ⎰ p ( x )dx ,代入(3.1)得 dc (x )= Q (x )e -⎰ p ( x )dx ,积分得c (x ) = ⎰ Q (x )e -⎰ p ( x )dx + c ; dx dx dx(3)故(3.1)的通解为 y = e ⎰p ( x )dx(⎰ Q (x )e -⎰ p ( x )dxdx + c ) .4.(伯努利方程)形如dy = P (x ) y + Q (x ) y n 的方程,称为伯努利方程,这里 P (x ), Q (x ) 为 x 的连续函数.dx解法:(1)引入变量变换 z = y1-n,方程变为dz = (1- n )P (x )z + (1- n )Q (x ) ;dx(2) 求以上线性方程的通解; (3) 变量还原.5.(可解出 y 的方程)形如 y =dyf (x , dy) (5.1)的方程,这里假设 f (x , y ') 有连续的偏导数. dx解法:(1)引进参数 p = ,则方程(5.1)变为 y = dxf (x , p ) (5.2);(2) 将(5.2)两边对 x 求导,并以 dy = p 代入,得 p = ∂f + ∂f ∂p(5.3),这是关于变量 x , p 的一阶微分方dx ∂x ∂p ∂x程;(3)(i )若求得(5.3)的通解形式为 p = ϕ(x , c ) ,将它代入(5.2),即得原方程(5.1)的通解 y =f (x ,ϕ(x ,c )) ,c 为任意常数;=⎩⎩ ⎩dy ⎩dy ⎩ ⎧x =ψ ( p , c )(ii )若求得(5.3)的通解形式为 x =ψ ( p , c ) ,则得(5.1)的参数形式的通解为⎨y =,其中f (ψ ( p , c ), p )p 是参数, c 是任意常数;⎧Φ(x , p , c ) = 0(iii ) 若求得(5.3)的通解形式为Φ(x , p , c ) = 0 ,则得(5.1)的参数形式的通解为⎨ y = f (x , p ),其中 p是参数, c 是任意常数.6.(可解出 x 的方程)形如 x =dyf ( y , dy ) (6.1)的方程,这里假设 f ( y , y ') 有连续的偏导数. dx解法:(1)引进参数 p = ,则方程(6.1)变为 x = dxf ( y , p ) (6.2);(2) 将(6.2)两边对 y 求导,并以 dx = 1 代入,得 1 = ∂f +∂f ∂p(6.3),这是关于变量 y , p 的一阶微分方 dy p p ∂y ∂p ∂y程;⎧x = f ( y , p )(3)若求得(6.3)的通解形式为Φ( y , p , c ) = 0 ,则得(6.1)的参数形式的通解为⎨Φ( y , p , c ) = 0 ,其中 p 是参数, c 是任意常数.7.(不显含 y 的方程)形如 F (x , dy) = 0 的方程,这里假设 F (x , y ') 有连续的偏导数. dx解法:(1)设 p =,则方程变为F (x , p ) = 0 ;dx⎧x = ϕ(t )(2)引入参数t ,将 F (x , p ) = 0 用参数曲线表示出来,即⎨⎩ ,(关键一步也是最困难一步); =ψ (t )(3) 把 x = ϕ(t ) , p =ψ (t ) 代入 dy = pdx ,并两边积分得 y =⎰ψ (t )ϕ'(t )dt + c ;⎧⎪x = ϕ(t )(4) 通解为⎨⎪ y = ⎰ ψ (t )ϕ'(t )dt + c . 8.(不显含 x 的方程)形如 F ( y , dy) = 0 的方程,这里假设 F ( y , y ') 有连续的偏导数.dx解法:(1)设 p = ,则方程变为 F ( y , p ) = 0 ; dx⎧ y = ϕ(t )(2)引入参数t ,将 F ( y , p ) = 0 用参数曲线表示出来,即⎨ p =ψ ,(关键一步也是最困难一步); (t )dyϕ'(t )(3)把 y = ϕ(t ) , p =ψ (t ) 代入 dx = p ,并两边积分得 x = ⎰ ψ dt + c ;(t )⎧x = ϕ'(t )⎪ (4)通解为⎨dt + c ψ (t ) . ⎪⎩y = ϕ(t ) 9.( F (x , y(k ), , y (n -1) , y n ) = 0(k ≥ 1) 型可降阶高阶方程)特点:不显含未知函数 y 及 y ', , y (k -1) .p ⎰解法:令y(k ) =z(x) ,则y(k +1) =z',y(n)=z(n-k ) .代入原方程,得F (x, z(x), z'(x), , z(n-k ) (x)) = 0 .若能求得z(x) ,1 = +⎰x ⎪ 0n 0 ⎰⎪ ⎨ dx将 y(k )= z (x ) 连续积分 k 次,可得通解.10.( y(n )= f ( y , y (k ) , , y (n -1) ) 型可降阶高阶方程)特点:右端不显含自变量 x .' '' = dp dy dP ''' 2 d 2p dP 2 解法:设 y = p ( y ) ,则 y = P , y = P + P ( ) , ,代入原方程得到新函数 P ( y ) 的(n -1) 阶 dy dx dy dy 2dydy dy方程,求得其解为 dx = P ( y ) = ϕ( y , C 1, , C n -1 ) ,原方程通解为⎰ ϕ( y , C , , Cn -1 )= x + C n .11.