高二数学第一次月考(导数及其应用)
高二数学利用导数求最值和极值试题

高二数学利用导数求最值和极值试题1.已知函数.(1)若函数在区间上存在极值点,求实数a的取值范围;(2)如果当时,不等式恒成立,求实数k的取值范围;【答案】(1)(2)【解析】(1)对函数求导,求出极值点,范围在内,得到不等式关系,解不等式即可;(2)要对恒成立问题转化,转化为求最值问题,令,求出在的最小值.试题解析:(1)当x>0时,,有;所以在(0,1)上单调递增,在上单调递减,函数在处取得唯一的极值.由题意,且,解得所求实数的取值范围为.(2)当时,令,由题意,在上恒成立令,则,当且仅当时取等号.所以在上单调递增,.因此,在上单调递增,.所以.【考点】导数运算,化归思想.2.已知是实数,函数.(1)若,求的值及曲线在点处的切线方程.(2)求在上的最大值.【答案】(1),;(2).【解析】解题思路:(1)先求导,进而求得值,利用导数的几何意义求切线方程;(2)求导,讨论的根与区间的关系,进而求得极值.规律总结:导数的几何意义求切线方程:;利用导数研究函数的单调性、极值、最值及与函数有关的综合题,都体现了导数的重要性;此类问题往往从求导入手,思路清晰;但综合性较强,需学生有较高的逻辑思维和运算能力.试题解析:(1),因为又当时所以曲线在处的切线方程为(2)令,解得,当即时,在上单调递增,从而.当即时,在上单调递减,从而当即时,在上单调递减,在单调递增,从而综上所述.【考点】1.导数的几何意义;2.利用导数研究函数的最值.3.已知函数在与处都取得极值.(1)求函数的解析式;(2)求函数在区间[-2,2]的最大值与最小值.【答案】(1);(2).【解析】(1)由已知函数在与处都取得极值,得到,求出得到:关于a,b的两个方程,联立解方程组可得到a,b的值,从而可写出函数的解析式;(2)由(1)已求出的解析式,要求函数在区间[-2,2]的最大值与最小值,只需先求出函数在区间[-2,2]的极大值与极小值,再求出两个端点的函数值,然后比较这四个数值的大小,得其中的最大者就是该函数的最大值,最小者就是该函数的最小值.试题解析:(1)f(x)=x3+ax2+bx,f¢(x)=3x2+2ax+b 1分由f¢()=,f¢(1)=3+2a+b=0 3分得a=,b=-2 5分经检验,a=,b=-2符合题意所以,所求的函数解析式为: 6分(2)由(1)得f¢(x)=3x2-x-2=(3x+2)(x-1), 7分列表如下:(-2,-)-(-,1)9分11分所以当时, 12分【考点】1.函数导数;2.函数极值;3.函数最值.4.函数.(1)求函数的极值;(2)设函数,对,都有,求实数m的取值范围.【答案】(1);(2).【解析】解题思路:(1)求导,令得,列表即可极值;(2)因为,都有,所以只需即可,即求的最值.规律总结:(1)利用导数求函数的极值的步骤:①求导;②解,得分界点;③列表求极值点及极值;(2)恒成立问题要转化为求函数的最值问题.注意点:因为,都有,所以只需即可.试题解析:(1)因为,所以,令,解得,或,则x-22+-+故当时,有极大值,极大值为;当时,有极小值,极小值为.(2)因为,都有,所以只需即可.由(1)知:函数在区间上的最小值,又,则函数在区间上的最大值,由,即,解得,故实数m的取值范围是.【考点】1.函数的极值;2.不等式恒成立问题.5.若函数在(0,1)内有极小值,则 ( )A.<1B.0<<1C.b>0D.b<【答案】B【解析】由得:,若函数在(0,1)内有极小值,则必在区间内有解,即关于的方程区间内有解,所以有,故选B.【考点】导数与函数的极值.6.要做一个圆锥形的漏斗,其母线长为,要使其体积为最大,则高为()A.B.C.D.【答案】D【解析】假设圆锥的高为,所以底面半径.所以圆锥的体积表达式为.即,所以由体积对高求导可得,由,当时,,此时单调递增,当时,,此时单调递减,所以,所以,故选D.【考点】1.圆锥的体积公式.2.最值的求法.3.实际问题考虑定义域.7.某商品一件的成本为元,在某段时间内,若以每件元出售,可卖出件,当每件商品的定价为元时,利润最大【答案】115【解析】利润为由得,这时利润达到最大.【考点】函数的最值与导数的关系8.方程x3﹣6x2+9x﹣4=0的实根的个数为()A.0B.1C.2D.3【答案】C【解析】令,则,令得或。
高二数学导数试题答案及解析

高二数学导数试题答案及解析1.若曲线的一条切线l与直线垂直,则切线l的方程为 ( )A.B.C.D.【答案】A【解析】设切点为,因为,所以,由导数的几何意义可知切线的斜率为。
直线的斜率为。
由题意可得,解得,切点为,切线的斜率为4,所以切线的方程为,即。
故A正确。
【考点】1导数的几何意义;2两直线垂直时斜率的关系;3直线方程。
2.已知函数在处有极大值,则=()A.6B.C.2或6D.-2或6【答案】A【解析】根据题意,由于函数在处有极大值,则可知f’(2)=0,12-8c+=0,c=4.则可知=6,当c=2不符合题意,故答案为A.【考点】函数的极值点评:主要是考查了函数极值的运用,属于基础题。
3.函数在区间上最大值与最小值的和为【答案】【解析】根据题意,由于,故可知当0<x<1,递增,在1<x<2时函数递减,故可知函数在区间上最大值与最小值分别是,-2,故可知和为,故答案为。
【考点】函数的最值点评:主要是考查了导数在研究函数最值中的运用,属于基础题。
4.函数f(x)=(x-3)e x的单调递增区间是()A.(-∞,2)B.(0,3)C.(1,4)D.(2,+∞)【答案】D【解析】,由得:,故函数的单调递增区间为(2,+∞)。
故选D。
【考点】函数的单调性点评:求函数的单调区间,常结合导数来求,过程要用到的结论是:若,则函数的增区间为;若,则函数的减区间为5.下列命题:①若存在导函数,则;②若函数,则;③若函数,则;④若三次函数,则“”是“f(x)有极值点”的充要条件;⑤函数的单调递增区间是.其中真命题为____.(填序号)【答案】③⑤【解析】①若f(x)存在导函数,则f′(2x)=2[f(2x)]′,故不正确;②若函数h(x)=cos4x-sin4x,则h′()=-2sin=-1,故不正确;③若函数g(x)=(x-1)(x-2)…(x-2012)(x-2013),则g'(x)中含(x-2013)的将2013代入都为0,则g′(2013)=2012!故正确;④若三次函数f(x)=ax3+bx2+cx+d,则f'(x)=0有两个不等的根即b2-3ac>0,故不正确;⑤∵,∴,令得,解得x∈,故正确.综上,真命题为③⑤【考点】本题考查了导数的运用及三角函数的单调性点评:此类问题主要考查复合函数的导数,以及函数的极值、求值等有关知识,属于综合题6.若,则等于()A.B.C.D.【答案】A【解析】因为,,所以,,=,选A。
高二数学导数练习题及答案

高二数学导数练习题及答案导数是高中数学中的重要概念之一,它在数学和实际问题中具有广泛的应用。
为了帮助高二学生巩固导数的知识和提高解题能力,本文为大家准备了一些高二数学导数练习题及答案。
希望通过这些练习题的训练,同学们能够更好地理解导数的概念和运用。
练习题一:1. 求函数 f(x) = 2x^3 - 3x^2 + 4x - 1 在点 x = 2 处的导数。
2. 已知函数 f(x) = x^2 + 3x,求函数 f(x) = x^2 + 3x 的导函数。
3. 求函数 f(x) = (x + 1)(x - 2)(x + 3) 在点 x = -1 处的导数。
答案一:1. 函数 f(x) = 2x^3 - 3x^2 + 4x - 1 的导数为:f'(x) = 6x^2 - 6x + 4。
2. 函数 f(x) = x^2 + 3x 的导函数为:f'(x) = 2x + 3。
3. 函数 f(x) = (x + 1)(x - 2)(x + 3) 在点 x = -1 处的导数为:f'(-1) = 0。
练习题二:1. 求函数 f(x) = 3x^4 - 2x^3 + 5x^2 - 4x + 1 的极值点及极值。
2. 已知函数 f(x) = x^3 - 6x^2 + 9x + 2,求函数 f(x) = x^3 - 6x^2 + 9x+ 2 的拐点。
3. 求函数 f(x) = x^3 - 3x 在其定义域内的极值点。
答案二:1. 函数 f(x) = 3x^4 - 2x^3 + 5x^2 - 4x + 1 的极值点为 x = 1/2,极值为 f(1/2) = 47/16。
2. 函数 f(x) = x^3 - 6x^2 + 9x + 2 的拐点为 x = 2。
3. 函数 f(x) = x^3 - 3x 在其定义域内的极值点为 x = 1。
练习题三:1. 求函数 f(x) = e^x 的导数。
2. 已知函数 f(x) = ln(x),求函数 f(x) = ln(x) 的导函数。
高二数学导数的实际应用试题答案及解析

