初一数学基本知识点总结
数学初中全部重要知识点初一
数学初中全部重要知识点初一
初中数学是数学学习的基础阶段,初一作为初中的起始年级,其重要
知识点为后续学习打下坚实的基础。
以下是初一数学中一些重要的知
识点:
1. 数的运算:包括有理数的加、减、乘、除以及乘方运算。
掌握这些
基本运算法则是解决数学问题的基础。
2. 代数初步:引入变量的概念,学习用字母表示数,以及简单的代数
式和代数方程。
例如,解一元一次方程是这个阶段的重点。
3. 几何基础:学习基本的几何图形,如线段、角、三角形等,并了解
它们的性质。
此外,还包括对图形的对称、旋转和翻转等变换的认识。
4. 统计与概率:初步接触数据的收集、整理和描述,学习如何使用图
表来展示数据,以及简单的统计量计算,如平均数、中位数等。
5. 度量单位:了解和掌握长度、面积、体积等基本度量单位,以及它
们之间的换算关系。
6. 图形与坐标:引入坐标系的概念,学习如何在坐标系中表示点的位置,以及简单的图形绘制。
7. 数列与模式:识别和分析数字序列中的模式,学习等差数列和等比
数列的基本概念。
8. 比例与比例关系:理解比例的概念,学习如何使用比例来解决实际
问题,例如相似图形的面积比和边长比。
9. 函数的初步:虽然初一阶段不会深入学习函数,但会接触到一些基本的函数思想,如变量之间的关系和变化规律。
10. 解决实际问题:将数学知识应用到实际问题中,培养解决问题的能力,如行程问题、工程问题等。
掌握这些知识点不仅有助于提高数学成绩,还能为今后的数学学习奠定坚实的基础。
通过不断的练习和应用,可以加深对这些知识点的理解和记忆。
初中数学知识点总结 初中的数学知识点总结(通用11篇)
初中数学知识点总结初中的数学知识点总结(通用11篇)大家都知道,初中数学学习是对学生逻辑计算能力的培养,想要学好初中数学,就要多总结所学知识。
熟读唐诗三百首,不会作诗也会吟,下面是小编为大伙儿整理的初中的数学知识点总结【通用11篇】,仅供参考,希望对大家有所启发。
初中数学知识点总结篇一一元一次方程定义通过化简,只含有一个未知数,且含有未知数的较高次项的次数是一的等式,叫一元一次方程。
通常形式是ax+b=0(a,b为常数,且a≠0)。
一元一次方程属于整式方程,即方程两边都是整式。
一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。
我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式。
这里a是未知数的系数,b是常数,x的次数须是1.即一元一次方程须同时满足4个条件:⑴它是等式;⑴分母中不含有未知数;⑴未知数较高次项为1;⑴含未知数的项的系数不为0。
一元一次方程的五个核心问题一、什么是等式?1+1=1是等式吗?表示相等关系的式子叫做等式,等式可分三类:一类是恒等式,就是用任何允许的数值代替等式中的字母,等式的两边总是相等,由数字组成的等式也是恒等式,如2+4=6,a+b=b+a 等都是恒等式;第二类是条件等式,也就是方程,这类等式只能取某些数值代替等式中的字母时,等式才成立,如x+y=-5,x+4=7等都是条件等式;第三类是矛盾等式,就是无论用任何值代替等式中的字母,等式总不成立,如x2=-2,|a|+5=0等。
一个等式中,如果等号多于一个,叫做连等式,连等式可以化为一组只含有一个等号的等式。
等式与代数式不同,等式中含有等号,代数式中不含等号。
等式有两个重要性质1)等式的两边都加上或减去同一个数或同一个整式,所得结果仍然是一个等式;(2)等式的两边都乘以或除以同一个数除数不为零,所得结果仍然是一个等式。
二、什么是方程,什么是一元一次方程?含有未知数的等式叫做方程,如2x-3=8,x+y=7等。
初一数学必考的21个知识点,附考试重难点
初一数学必考的21个知识点,附考试重难点知识点一:整数的加减运算包括带符号整数的相加、相减,掌握正负数的加减法规则,注意进位借位等概念。
知识点二:小数的加减运算掌握小数点的对齐,小数的进位和退位规则,注意小数的加减运算要多注意精度。
知识点三:分数的加减运算掌握分数的相加、相减运算方法,注意通分和约分的规则。
知识点四:平方数与平方根了解平方数的概念和性质,掌握求平方数和平方根的方法。
知识点五:计算器的使用了解计算器的基本功能和使用方法,能够使用计算器进行简单的四则运算。
知识点六:倍数和公约数了解倍数和公约数的概念,能够求一个数的倍数和公约数。
知识点七:分数的乘除运算掌握分数的乘法和除法运算方法,注意化简分数和约分的规则。
知识点八:比例与比例关系了解比例和比例关系的概念,能够根据已知的比例关系求解未知量。
知识点九:几何图形的认识了解常见的几何图形,如直线、尖角、直角、钝角、平行线等,并能够辨认不同的几何图形。
知识点十:面积与周长的计算掌握常见几何图形的面积和周长的计算方法,如矩形、正方形、三角形等。
知识点十一:三角形的性质了解三角形的性质,包括三角形的内角和为180度等。
知识点十二:百分数的计算掌握百分数的转化和计算方法,能够将百分数转化为小数和分数,并进行相关运算。
知识点十三:二次根式的运算了解二次根式的概念和运算方法,包括二次根式的加减运算和化简。
知识点十四:代数式的计算能够进行代数式的加减乘除运算,了解代数式的计算规则。
知识点十五:一元一次方程掌握一元一次方程的基本概念和解法,能够根据题意列方程并求解。
知识点十六:数据的收集与整理了解数据的收集方法和整理方法,能够根据已有的数据绘制图表。
知识点十七:统计与概率了解统计与概率的基本概念,能够进行简单的统计和概率计算。
知识点十八:商与余数的计算掌握除法的基本概念和计算方法,能够计算商和余数。
知识点十九:直角坐标系与图形了解直角坐标系的概念和特点,能够根据已知的坐标绘制图形。
初一数学知识点(精选5篇)
初一数学知识点(精选5篇)第一章有理数1.整数。
(正整数、0、负整数)2.正数和负数。
3.有理数。
(整数和分数统称有理数)4.自然数。
(非负整数)5.相反数。
(只有符号不同的两个数互为相反数)6.绝对值。
(一个数的绝对值就是表示这个数的点与原点的距离)第二章代数式1.代数式。
(用运算符号把数或表示数的字母连接起来的式子)2.代数式的值。
(求代数式的值就是给代数式中的字母个代数式确定值)第三章实数1.平方根。
(如果一个数的平方等于a,那么这个数就叫做a 的平方根)2.算数平方根。
(一个非负数的正的平方根叫做算数平方根)3.立方根。
(如果一个数的立方等于a,那么这个数就叫做a 的立方根)4.实数。
(有理数和无理数)5.实数的性质。
(实数能进行减、乘、除、加、乘方运算)6.近似数。
(通过四舍五入得到的与精确数接近的数)第四章整式和分式1.整式。
(与有理数相对的数式叫整式)2.分式。
(整式的一部分)3.分式的值为零。
(分子为零且分母不等于零)4.分式的乘除。
(乘除法转化成乘法计算)5.分式的加减。
(异分母的分式加减转化成通分后求和)6.分式方程。
(分母里含有未知数的方程叫分式方程)初一数学知识点篇21.有理数:有理数包括正整数、0和负整数。
有理数可以用分数表示。
2.数轴:数轴是一条直线,它的上面写着从0开始连续不断的点。
数轴上的0是正负数的分界线。
3.相反数:如果两个数的和为0,那么这两个数是一对相反数。
相反数包括正数和负数。
4.绝对值:一个数的绝对值是它离0的距离。
正数的绝对值是它本身,负数的绝对值是它的相反数。
5.代数式:用代数式表示出数量关系和变化规律的式子。
包括等式、不等式、方程、不等式、函数等。
6.整式:整式包括单项式和多项式。
单项式是由数字和字母组成,多项式是由几个单项式组成。
7.分式:分式包括分子和分母。
分子是由数字和字母组成,分母是由分式和整式组成。
8.方程:用方程表示出两个量之间的关系,并且这个方程是一个等式。
初一数学知识点归纳(全)
初一数学知识点归纳(全)初一数学知识点归纳如下:一、有理数1. 有理数的定义:能写成两个整数的比的数叫做有理数。
2. 有理数的分类:正有理数、负有理数和零。
3. 有理数的性质:比较两个有理数的大小,绝对值大的数较大;绝对值相等的数,正数较大;都是负数时,绝对值小的数较大。
4. 有理数的运算:加法、减法、乘法和除法。
二、整式的加减1. 整式的定义:由数字、字母的乘积组成的代数式叫做整式。
2. 整式的加减法法则:同类项合并,即把同类项的系数相加或相减,字母和字母的指数保持不变。
三、一元一次方程1. 方程的定义:含有未知数的等式叫做方程。
2. 一元一次方程的定义:只含有一个未知数,并且未知数的最高次数是1的方程叫做一元一次方程。
3. 解一元一次方程的方法:移项、合并同类项、系数化为1。