(恰当导数方程)特点:左端恰为某一函数Φ(x , y , y ', , y (n -1)) 对 x 的导数,即 ddxΦ(x , y , y ', , y (n -1) ) = 0 .解法:类似于全微分方程可降低一阶Φ(x , y , y ', , y (n -1)) = C ,再设法求解这个方程.12.(齐次方程)特点: F (x , ty , ty ', , ty (n )) = t k F (x , y , y ', , y (n ) ) ( k 次齐次函数).解法:可通过变换 y = e ⎰zdx将其降阶,得新未知函数z (x ).因为 y ' = ze ⎰zdx, y ' = (z '+ z 2)e ⎰zdx, , y(n )= Φ(z , z ', , z (n -1) )e ⎰zdx,代入原方程并消去e k ⎰ zdx ,得新函数 z (x ) 的(n -1) 阶方程 f (x , z , z ', , z (n -1)) = 0 .⎧dy13.(存在唯一性定理)考虑初值问题⎪ dx f (x , y ) (13.1),其中 f (x , y ) 在矩形区域 R : x - x≤ a , y - y≤ b 上连⎨0 0 ⎪ y (x ) = y ⎩ 0 0续,并且对 y 满足 Lipschitz 条件:即存在 L > 0 ,使对所有(x , y 1 ), (x , y 2 ) ∈ R 常成立 bf (x , y 1 ) - f (x , y 2 ) ≤ L y 1 - y 2 , 则初值问题(13.1)在区间 x - x 0 ≤ h 上的解存在且唯一,这里h = min(a ,M), M = Max ( x , y )∈R f (x , y ) .x初值问题(13.1)等价于积分方程 y y 0 0 ⎧ϕ (x ) = yf (t , y )dt ,构造Picard 逐步逼近函数列{ϕn (x )}⎨ϕ (x ) = y +f (ξ,ϕn -1(ξ ))dxx 0 ≤ x ≤ x 0 + h , n = 1, 2, .⎩x 014.(包络的求法)曲线族Φ(x , y , c ) = 0 (14.1)的包络包含在下列两方程 ⎧Φ(x , y , c ) = 0 Φ' (x , y , c ) = 0消去参数c 而得到的曲线⎩ c F (x , y ) = 0 之中.曲线 F (x , y ) = 0 称为(14.1)的c - 判别曲线.15.(奇解的直接计算法)方程 F (x , y , dy) = 0(15.1)的奇解包含在由方程组⎧F (x , y , p ) = 0 消去参数 p 而得到的曲dx ⎨F '(x , y , p ) = 0 ⎩ c线Φ(x , y ) = 0 之中,此曲线称为(15.1)的 p - 判别曲线,这里 F (x , y , p ) = 0 是 x , y , p 的连续可微函数. 注: p - 判别曲线是否为方程的奇解,尚需进一步讨论. 16.(克莱罗方程)形如 y = xdy+ f ⎛ dy ⎫(16.1)的方程,称为克莱罗方程,这里 f ''( p ) ≠ 0 . ⎪ dx ⎝ ⎭= x⎨y = xp + f ( p )⎩x (t ) x (t ) x (t ) 解法:令 p = dy,得 y = xp + f ( p ) .两边对 x 求导,并以dy= p 代入,即得 p = x dp + p + f '( p ) dp,经化简, dx得dp[x + f '( p )] = 0 . dx dpdx dx dx如果 = 0 ,则得到 p = c .于是,方程(16.1)的通解为: y = cx + f (c ) .dx如果 x + f '( p ) = 0 ,它与等式 y = xp + f ( p ) 联立,则得到方程(16.1)的以 p 为参数的解:⎧x + f '( p ) = 0或⎩⎧x + f '(c ) = 0 ⎨y = xc + f (c )其中c 为参数.消去参数 p 便得方程的一个解.17.(函数向量组线性相关与无关)设 x 1 (t ), x 2 (t ), , x m (t ) 是一组定义在区间[a , b ] 上的函数列向量,如果存在一组不全为 0 的常数c 1 , c 2 , c m ,使得对所有 a ≤ t ≤ b ,有恒等式c 1 x 1 (t ) + c 2 x 2 (t ) + + c m x m (t ) = 0 , 则称 x 1 (t ), x 2 (t ), , x m (t ) 在区间[a , b ] 上线性相关;否则就称这组向量函数在区间[a , b ] 上线性无关.⎡ x 11 (t )⎤ ⎡ x 12 (t ) ⎤ ⎡ x 1n (t ) ⎤⎢ x (t )⎥ ⎢ x (t )⎥ ⎢ x (t )⎥ 18.(Wronsky 行列式)设有 n 个定义在 a ≤ t ≤ b 上的向量函数 x (t ) = ⎢ 21 ⎥ , x (t ) = ⎢ 22 ⎥ , , x (t ) = ⎢ 2n ⎥ , 1 ⎢ ⎥ 2 ⎢ ⎥ n ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ n 1 ⎦ ⎣ n 2 ⎦ ⎣ nn⎦ x 11 (t ) x 12 (t ) x 1n (t ) x 21 (t ) x 22 (t ) x 2n (t )由这 n 个向量函数所构成的行列式W [x 1 (t ), x 2 (t ), x n (t ) W (t ) ≡称为这 n 个向量函数所构成的 Wronsky 行列式.x n 1 (t ) x n 2 (t ) x nn (t )如果向量函数 x 1 (t ), x 2 (t ), , x n (t ) 在 a ≤ t ≤ b 上线性相关,则它们的 Wronsky 行列式W (t ) ≡ 0, a ≤ t ≤ b . 