高二数学导数的实际应用试题答案及解析1.已知函数,则()A.0B.1C.2D.【答案】C【解析】,.【考点】导数公式的应用.2.已知函数,则=____________。
【答案】0;【解析】,所以;【考点】三角函数求导公式;3.函数的定义域为开区间,其导函数在内的图象如图所示,则函数在开区间内极小值点的个数为()A.1个B.2个C.3个D.4个【答案】A【解析】在极小值点处满足:,由图可知在右边第二个零点处满足条件,故A.【考点】极值点定义.4.已知..(1)求函数在区间上的最小值;(2)对一切实数,恒成立,求实数的取值范围;(3) 证明对一切,恒成立.【答案】(1)见解析;(2);(3)见解析.【解析】(1)对于研究非常规的初等函数的最值问题,往往都需要求函数的导数.根据函数导数的正负判断函数的单调性,利用单调性求函数在某个区间上的最值;(2)恒成立问题,一般都需要将常数和变量分离开来(分离常数法)转化为最值问题处理;(3)证明不等式恒成立问题,往往将不等式转化为函数来证明恒成立问题.但有些时候这样转化后不等会乃然很难实现证明,还需对不等式经行恒等变形以达到化简不等式的目的,然后再证.试题解析:⑴,当,,单调递减,当,,单调递增. 1分(由于的取值范围不同导致所处的区间函数单调性不同,故对经行分类讨论.)①,t无解; 2分②,即时, 3分③,即时,在上单调递增,;所以 5分由题可知:,则.因对于,恒成立,故,设,则.单调递增,单调递减.所以,即.问题等价于证明(为了利用第(1)小问结论,并考虑到作差做函数证明不方便,下证的最值与最值的关系.)由(1)可知在的最小值是,当且仅当时取到.设,则,易得,当且仅当时取到.从而对于一切,都有恒成立.【考点】(1)含参量函数最值的讨论;(2)含参恒成立问题,参数取值范围;(3)利用倒数证明不等式.5.已知是的导函数,,且函数的图象过点.(1)求函数的表达式;(2)求函数的单调区间和极值.【答案】(1);(2)函数的单调减区间为,单调增区间为极小值是,无极大值.【解析】⑴注意到是常数,所以从而可求得;又因为函数的图象过点,所以点的坐标满足函数解析式,从而可求出m的值,进而求得的解析式.(2)由⑴可得的解析式及其定义域,进而就可应用导数求其单调区间和极值.试题解析:⑴,,函数的图象过点,,解得:函数的表达式为:(2)函数的定义域为,当时,;当时,函数的单调减区间为,单调增区间为极小值是,无极大值.【考点】1.函数的导数;2.函数的单调区间;3.函数的极值.6.已知函数的导函数为,且满足关系式,则的值等于()A.B.-1C.4D.2【答案】A【解析】对求导,知,令可得,解得.【考点】求导.7.函数的导函数的图像如图所示,则的图像最有可能的是()【答案】C.【解析】从的图像中可以看到,当时,,当时,,∴在上是减函数,在上是增函数,∴选C.【考点】导数的运用.8.函数在x=4处的导数= .【答案】.【解析】∵,∴,∴.【考点】复合函数的导数.9.函数的单调递增区间是()A.B.C.D.【答案】D【解析】,单调递增区间有,,可得.【考点】由导数求函数的单调性.10.已知函数在上是单调递减函数,方程无实根,若“或”为真,“且”为假,求的取值范围。
高二第一次月考(数学)

B.一个球体中间挖去一个圆柱D.一个球体中间挖去一个棱柱.一个几何体的三视图的形状都相同、大小均相等,那么这个几何体不可以是7.如图,Rt O A B'''∆是OAB∆的斜二测直观图,斜边2O A''=,则OAB∆的面积是(C.2D.22C.32 D.48,经过两球球心的截面圆周长之和为6π,则两球的半径之差为C.3D.4∶2∶3,那么最大球的表面积是其余两个球的表面积之和的C.2倍D.则它的侧视图与俯视图分别是图形中的________.1底面边长为23,高为3,圆O是等边三角形111A B C的外接球的表面积______________分,18—22题每小题12分,共70分).根据下列对几何体结构特征的描述,说出几何体的名称..一个几何体,它的下面是一个圆柱,上面是一个圆锥,并且圆锥的底面与圆柱的上底面重合,圆柱的,圆锥的高为3 cm,画出此几何体的直观图.1D,其中2AB BC==,过11A C B、、,是由两个半球和一个圆柱筒组成的.已知半球的直径是【解析】外面的圆旋转形成一个球,里面的长方形旋转形成一90,=︒OAB∴∆是一个直角梯形,各边××,则由题意得34π4π33R r⎧+⎪⎨并延长交平面α于1A ,连接SB 并延长交平面α于1B ,连接,11C A ,则△111A B C 为△ABC 在S 下的中心投影,如图所示..【解析】图①为正六棱柱,可按棱柱的画法画出,图②为一个圆锥与一个圆台的组合体,按圆锥、圆台的三视图画出它们的组合形状.三视图如图所示..【解析】画法如下所示,画x 轴、z 轴,使∠xOz =90°.画圆柱的两底面.在x 轴上取A 、B 两点,使AB 的长度等于3 cm ,且OA =OB .两点,使它为圆柱的下底面.在Oz 上截取点O ′,使OO ′=4 cm ,过O 类似圆柱下底面的作法作出圆柱的上底面.Oz 上截取点P ,使PO ′等于圆锥的高3 cm .B ′B ,PA ′,PB ′,整理得到此几何体的直观图.如图2所示.1111111ABCD A B C D B A B C V V --- 111110402,3233AA AA -⨯⨯==14AA ∴=.2,设C A 的中点H ,又“浮球”的圆柱筒的侧面积为S 圆柱侧=2πRh =2×π×3×2=12π(cm 2), 所以1个“浮球”的表面积为S =36π+12π104=48104π(m 2). 因此2500个这样的“浮球”的表面积为2500S =2500×48104π=12π(m 2).因为每平方米需要涂胶100克,所以共需要胶的质量为100×12π=1 200π(克).。
人教版高二数学下学期第一次月考试题解析版

一、单选题
1.设 是可导函数,当 时, 则 =( )
A.2B. C.-2D.
【答案】C
【解析】
分析:根据导数的定义即可求出.
详解:当h→0时, ,
可得
则 ﹣2,
故选C.
点睛:本题考查了导数的定义属于基础题.
2.已知函数 在 处的切线与直线 垂直,则 ( )
A.2B.0C.1D.-1
A. B. C. D.
【答案】C
【解析】
【分析】
直线OA,OB,OC的斜率即为 , , ,令函数 ,利用导数讨论函数单调性,即得斜率大小关系。
【详解】由题得,令 ,则有 ,令 ,解得 ,当 时, , 单调递增,当 时, , 单调递减,则 是函数在定义域上的最大值,直线OA,OB,OC的斜率 ,则 最大,又 ,则有 .
一周时间内进行网络搜题的频数区间
男生频数
女生频数
18
4
10
8
12
13
6
15
4
10
将学生在一周时间内进行网络搜题频数超过 次的行为视为“经常使用网络搜题”,不超过20次的视为“偶尔或不用网络搜题”.
(1)根据已有数据,完成下列 列联表(单位:人)中数据的填写,并判断是否在犯错误的概率不超过 %的前提下有把握认为使用网络搜题与性别有关?
经常使用网络搜题
偶尔或不用网络搜题
合计
男生
22
28
50
女生
38
12
50
合计
60
40
100
计算观测值
,
所以在犯错误的概率不超过 %的前提下有把握认为使用网络搜题与性别有关.
(2)将上述调查所得到的频率视为概率,从该校所有参与调查的学生中,采用随机抽样的方法抽取一人,抽到经常使用网络搜题的学生的概率为 .
高二数学第一次月考知识点

高二数学第一次月考知识点一、导数与函数的连续性在高二数学的第一次月考中,导数与函数的连续性是非常重要的知识点之一。
导数概念是微积分的基础,它描述了函数在某一点的变化率。
导数的定义是通过求极限得到的,可以用来求函数的切线斜率或函数的增减性等问题。
函数的连续性则是指函数在某一点或某一区间内没有断点,可以用连续函数的极限性质进行判断和证明。
二、函数的极值与最值另一个重要的考点是函数的极值与最值。
极值是指函数在某一区间内取得最大值或最小值的点,通过导数的求解可以确定函数的极值点。
最值则是函数在整个定义域内取得的最大值或最小值,通过数学推理和求解可以确定函数的最值。
三、函数与方程的图像在月考中,可能会涉及到函数与方程的图像。
掌握函数与方程的图像特征,包括图像的对称性、增减性、零点、极值、拐点等,对于分析和解题是非常有帮助的。
四、平面向量与坐标系平面向量是高二数学中的一个重要的知识点。
平面向量的概念、加法、数量积等基本操作都需要掌握。
与平面向量相关的坐标系也是月考的考察内容之一,包括直角坐标系和极坐标系。
五、数列与数列的极限数列是高二数学中非常常见的一类问题,月考也会考察数列的性质与求解。
数列的概念、通项公式、通项求和等内容都需要熟练掌握。
数列的极限是数列的重要性质,也需要了解与运用。
六、概率与统计概率与统计是高二数学中的一大板块内容。
概率的基本概念、事件的概率、条件概率等都是需要掌握的知识点。
统计是指通过对样本进行观察与分析,对总体的某些特征进行推断与描述。
以上便是高二数学第一次月考的主要知识点,希望同学们在备考中能够重点关注和复习这些内容,取得好成绩!。
最新高二数学上学期第一次月考试题