四、几何图形初步1. 几何图形的定义:用点、线、面等基本元素构成的图形叫做几何图形。
2. 几何图形的分类:平面图形和立体图形。
3. 平面图形的基本性质:对称性、相似性、全等性等。
4. 立体图形的基本性质:表面积、体积、棱长等。
五、相交线与平行线1. 相交线的定义:在同一平面内,两条直线相交于一点,这个点叫做交点。
2. 平行线的定义:在同一平面内,两条直线永远不相交,这两条直线叫做平行线。
3. 平行线的性质:同位角相等,内错角相等,同旁内角互补。
六、实数1. 实数的定义:有理数和无理数的统称叫做实数。
2. 实数的分类:有理数、无理数。
3. 无理数的定义:不能写成两个整数的比的数叫做无理数。
4. 实数的运算:加法、减法、乘法和除法。
七、平面直角坐标系1. 平面直角坐标系的定义:在平面上,以两条互相垂直的直线为坐标轴,建立直角坐标系。
2. 点的坐标:在平面直角坐标系中,每个点都有一个唯一的有序实数对(x, y)与之对应,这个有序实数对叫做该点的坐标。
3. 函数的定义:在平面直角坐标系中,对于每一个自变量x,都有唯一确定的因变量y与之对应,这种对应关系叫做函数。
初一数学知识点总结大全
初一数学知识点总结大全第一章有理数1.1正数和负数以前学过的0以外的数前面加上负号“-”的书叫做负数.以前学过的0以外的数叫做正数.数0既不是正数也不是负数,0是正数与负数的分界.在同一个问题中,分别用正数和负数表示的量具有相反的意义1.2有理数1.2.1有理数正整数、0、负整数统称整数,正分数和负分数统称分数.整数和分数统称有理数.1.2.2数轴规定了原点、正方向、单位长度的直线叫做数轴.数轴的作用:所有的有理数都可以用数轴上的点来表达.考前须知:⑴数轴的原点、正方向、单位长度三要素,缺一不可.⑵同一根数轴,单位长度不能改变.一般地,设是一个正数,那么数轴上表示a的点在原点的右边,与原点的间隔是a个单位长度;表示数-a的点在原点的左边,与原点的间隔是a个单位长度.1.2.3相反数只有符号不同的两个数叫做互为相反数.数轴上表示相反数的两个点关于原点对称.在任意一个数前面添上“-”号,新的数就表示原数的相反数.1.2.4绝对值一般地,数轴上表示数a的点与原点的间隔叫做数a的绝对值.一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0.在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数.比拟有理数的大小:⑴正数大于0,0大于负数,正数大于负数.⑵两个负数,绝对值大的反而小.1.3有理数的加减法1.3.1有理数的加法有理数的加法法那么:⑴同号两数相加,取一样的符号,并把绝对值相加.⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.⑶一个数同0相加,仍得这个数.两个数相加,交换加数的位置,和不变.加法交换律:a+b=b+a三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变.加法结合律:(a+b)+c=a+(b+c)1.3.2有理数的减法有理数的减法可以转化为加法来进展.有理数减法法那么:减去一个数,等于加这个数的相反数.a-b=a+(-b)1.4有理数的乘除法1.4.1有理数的乘法有理数乘法法那么:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.乘积是1的两个数互为倒数.几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.两个数相乘,交换因数的位置,积相等.ab=ba三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.(ab)c=a(bc)一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.a(b+c)=ab+ac数字与字母相乘的书写标准:⑴数字与字母相乘,乘号要省略,或用“”⑵数字与字母相乘,当系数是1或-1时,1要省略不写.⑶带分数与字母相乘,带分数应当化成假分数.用字母x表示任意一个有理数,2与x的乘积记为2x,3与x的乘积记为3x,那么式子2x+3x是2x与3x的和,2x与3x叫做这个式子的项,2和3分别是着两项的系数.一般地,合并含有一样字母因数的式子时,只需将它们的系数合并,所得结果作为系数,再乘字母因数,即ax+bx=(a+b)x上式中x是字母因数,a与b分别是ax与bx这两项的系数.去括号法那么:括号前是“+”,把括号和括号前的“+”去掉,括号里各项都不改变符号.括号前是“-”,把括号和括号前的“-”去掉,括号里各项都改变符号.括号外的因数是正数,去括号后式子各项的符号与原括号内式子相应各项的符号一样;括号外的因数是负数,去括号后式子各项的符号与原括号内式子相应各项的符号相反.1.4.2有理数的除法有理数除法法那么:除以一个不等于0的数,等于乘这个数的倒数.a÷b=a• (b≠0)两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.因为有理数的除法可以化为乘法,所以可以利用乘法的运算性质简化运算.乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果.1.5有理数的乘方1.5.1乘方求n个一样因数的积的运算,叫做乘方,乘方的结果叫做幂.在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂.负数的奇次幂是负数,负数的偶次幂是正数.正数的任何次幂都是正数,0的任何正整数次幂都是0.有理数混合运算的运算顺序:⑴先乘方,再乘除,最后加减;⑵同级运算,从左到右进展;⑶如有括号,先做括号内的运算,按小括号、中括号、大括号依次进展1.5.2科学记数法把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法.用科学记数法表示一个n位整数,其中10的指数是n-1.1.5.3近似数和有效数字接近实际数目,但与实际数目还有差异的数叫做近似数.准确度:一个近似数四舍五入到哪一位,就说准确到哪一位.从一个数的左边第一个非0 数字起,到末位数字止,所有数字都是这个数的有效数字.对于用科学记数法表示的数a×10n,规定它的有效数字就是a中的有效数字.第二章一元一次方程2.1从算式到方程2.1.1一元一次方程含有未知数的等式叫做方程.只含有一个未知数(元),未知数的指数都是1(次),这样的方程叫做一元一次方程.分析^p 实际问题中的数量关系,利用其中的相等关系列出方程,是数学解决实际问题的一种方法.解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解.2.1.2等式的性质等式的性质1 等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.2.2从古老的代数书说起——一元一次方程的讨论⑴把等式一边的某项变号后移到另一边,叫做移项.2.3从“买布问题”说起——一元一次方程的讨论⑵方程中有带括号的式子时,去括号的方法与有理数运算中括号类似.解方程就是要求出其中的未知数(例如x),通过去分母、去括号、移项、合并、系数化为1等步骤,就可以使一元一次方程逐步向着x=a的形式转化,这个过程主要根据等式的性质和运算律等.去分母:⑴详细做法:方程两边都乘各分母的最小公倍数⑵根据:等式性质2⑶考前须知:①分子打上括号②不含分母的项也要乘2.4再探实际问题与一元一次方程第三章图形认识初步3.1多姿多彩的图形现实生活中的物体我们只管它的形状、大小、位置而得到的图形,叫做几何图形.3.1.1立体图形与平面图形长方体、正方体、球、圆柱、圆锥等都是立体图形.此外棱柱、棱锥也是常见的立体图形.长方形、正方形、三角形、圆等都是平面图形.许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形.3.1.2点、线、面、体几何体也简称体.长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体.包围着体的是面.面有平的面和曲的面两种.面和面相交的地方形成线.线和线相交的地方是点.几何图形都是由点、线、面、体组成的,点是构成图形的根本元素.3.2直线、射线、线段经过两点有一条直线,并且只有一条直线.两点确定一条直线.点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点.类似的还有线段的三等分点、四等分点等.直线桑一点和它一旁的局部叫做射线.两点的所有连线中,线段最短.