19.(基解矩阵的计算公式)(1) 如果矩阵 A 具有 n 个线性无关的特征向量v 1, v 2 , , v n ,它们相应的特征值为λ1, λ2 , , λn (不必互不相同),那么矩阵Φ(t ) = [e λ1t v , e λ2t v , , e λn tv ], -∞ < x < +∞ 是常系数线性微分方程组 x ' = Ax 的一个基解矩阵;12n(2) 矩阵 A 的特征值、特征根出现复根时(略); (3) 矩阵 A 的特征根有重根时(略).d n x d n -1 x 20.(常系数齐线性方程)考虑方程 L [x ] = dt n为n 阶常系数齐线性方程.+ a 1 dt n -1 + + a n x = 0 (20.1),其中 a 1, a 2 , a n 为常数,称(20.1)解法:(1)求(20.1)特征方程的特征根λ1, λ2 , , λk ;(2) 计算方程(20.1)相应的解:(i ) 对每一个实单根λk ,方程有解eλk t;(ii ) 对每一个 m > 1重实根λk ,方程有 m 个解: eλk t, t e λk t , t 2e λk t , , t m -1e λk t ;m m m 2 ⎨1 ⎩(iii ) 对每一个重数是 1 的共轭复数α ± β i ,方程有两个解: eαtcos β t , e αt sin β t ;(iv ) 对每一个重数是 m > 1的共轭复数αe αt cos β t , te α t cos β t , , t m -1e α t cos β t ;± βi ,方程有2m 个解: ;e αt sin β t , te αt sin β t , , t m -1e αtsin β t(3) 根据(2)中的(i )、(ii )、(iii )、(iv )情形,写出方程(20.1)的基本解组及通解.21.(常系数非齐次线性方程) y ' + py ' + qy = f (x ) 二阶常系数非齐次线性方程对应齐次方程 y '' + py ' + qy = 0 ,通解结构 y = Y + y .设非齐次方程特解 y = Q (x )e λ x 代入原方程 Q ''(x ) + (2λ + p )Q '(x ) + (λ 2+ p λ + q )Q (x ) = P (x )(1)若λ 不是特征方程的根, λ 2+ p λ + q ≠ 0 ,可设Q (x ) = Q (x ) , y = Q m (x )e λ x;(2)若λ 是特征方程的单根, λ 2 + p λ + q = 0 , 2λ + p ≠ 0 ,可设Q (x ) = xQ (x ) ,y = xQ m (x )e λ x;(3)若λ 是特征方程的重根, λ 2 + p λ + q = 0 , 2λ + p = 0 ,可设Q (x ) = x 2Q (x ) , y = x 2Q (x )eλ x.综上讨论,设 y = x k eλ xQ(x ) , ⎧0λ不是根⎪ λ 是单根. ⎪ λ是重根m m m k =。
常微分方程讲义全文
6、恰当方程
M (x, y)dx + N (x, y)dy = 0
判定:全微分 ⇔ ∂M ≡ ∂N ∂y ∂x
x
y
∫ ∫ 解法: M (x, y)dx + x0
y0 N (x0 , y)dy = C
初值问题: C = 0
例 2xydx + (x2 − y2 )dy = 0
解: ∂M ∂y
≡ ∂N ∂x
uz′ = −(z −1)(z − 2) /(z + 1)
z = 1, z = 2 ⇔ v = u, v = 2u ⇔ y = x + 1, y = 2x
⎛ ⎝⎜
z
3 −
2
−
z
2 −
1
⎞ ⎠⎟
dz
= − du u
⇒
(z − 2)3 (z −1)2
= C /u
( y − 2x)3 = C( y − x −1)2
一阶 线性 二阶 线性 一阶 非线性
齐方程、非齐次方程
在方程中,不含未知函数及其导数的项,称为自由项。 自由项为零的方程,称为齐方程。 自由项不为零的方程,称为非齐方程。
d x = x2 dt
一阶齐线性方程
d2 y d x2
+
b
d d
y x
+
cy
=
sin
x
二阶非齐线性方程
⎜⎛ d x ⎞⎟2 − x2 = t3 ⎝ dt ⎠
一阶非齐非线性方程
微分方程的一般表示形式
n 阶微分方程的一般形式 为 F (x, y′, y′′,L, y(n) ) = 0 。
F
(x,
y′,
y′′)
常微分
常微分方程知识点总结归纳第一章绪论主要概念微分方程:含有未知函数的导数(或微分)的等式。
包含自变量,未知函数和倒数关系。
常微分方程:未知函数是一个变元的函数,由这样的函数及其导数构成的等式。
偏微分方程:未知函数是两个或两个以上变元的函数,由这样的未知函数及其偏导数构成的等式。
微分方程的阶:在微分方程中,未知函数最高阶导数的阶数,称为方程的阶。
微分方程的解:一个函数代入微分方程中去,使得它成为关于自变量的恒等式,称此函数为微分方程的解。
通解:n阶方程,其解中含有n个(独立的)任意常数,此解称为方程的通解。