最新高二数学上学期第一次月考试题(1)选择题1.设函数 f(x) = x^2 - 3x + 2,那么 f(1) 的值为: A. -2 B. 0 C. 1 D.2答案:C解析:将 x = 1 代入函数 f(x),得到 f(1) = 1^2 - 3 * 1 + 2 = 1 - 3 + 2 = 0 + 2 = 2。
2.已知函数 f(x) = 2x - 1,那么 f(-2) 的值为: A. -5 B. -3 C. 1 D. 5答案:B解析:将 x = -2 代入函数 f(x),得到 f(-2) = 2 * (-2) - 1 = -4 - 1 = -5。
3.设函数 f(x) = x^3 - 2x^2 + x - 3,那么 f(2) 的值为: A. -4 B. -3 C.0 D. 1答案:A解析:将 x = 2 代入函数 f(x),得到 f(2) = 2^3 - 2 * 2^2 + 2 - 3 = 8 - 8 + 2 - 3 = 0 - 1 = -1。
4.设函数 f(x) = x^2 + 2x + 1,那么 f(-1) 的值为: A. -3 B. -1 C. 0 D.1答案:C解析:将 x = -1 代入函数 f(x),得到 f(-1) = (-1)^2 + 2 * (-1) + 1 = 1 - 2 + 1 = 0。
5.设函数 f(x) = x^2 - 4x + 3,求 f(x) = 0 的解。
A. x = 1, x = 3 B.x = 1, x = -3 C. x = 2, x = 3 D. x = 1, x = -2答案:A解析:将 f(x) = 0,得到 x^2 - 4x + 3 = 0。
通过因式分解或求根公式,得到 (x - 1)(x - 3) = 0。
因此,x = 1 或 x = 3。
填空题1.设函数 f(x) = a^x,若 f(2) = 8,那么 a 的值为______。
答案:2解析:将 x = 2 代入函数 f(x),得到 f(2) = a^2 = 8。
高二第二学期第一次月考数学试卷(理).doc

高二第二学期第一次月考数学试卷(理)第Ⅰ卷(选择题部分,60分)一、选择题(共12小题,每小题5分,满分60分))(2)(D. )()C.( )()B.( )(A.1x f b a x f b a x f b a x f x x b x f x a x f b a x x f x ’’’’为常数,则、处可导,在、设+-+=--+→)()()()(lim∆∆∆∆1-D. C.12 B.6 A.3 )(1)(02处的切线斜率为,的图象在、函数--=3)12(x y)3,D.(2 )25,23C.( )2,B.( )23,2A.( )(sin cos 3ππππππππ函数在下面哪个区间内为增、函数x x x y -= )( )()()(4'可能为图象数图象如图所示,则导函在定义域内可导,、设函数x f y x f y x f ==6D.6C. 7B. 7A. )(252积是所围成的封闭图形的面和及直线、由曲线x y x y x y ===225D.425C. 825B. 1625A. )(11)1(622,则该函数的最大值为处的导数为在、已知二次函数=++=x x a ax y PD. P C. P B. P A. )(,,,,007>≥>>≥>>≥+=+=+=>>m n m n n m n m P n m b a P b a n a bb am b a 的大小关系为、、则,、已知{}①②④②④①②③①③其中正确判断有有最大值,没有最小值④无最值③为极大值为极小值,②的解集为①,给出下列四个判断、关于函数 D. C. .B .A )( )( )( )2()2( 20|0)( )2()(82x f x f f f x x x f e x x x f x -<<>-=以上都不对,则,最小值为上的最大值为在区间、 D. 3,2C. 2,3B. -292,A. 0)29(a -3]2,1[6)(923======>-+-=b a b a b a b ax ax x f10、已知)(x f 是定义在R 上的函数,且)()()(2121---+=x f x f x f ,若321+=)(f ,则)(2005f 等于( ) (A )23- (B )23+ (C )32- (D )32--)()()()(.D )()()()(.C )()()()(.B )()()()(.A )( 0)()()()(0R )()(11''a g a f x g x f x g b f b g x f x g a f a g x f b g b f x g x f b x a x g x f x g x f x g x f ⋅>⋅⋅>⋅⋅>⋅⋅>⋅<<>⋅-⋅时有则当,的可导函数,且满足的恒大于是定义域为、、若是增函数是减函数有最大值有最小值上一定,在区间则函数上有最小值,,在区间、函数. . . . )()(1)(g(x) 1)(-2)(122D C B A xx f a ax x x f ∞+=∞+-=东营市一中2006-2007学年度高二第二学期第一次月考数 学 试 卷(理)第Ⅱ卷(非选择题部分,90分)二、填空题(共4小题,每小题4分,满分16分)。
高二数学下学期第一次月考试题文含解析试题