简单说成:两点之间,线段最短.3.3角的度量角也是一种根本的几何图形.度、分、秒是常用的角的度量单位.把一个周角360等分,每一份就是一度的角,记作1;把1度的角60等分,每份叫做1分的角,记作1;把1分的角60等分,每份叫做1秒的角,记作1.3.4角的比拟与运算3.4.1角的比拟从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线.类似的,还有叫的三等分线.3.4.2余角和补角假如两个角的和等于90(直角),就说这两个角互为余角.假如两个角的和等于180(平角),就说这两个角互为补角.等角的补角相等.等角的余角相等.本章知识构造图第四章数据的搜集与整理搜集、整理、描绘和分析^p 数据是数据处理的根本过程.4.1喜欢哪种动物的同学最多——全面调查举例用划记法记录数据,“正”字的每一划(笔画)代表一个数据.考察全体对象的调查属于全面调查.4.2调查中小学生的视力情况——抽样调查举例抽样调查是从总体中抽取样本进展调查,根据样本来估计总体的一种调查.统计调查是搜集数据常用的方法,一般有全面调查和抽样调查两种,实际中常常采用抽样调查的方式.调查时,可用不同的方法获得数据.除问卷调查、访问调查等外,查阅文献资料和实验也是获得数据的有效方法.利用表格整理数据,可以帮助我们找到数据的分布规律.利用统计图表示经过整理的数据,能更直观地反映数据规律.4.3课题学习调查“你怎样处理废电池?”调查活动主要包括以下五项步骤:一、\x09设计调查问卷⑴设计调查问卷的步骤①确定调查目的;②选择调查对象;③设计调查问题⑵设计调查问卷时要注意:①提问不能涉及提问者的个人观点;②不要提问人们不愿意答复的问题;③提供的选择答案要尽可能全面;④问题应简明;⑤问卷应简短.二、施行调查将调查问卷复制足够的份数,发给被调查对象.施行调查时要注意:⑴向被调查者讲明哪些人是被调查的对象,以及他为什么成为被调查者;⑵告诉被调查者你搜集数据的目的.三、处理数据根据收回的调查问卷,整理、描绘和分析^p 搜集到的数据.四、交流根据调查结果,讨论你们小组有哪些发现和建议?五、写一份简单的调查报告第二册第五章相交线与平行线5.1相交线5.1.1相交线有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角.两条直线相交有4对邻补角.有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角.两条直线相交,有2对对顶角.对顶角相等.5.1.2两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直.其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.注意:⑴垂线是一条直线.⑵具有垂直关系的两条直线所成的4个角都是90.⑶垂直是相交的特殊情况.⑷垂直的记法:a⊥b,AB⊥CD.画直线的垂线有无数条.过一点有且只有一条直线与直线垂直.连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.直线外一点到这条直线的垂线段的长度,叫做点到直线的间隔 .5.2平行线5.2.1平行线在同一平面内,两条直线没有交点,那么这两条直线互相平行,记作:a∥b.在同一平面内两条直线的关系只有两种:相交或平行.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.假如两条直线都与第三条直线平行,那么这两条直线也互相平行.5.2.2直线平行的条件两条直线被第三条直线所截,在两条被截线的同一方,截线的同一旁,这样的两个角叫做同位角.两条直线被第三条直线所截,在两条被截线之间,截线的两侧,这样的两个角叫做内错角.两条直线被第三条直线所截,在两条被截线之间,截线的同一旁,这样的两个角叫做同旁内角.断定两条直线平行的方法:方法1 两条直线被第三条直线所截,假如同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.方法2 两条直线被第三条直线所截,假如内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.方法3 两条直线被第三条直线所截,假如同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行.5.3平行线的性质平行线具有性质:性质1 两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.性质2 两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.性质3 两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做着两条平行线的间隔 .判断一件事情的语句叫做命题.5.4平移⑴把一个图形整体沿某一方向挪动,会得到一个新的图形,新图形与原图形的形状和大小完全一样.⑵新图形中的每一点,都是由原图形中的某一点挪动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等.图形的这种挪动,叫做平移变换,简称平移.第六章平面直角坐标系6.1平面直角坐标系6.1.1有序数对有顺序的两个数a与b组成的数对,叫做有序数对.6.1.2平面直角坐标系平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系.程度的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴取2向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点.平面上的任意一点都可以用一个有序数对来表示.建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个局部,分别叫做第一象限、第二象限、第三象限和第四象限.坐标轴上的点不属于任何象限.6.2坐标方法的简单应用6.2.1用坐标表示地理位置利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:⑴建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;⑵根据详细问题确定适当的比例尺,在坐标轴上标出单位长度;⑶在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.6.2.2用坐标表示平移在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).在平面直角坐标系内,假如把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;假如把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a 个单位长度.第七章三角形7.1与三角形有关的线段7.1.1三角形的边由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.相邻两边组成的角,叫做三角形的内角,简称三角形的角.顶点是A、B、C的三角形,记作“△ABC”,读作“三角形ABC”.三角形两边的和大于第三边.7.1.2三角形的高、中线和角平分线7.1.3三角形的稳定性三角形具有稳定性.7.2与三角形有关的角7.2.1三角形的内角三角形的内角和等于180.7.2.2三角形的外角三角形的一边与另一边的延长线组成的角,叫做三角形的外角.三角形的一个外角等于与它不相邻的两个内角的和.三角形的一个外角大于与它不相邻的任何一个内角.7.3多边形及其内角和7.3.1多边形在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.n边形的对角线公式:各个角都相等,各条边都相等的多边形叫做正多边形.7.3.2多边形的内角和n边形的内角和公式:180(n-2)多边形的外角和等于360.7.4课题学习镶嵌第八章二元一次方程组8.1二元一次方程组含有两个未知数,并且未知数的指数都是1的方程叫做二元一次方程把具有一样未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.使二元一次方程两边的值相等两个未知数的值,叫做二元一次方程的解二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.8.2消元由二元一次方程组中的一个方程,将一个未知数用含有另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程.