由隐式表出的通解称为通积分。
特解:给通解中的任意常数以定值,所得到的解称为特解,由隐式给出的特解称为特积分。
初值问题:求微分方程满足初值条件的解的问题。
n阶线性微分方程:方程的左端为及,...,的一次有理整式。
一般的阶线性微分方程具有形式这里是的已知函数。
非线性方程:不是线性方程的方程。
积分曲线:一阶微分方程的解代表平面上的一条曲线。
第二章一阶微分方程的初等解法本章主要介绍一阶微分方程的初等解法,即把微分方程的求解问题转化为几分问题.2.1.1 变量分离方程与变量变换 定义1形如 方程,称为变量分离方程 变量分离方程的解法:)2.2()()(cdx x f y dy+=⎰⎰ϕ可化为变量分离方程类型 情形一: 齐次函数: 函数 ),(y x f 称为m 次齐次函数, 如果 齐次函数的性质: 齐次方程: 形如的方程称为齐次方程,齐次方程: 引入一个新变量化为变量可分离方程求解。
()()dyf x dxy φ=分离变量,(2.1)将写成()()(2.1)dy f x y dxφ=()0y φ≠当时两边积分得(2.2)(,)(2.1).y x c φ=由所确定的函数就为的通解()0y φ=当时000,()0,(2.1),(2.2),.y y y y φ==若存在使则也是的解若它不包含在方程的通解中则须予以补上()dy y g dx x=(,)(,),0.m f tx ty t f x y t =>(,)(,)(,)x y xf x y yf x y mf x y +=()dy y g dx x=().g u u 这里是的连续函数()dy y g dx x=03.变量还原02解以上的变量分离方程01(),yu x=作变量代换引入新变量方程化为,)(xu u g dx du -=为齐次方程,由(I )可化为变量分离方程. 程.)(2211x y g xy b a x yb a =++=y b x a y b x a dx dy 2211++=121.0c c ==的情形分三种情况讨论此方程可经过变量变换化为变量分离方程. 程. .,,,,,222111为常数这里c b a c b a ,222111c y b x a c y b x a dx dy ++++=● 情形二:这就是变量分离方程dxdyb a 22+则方程化为令,22y b x a u +=)(22y b x a f +=222122)(c y b x a c y b x a k ++++=则方程可改写成设,2121k b b a a ==12122.0a a b b =的情形222111c y b x a c y b x a dx dy ++++=为 (1)的情形,可化为变量分离方程求解.Yb X a Yb X a dX dY 2211++=则方程化为作变量代换(坐标变换) ,⎩⎨⎧-=-=βαy Y x X ,00222111⎩⎨⎧=++=++c y b x a c y b x a 则).0,0(),(,≠βα解以上方程组得交点平面两条相交的直线代表xy 不同时为零的情形与且21212103c c b b a a ≠2.2 线性微分方程与常数变易法变量还原05求解04离方程将以上方程化为变量分再经变换,30XYu =Yb X a Y b X a dX dY 2211++=方程化为作变换,20⎩⎨⎧-=-=βαy Y x X ,12221110⎩⎨⎧=++=++c y b x a c y b x a 解方程组,⎩⎨⎧==βαy x 得解()()()0dya xb x yc x dx++=()0,(1)Q x ≠若则称为一阶非齐线性方程(2)称为一阶齐次线性方程()(2)dyP x y dx=()0,(1)Q x =若则变为(),()P x Q x x 这里假设在考虑的区间上是的连续函数()0a x ≠在的区间上可写成()()(1)dyP x y Q x dx=+()()(1),p x dxy c x e ⎰=令为的解则((),(1))c x c x 将常数变为的待定函数使它为的解)1()()(x Q y x P dxdy+=常数变易法求解(),p x y ce dx c ⎰=为任意常数得对应齐次方程解()(2)dyp x y dx =解对应的齐次方程注:求(1)的通解可直接用公式(3)2.3 恰当方程与积分因子如:)2()3(322=+++dy xy x dx y y x =+)(23xy y x d 0=+ydx xdy =)(xy d 是恰当方程.(1)(,).u x y c =此时的通解为)1(,0),(),(=+dy y x N dx y x M dyy x N dx y x M y x du ),(),(),(+=则称微分方程(,),u x y 若有函数使得定义12.3.1 恰当微分方程(,)dyf x y dx←−−−=改写§2.3 恰当方程与积分因子(,)(,)0M x y dx N x y dy +=~()()(())(3)p x dx p x dxy e Q x e dx c -⎰⎰=+⎰(1)故的通解为~)()()(cdx e x Q x c dxx p +⎰=⎰-积分得代入(1)得 dxx p e x Q dx x dc ⎰=-)()()(dx x p dxx p e x p x c e dxx dc dx dy ⎰+⎰=)()()()()(0400.n y >=时,方程还有解:03变量还原02求以上线性方程的通解解法:011,n z y -=引入变量变换方程变为(1)()(1)()dzn P x z n Q x dx=-+-形如(),()P x Q x x ≠这里为的连续函数,n 0,1是常数()()n dyp x y Q x y dx=+的方程,称为伯努利方程.