卜人入州八九几市潮王学校HY 那曲二高二零二零—二零二壹高二数学下学期第一次月考试题文〔含解析〕一、选择题:在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的,请把正确答案的代号填在题后的括号内〔每一小题4分,一共32分〕1.设函数()f x 在0x 可导,那么()()0003limt f x t f x t t→+--=〔〕A.()0f x 'B.()02f x '-C.()04f x 'D.不能确定【答案】C 【解析】 【分析】 根据极限的运算法那么有()()()()()()000000003+3limlimt t f x t f x t f x t f x f x f x t t t→→+--+---=结合导数的极限定义求解即可.【详解】函数()f x 在0x 可导,那么()()()0000limt f x t x tx f f →+-'=应选:C【点睛】此题主要考察导数的定义和极限的概念和运算,转化为极限形式是解决此题的关键.属于根底题. 2.函数()f x 的导函数()f x '的图象如下列图,那么函数()f x 的图象最有可能的是〔〕A. B. C.D.【答案】A 【解析】 【分析】当()f x '大于等于0,()f x 在对应区间上为增函数;()f x '小于等于0,()f x 在对应区间上为减函数,由此可以求解.【详解】解:2x <-时,()0f x '<,那么()f x 单调递减;20x -<<时,()0f x '>,那么()f x 单调递增; 0x >时,()0f x '<,那么f 〔x 〕单调递减.那么符合上述条件的只有选项A . 应选A .【点睛】此题主要考察了函数单调性与导函数的关系,重点是理解函数图象及函数的单调性. 3.直线y x =是曲线ln y a x =+的一条切线,那么实数a 的值是〔〕A.-1B.eC.ln 2D.1【答案】D 【解析】 切线的斜率为1,令11,1y x x===',故切点为()1,1,代入曲线方程得1a =. x ,有()()()()f x f x g x g x -=--=,,且0x >时,()0()0f x g x ''>>,,那么0x <时〔〕A.()0()0f x g x ''>>,B.()0()0f x g x ''><,C.()0()0f x g x '',D.()0()0f x g x ''<<,【答案】B【解析】由条件知:()f x 是奇函数,且在(0,)+∞内是增函数;()g x 是偶函数,且在(0,)+∞内是增函数;所以()f x 在(,0)-∞内是增函数;()g x 在(,0)-∞内是减函数;所以0x <时,()0,()0.f x g x ''><应选B5.函数()y f x =的图象如下列图,那么导函数()y f x '=的图象的大致形状是A. B. C.D.【答案】D 【解析】 【分析】根据函数的单调性与导数值的符号之间的关系来进展判断. 【详解】函数()y f x =的单调性是先减,再增,最后变为常函数,那么,导函数()y f x ='的符号为:先负,后正,最后变为0,应选D .【点睛】此题考察函数的单调性与导函数符号之间的关系,它们之间的关系如下: ①导函数函数值为正,那么原函数单调递增; ②导函数函数值为负,那么原函数单调递减; ③导函数函数值为零,那么原函数为常函数.在处理函数单调性与导函数的问题时,应准确抓住上述关系. 6.函数23y x =在点()1,3处的切线方程〔〕A.63=-y xB.36y x =-C.63y x =+D.36y x =+【答案】A 【解析】 【分析】先求导,求出切线的斜率,再由直线的点斜式写出直线方程即可. 【详解】函数23y x =的导函数为6y x '=.所以函数23y x =在点()1,3处的切线的斜率为1|6x k y ='==.那么函数23y x =在点()1,3处的切线方程:()361y x -=-,即63=-y x .应选:A【点睛】此题考察导数的运算和导数的几何意义,属于根底题 7.设P 为曲线32y x x =+-上的点,且曲线在点P 处的切线平行于直线41y x =-,那么P 点的坐标〔〕 A.()1,0B.()1,0或者()1,4--C.()2,8D.()2,8或者()1,4--【答案】B 【解析】 【分析】先设切点坐标,然后对()f x 进展求导,根据曲线在P 点处的切线平行于直线41y x =-建立等式,从而求出切点的横坐标,代入到()f x 即可得到答案.【详解】设P 点的坐标为()(),a f a ,由32y x x =+-,得到()231f x x ='+,由曲线在P 点处的切线平行于直线41y x =-,得到切线方程的斜率为4,即()2314kf a a '==+=,解得1a =或者1a =-,当1a =时,()10f =;当1a =-时,()14f -=-,那么P 点的坐标为()1,0或者()1,4--.应选:B.【点睛】此题主要考察了利用导数研究曲线上某点切线方程,以及导数的几何意义,即函数在某点的导数值等于以该点为切点的切线的斜率,属于根底题.1cos {2sin x y θθ=-+=+,〔θ为参数〕的对称中心〔〕A.在直线2y x =上B.在直线2y x =-上C.在直线1y x =-上 D.在直线1y x =+上【答案】B 【解析】试题分析:参数方程所表示的曲线为圆心在,半径为1的圆,其对称中心为,逐个代入选项可知,点满足,应选B.考点:圆的参数方程,圆的对称性,点与直线的位置关系,容易题. 二.填空:请把答案填在题中横线上〔每一小题4分,一共28分〕 9.函数()327f x x x =-的极值是:________和________.【答案】(1).-54(2).54 【解析】 【分析】先求出函数的导数,求出函数的单调区间,从而可得到函数的极值. 【详解】由函数()327f x x x =-有()()()2327=333f x x x x '=--+令()0f x '>解得3x >或者3x <-. 令()0f x '<解得33x -<<所以函数()f x 在(),3-∞-上单调递增,在()3,3-上单调递减,在()3+∞,上单调递增.所以当3x =-时,函数()f x 有极大值()()()33327354f -=--⨯-=,当3x =时,函数()f x 有极小值()33327354f =-⨯=-.故答案为:54-,54.【点睛】此题考察求函数的极值,属于根底题.10.当圆心位于,2Ma π⎛⎫⎪⎝⎭,且过极点,那么圆的极坐标方程是:________. 【答案】2sin a ρθ=【解析】 【分析】推导出圆心的直角坐标为()0,a ,半径r a =,从而求出圆的直角坐标方程,由此能求出圆心为,2M a π⎛⎫ ⎪⎝⎭,且过极点的圆的极坐标方程.【详解】在极坐标中圆的圆心为,2Ma π⎛⎫⎪⎝⎭且过极点. 那么在对应的直角坐标中圆心为()0,a ,过原点,半径r a =,所以圆的直角坐标方程为()222xy a a +-=,即222x y ay +=.又由极坐标方程与直角坐标方程得关系222=,cos ,sin x y x y ρρθρθ+==所以得:22sin a ρρθ=,即2sin a ρθ=所以圆心为,2Ma π⎛⎫⎪⎝⎭且过极点的圆的极坐标方程为2sin a ρθ=. 故答案为:2sin a ρθ=.【点睛】此题考察圆的极坐标方程的求法,考察直角坐标方程、极坐标方程的互化.,属于中档题.11.椭圆22194x y +=的参数方程为________.【答案】3cos 2sin x y θθ=⎧⎨=⎩〔θ为参数〕【解析】 【分析】根据椭圆22221(0)x y a b a b+=>>的参数方程为cos sin x a y b θθ=⎧⎨=⎩(θ为参数),可得答案.【详解】由椭圆22221(0)x y a b a b +=>>的参数方程为cos sin x a y b θθ=⎧⎨=⎩(θ为参数)所以椭圆22194x y +=得参数方程为:3cos 2sin x y θθ=⎧⎨=⎩(θ为参数)故答案为:3cos 2sin x y θθ=⎧⎨=⎩(θ为参数)【点睛】此题考察把椭圆的普通方程化为参数方程,属于根底题. 12.圆的极坐标方程为4sin ρθ=,把圆的极坐标方程化为直角坐标方程为:________.【答案】2240x y y +-=【解析】 【分析】 直接利用变换关系222=,cos ,sin x y x y ρρθρθ+==把极坐标方程转换为直角坐标方程.【详解】由4sin ρθ=得:24sin ρρθ=,又由极坐标方程与直角坐标方程得关系222=,cos ,sin x y x y ρρθρθ+==所以有224xy y +=所以圆的直角坐标方程为:2240xy y +-=故答案为:2240xy y +-=【点睛】此题考察将圆的极坐标方程化为直角坐标方程,属于根底题.13.函数()32f x x x x -=-的单调递减区间是______.【答案】1,13⎛⎫-⎪⎝⎭【解析】 【分析】 求'()f x ,令'()0f x <,解出x 的取值范围.【详解】2'()321f x x x =--,令23210x x --<,解得:113-<<x ,函数()32f x x x x=--的单调递减区间是1(,1)3-【点睛】此题考察了导数值的正负与函数单调性的关系,当'()0f x <时,解出的x 范围是函数()f x 的减区间,当'()0f x >时,解出的x 范围是函数()f x 的增区间.14.函数()()32330f x ax x x a =++≠.当1a =时,求曲线()y f x =在点()()1,1f 处的切线方程________. 【答案】125y x =-【解析】 【分析】先利用导数求出在1x =处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决. 【详解】当1a =时,()3233f x x x x =++.()17f =,()2363f x x x '=++所以曲线()y f x =在点()()1,1f 处的切线的斜率为:()112k f '==,又切点为()1,7,所以切线方程为:()7121y x -=-即切线方程为:125y x =-.故答案为:125y x =-【点睛】此题考察利用导数研究曲线上某点处的切线方程,属于根底题. 15.求函数sin6y π=的导数________.【答案】0 【解析】 【分析】 由sin6y π=为常数函数,那么由常数的导数为0,可得答案.【详解】由1sin 62y π==,所以1sin 062y π''⎛⎫⎛⎫'=== ⎪ ⎪⎝⎭⎝⎭故答案为:0【点睛】此题考察常见函数的导数,常数的导数为0,属于根底题. 三.解答题〔一共40分〕 16.求以下函数的导数〔1〕y =〔2〕2e y x=〔3〕321y x x =-+【答案】〔1〕1323y x -=';〔2〕22ey x '=-;〔3〕232y x '=-【解析】 【分析】由求导法那么和导数的运算法那么,逐个求解可得.【详解】(1)由23y x =,那么21132332==233y x x x --'⎛⎫= ⎪⎝⎭'.(2)由212=e y e x x -⋅=,那么()2221121=1=e y e e x xx ---''=-⨯-⋅⨯.(3)()()()()332212132y x x x x x '''''=-+=+-+=-【点睛】此题考察导数的运算,涉及求导法那么和导数的运算,属根底题.17.在平面直角坐标系xOy 中,圆C 的参数方程为4cos 4sin x y θθ=⎧⎨=⎩(θ为参数),直线l 经过点P(1,2),倾斜角α=6π. (1)写出圆C 的普通方程和直线l 的参数方程;(2)设直线l 与圆C 相交于A ,B 两点,求|PA|·|PB|的值.【答案】〔1〕x 2+y 2=16,1122x y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数);〔2〕11 【解析】 【分析】〔1〕利用三角恒等式消参得到圆C 的普通方程,根据直线的参数方程公式写出直线的参数方程得解;〔2〕把直线l 的参数方程代入圆的普通方程消元整理,再利用直线参数方程t 的几何意义解答.【详解】由44x cos y sin θθ=⎧⎨=⎩消去θ,得圆C 的普通方程为x 2+y 2=16.又直线l 过点P(1,2)且倾斜角α=6π, 所以l 的参数方程为1626x tcos y tsin ππ⎧=+⎪⎪⎨⎪=+⎪⎩即12122x y t ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数).(2)把直线l的参数方程12122x t y t ⎧=+⎪⎪⎨⎪=+⎪⎩代入x 2+y 2=16,得221)(2)162t ++=(,即t 2+2)t -11=0,所以t 1t 2=-11, 由参数方程的几何意义得,|PA|·|PB|=|t 1t 2|=11.【点睛】此题主要考察直线的参数方程和t 的几何意义,考察参数方程和普通方程的互化,意在考察学生对这些知识的理解掌握程度和分析推理才能.18.函数3233y x ax bx c =+++在2x =处有极值,且其图像在1x =处切线与6250x y ++=平行. 〔1〕求函数的单调区间;〔2〕求函数的极大值与极小值的差【答案】〔1〕单调递增区间是(),0-∞和()2,+∞函数的单调递减区间是()0,2;〔2〕4 【解析】【分析】〔1〕根据极值点是导函数对应方程的根,可知2x =为0y '=的根,结合导数的几何意义有1|x k y ='=,列出关于,a b 的方程组,求解可得到函数的解析式,令0y '>和0y '<,即可求得函数的单调区间; 〔2〕根据〔1〕可得0y '=的根,再结合单调性,即可得到函数的极大值与极小值,从而求得答案. 【详解】〔1〕函数3233y x ax bx c =+++,2363y x ax b ∴=++' 函数3233y x ax bx c =+++在2x =处有极值∴当2x =时0y '=121230a b ++=①函数图像在1x =处的切线与直线6250x y ++=平行,'36331k y a b x ∴==++=-=②由①②得1a =-,0b =,323yx x c ∴=-+那么2'36y x x =- 令2'360y x x =->解得0x <或者2x >,令2360y x x '=-﹤解得02x <<,∴函数的单调递增区间是(),0-∞和()2,+∞函数的单调递减区间是()0,2.〔2〕由〔1〕可知236y x x '=-令0y '=即2360x x -=解得0x =,2x = 函数(),0-∞上单调递增,在()2,+∞上单调递减,在()0,2上单调递增 ∴函数在0x =处获得极大值c 在2x =处获得极小值4c -+ ∴极大值与极小值的差为()44c c --+=.【点睛】此题考察导数的几何意义,利用导数研究函数的单调性,利用导数研究函数的极值,属于根底题.。
高二数学导数及其应用试题答案及解析