这种方法叫做加减消元法,简称加减法.8.3再探实际问题与二元一次方程组第九章不等式与不等式组9.1不等式9.1.1不等式及其解集用“”号表示大小关系的式子叫做不等式.使不等式成立的未知数的值叫做不等式的解.能使不等式成立的未知数的取值范围,叫做不等式解的集合,简称解集.含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式.9.1.2不等式的性质不等式有以下性质:不等式的性质1 不等式两边加(或减)同一个数(或式子),不等号的方向不变.不等式的性质2 不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式的性质3 不等式两边乘(或除以)同一个负数,不等号的方向改变.9.2实际问题与一元一次不等式解一元一次方程,要根据等式的性质,将方程逐步化为x=a 的形式;而解一元一次不等式,那么要根据不等式的性质,将不等式逐步化为xa)的形式.9.3一元一次不等式组把两个不等式合起来,就组成了一个一元一次不等式组.几个不等式的解集的公共局部,叫做由它们所组成的不等式的解集.解不等式就是求它的解集.对于具有多种不等关系的问题,可通过不等式组解决.解一元一次不等式组时.一般先求出其中各不等式的解集,再求出这些解集的公共局部,利用数轴可以直观地表示不等式组的解集.9.4课题学习利用不等关系分析^p 比赛第 21 页共 21 页。
完整版初一数学知识点归纳
完整版初一数学知识点归纳
初一数学知识点归纳如下:
1. 数的基本概念和运算:包括正整数、负整数、零、自然数等的概念与性质,加法、减法、乘法和除法的基本运算法则。
2. 算式的变形和计算:包括整数的加减法计算、乘法计算、除法计算,以及计算过程中的算式变形。
3. 分数:包括分数的概念、分数的加减法、乘法和除法,以及分数的化简和比较大小。
4. 百分数和百分数的应用:包括百分数的概念和运算、百分数与实际生活中的应用。
5. 小数:包括小数的概念与性质、小数的加减法、乘法和除法,以及小数和分数之间的转化。
6. 坐标系和平面图形:包括平面直角坐标系的构建和使用,平面图形的基本概念与性质,如点、直线、线段、角等。
7. 四边形和三角形的面积:包括四边形和三角形的面积的计算和应用。
8. 平移、旋转和对称:包括平移、旋转和对称操作的概念和性质,以及平移、旋转和对称对图形的影响。
9. 数据的收集和处理:包括调查数据的收集方法、数据的分类和统计,以及数据图表的制作和解读。
10. 简单方程的解法:包括一元一次方程式和应用问题的解法。
初一数学基本知识点总结(推荐19篇)
二元一次方程组1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注意:一般说二元一次方程有无数个解.2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.注意:一般说二元一次方程组只有解(即公共解).4.二元一次方程组的解法:(1)代入消元法;(2)加减消元法;(3)注意:判断如何解简单是关键.※5.一次方程组的应用:(1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则难列易解(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.一元一次不等式(组)1.不等式:用不等号,把两个代数式连接起来的式子叫不等式.2.不等式的基本性质:不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变. 3.不等式的解集:能使不等式成立的未知数的`值,叫做这个不等式的解;不等式所有解的集合,叫做这个不等式的解集.4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b0或ax+b0,(a0).5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质3的应用;注意:在数轴上表示不等式的解集时,要注意空圈和实点.第一章有理数1、大于0的数是正数。
2、有理数分类:正有理数、0、负有理数。
3、有理数分类:整数(正整数、0、负整数)、分数(正分数、负分数)4、规定了原点,单位长度,正方向的直线称为数轴。
初一数学必背知识点
初一数学必背知识点1、几何:(1)图形的基本类型。
包括点、线段、矩形、正方形、三角形、圆形、椭圆及其细分。
(2)形状的特征。
包括形态、体积、边长、角度、相交、平行、对称等。
(3)图形的构造。
包括平移、旋转、缩放及其原理。
2、数理逻辑:(1)符号逻辑。
包括判断式、析出式和表达式。
(2)蕴含关系。
包括等价、蕴含、非蕴含及其特征和联系。
(3)分析与推理。
包括逻辑推理、方程求解等技能的应用。
3、代数:(1)数的概念以及运算:整数、分数、小数、百分数及其运算。
(2)变量及其性质:变量、常数、系数、项的构成及其特征。
(3)方程的特殊形式及其解法:一元二次方程、平方差公式法、二次差公式法、变量代换法等。
(4)函数:一元函数、双调函数、正比函数、对数函数及其特征概念。
4、排列组合:(1)组合数学。
排列、组合、部分组合、比例组合的概念及其应用。
(2)概率论。
不同概率的概念、独立事件、同构事件、相互独立事件、期望及其应用。
(3)统计学。
比率、差率、积率、比值、百分比,均数及其用法。
5、几何分析:(1)点、直线、圆和线段。
它们的性质、相交、平行、相等等概念。
(2)平面图形。
矩形、正方形、三角形、多边形和等腰三角形的性质。
(3)圆锥、圆台及其应用。
球、圆柱体的体积及其计算方法。
(4)立体图形的概念。
正四、正八面体的性质和计算方法。
(5)空间几何图形的构成。
棱柱、棱台、棱锥及其计算方法。
以上就是初一数学必背知识点的梗概,学会这些知识点是学好数学的基础,考生们要用心研究理解,并归纳背诵,总结过程把握规律,能够更好地掌握数学知识点。
初一数学知识点总结整理
初一数学知识点总结整理一、数与式1. 数的概念:自然数、整数、有理数、无理数、实数。
2. 整数的加减法:同号两数相加、异号两数相减。
3. 分数的概念和加减法:分数的定义和基本性质。
4. 整数和分数的混合运算。
5. 空集的概念和表示法。
6. 等式的概念:等式的性质、等式的移项。
7. 代数式:字母的含义、代数式的性质。
8. 用字母表示数:字母代表数的大小、字母代表数的性质。
9. 代数式的加减法:同类项的加减法、同指数项的加减法。
10. 解一元一次方程:逆运算法解方程、两边乘以同一个数解方程。
11. 解一元一次方程的实际问题。
二、数的计算1. 大数的认识:亿、万亿的认识、大数的读法和写法。
2. 大数的加减法:列竖式计算、进位和退位。
3. 大数的乘法:列竖式计算、进位的规律。
4. 大数的除法:列竖式计算、退位和进位的规律。
5. 规则运算:优先级与结合律。
三、图形与几何1. 图形的分类:几何图形、平面图形、立体图形。
2. 角的概念和性质:角的定义、角的种类和性质。
3. 直线和线段的性质:直线的定义、线段的定义、直线和线段的比较。
4. 直角、钝角和锐角的认识与比较。
5. 两条直线的位置关系:平行线、垂直线、相交线。
6. 平行四边形的性质:对角线的性质、边的性质。
7. 正方形、长方形、菱形、矩形的性质。
8. 三角形的构造与性质:三角形的定义和分类、三角形的性质。
9. 相似三角形的定义和性质:相似三角形的判定、相似三角形的比例关系。
10. 直角三角形的性质和勾股定理。
11. 平行线的判定和性质:与平行线有关的角、平行线与平行线的交线。
12. 圆的概念和性质:圆的定义、圆心和半径、圆周长和面积。
四、数据与概率1. 数据的收集和整理:调查和询问、数据的组织和表示方法。
2. 平均值的概念和计算:平均数、中位数、众数的计算。
3. 统计图表的制作和分析:条形统计图、折线统计图、饼状统计图。
4. 概率的基本概念和计算:概率的定义、实验和事件、概率的计算。
初一数学知识点全总结归纳
初一数学知识点全总结归纳数学作为一门基础学科,在初中阶段起到了培养学生数理思维和逻辑推理能力的重要作用。
初一学年作为初中学习的开始,也是数学知识的基础打基石的阶段。
下面将对初一数学知识点进行全面总结和归纳,帮助同学们理清思路,系统地学习和掌握初一数学。