()Bernoulli 伯努利方程)1(,0),(),(=+dy y x N dx y x M恰当方程的求解 方法一:不定积分法 方法二:分组凑微法 方法三:线积分法可见,对一些非恰当方程,乘上一个因子后,可变为恰当方程.).2(,),(),(xy x N y y x M ∂∂=∂∂为恰当方程的充要条件是)1(,0),(),(=+dy y x N dx y x M 定理1(,)(,),M x y N x y R 设函数和在一个矩形区域中连续且有连续的一阶偏导数则方程方程(1)为恰当方程的充要条件件●若(1)不是恰当方程,有无可能转化为恰当方程求解?●若(1)是恰当方程,怎样求解?●方程(1)是否为恰当方程? 需考虑的问题是恰当方程.xy y x f ∂∂==∂-∂)(10))((ϕ得方程两边同乘以,)(1y ϕ,0)()(1=-dx x f dy y ϕ不是恰当方程.,0)()(=-dx y x f dy ϕ2.3.2 积分因子 非非恰恰当当方方程程如如何何求求解?对变量分离方程:1.只要方程有解,积分因子必存在。
常微分方程知识点总结
常微分方程知识点总结1. 常微分方程的定义:常微分方程是指包含未知函数及其导数的方程。
一般形式为:dy/dx=f(x,y)。
其中,y为未知函数,x为自变量,f为已知函数。
2.常微分方程的分类:常微分方程可分为一阶常微分方程和高阶常微分方程。
一阶常微分方程包含未知函数的一阶导数,高阶常微分方程则包含未知函数的高阶导数。
3.一阶常微分方程的解法:一阶常微分方程的解法有几种常见的方法。
一种是分离变量法,即将方程两边进行变量分离,然后进行积分。
另一种是齐次方程法,将方程进行变量替换后化为齐次方程,然后进行求解。
还有一种是线性方程法,将方程化为线性方程,然后进行求解。
4.高阶常微分方程的解法:对于高阶常微分方程,常用的方法是特征根法。
通过求解其特征方程得到特征根,然后根据特征根的个数和重数,确定齐次线性微分方程的通解形式。
再根据待定系数法确定非齐次线性微分方程的一个特解,进而得到非齐次线性微分方程的通解。
5.常微分方程的初值问题:常微分方程的初值问题指的是给定一个初始条件,求解满足该条件的函数。
在求解过程中,需要将初始条件代入方程,得到特定的常数,从而确定唯一的解。
6.常微分方程的数值解法:对于一些难以求解的常微分方程,可以采用数值解法进行求解。
常见的数值解法包括欧拉法、龙格-库塔法、亚当斯法等。
这些方法通过将微分方程转化为差分方程,然后进行迭代计算,逼近微分方程的解。
7.常微分方程的稳定性分析:稳定性分析是研究常微分方程解的长期行为。
可以通过线性化理论、相图等方法进行稳定性分析。
线性化理论通过线性化方程,判断非线性常微分方程解的稳定性。
相图是一种可视化的方法,通过绘制解的轨迹图,观察解的长期行为。
8.常微分方程的应用:常微分方程在各个领域都有广泛的应用。
在物理学中,常微分方程可以描述运动学问题、电路问题等。
在工程学中,可以应用于控制系统、电力系统等。
在生物学中,可以用于建立生物模型、研究生物过程等。
总结起来,常微分方程是数学中的一门重要学科,研究的是包含未知函数及其导数的方程。
常微分方程知识点
常微分方程知识点常微分方程是微积分的一个重要分支,是描述物理、生物、经济等各类现象的一种数学模型。
常微分方程描述了未知函数与其导数之间的关系,在实际问题中具有广泛的应用。
下面将介绍常微分方程的基本概念、解的存在唯一性、一阶常微分方程和高阶常微分方程等知识点。
1.基本概念:常微分方程描述的是函数与其导数之间的关系。
常微分方程可以分为初值问题和边值问题。
初值问题是给定了函数在特定点的初始值和导数,要求求解函数在整个定义域上的表达式;边值问题是给定了函数在两个点的值,要求求解函数在这两个点之间的表达式。
2.解的存在唯一性:对于一阶常微分方程的初值问题,如果方程的右端函数在整个定义域上连续且满足利普希茨条件,那么方程存在唯一解。
其中利普希茨条件是指有一个正数L,使得对于任意t和s,满足,f(t)-f(s),≤L,t-s。
3.一阶常微分方程:一阶常微分方程描述的是未知函数y与其一阶导数y'之间的关系。
一阶常微分方程的一般形式为dy/dt = f(t, y),其中f(t, y)是已知函数。
一阶常微分方程的解可以通过分离变量、线性方程、齐次方程和恰当方程等方法求解。
4.高阶常微分方程:高阶常微分方程描述的是未知函数与其高阶导数之间的关系。
高阶常微分方程的一般形式为d^n y/dt^n = F(t, y, y', ..., y^n-1),其中F(t, y, y', ..., y^n-1)是已知函数。
高阶常微分方程的解可以通过代数法、特征方程和待定系数法等方法求解。
5.变量分离方法:当一阶常微分方程的右端可以写成g(y)·h(t)的形式时,可以使用变量分离方法求解。
将方程改写为1/g(y) dy = h(t) dt,然后对两边分别积分得到∫1/g(y) dy = ∫h(t) dt,从而求得y的表达式。
6.线性方程方法:当一阶常微分方程可以写成y'+p(t)y=q(t)的形式时,可以使用线性方程方法求解。