高二数学导数及其应用试题答案及解析1.函数的导数是()A.B.C.D.【答案】D【解析】===【考点】基本函数的求导公式、积的求导法则点评:本题比较简单,直接代入求导公式运算。
要求学生熟记公式。
2.已知直线是的切线,则的值为()A.B.C.D.【答案】C【解析】,则∴切点为,曲线过∴,。
【考点】切线方程、对数运算。
点评:根据导数的几何意义,先把切点利用k表示,再利用切点是切线和曲线的公共点代入已知方程求值。
3.在曲线y=2x2-1的图象上取一点(1, 1)及邻近一点(1+Δx,1+Δy),则等于A.4Δx+2Δx2B.4+2Δx C.4Δx+Δx2D.4+Δx【答案】B【解析】∵△y=2(1+△x)2-1-1=2△x2+4△x,∴=4+2△x,故选B.【考点】本题主要考查导数的概念。
点评:遵循“算增量,求比值”,细心计算。
4.(2006年福建卷)统计表明,某种型号的汽车在匀速行驶中每小时的耗油量(升)关于行驶速度(千米/小时)的函数解析式可以表示为:已知甲、乙两地相距100千米。
(I)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(II)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?【答案】(I)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油17.5升。
(II)当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升.【解析】分析:结合物理知识进行求解.解:(I)当时,汽车从甲地到乙地行驶了小时,要耗没(升)。
答:当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油17.5升。
(II)当速度为千米/小时时,汽车从甲地到乙地行驶了小时,设耗油量为升,依题意得令得当时,是减函数;当时,是增函数。
当时,取到极小值因为在上只有一个极值,所以它是最小值。
答:当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升.【考点】本小题主要考查函数、导数及其应用。
高二数学第一次月考试卷及答案

高二数学月考试卷答案(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某公共汽车上有15位乘客,沿途5个车站,乘客下车的可能方式有() A.515种B.155种C.50种D.50625种【解析】每位乘客都有5种不同的下车方式,根据分步乘法计数原理,共有515种可能的下车方式,故选A.【答案】A2.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法有() A.6种B.12种C.18种D.24种【解析】种植黄瓜有3种不同的种法,其余两块地从余下的3种蔬菜中选一种种植有3×2=6种不同种法.由分步乘法计数原理知共有3×6=18种不同的种植方法.故选C.【答案】C3.(1-x)6展开式中x的奇次项系数和为()A.32B.-32C.0D.-64【解析】(1-x)6=1-C16x+C26x2-C36x3+C46x4-C56x5+C66x6,所以x的奇次项系数和为-C16-C36-C56=-32,故选B.【答案】B4.甲、乙、丙三人参加某项测试,他们能达到标准的概率分别是0.8,0.6,0.5,则三人中至少有一人达标的概率是()A.0.04B.0.16C.0.24D.0.96【解析】三人都不达标的概率是(1-0.8)×(1-0.6)×(1-0.5)=0.04,故三人中至少有一人达标的概率为1-0.04=0.96.【答案】D5.正态分布密度函数为f(x)=122πe-x-128,x∈R,则其标准差为()A.1B.2C.4D.8【解析】根据f(x)=1σ2πe-x-μ22σ2,对比f(x)=122πe-x-128知σ=2.【答案】B6.随机变量X的分布列如下表,则E(5X+4)等于()X024P0.30.20.5A.16B.11C.2.2D.2.3【解析】由表格可求E(X)=0×0.3+2×0.2+4×0.5=2.4,故E(5X+4)=5E(X)+4=5×2.4+4=16.故选A.【答案】A7.三名教师教六个班的数学,则每人教两个班,分配方案共有()A.18种B.24种C.45种D.90种【解析】不妨设三名教师为甲、乙、丙.先从6个班中任取两个班分配甲,再从剩余4个班中,任取2个班分配给乙,最后两个班分给丙.由乘法计数原理得分配方案共C26·C24·C22=90(种).【答案】D8.在(x2+3x+2)5的展开式中x的系数为()A.140B.240C.360D.800【解析】由(x2+3x+2)5=(x+1)5(x+2)5,知(x+1)5的展开式中x的系数为C45,常数项为1,(x+2)5的展开式中x的系数为C45·24,常数项为25.因此原式中x的系数为C45·25+C45·24=240.【答案】B9.设随机变量ξ~B(n,p),若E(ξ)=2.4,D(ξ)=1.44,则参数n,p 的值为()【导学号:97270066】A.n=4,p=0.6B.n=6,p=0.4C.n=8,p=0.3D.n=24,p=0.1【解析】由二项分布的均值与方差性质得=2.4,1-p=1.44,=6,=0.4,故选B.【答案】B10.小明同学在网易上申请了一个电子信箱,密码由4位数字组成,现在小明只记得密码是由2个6,1个3,1个9组成,但忘记了它们的顺序.那么小明试着输入由这样4个数组成的一个密码,则他恰好能输入正确进入邮箱的概率是()A.16B.18C.112D.124【解析】由2个6,1个3,1个9这4个数字一共可以组成A44A22=12种不同的密码顺序,因此小明试着输入由这样4个数组成的一个密码,他恰好能输入正确进入邮箱的概率是P=1 12 .【答案】C11.利用下列盈利表中的数据进行决策,应选择的方案是()自然状况概率方案盈利(万元)S i PiA1A2A3A4S10.255070-2098S20.3065265282S30.45261678-10A.A1B.A2C.A3D.A4【解析】利用方案A 1,期望为50×0.25+65×0.30+26×0.45=43.7;利用方案A 2,期望为70×0.25+26×0.30+16×0.45=32.5;利用方案A 3,期望为-20×0.25+52×0.30+78×0.45=45.7;利用方案A 4,期望为98×0.25+82×0.30-10×0.45=44.6;因为A 3的期望最大,所以应选择的方案是A 3,故选C.【答案】C12.如图12,用五种不同的颜色给图中的A ,B ,C ,D ,E ,F 六个不同的点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同的颜色,则不同的涂色方法共()A.264种B.360种C.1240种D.1920种【解析】由于A 和E 或F 可以同色,B 和D 或F 可以同色,C 和D 或E 可以同色,所以当五种颜色都选择时,选法有C 13C 12A 55种;当五种颜色选择四种时,选法有C 45C 13×3×A 44种;当五种颜色选择三种时,选法有C 35×2×A 33种,所以不同的涂色方法共C 13C 12A 55+C 45C 13×3×A 44+C 35×2×A 33=1920.故选D.【答案】D二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.某科技小组有女同学2名、男同学x 名,现从中选出3名去参加展览.若恰有1名女生入选时的不同选法有20种,则该科技小组中男生的人数为________.【解析】由题意得C12·C2x=20,解得x=5.【答案】514.已知(1-x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则(a+a2+a4)·(a1+a3+a5)的值等于________.【解析】令x=1,得a0+a1+a2+a3+a4+a5=0,①再令x=-1,得a0-a1+a2-a3+a4-a5=25=32,②①+②得a0+a2+a4=16,①-②得a1+a3+a5=-16,故(a0+a2+a4)·(a1+a3+a5)的值等于-256.【答案】-25615.某射手射击1次,击中目标的概率是0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响,有下列结论:①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是0.9的3次方×0.1;③他至少击中目标1次的概率是1-0.1的4次方.其中正确结论的序号是________(写出所有正确结论的序号).解析:②中恰好击中目标3次的概率应为C34×0.93×0.1=0.93×0.4,只有①③正确.答案:①③16.抽样调查表明,某校高三学生成绩(总分750分)X近似服从正态分布,平均成绩为500分.已知P(400<X<450)=0.3,则P(550<X<600)=________.【解析】由下图可以看出P(550<X<600)=P(400<X<450)=0.3.【答案】0.3三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10x n =C 2xn ,x +1n =113C x -1n,试求x ,n 的值.【解】∵C x n =C n -x n =C 2xn ,∴n -x =2x 或x =2x (舍去),∴n =3x .由C x +1n =113C x -1n ,得n !x +1!n -x -1!=113·n !x -1!n -x +1!,整理得3(x -1)!(n -x +1)!=11(x +1)!(n -x -1)!,3(n -x +1)(n -x )=11(x +1)x .将n =3x 代入,整理得6(2x +1)=11(x +1),∴x =5,n =3x =15.18.18.(本小题满分12分)要从两名同学中挑出一名,代表班级参加射击比赛,根据以往的成绩记录同学甲击中目标的环数为X 1的分布列为X 15678910P 0.030.090.200.310.270.10同学乙击目标的环数X 2的分布列为X 256789P 0.010.050.200.410.33(1)请你评价两位同学的射击水平(用数据作依据);(2)如果其它班参加选手成绩都在9环左右,本班应派哪一位选手参赛,如果其它班参赛选手的成绩都在7环左右呢?(1)利用期望和方差公式求出两变量的期望和方差;(2)根据第(1)问的结论选择水平高的选手解:(1)EX 1=,EX 2==8DX 1=1.50DX 2=0.8两位同学射击平均中靶环数是相等的,同学甲的方差DX1大于同学乙的方差DX2,因此同学乙发挥的更稳定。
高二数学利用导数求最值和极值试题答案及解析