一、整数与有理数1. 整数、有理数的概念及表示方法2. 整数的比较与大小关系3. 整数的加减运算4. 有理数的加减乘除运算5. 整数与有理数在实际问题中的应用二、代数式与方程1. 代数式的概念与运算2. 简单的一元一次方程3. 一元一次方程的解与应用4. 一元一次方程组的解与应用5. 代数式与方程在实际问题中的应用三、图形与几何1. 角的概念及分类2. 线段、角、面积的计算3. 三角形的分类与性质4. 三角形的内角和外角性质5. 初步了解平行线与垂直线以及其性质四、函数1. 函数的概念与函数关系的表示2. 一次函数的图象与性质3. 一次函数的应用4. 常量函数与零函数5. 初步了解函数在实际问题中的应用五、数据的收集、整理和描述1. 调查和统计2. 数据的整理与分析3. 统计图的绘制与分析4. 初步了解概率的概念与计算六、应用题1. 线性方程问题的应用2. 平均数与百分数问题的应用3. 比例问题的应用4. 几何图形问题的应用5. 实际问题的建模与求解以上是初一数学知识点的全面总结与归纳,希望能够帮助同学们更好地理解和掌握数学知识。
在学习数学的过程中,要注意理论与实践的结合,积极参与课堂互动和练习,掌握解题技巧和方法,多与同学们进行合作学习和讨论,不断提高自己的数学思维和解题能力。
只有牢固掌握初一数学知识,才能为未来的学习打下坚实的基础。
超详细初一数学知识点总结
超详细初一数学知识点总结一、数与式1. 整数(1)正整数与负整数(2)绝对值(3)相反数(4)比较大小(5)绝对值的计算(6)整数的加减法2. 小数(1)有限小数与无限循环小数(2)小数点左移、右移(3)小数的加减法(4)小数的乘除法(5)小数的化为分数3. 分数(1)分数的意义(2)分子、分母(3)真分数、假分数、带分数(4)分数的加减法(5)分数的乘除法(6)分数的化简(7)分数的比较4. 百分数(1)百分数的意义(2)百分数、百分数的小数表示(3)百分数的计算(4)增长率、减少率5. 算式(1)算式的意义(2)算式的组成(3)算式的展开与因式分解(4)算式的值6. 有关量(1)比例(2)比例性质(3)分配和合并(4)速度和单位换算7. 一元一次方程(1)解一元一次方程(2)一元一次方程的应用(3)一元一次方程组(4)一元一次方程的解法8. 二元一次方程(1)解二元一次方程(2)二元一次方程的应用二、图形与尺度1. 角与角度(1)角的度量(2)角的分类(3)同位角、内错角、异角(4)邻角、对顶角2. 三角形(1)三角形的分类(2)三角形的性质(3)三角形的判定3. 四边形(1)四边形的分类(2)四边形的性质(3)平行四边形、矩形、菱形、正方形4. 圆(1)圆的构造(2)圆周角、圆心角(3)弧长、扇形面积(4)圆与平行线、垂直线5. 三棱锥、四棱锥、五棱锥(1)棱锥的分类(2)棱锥的性质(3)棱锥的体积计算6. 体积(1)图形的体积计算(2)立体图形的表面积7. 尺规作图(1)细分尺(2)圆规(3)尺规作图的基本步骤(4)尺规作图举例三、函数与方程1. 函数(1)函数的概念(2)函数的图象(3)函数的性质(4)函数的运算(5)函数的应用2. 一次函数(1)一次函数的概念(2)一次函数的图象(3)一次函数的性质(4)一次函数的应用3. 二次函数(1)二次函数的概念(2)二次函数的图象(3)二次函数的性质(4)二次函数的应用4. 不等式(1)一元一次不等式(2)一元二次不等式(3)一元不等式的解法(4)一元不等式的应用5. 实数区间(1)实数区间的表示(2)实数区间的性质四、统计与概率1. 统计(1)数据的收集与整理(2)数据的表示(3)频数分布表、频率分布图(4)中心位置指标、离散程度指标2. 概率(1)随机事件(2)概率的概念(3)概率的计算(4)古典概率、几何概率以上就是初一数学的知识点总结,不难看出,初一数学内容主要围绕着数与式、图形与尺度、函数与方程,以及统计与概率四个方面展开。
初一数学知识点总结15篇
初一数学知识点总结初一数学知识点总结15篇总结是事后对某一阶段的学习、工作或其完成情况加以回顾和分析的一种书面材料,它是增长才干的一种好办法,因此我们需要回头归纳,写一份总结了。
那么总结有什么格式呢?下面是小编帮大家整理的初一数学知识点总结,欢迎阅读与收藏。
初一数学知识点总结1填空题答题技巧要求熟记的基本概念、基本事实、数据公式、原理,复习时要特别细心,注意记熟,做到临考前能准确无误、清晰回忆。
对那些起关键作用的,或最容易混淆记错的概念、符号或图形要特别注意,因为考查的往往就是它们。
如区间的端点开还是闭、定义域和值域要用区间或集合表示、单调区间误写成不等式或把两个单调区间取了并集等等。
解答题答题技巧(1)仔细审题。
注意题目中的关键词,准确理解考题要求。
(2)规范表述。
分清层次,要注意计算的准确性和简约性、逻辑的条理性和连贯性。
(3)给出结论。
注意分类讨论的问题,最后要归纳结论。
(4)讲求效率。
合理有序的书写试卷和使用草稿纸,节省验算时间。
初一数学知识点总结2第二章:整式的加减1、单项式:;单独的一个数或一个字母也是单项式2、系数:;3、单项式的次数:;4、多项式:;叫做多项式的项;的项叫做常数项。
5、多项式的次数:;6、整式:;7、同类项:;8、把多项式中的同类项合并成一项,叫做合并同类项;合并同类项后,所得项的系数是合并同前各同类项的系数的和,且字母部分不变。
9、去括号:(1)如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同(2)如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反10、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项第三章:一次方程(组)一、方程的有关概念1、方程的概念:(1)含有未知数的等式叫方程。
(2)在一个方程中,只含有一个未知数,并且未知数的指数是1,系数不为0,这样的方程叫一元一次方程。
2、等式的基本性质:(1)等式两边同时加上(或减去)同一个代数式,所得结果仍是等式。
初一数学必考的23个知识点,考试必掌握的重难点
初一数学必考的23个知识点,考试必掌握的重难点初一数学必考的23个知识点1.数轴(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向。
(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数。
(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数。
)(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。
2.相反数(1)相反数的概念:只有符号不同的两个数叫做互为相反数.(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。
(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。
(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。
3.绝对值1.概念:数轴上某个数与原点的距离叫做这个数的绝对值。
①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.2.如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.即|a|={a(a>0)0(a=0)﹣a(a<0)4.有理数大小比较1.有理数的大小比较:比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小。
2.有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小。
初一数学的知识点总结
初一数学的知识点总结学习是一架保持平衡的天平,一边是付出,一边是收获,少付出少收获,多付出多收获,不劳必定无获!要想取得理想的成绩,勤奋至关重要!只有勤奋学习,才能成就美好人生!下面小编给大家带来初一数学的知识点总结,希望大家喜欢!一、线段、射线、直线※1.正确理解直线、射线、线段的概念以及它们的区别:名称图形表示方法端点长度直线直线 AB(或 BA)直线 l 无端点无法度量射线射线 OM1 个无法度量线段线段 AB(或 BA)线段 l2 个可度量长度※2.直线公理:经过两点有且只有一条直线.二、比较线段的长短※1.线段公理:两点间线段最短;两之间线段的长度叫做这两点之间的距离.※2.比较线段长短的两种方法:①圆规截取比较法;②刻度尺度量比较法.※3.用刻度尺可以画出线段的中点,线段的和、差、倍、分 ;用圆规可以画出线段的和、差、倍.三、角的度量与表示※1.角:有公共端点的两条射线组成的图形叫做角;这个公共端点叫做角的顶点;这两条射线叫做角的边.※2.角的表示法:角的符号为“∠”我国要求尊重学生的学习主体地位,要真正把学生作为学习的主人翁看待;关注学生的学习过程,倡导学生主动参与,使学生在自主、合作、探究的方式中积极主动地进行学习活动;培养学生的创新精神与实践能力。