常微分方程常考知识点总结
常微分方程常考知识点总结一、基本概念。
1. 常微分方程的定义。
- 含有一个自变量和它的未知函数以及未知函数的导数(或微分)的等式称为常微分方程。
例如:y' + 2y = 0,这里y = y(x)是未知函数,x是自变量,y'是y对x的一阶导数。
2. 阶数。
- 方程中未知函数导数的最高阶数称为方程的阶。
如y''+3y' - 2y = x是二阶常微分方程,因为方程中未知函数y的最高阶导数是二阶导数y''。
3. 解、通解、特解。
- 解:如果函数y = φ(x)代入常微分方程后,使方程成为恒等式,那么y=φ(x)就称为该常微分方程的解。
- 通解:如果常微分方程的解中含有独立的任意常数,且任意常数的个数与方程的阶数相同,这样的解称为通解。
例如,对于一阶常微分方程y'=y,其通解为y = Ce^x(C为任意常数)。
- 特解:在通解中给任意常数以确定的值而得到的解称为特解。
比如在y = Ce^x中,当C = 1时,y = e^x就是一个特解。
二、一阶常微分方程。
1. 可分离变量方程。
- 形式为g(y)dy = f(x)dx的方程称为可分离变量方程。
- 求解方法:将方程两边同时积分,即∫ g(y)dy=∫ f(x)dx + C,得到方程的通解。
例如,对于方程y'=(y)/(x),可化为(dy)/(y)=(dx)/(x),积分得lny=lnx+C,即y = Cx (C≠0)。
2. 齐次方程。
- 形式为y'=φ((y)/(x))的方程称为齐次方程。
- 求解方法:令u = (y)/(x),则y = ux,y'=u + xu',原方程化为u+xu'=φ(u),这是一个可分离变量方程,按照可分离变量方程的方法求解。
例如,对于方程y'=(y)/(x)+tan(y)/(x),令u=(y)/(x),方程化为u + xu'=u+tan u,即xu'=tan u,然后分离变量求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《常微分方程》复习资料1.(变量分离方程)形如()()dyf x y dxϕ=(1.1)的方程,称为变量分离方程,这里(),()f x y ϕ分别是,x y 的连续函数. 解法:(1)分离变量,当()0y ϕ≠时,将(1.1)写成()()dyf x dx y ϕ=,这样变量就“分离”了; (2)两边积分得()()dyf x dx c y ϕ=⎰⎰+(1.2),由(1.2)所确定的函数(,)y x c ϕ=就为(1.1)的解. 注:若存在0y ,使0()0y ϕ=,则0y y =也是(1.1)的解,可能它不包含在方程(1.2)的通解中,必须予以补上. 2.(齐次方程)形如(dy yg dx x=的方程称为齐次方程,这里是u 的连续函数. ()g u 解法:(1)作变量代换(引入新变量)y u x =,方程化为()du g u u dx x -=,(这里由于dy dux u dx dx=+);(2)解以上的分离变量方程;(3)变量还原.3.(一阶线性微分方程与常数变异法)一阶线性微分方程()()()0dya xb x yc x dx++=在的区间上可写成()0a x ≠()()dyP x y Q x dx =+(3.1),这里假设在考虑的区间上是(),()P x Q x x 的连续函数.若,则(3.1)变为()0Q x =()dyP x y dx=(3.2),(3.2)称为一阶齐次线性方程.若()0Q x ≠,则(3.1)称为一阶非齐次线性方程. 解法:(1)解对应的齐次方程()dyP x y dx=,得对应齐次方程解()p x y ce dx ⎰=,为任意常数;c (2)常数变异法求解(将常数变为c x 的待定函数,使它为(3.1)的解):令为(3.1)的解,则()c x ()()p x dxy c x e ⎰=()()()()()p ⎰⎰p x dx p x dy dc x e c x x e dx dx =+dx ,代入(3.1)得()()()p x dx dc dxx Q x e -⎰=),积分得;()p x dx c ⎰=+ ()()c x Q x e -⎰(3)故(3.1)的通解为()()(()p x dxp x dxy e Q x e dx -⎰⎰c=+⎰ . 4.(伯努利方程)形如()()n dyP x y Q x y dx=+的方程,称为伯努利方程,这里为(),()P x Q x x 的连续函数. 解法:(1)引入变量变换,方程变为1nz y -=(1)()(1)()dz n P x z n Q x dx=-+-;(2)求以上线性方程的通解; (3)变量还原.5.(可解出的方程)形如y (,)dyy f x dx=(5.1)的方程,这里假设(,)f x y '有连续的偏导数. 解法:(1)引进参数dyp dx=,则方程(5.1)变为(,)y f x p =(5.2); (2)将(5.2)两边对x 求导,并以dy p dx =代入,得f f pp x p x∂∂∂=+∂∂∂(5.3),这是关于变量,x p 的一阶微分方程;(3)(i )若求得(5.3)的通解形式为(,)p x c ϕ=,将它代入(5.2),即得原方程(5.1)的通解(,(,))y f x x c ϕ=,为任意常数;c(ii )若求得(5.3)的通解形式为(,)x p c ψ=,则得(5.1)的参数形式的通解为(,)((,),)x p c y f p c p ψψ=⎧⎨=⎩,其中p 是参数,是任意常数;c (iii )若求得(5.3)的通解形式为,则得(5.1)的参数形式的通解为(,,)0x p c Φ=(,,)0(,)x p c y f x p Φ=⎧⎨=⎩,其中p 是参数,是任意常数.c 6.