高二数学利用导数求最值和极值试题答案及解析1.函数的定义域为开区间,导函数在内的图象如图所示,则函数在开区间内有极小值点()A.个B.个C.个D.个【答案】A【解析】函数为增函数, 函数为减函数, 当且左侧,右侧时为极小值点,从而只有一个满足,答案选A..【考点】函数的导数与极值2.若函数在[-1,1]上有最大值3,则该函数在[-1,1]上的最小值是__________【答案】【解析】令得或,当时, ,当时, ,因此当时, ,所以,当时, ,当时, ,因此,答案为.【考点】导数与最值3.设函数,则的极小值点为()A.B.C.D.【答案】D【解析】因为,令得解得,又因为函数的定义域为,当时,,所以时为减函数;当时,,所以时为增函数;所以当时函数取得极小值;【考点】导数在求函数极值中的应用;4.已知函数,且是函数的极值点。
给出以下几个问题:①;②;③;④其中正确的命题是__________。
(填出所有正确命题的序号)【答案】①③【解析】的定义域为,,所以有,所以有即即,所以有;因为,所以有。
【考点】导数在求函数极值中的应用5.已知函数在处有极大值.(Ⅰ)求的值;(Ⅱ)若过原点有三条直线与曲线相切,求的取值范围;(Ⅲ)当时,函数的图象在抛物线的下方,求的取值范围.【答案】(Ⅰ)(Ⅱ)(Ⅲ)【解析】(Ⅰ)通过对函数f(x)求导,根据函数在x=2处有极值,可知f'(2)=0,解得a的值.(Ⅱ)把(1)求得的a代入函数关系式,设切点坐标,进而根据导函数可知切线斜率,则切线方程可得,整理可求得b的表达式,令g'(x)=0解得x1和x2.进而可列出函数g(x)的单调性进而可知-64<b<0时,方程b=g(x)有三个不同的解,结论可得.(Ⅲ)当x∈[-2,4]时,函数y=f(x)的图象在抛物线y=1+45x-9x2的下方,进而可知x3-12x2+36x+b<1+45x-9x2在x∈[-2,4]时恒成立,整理可得关于b的不等式,令h(x)=-x3+3x2+9x+1,对h(x)进行求导由h'(x)=0得x1和x2.分别求得h,h(-1),h(3),h(4),进而可知h(x)在[-2,4]上的最小值是,进而求得b的范围.试题解析:(Ⅰ),或,当时,函数在处取得极小值,舍去;当时,,函数在处取得极大值,符合题意,∴.(3分)(Ⅱ),设切点为,则切线斜率为,切线方程为,即,∴.令,则,由得,.函数的单调性如下:↗极大值↘极小值↗∴当时,方程有三个不同的解,过原点有三条直线与曲线相切.(8分)(Ⅲ)∵当时,函数的图象在抛物线的下方,∴在时恒成立,即在时恒成立,令,则,由得,.∵,,,,∴在上的最小值是,.(12分)【考点】等比关系的确定;利用导数研究函数的极值.6.已知函数,在点处的切线方程是(e为自然对数的底)。
高二数学导数的定义及其几何意义的应用例题+方法总结+课后作业

导数的概念及几何意义知识点一、导数的概念1. 导数的概念设函数=()y f x ,当自变量x 从0x 变1x 时,函数值从()0f x 变到()1f x ,函数值关于x 的平均变化率为()()()()100010=f x f x f x x f x y x x x x-+∆-∆=∆-∆, 当1x 趋于0x ,即x ∆趋于0时,如果平均变化率趋于一个固定的值,那么这个值就是函数=()y f x 在0x 点的导数,通常用符号()0'f x ‘表示,记作 ()()()xx f x x f x yx f x x ∆-∆+=∆∆'→∆→∆00000lim lim=注意:(1)导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率.如瞬时速度即是位移在这一时刻的瞬间变化率.(2)对于不同的实际问题,平均变化率富于不同的实际意义.如位移运动中,位移S 从时间1t 到2t 的平均变化率即为1t 到2t 这段时间的平均速度.(3)增量x ∆可以是正数,也可以是负,但是不可以等于0.0x ∆→的意义:x ∆与0之间距离要多近有多近,即|0|x ∆-可以小于给定的任意小的正数. (4)0x ∆→时,Δy 在变化中都趋于0,但它们的比值却趋于一个确定的常数.即存在一个常数与00()()f x x f x y x x+∆-∆=∆∆无限接近. (5)函数=()y f x 在0x 点的导数还可以用符号0'|x x y =表示.知识点二、导数的几何意义已知点00(,)P x y 是曲线=()y f x 上一定点,点00(,)Q x x y y +∆+∆是曲线=()y f x 上的()0'f x ‘表示曲线=()y f x 在0x x =处的切线的斜率,即()0'=tan f x α‘(α为切线的倾斜角)动点,我们知道平均变化率yx∆∆表示割线PQ 的斜率.如图所示:当点Q 无限接近于点P ,即0x ∆→时,割线PQ 的极限位置直线PT 叫做曲线在点P 处的切线.也就是:当0x ∆→时,割线PQ 斜率的极限,就是切线的斜率.即:0000()()limlim ()x x f x x f x yk f x x x∆→∆→+∆-∆'===∆∆.注意:(1)曲线上一点切线的斜率值只与该点的位置有关.(2)关于切线有两种不同的说法,求法也不同,具体求法与步骤参考类型二:①曲线在点P 处的切线:点P 在曲线上,在点P 处作曲线的切线(P 是切点),此时数量唯一.②曲线经过点P 处的切线:点P 位置不确定(在曲线上或曲线外),过点P 作曲线上任意位置的切线(只要切线经过点P 即可),数量不唯一.(3)直线与曲线相切⎫直线和曲线有1个公共点;有别于直线和圆,如图,直线l 2与曲线C 有唯一公共点M ,但我们不能说直线l 2与曲线C 相切;而直线l 1尽管与曲线C 相切,却有不止一个公共点.这也是我们用割线的极限位置来定义切线,而不说“与曲线只有一个公共点的直线叫做切线”的原因.知识点三、导数的物理意义在物理学中,如图物体运动的规律是()=s s t ,那么该物体在时刻0t 的瞬时速度v 就是()=s s t 在0=t t 时的导数,即()0='v s t ;如果物体运动的速度随时间变化的规律是()v v t =,那么物体在时刻0t 的瞬时加速度a 就是()v v t =在0=t t 时的导数,即()0'a v t =.题型一、导数定义的应用例1. 用导数的定义,求函数()y f x==x =1处的导数.【总结升华】利用定义求函数的导数值,有三步,即三步求导法,具体步骤如下: (1)求函数的增量:00()()y f x x f x ∆=+∆-; (2)求平均变化率:00()()f x x f x y x x+∆-∆=∆∆; (3)求极限,得导数:00000()()'()lim lim x x f x x f x yf x x x∆→∆→+∆-∆==∆∆.【变式1】已知函数()2=f x x x -+的图象上的一点)2,1(--A 及临近一点)2,1(y x B ∆+-∆+-,则=∆∆xy,()'1=f - .【变式2】求函数 2()3f x x =在x =1处的导数.【变式3】求函数()2f x x x =-+在1x =-附近的平均变化率,并求出在该点处的导数.例2. 已知函数()24f x x=,求()f x '.【变式1】求函数y =在(0,)+∞内的导函数. 【变式2】已知()f x =,求'()f x ,'(2)f .例3(1)若0'()2f x =,则000()()lim2k f x k f x k→--=________.()2若(3)2f '=,则1(3)(12)lim 1x f f x x →-+=-【变式1】函数)(x f 满足2)1('=f ,则当x 无限趋近于0时,(1)=-+xf x f 2)1()1( ;(2)=-+xf x f )1()21( .【变式2】若0'()f x a = (1)求()()xx f x x f x ∆-∆-→∆000lim的值;(2)求000()()lim x f x x f x x x∆→+∆--∆∆的值.【变式3】设函数()f x 在点x 0处可导,则000()()lim2h f x h f x h h→+--=________.题型二、求曲线的切线方程方法总结:1.求曲线()y f x =在0x x =处切线的步骤:(1)先求()0'f x ,即曲线()y f x =在))((00x f x P ,处切线的斜率. (2)再求()0f x ,则切线过点()()00x f x ,;(2)最后由点斜式写出直线方程:()000=()()y f x f x x x '--.特别的,如果()y f x =在点00(())x f x ,处的切线平行于y 轴(此时导数不存在)时,由切线定义知:切线方程为:0x x =. 2.求曲线()f x 经过点()00P x y ,的切线方程的一般步骤: (1)求导函数()'f x ;(2)验证点P 是否在曲线上:计算()0f x ,观察()00=f x y 是否成立; (3)分类讨论:①若()00=f x y ,则P 是切点,切线唯一,方程为()000=()()y f x f x x x '--: ②若()00f x y ≠,则P 不是切点,求切点:设切点坐标为()()a f a ,,则切线方程()=()()y f a f a x a '--,代入点()00P x y ,坐标,求出a 的值(注意0a x ≠),可得切线方程.例4.求曲线21y x =+在点()12P ,处的切线方程.【变式】求曲线215y x x=++上一点2x =处的切线方程.例5.求曲线()3f x x =经过点(1,1)P 的切线方程.例6.过点(1,-1)且与曲线y =x 3-2x 相切的直线方程为( )A .x -y -2=0或5x +4y -1=0B .x -y -2=0C .x -y -2=0或4x +5y +1=0D .x -y +2=0【变式1】 已知函数3()3f x x x =-,过点(2,2)作函数图象的切线. 求切线方程.【变式2】已知曲线1y x=. (1)求曲线过点()10A ,的切线方程; (2)求满足斜率为13-的曲线的切线方程.【变式3】设函数32()2f x x ax bx a =+++,2()32g x x x =-+(其中x ∈R ,,a b 为常数).已知曲线()y f x =与()y g x =在点(2,0)处有相同的切线l .求,a b 的值,并写出切线l 的方程.题型三、导数的实际应用例6.蜥蜴的体温与阳光的照射有关,其关系为()120155T t t =++,其中()T t 为体温(单位:℃),t 为太阳落山后的时间(单位:min).计算()2T ',并解释它的实际意义.【变式1】设一个物体的运动方程是:2021)(at t v t s +=,其中0v 是初速度(单位:m ),t 是时间(单位:s ).求:2s t =时的瞬时速度(函数s(t)的瞬时变化率).课后作业1.若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 的值为( )A .-1或-2564B .-1或214C .-74或-2564D .-74或72.已知f(x)为偶函数,当x <0时,f(x)=f (-x )+3x ,则曲线y=f (x )在点(1,-3)处的切线方程是3.设曲线y=ax-ln (x+1)在点(0,0)处的切线方程为y=2x ,则a=A. 0B.1C.2D.34.若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b=5.若曲线y=e -x 上点P 处的切线平行于直线2x+y+1=0,则点P 的坐标是6.在平面直角坐标系中,若曲线y=ax 2+xb(a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x+2y+3=0平行,则a+b=7.设点P 在曲线y=21e x上,点Q 在曲线y=ln (2x )上,则▕PQ ▏的最小值为A.1-ln2B.2(1-ln2)C.1+ln2D.2(1+ln2) 8.若存在过点(1,0)的直线与曲线y=x 3和y=ax 2+415x-9都相切,则a 等于 9.抛物线y=x 2上的点到直线x-y-2=0的最短距离为 A.2B.827C. 22D. 110.已知点P 在曲线y=14x e 上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是。
高二数学导数及其应用练习题