特别是对于初中一年级,要为学生学习数学知识打下良好基础,数学学习方法的学习显得更具有时代性和前瞻性。
数学学习方法指导是一个由非智力因素、学习方法、学习习惯、学习能力多元组成的统一整体,因此,应以系统整体的观点进行学法指导,目的在于使学生加强学习修养,激发学习动机;指导学生掌握科学的学习方法;指导学生学习数学的良好习惯,进而提高学习能力及效果。
(1) 正确认识数学学习方法的重要性。
启发学生认识到科学的学习方法是提高学习成绩的重要因素,并把这一思想贯穿于整个教学过程之中。
可以通过讲述数学名人的故事,激励学生。
(2) 形成良好的非智力因素非智力因素是学习方法指导得以进行的基础。
初一数学知识点总结归纳
初一数学知识点总结归纳一、数与代数1. 有理数- 整数和分数的概念- 有理数的加法、减法、乘法和除法- 有理数的比较大小- 绝对值的概念和性质2. 整式的运算- 单项式和多项式的定义- 整式的加减运算- 乘法运算和乘法公式(平方差公式、完全平方公式) - 因式分解(提取公因式、公式法)3. 方程与不等式- 一元一次方程的解法- 二元一次方程组的解法(代入法、消元法)- 不等式的基本性质- 一元一次不等式的解法二、几何1. 图形初步- 平面图形的认识- 直线、射线、线段- 角的概念和分类(邻角、对顶角、平行线的性质)2. 三角形- 三角形的基本性质- 三角形的内角和外角性质- 等腰三角形和等边三角形的性质- 三角形的中线、高线、角平分线3. 四边形- 四边形的定义和性质- 矩形、正方形、平行四边形的性质- 四边形的内角和外角性质三、统计与概率1. 数据统计- 数据的收集和整理- 频数和频率的概念- 绘制和解读条形图、折线图、饼图2. 概率初步- 随机事件的概念- 可能性的初步认识- 概率的基本计算方法四、应用题- 涉及上述知识点的实际问题解决- 列方程解应用题的步骤和方法- 统计与概率在实际问题中的应用请注意,这个总结是一个基础框架,具体的教学内容可能会根据不同学校和教材有所差异。
教师和学生可以根据实际情况进行适当的调整和补充。
此外,为了便于打印和复制,建议使用常见的文字处理软件(如Microsoft Word)来编辑和保存文档,并确保使用清晰、标准的字体和格式。
初一数学知识点
初一数学知识点初一数学知识点1第一章有理数1.正数和负数2.有理数3.有理数的加减4.有理数的乘除5.有理数的乘方重点:数轴、相反数、绝对值、有理数计算、科学计数法、有效数字难点:绝对值易错点:绝对值、有理数计算中考必考:科学计数法、相反数(选择题)第二章整式的加减1.整式2.整式的加减重点:单项式与多项式的概念及系数和次数的确定、同类项、整式加减难点:单项式与多项式的系数和次数的确定、合并同类项易错点:合并同类项、计算失误、整数次数的确定中考必考:同类项、整数系数次数的确定、整式加减第三章一元一次方程1.从算式到方程2.解一元一次方程----合并同类项与移项3.解一元一次方程----去括号去分母4.实际问题与一元一次方程重点:一元一次方程(定义、解法、应用)难点:一元一次方程的解法(步骤)易错点:去分母时,不含有分母项易漏乘、解应用题时,不知道如何找等量关系第四章图形认识实步1.多姿多彩的图形2.直线、射线、线段3.角4.课题实习----设计制作长方形形状的包装纸盒重点:直线、射线、线段、角的认识、中点和角平分线的相关计算、余角和补角,方位角等难点:中点和角平分线的相关计算、余角和补角的应用易错点:等量关系不会转化、审题不清初一数学知识点21.充分体现由特殊到一般,由一般到特殊的思维过程,经历探索数量关系和变化规律的过程,渗透辩证唯物主义思想。
2.知识呈现过程尽量做到与学生已有生活经验密切联系,如皮球的弹跳高度,传数游戏等,发展学生应用数学的意识和能力。
3.让知识的发生、发展过程得以充分暴露,重视基本知识和基本技能的学习。
4.注意发挥例题和习题的教育功能。
加强学科间的纵向联系并注意与其他学科的横向联系,扩充学生的知识面,注意适当插入一些开放题,培养发散思维,适时渗透美育和德育教育。
知识要点:整式的有关概念(1)单项式:表示数与字母的乘积的代数式,叫做单项式,单独的一个数或一个字母也是单项式,如、2πr、a,0……都是单项式。
初一数学知识点归纳
(一)有理数:1、有理数(rational number):正整数、负整数、0、正分数、负分数都可以写成分数的形式,这样的数称为有理数。
2、数轴(number axis):通常,用一条直线上的点表示数,这条直线叫做数轴。
数轴满足以下要求:(1)在直线上任取一个点表示数0,这个点叫做原点(origin);(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;(3)选取适当的长度为单位长度。
3、相反数(opposite number):绝对值相等,只有负号不同的两个数叫做互为相反数。
4、绝对值(absolute value)一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。
记做|a|。
5、加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。
表达式:a+b=b+a。
加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变。
表达式:(a+b)+c=a+(b+c)6、有理数减法法则:减去一个数,等于加这个数的相反数。
表达式:a-b=a+(-b)7、有理数乘法法则(1)两数相乘,同号得正,异号得负,并把绝对值相乘。
(2)任何数同0相乘,都得0.(3)乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。
表达式:ab=ba(4)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
表达式:(ab)c=a(bc)(5)乘法分配律:一般地,一个数同两个的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
表达式:a(b+c)=ab+ac8、科学技术法:把一个大于10的数表示成a﹡10n的形式(其中a是整数数位只有一位的数(即0<a<10),n是正整数)。
(二)整式的加减1、单项式:对数字和若干个字母施行有限次乘法运算,所得的代数式叫做单项式。
单独一个数或一个字母也是单项式(注意分母含字母的不是单项式)。
初一数学知识点归纳总结大全
初一数学知识点归纳总结大全一:有理数知识网络:概念、定义:1、大于0的数叫做正数(sitive number)。
2、在正数前面加上负号“-”的数叫做负数(negative number)。
3、整数和分数统称为有理数(rational number)。
4、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。
5、在直线上任取一个点表示数0,这个点叫做原点(origin)。
6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value)。
7、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
8、正数大于0,0大于负数,正数大于负数。
9、两个负数,绝对值大的反而小。
10、有理数加法法则(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
(3)一个数同0相加,仍得这个数。
11、有理数的加法中,两个数相加,交换交换加数的位置,和不变。
12、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
13、有理数减法法则减去一个数,等于加上这个数的相反数。
14、有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值向乘。
任何数同0相乘,都得0。
15、有理数中仍然有:乘积是1的两个数互为倒数。
16、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
17、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