(可解出x 的方程)形如(,)dyx f y dx=(6.1)的方程,这里假设(,)f y y '有连续的偏导数. 解法:(1)引进参数dyp dx=,则方程(6.1)变为(,)x f y p =(6.2); (2)将(6.2)两边对y 求导,并以1dx dy p=代入,得1f f pp y p y ∂∂∂=+∂∂∂(6.3),这是关于变量,y p 的一阶微分方程;(3)若求得(6.3)的通解形式为,则得(6.1)的参数形式的通解为(,,)0y p c Φ=(,)(,,)0x f y p y p c =⎧⎨Φ=⎩,其中p 是参数,是任意常数.c 7.(不显含的方程)形如y (,)0dyF x dx=的方程,这里假设(,)F x y '有连续的偏导数. 解法:(1)设dyp dx=,则方程变为; (,)0F x p =(2)引入参数,将用参数曲线表示出来,即t (,)0F x p =()()x t p t ϕψ=⎧⎨=⎩,(关键一步也是最困难一步); (3)把()x t ϕ=,()p t ψ=代入dy ,并两边积分得pdx =()()y t t dt ψϕ'c =+⎰;(4)通解为()()()x t y t t dt ϕψϕ=⎧⎪⎨'=+⎪⎩⎰c .8.(不显含x 的方程)形如(,)0dyF y dx=的方程,这里假设(,)F y y '有连续的偏导数.解法:(1)设dyp dx=,则方程变为;(,)0F y p =(2)引入参数,将用参数曲线表示出来,即t (,)0F y p =()()y t p t ϕψ=⎧⎨=⎩,(关键一步也是最困难一步);(3)把()y t ϕ=,()p t ψ=代入dy dx p =,并两边积分得()()t x dt c t ϕψ'=+⎰; (4)通解为()()()t x dt c t y t ϕψϕ'⎧=+⎪⎨⎪=⎩⎰. 9.(型可降阶高阶方程)特点:不显含未知函数()(1)(,,,,)0(1)k n n F x y y y k -=≥ y 及.(1),,k y y -' 解法:令()()k yz x =,则(1)k y z +'=,.代入原方程,得.若能求得,()()n n y z -=k ()(,(),(),,())0n k F x z x z x z x -'= ()z x将()()k yz x =()yf =连续积分次,可得通解.k , 10.(型可降阶高阶方程)特点:右端不显含自变量()(1)(,,)n k y y y -n x .解法:设,则()y 222,(dp dy dP d p dP y P y P P dy dx dy dy dy'''''===+ y p '=2,) ,代入原方程得到新函数的()P y (1n -阶方程,求得其解为1()(,,,)n 1P y y C C ϕ-== dy dx,原方程通解为11(,,,)n n dyx C y C C ϕ-=+⎰ .11.(恰当导数方程)特点:左端恰为某一函数对(1)(,,,,)n x y y y -'Φ x 的导数,即(1)(,,,,)0n dx y y y dx-'Φ= . 解法:类似于全微分方程可降低一阶(1)(,,,,)n x y y y C -'Φ =',再设法求解这个方程.12.(齐次方程)特点:(k 次齐次函数).()()(,,,,)(,,,,)n k n x ty ty ty t F x y y y '= F zdx解法:可通过变换y e =⎰将其降阶,得新未知函数.因为()z x 2()(1),(),,(,,,)zdxzdxzdxn n y ze y z z e yz z z e -⎰⎰⎰'''''==+=Φ (1)(,,,,)0n f x z z z -',代入原方程并消去,得新函数的阶方程k z e ⎰dx ()z x (n -1)= .13.(存在唯一性定理)考虑初值问题00(,)()dyf x y dxy x y ⎧=⎪⎨⎪=⎩(13.1),其中(,)f x y 在矩形区域00:,R x x a y y b -≤-≤上连续,并且对满足Lipschitz 条件:即存在,使对所有(,y 0L >12(,)),x y x y R ∈常成立121(,)(,)2f x y f x y L y y -≤-,则初值问题(13.1)在区间0x x -≤h 上的解存在且唯一,这里(,)min(,h a =(,)x y R M Max f x y ∈=bM.初值问题(13.1)等价于积分方程00(,)xx y y f t y =+⎰dt ,构造Picard 逐步逼近函数列}{00001()()()(,())xn nn x x y x x y f ϕϕϕξϕ-=⎧⎪⎨=+⎪⎩⎰dx ξ 00x x x ≤≤+h ,n .1,= 2,14.(包络的求法)曲线族(14.1)的包络包含在下列两方程(,,)0x y c Φ=(,,)0(,,)0c x y c x y c Φ=⎧⎨'Φ=⎩消去参数而得到的曲线之中.曲线c (,)0F x y =(,)0F x y =称为(14.1)的c -判别曲线.15.