高二上学期《导数及其应用》单元测试(数学文)(满分:150分 时间:120分钟)一、选择题(本大题共10小题,共50分,只有一个答案正确) 1.函数()22)(x x f π=的导数是( )(A) x x f π4)(=' (B) x x f 24)(π=' (C) x x f 28)(π=' (D) x x f π16)(='2.函数xe x xf -⋅=)(的一个单调递增区间是( )(A)[]0,1- (B) []8,2 (C) []2,1 (D) []2,03.已知对任意实数x ,有()()()()f x f x g x g x -=--=,,且0x >时,()0()0f x g x ''>>,,则0x <时( )A .()0()0f x g x ''>>,B .()0()0f x g x ''><,C .()0()0f x g x ''<>,D .()0()0f x g x ''<<,4.若函数b bx x x f 33)(3+-=在()1,0内有极小值,则( ) (A ) 10<<b (B ) 1<b (C ) 0>b (D ) 21<b 5.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++= 6.曲线xy e =在点2(2)e ,处的切线与坐标轴所围三角形的面积为( )A.294eB.22eC.2eD.22e7.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )8.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有()0f x ≥,则(1)'(0)f f 的最小值为( ) A .3 B .52 C .2 D .329.设2:()e ln 21x p f x x x mx =++++在(0)+∞,内单调递增,:5q m -≥,则p 是q 的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件10. 函数)(x f 的图像如图所示,下列数值排序正确的是( )(A ))2()3()3()2(0//f f f f -<<<(B ) )2()2()3()3(0//f f f f <-<<(C ))2()3()2()3(0//f f f f -<<<(D ))3()2()2()3(0//f f f f <<-< O 1 2 3 4 x 二.填空题(本大题共4小题,共20分)11.函数()ln (0)f x x x x =>的单调递增区间是____.12.已知函数3()128f x x x =-+在区间[3,3]-上的最大值与最小值分别为,M m ,则M m -=__. 13.点P 在曲线323+-=x x y 上移动,设在点P 处的切线的倾斜角为为α,则α的取值范围是 14.已知函数53123-++=ax x x y (1)若函数在()+∞∞-,总是单调函数,则a 的取值范围是 . (2)若函数在),1[+∞上总是单调函数,则a 的取值范围 .(3)若函数在区间(-3,1)上单调递减,则实数a 的取值范围是 . 三.解答题(本大题共4小题,共12+12+14+14+14+14=80分)15.用长为18 cm 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?16.设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值.(1)求a 、b 的值;(2)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围.17.设函数3()32f x x x =-++分别在12x x 、处取得极小值、极大值.xoy 平面上点A B 、的坐标分别为11()x f x (,)、22()x f x (,),该平面上动点P 满足•4PA PB =,点Q 是点P 关于直线2(4)y x =-的对称点,.求(Ⅰ)求点A B 、的坐标; (Ⅱ)求动点Q 的轨迹方程. 18. 已知函数32()23 3.f x x x =-+ (1)求曲线()y f x =在点2x =处的切线方程;(2)若关于x 的方程()0f x m +=有三个不同的实根,求实数m 的取值范围.19.已知()R a x x a ax x f ∈+++-=14)1(3)(23(1)当1-=a 时,求函数的单调区间。
高二数学上学期第一次月考试题含解析 试题