18、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
19、有理数除法法则除以一个不等于0的数,等于乘这个数的倒数。
20、两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。
21、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(wer)。
初中七年级数学知识点总结
初中七年级数学知识点总结5篇初一数学知识点1.不等式:用符号"<",">","≤","≥"表示大小关系的式子叫做不等式。
2.不等式分类:不等式分为严格不等式与非严格不等式。
一般地,用纯粹的大于号、小于号">","<"连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)"≥","≤"连接的不等式称为非严格不等式,或称广义不等式。
3.不等式的解:使不等式成立的未知数的值,叫做不等式的解。
4.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
5.不等式解集的表示方法:(1)用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来,例如:x-1≤2的解集是x≤3(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。
6.解不等式可遵循的一些同解原理(1)不等式F(x)< G(x)与不等式 G(x)>F(x)同解。
(2)如果不等式F(x)< G(x)的定义域被解析式H(x)的定义域所包含,那么不等式 F(x)< G(x)与不等式H(x)+F(x)(3)如果不等式F(x)< G(x)的定义域被解析式H(x)的定义域所包含,并且H(x)>0,那么不等式F(x)< G(x)与不等式H(x)F(x)0,那么不等式F(x)< G(x)与不等式H(x)F(x)>H(x)G(x)同解。
7.不等式的性质:(1)如果x>y,那么yy;(对称性)(2)如果x>y,y>z;那么x>z;(传递性)(3)如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法则)(4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz(5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z(6)如果x>y,m>n,那么x+m>y+n(充分不必要条件)(7)如果x>y>0,m>n>0,那么xm>yn(8)如果x>y>0,那么x的n次幂>y的n次幂(n为正数)初一下册数学知识点1.数据的整理:我们利用划记法整理数据,如下图所示,2.数据的描述:为了更直观地看出上表中的信息,我们还可以用条形统计图和扇形统计图来描述数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学基本知识点总结知识点总结(一)有理数第一章有理数1、大于0的数是正数。
2、有理数分类:正有理数、0、负有理数。
3、有理数分类:整数(正整数、0、负整数)、分数(正分数、负分数)4、规定了原点,单位长度,正方向的直线称为数轴。
5、数的大小比较:①正数大于0,0大于负数,正数大于负数。
②两个负数比较,绝对值大的反而小。
6、只有符号不同的两个数称互为相反数。
7、若a+b=0,则a,b互为相反数8、表示数a的点到原点的距离称为数a的绝对值9、绝对值的三句:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
10、有理数的计算:先算符号、再算数值。
11、加减:①正+正②大-小③小-大=-(大-小)④-☆-О=-(☆+О)12、乘除:同号得正,异号的负13、乘方:表示n个相同因数的乘积。
14、负数的奇次幂是负数,负数的偶次幂是正数。
15、混合运算:先乘方,再乘除,后加减,同级运算从左到右,有括号的先算括号。
16、科学计数法:用ax10n 表示一个数。
(其中a是整数数位只有一位的数)17、左边第一个非零的数字起,所有的数字都是有效数字。
【知识梳理】1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。
2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。
3.倒数:若两个数的积等于1,则这两个数互为倒数。
4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离.5.科学记数法:,其中。
6.实数大小的比较:利用法则比较大小;利用数轴比较大小。
7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。
实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。
正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键。
【能力训练】一、选择题。
1.下列说法正确的个数是( )①一个有理数不是整数就是分数②一个有理数不是正数就是负数③一个整数不是正的,就是负的④一个分数不是正的,就是负的A 1B 2C 3D 42.下列说法正确的是( )①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小A ①②B ①③C ①②③D ①②③④3.下列运算正确的是( )A -5/7+2/7=-(5/7+2/7)=-1B -7-2×5=-9×5=-45C 3÷5/4×4/5=3/1=3D -(-3)2=-94.若a+b<0,ab<0,则( )A a>0,b>0B a<0,b<0C a,b两数一正一负,且正数的绝对值大于负数的绝对值D a,b两数一正一负,且负数的绝对值大于正数的绝对值5.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg, (25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A 0.8kgB 0.6kgC 0.5kgD 0.4kg6.一根1m长的小棒,第一次截去它的,第二次截去剩下的,如此截下去,第五次后剩下的小棒的长度是()A ()5mB [1-()5]mC ()5mD [1-()5]m7.若ab≠0,则的取值不可能是()A 0B 1C 2D -2二、填空题。
8.比大而比小的所有整数的和为( )。
9.若那么2a一定是( )。
10.若0<a<1,则a,a2,的大小关系是( ).11.多伦多与北京的时间差为–12 小时(正数表示同一时刻比北京时间早的时数),如果北京时间是10月1日14:00,那么多伦多时间是。
12上海浦东磁悬浮铁路全长30km,单程运行时间约为8min,那么磁悬浮列车的平均速度用科学记数法表示约为( ) m/min。
13.规定a*b=5a+2b-1,则(-4)*6的值为( ).14.已知=3,=2,且ab<0,则a-b=( )。
15.已知a=25,b= -3,则a99+b100的末位数字是( )。
三、计算题。
16.-2-12× (1/3-1/4+1/2)17. 8-2×32-(-2×3)218. 3/2×5/7-(-5/7)×5/2+(-1/2)÷7/5四、解答题。
23.已知1+2+3+…+31+32+33==17×33,求1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值。
24.在数1,2,3,…,50前添“+”或“-”,并求它们的和,所得结果的最小非负数是多少?请列出算式解答。
25.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下。
(单位:km)第一次-4第二次+7第三次-9第四次+8第五次+6第六次-5第七次-2(1)求收工时距A地多远?(2)在第次纪录时距A地最远。
(3)若每km耗油0.3升,问共耗油多少升?参考答案:一、选择题:1-7:BADDBCB二、填空题:8.-3;9.非正数;10.;11.2:00;12.3.625×106;13.-9;14.5或-5;15.6三、计算题16.-9;17.-45;18.;四、解答题:23.-2×17×33;24.0;25.(1)1(2)五(3)12.3.知识点总结(二)一元一次方程一、学习目标1.经历“把实际问题抽象为数学方程”的过程,体会方程是刻画现实世界的一种有效的数学模型,了解一元一次方程及其相关概念,认识从算式到方程是数学的进步。