(奇解的直接计算法)方程(,,)0dyF 15.1)的奇解包含在由方程组⎨去参数x y dx =(消(,,)0(,,)0c F x y p F x y p =⎧'=⎩p 而之得到的曲线(,Φ=中,此曲线称为(15.1)的)0x y p -别曲线,这里(,F 判,)x y p 0=是,,x y p 的连续可微函数. 注:p -判别曲线是否为方程的奇解,尚需进一步讨论. 16.(克莱罗方程)形如dy dy y xf dxdx ⎛⎫=+ ⎝⎭⎪(16.1)的方程,称为克莱罗方程,这里. ()0f p ''≠解法:令dy p dx =,得.两边对()y xp f p =+x 求导,并以dyp dx=代入,即得()dp dp p x p f p dx dx '=++,经化简,得[()]0.dpx f p dx '+= 如果0dp dx=,则得到p c =.于是,方程(16.1)的通解为:()y cx f c =+.如果,它与等式()0x f p '+=()y xp f p =+联立,则得到方程(16.1)的以p 为参数的解:()0()x f p y xp f p '+=⎧⎨=+⎩或()0()x f c y xc f c '+==+⎧⎨⎩其中为参数.消去参数c p 便得方程的一个解. 17.(函数向量组线性相关与无关)设12(),(),,()m x t x t x t a t b ≤≤是一组定义在区间[,上的函数列向量,如果存在一组不全为0的常数,使得对所有,有恒等式]a b c 12,,m c c c 1122()()()0m m c x t c x t x t +++ =, 则称12(),(),,()m x t x t x t 在区间[,上线性相关;否则就称这组向量函数在区间[,上线性无关.]a b ]a b 18.(Wronsky 行列式)设有n 个定义在a t 上的向量函数b ≤≤nn 11121212221212()()()()()()(),(),,()()()()n n n n n x t x t x t x t x t x x t x t x t t x t x t x t ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢===⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣ ⎦ ,由这n 个向量函数所构成的行列式111212122212[(),(12()()()()()()),()()()()()n n n n n nn x t x t x t x t x t x t W x x t W t t x t x t x t x t ≡称为这个向量函数所构成的Wronsky 行列式.n 如果向量函数12(),(),,()n x t x t x t 在a t 上线性相关,则它们的Wronsky 行列式. b ≤≤()0,t W t a b ≡≤≤19.(基解矩阵的计算公式)(1)如果矩阵具有个线性无关的特征向量,它们相应的特征值为A n 12,,,n v v v 12,,,n λλ λ(不必互不相同),那么矩阵是常系数线性微分方程组12tte λλ12(),,,],n tn v v e v λΦ=-∞<< [t e x +∞x Ax '=的一个基解矩阵; (2)矩阵的特征值、特征根出现复根时(略); A (3)矩阵的特征根有重根时(略).A 20.(常系数齐线性方程)考虑方程111[]0n n n n n d x d xL x a a x dt dt--=+++= (20.1),其中为常数,称(20.1)为阶常系数齐线性方程.12,,n a a a n 解法:(1)求(20.1)特征方程的特征根12,,,k λλλ ;(2)计算方程(20.1)相应的解:(i )对每一个实单根k λ,方程有解k teλ;(ii )对每一个重实根1m >k λ,方程有个解:m 21,,,,k k k tttm e te t e te k tλλλ- λ;(iii )对每一个重数是1的共轭复数i αβ±,方程有两个解:cos ,sin tte t e ααt ββ; (iv )对每一个重数是的共轭复数1m >i αβ±,方程有个解:2m 11cos ,cos ,,cos ;sin ,sin ,,sin t t m t ttm te t te t t e t e t te t te tααααααββββββ-- ;(3)根据(2)中的(i )、(ii )、(iii )、(iv )情形,写出方程(20.1)的基本解组及通解.21.(常系数非齐次线性方程)()y py qy f x '''++=二阶常系数非齐次线性方程对应齐次方程,通解结构0y py qy '''++=y Y y =+.设非齐次方程特解()x y Q x e λ=代入原方程 2()(2)()()()()m Q x p Q x p q Q x P x λλλ'''+++++=(1)若λ不是特征方程的根,,可设20p q λλ++≠()()m Q x Q x =,()xm y Q x e λ=;(2)若λ是特征方程的单根,,2020p q λλ++=p λ+≠,可设()()m Q x xQ x =,()xm y xQ x e λ=; (3)若λ是特征方程的重根,,2020p q λλ++=p λ+=,可设,2()()m Q x x Q x =2()xm y x Q x e λ=. ()k x综上讨论,设y m x e Q x λ=,. 012k λλλ⎧⎪=⎨⎪⎩不是根是单根是重根。