2.通过观察、归纳得出等式的性质,能利用它们探究一元一次方程的解法。
3.了解解方程的基本目标(使方程逐步转化为x=a的形式),熟悉解一元一次方程的一般步骤,掌握一元一次方程的解法,体会解法中蕴涵的化归思想。
4.能够“找出实际问题中的已知数和未知数,分析它们之间的关系,设未知数,列出方程表示问题中的等量关系”,体会建立数学模型的思想。
5.通过探究实际问题与一元一次方程的关系,进一步体会利用一元一次方程解决问题的基本过程(见上图),感受数学的应用价值,提高分析问题、解决问题的能力。
二、一元一次方程知识点知识点1:等式的概念:用等号表示相等关系的式子叫做等式.知识点2:方程的概念:含有未知数的等式叫方程,方程中一定含有未知数,而且必须是等式,二者缺一不可.说明:代数式不含等号,方程是用等号把代数式连接而成的式子,且其中一定要含有未知数.知识点3:一元一次方程的概念:只含有一个未知数,并且未知数的次数是1的方程叫一元一次方程.任何形式的一元一次方程,经变形后,总能变成形为ax=b(a≠0,a、b为已知数)的形式,这种形式的方程叫一元一次方程的一般式.注意a≠0这个重要条件,它也是判断方程是否是一元一次方程的重要依据.例2:如果(a+1) +45=0是一元一次方程,则a________,b________.分析:一元一次方程需要满足的条件:未知数系数不等于0,次数为1. ∴a+1≠0,2b-1=1.∴a≠-1,b=1.知识点4:等式的基本性质(1)等式两边加上(或减去)同一个数或同一个代数式,所得的结果仍是等式.即若a=b,则a±m=b±m.(2) 等式两边乘以(或除以)同一个不为0的数或代数式, 所得的结果仍是等式.即若a=b,则am=bm.或. 此外等式还有其它性质: 若a=b,则b=a.若a=b,b=c,则a=c.说明:等式的性质是解方程的重要依据.例3:下列变形正确的是( )A.如果ax=bx,那么a=bB.如果(a+1)x=a+1, 那么x=1C.如果x=y,则x-5=5-yD.如果则分析:利用等式的性质解题.应选D.说明:等式两边不可能同时除以为零的数或式,这一点务必要引起同学们的高度重视.知识点5:方程的解与解方程:使方程两边相等的未知数的值叫做方程的解,求方程解的过程叫解方程.知识点6:关于移项:⑴移项实质是等式的基本性质1的运用.⑵移项时,一定记住要改变所移项的符号.知识点7:解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、将未知数的系数化为1.具体解题时,有些步骤可能用不上,有些步骤可以颠倒顺序,有些步骤可以合写,以简化运算,要根据方程的特点灵活运用.例4:解方程.分析:灵活运用一元一次方程的步骤解答本题.解答:去分母,得9x-6=2x,移项,得9x-2x=6,合并同类项,得7x=6,系数化为1,得x=.说明:去分母时,易漏乘方程左、右两边代数式中的某些项,如本题易错解为:去分母得9x-1=2x,漏乘了常数项.知识点8:方程的检验检验某数是否为原方程的解,应将该数分别代入原方程左边和右边,看两边的值是否相等.注意:应代入原方程的左、右两边分别计算,不能代入变形后的方程的左边和右边.三、一元一次方程的应用一元一次方程在实际生活中的应用,是很多同学在学习一元一次方程过程中遇到的一个棘手问题.下面是对一元一次方程在实际生活中的应用的一个专题介绍,希望能为同学们的学习提供帮助.一、行程问题行程问题的基本关系:路程=速度×时间,速度=,时间=.1.相遇问题:速度和×相遇时间=路程和例1甲、乙二人分别从A、B两地相向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A、B两地相距1000米,问甲、乙二人经过多长时间能相遇?解:设甲、乙二人t分钟后能相遇,则(200+300)× t =1000,t=2.答:甲、乙二人2钟后能相遇.2.追赶问题:速度差×追赶时间=追赶距离例2甲、乙二人分别从A、B两地同向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A、B两地相距1000米,问几分钟后乙能追上甲?解:设t分钟后,乙能追上甲,则(300-200)t=1000,t=10.答:10分钟后乙能追上甲.3. 航行问题:顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度.例3甲乘小船从A地顺流到B地用了3小时,已知A、B两地相距90千米.水流速度是20千米/小时,求小船在静水中的速度.解:设小船在静水中的速度为v,则有(v+20)×3=90,v=10(千米/小时).答:小船在静水中的速度是10千米/小时.二、工程问题工程问题的基本关系:①工作量=工作效率×工作时间,工作效率=,工作时间=;②常把工作量看作单位1.例4已知甲、乙二人合作一项工程,甲25天独立完成,乙20天独立完成,甲、乙二人合作5天后,甲另有事,乙再单独做几天才能完成?解:设甲再单独做x天才能完成,有(+)×5+=1,x=11.答:乙再单独做11天才能完成.三、环行问题环行问题的基本关系:同时同地同向而行,第一次相遇:快者路程-慢者路程=环行周长.同时同地背向而行,第一次相遇:甲路程+乙路程=环形周长.例5王丛和张兰绕环行跑道行走,跑道长400米,王丛的速度是200米/分钟,张兰的速度是300米/分钟,二人如从同地同时同向而行,经过几分钟二人相遇?解:设经过t分钟二人相遇,则(300-200)t=400,t=4.答:经过4分钟二人相遇.四、数字问题数字问题的基本关系:数字和数是不同的,同一个数字在不同数位上,表示的数值不同.例6一个两位数,个位数字比十位数字小1,这个两位数的个位十位互换后,它们的和是33,求这个两位数.解:设原两位数的个位数字是x,则十位数字为x+1,根据题意,得[10(x-1)+x]+[10x+(x+1)]=33,x=1,则x+1=2.∴这个数是21.答:这个两位数是21.五、利润问题利润问题的基本关系:①获利=售价-进价②打几折就是原价的十分之几例7某商场按定价销售某种电器时,每台获利48元,按定价的9折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等,该电器每台进价、定价各是多少元?解:设该电器每台的进价为x元,则定价为(48+x)元,根据题意,得6[0.9(48+x)-x]=9[(48+x)-30-x] ,x=162.48+x=48+162=210.答:该电器每台进价、定价各分别是162元、210元.六、浓度问题浓度问题的基本关系:溶液浓度=,溶液质量=溶质质量+溶剂质量,溶质质量=溶液质量×溶液浓度例8用“84”消毒液配制药液对白色衣物进行消毒,要求按1∶200的比例进行稀释.现要配制此种药液4020克,则需要“84”消毒液多少克?解:设需要“84”消毒液x克,根据题意得=,x=20.答:需要“84”消毒液20克.七、等积变形问题例1用直径为90mm的圆柱形玻璃杯(已装满水,且水足够多)向一个内底面积为131×131mm2,内高为81mm的长方体铁盒倒水,当铁盒装满水时,玻璃杯中水的高度下降了多少?(结果保留π)分析:玻璃杯里倒掉的水的体积和长方体铁盒里所装的水的体积相等,所以等量关系为:玻璃杯里倒掉的水的体积=长方体铁盒的容积.解:设玻璃杯中水的高度下降了xmm,根据题意,得经检验,它符合题意.八、利息问题例2储户到银行存款,一段时间后,银行要向储户支付存款利息,同时银行还将代扣由储户向国家缴纳的利息税,税率为利息的20%.(1)将8500元钱以一年期的定期储蓄存入银行,年利率为2.2%,到期支取时可得到利息________元.扣除利息税后实得________元.(2)小明的父亲将一笔资金按一年期的定期储蓄存入银行,年利率为 2.2%,到期支取时,扣除所得税后得本金和利息共计71232元,问这笔资金是多少元?(3)王红的爸爸把一笔钱按三年期的定期储蓄存入银行,假设年利率为3%,到期支取时扣除所得税后实得利息为432元,问王红的爸爸存入银行的本金是多少?分析:利息=本金×利率×期数,存几年,期数就是几,另外,还要注意,实得利息=利息-利息税.解:(1)利息=本金×利率×期数=8500×2.2%×1=187元.实得利息=利息×(1-20%)=187×0.8=149.6元.(2)设这笔资金为x元,依题意,有x(1+2.2%×0.8)=71232.解方程,得x=70000.经检验,符合题意.答:这笔资金为70000元.(3)设这笔资金为x元,依题意,得x×3×3%×(1-20%)=432.解方程,得x=6000.经检验,符合题意.答:这笔资金为6000元.【此课件下载可自行编辑修改,供参考,感谢你的支持!】。