智才艺州攀枝花市创界学校潜山第二二零二零—二零二壹高二数学上学期第一次月考试题〔含解析〕第I 卷〔选择题,一共60分〕一、选择题:〔本大题一一共12小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的〕A ={x |x >1},B ={x |x 2-2x <0},那么A ∪B 等于()A.{x |x >0}B.{x |x >1}C.{x |1<x <2}D.{x |0<x <2}【答案】A 【解析】 【分析】先解出集合B ,再由并集的定义即可求出. 【详解】因为集合{}02B x x =<<,A ={x |x >1},所以{}0A B x x ⋃=>.应选:A .【点睛】此题主要考察集合的并集运算,属于根底题.x 的终边上一点的坐标为(sin56π,cos 56π),那么角x 的最小正值为() A.56πB.53π C.116π D.23π 【答案】B【解析】 【分析】先根据角x 终边上点的坐标判断出角x 的终边所在象限,然后根据三角函数的定义即可求出角x 的最小正值.【详解】因为5sin06π>,5cos 06π<,所以角x 的终边在第四象限,根据三角函数的定义,可知 53sin cos 62x π==-,故角x 的最小正值为5233x πππ=-=.应选:B .【点睛】此题主要考察利用角的终边上一点求角,意在考察学生对三角函数定义的理解以及终边一样的角的表示,属于根底题.3.数列{a n }是等差数列,a 1+a 7=-8,a 2=2,那么数列{a n }的公差d 等于〔〕 A.-1 B.-2C.-3D.-4【答案】C 【解析】试题分析:由等差数列的性质知,,所以,又,解得:,应选C .考点:1、等差数列的性质;2、等差数列的通项公式.a >0,b >0,且ln (a +b )=0,那么11a b+的最小值是() A.14B.1C.4D.8【答案】C 【解析】 【分析】先将对数式化指数式,再根据根本不等式即可求出. 【详解】由()ln0a b +=得1a b +=,所以()11112224b aa b a b a b a b⎛⎫+=++=++≥+= ⎪⎝⎭, 当且仅当12ab ==时取等号,故11a b+的最小值是4. 应选:C .【点睛】此题主要考察对数的性质以及根本不等式中“1的代换〞的应用,属于根底题. 5.m ,n 表示两条不同直线,α表示平面.以下说法正确的选项是() A.假设m ∥α,n ∥α,那么m ∥n B .假设m ⊥α,n ⊂α,那么m ⊥nC.假设m ⊥α,m ⊥n ,那么n ∥αD.假设m ∥α,m ⊥n ,那么n ⊥α 【答案】B 【解析】 【分析】根据线线、线面关系的定义、性质、结论和断定定理对各项逐个判断即可. 【详解】对于A ,假设,mn αα,那么m 与n 可能平行,可能相交,可能异面,所以A 错误;对于B ,根据线面垂直的定义可知,正确; 对于C ,假设,m m n α⊥⊥,那么n α或者n ⊂α,所以C 错误;对于D ,假设,m m n α⊥,那么n 可能垂直于α,也可能n⊂α,也可能n α,所以D 错误.应选:B .【点睛】此题主要考察空间线线、线面关系的判断,意在考察学生的直观想象和逻辑推理才能,属于中档题. 〔1,1〕在圆()()224x a y a -++=的内部,那么a 的取值范围是〔〕A.11a -<<B.01a <<C.1a <-或者1a >D.1a =±【答案】A 【解析】因为点〔1,1〕在圆内部,所以22(1)(1)4a a -++<,解之得11a -<<.x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,那么a 的范围是()A.a <-2或者a >23B.-23<a <2C.-2<a <0D.-2<a <23【答案】D 【解析】 【分析】先把圆的一般方程化为圆的HY 方程,由此可求得a 的范围. 【详解】由题意可得圆的HY 方程2223()()124a x y a a a +++=--,由23104a a -->解得223a -<<,选D.【点睛】圆的一般方程220x y Dx Ey F ++++=,化HY 方程为22224()()224D E D E F x y +-+++=〔其中2240D E F +->〕,圆心为(,)22D E--,半径2r =.8.点P 〔2,﹣1〕为圆〔x ﹣1〕2+y 2=25的弦AB 的中点,那么直线AB 的方程为〔〕 A.x+y ﹣1=0B.2x+y ﹣3=0C.x ﹣y ﹣3=0D.2x ﹣y ﹣5=0【答案】C【解析】试题分析:由垂径定理,得AB中点与圆心C的连线与AB互相垂直,由此算出AB的斜率k=1,结合直线方程的点斜式列式,即可得到直线AB的方程.解:∵AB是圆〔x﹣1〕2+y2=25的弦,圆心为C〔1,0〕∴设AB的中点是P〔2,﹣1〕满足AB⊥CP因此,PQ的斜率k===1可得直线PQ的方程是y+1=x﹣2,化简得x﹣y﹣3=0应选C考点:直线与圆相交的性质.9.一个算法:(1)m=a.(2)假设b<m,那么m=b,输出m;否那么执行第(3)步.(3)假设c<m,那么m=c,输出m.假设a=3,b=6,c=2,那么执行这个算法的结果是()A.3B.6C.2D.m【答案】C【解析】【分析】根据算法的功能可知,输出三个数中的最小值,即可求解.【详解】根据算法的功能可知,输出三个数中的最小值,故执行这个算法的结果是2.应选:C.【点睛】此题主要考察对算法语句以及算法功能的理解.C 的方程为22(2)(1)9x y -++=,直线l 的方程为320x y -+=,那么曲线C 上到直线l 的间隔为10的点的个数为〔〕A.1B.2C.3D.4【答案】B 【解析】试题分析:由22(2)(1)9x y -++=,可得圆心坐标为(2,1)C -,半径为3r =,那么圆心到直线的间隔为d ===,所以此时对应的点位于过圆心C 的直径上,所以满足条件的点有两个,应选B . 考点:直线与圆的位置关系.【方法点晴】此题主要考察了直线与圆的位置关系的应用,其中解答中涉及到点到直线的据公式和直线与圆位置关系的断定与应用,试题思维量和运算量较大,属于中档试题,着重考察了学生分析问题和解答问题的才能,以及数形结合思想的应用,此类问题平时需要注意方法的积累和总结.11.两点A 〔-2,0〕,B 〔0,2〕,点C 是圆x 2+y 2-2x =0上任意一点,那么△ABC 面积的最小值是〔〕A.3B.3C.3 【答案】A 【解析】 试题分析:圆C的HY 方程为22(1)1x y -+=,圆心为(1,0)D ,半径为1,直线AB 方程为122x y+=-,即20x y -+=,D 到直线AB 的间隔为2d ==,点C 到AB 的间隔的最小值为1-,AB =,所以ABC∆面积最小值为11)32S =⨯=.应选A . 考点:点到直线的间隔.(1,1)P 的直线,将圆形区域{}22(,)|4x y x y +≤分两局部,使得这两局部的面积之差最大,那么该直线的方程为 A.20x y +-= B.10y -=C.0x y -=D.340x y +-=【答案】A 【解析】要使直线将圆形区域分成两局部的面积之差最大,通过观察图形,显然只需该直线与直线OP 垂直即可,又P(1,1),那么所求直线的斜率为-1,又该直线过点P(1,1),易求得该直线的方程为x +y -2=0.应选A.第II 卷〔非选择题,一共90分〕二、填空题(本大题一一共4小题,每一小题5分,一共20分.)13.函数的定义域为___________________________.【答案】()1,1- 【解析】 【分析】根据函数表达式得到使得函数有意义只需要210340x x x +>⎧⎨--+>⎩,解这个不等式获得交集即可. 【详解】由210340x x x +>⎧⎨--+>⎩得-1<x<1. 故答案为()1,1-.【点睛】求函数定义域的类型及求法:(1)函数解析式:构造使解析式有意义的不等式(组)求解;(2)抽象函数:①假设函数f (x )的定义域为[a ,b ],其复合函数f [g (x )]的定义域由a ≤g (x )≤b 求出;②假设函数f [g (x )]的定义域为[a ,b ],那么f (x )的定义域为g (x )在x ∈[a ,b ]上的值域. C 经过(5,1),(1,3)A B 两点,圆心在x 轴上,那么C 的方程为__________.【答案】22(2)10x y -+=.【解析】 【分析】由圆的几何性质得,圆心在AB 的垂直平分线上,结合题意知,求出AB 的垂直平分线方程,令0y =,可得圆心坐标,从而可得圆的半径,进而可得圆的方程. 【详解】由圆的几何性质得,圆心在AB 的垂直平分线上,结合题意知,AB 的垂直平分线为24y x =-,令y =,得2x =,故圆心坐标为(2,0),所以圆的半径=22(2)10x y -+=.【点睛】此题主要考察圆的性质和圆的方程的求解,意在考察对根底知识的掌握与应用,属于根底题. 15.执行如图的程序框图,假设输入的ε的值是0.25,那么输入的n 的值_____.【答案】3. 【解析】根据运行顺序计算出11F 的值,当11F ≤ε时输出n 的值,完毕程序.由程序框图可知:第一次运行:F 1=1+2=3,F 0=3-1=2,n =1+1=2,11F =13>ε,不满足要求,继续运行; 第二次运行:F 1=2+3=5,F 0=5-2=3,n =2+1=3,11F =15=0.2<ε,满足条件. 完毕运行,输出n =3.【此处有视频,请去附件查看】,a b 夹角为45︒,且1,210a a b =-=,那么b =__________.【答案】32【解析】试题分析:的夹角,,,,.考点:向量的运算.【思路点晴】平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用.利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.列出方程组求解未知数.三、解答题(本大题一一共6小题,一共70分.解容许写出文字说明,证明过程或者演算步骤) 17.如下列图,底角为45°的等腰梯形ABCD ,底边BC 长为7cm ,腰长为2cm ,当一条垂直于底边BC (垂足为F )的直线l 从B 点开场由左至右挪动(与梯形ABCD 有公一共点)时,直线l 把梯形分成两局部,令BF =x (0≤x ≤7),左边局部的面积为y ,求y 与x 之间的函数关系式,画出程序框图,并写出程序.【答案】221,02222,251(7)10,572x x y x x x x ⎧≤≤⎪⎪=-<≤⎨⎪⎪-+<<⎩,程序框图和程序见解析. 【解析】 【分析】根据直线l 将梯形分割的左边局部的形状进展分类讨论,求出函数关系式,即可根据条件构造画出程序框图,并写出程序.【详解】过点A ,D 分别作AG ⊥BC ,DH ⊥BC ,垂足分别是G ,H .∵四边形ABCD 是等腰梯形,底角是45°,AB =2cm ,∴BG =AG =DH =HC =2cm .又BC =7cm ,∴AD =GH =3cm ,当02x ≤≤时,212y x =; 当25x <≤时,22y x =-; 当57x <<时,21(7)102y x =-+, 所以221,02222,251(7)10,572x x y x x x x ⎧≤≤⎪⎪=-<≤⎨⎪⎪-+<<⎩. 程序框图如下:程序:INPUT “x =〞;xIFx >=0ANDx <=2THENy =0.5*x ^2ELSEIFx <=5THENy =2*x -2ELSEy =-0.5*(x -7)^2+10ENDIFENDIFPRINTyEND【点睛】此题主要考察分段函数解析式的求法、程序框图的画法以及程序语句的书写,意在考察学生分类讨论思想和算法语句的理解和书写.xOy 中,曲线261y x x =-+与坐标轴的交点都在圆C 上,那么圆C 的方程为.【答案】22(3)(1)0.x y -+-= 【解析】【详解】试题分析:根据题意令y=0,可知23610,y x x x =-+==±∴同时令x=0,得到函数与y 轴的交点坐标为〔0,1〕,那么利用圆的性质可知,与x 轴的两个根的中点坐标即为圆心的横坐标为3,设圆心为:(3,)t ,那么229(1)8t t +-=+,解得1t = 因此可知圆的方程为22(3)(1)0.x y -+-=,故答案为22(3)(1)0.x y -+-=.考点:本试题考察了抛物线与坐标轴的交点问题.点评:解决该试题的关键是确定出交点的坐标,然后结合交点坐标,得到圆心坐标和圆的半径,进而秋季诶圆的方程,属于根底题.19.如图,在四棱锥P ﹣ABCD 中,PA⊥底面ABCD ,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC ,E 是PC 的中点.〔1〕求PB 和平面PAD 所成的角的大小;〔2〕证明AE⊥平面PCD .【答案】〔1〕45°;〔2〕见解析【解析】试题分析:〔1〕先找出PB 和平面PAD 所成的角,再进展求解即可;〔2〕可以利用线面垂直根据二面角的定义作角,再证明线面垂直.〔1〕解:在四棱锥P ﹣ABCD 中,因PA⊥底面ABCD ,AB ⊂平面ABCD ,故PA⊥AB.又AB⊥AD,PA∩AD=A,从而AB⊥平面PAD ,故PB 在平面PAD 内的射影为PA ,从而∠APB 为PB 和平面PAD 所成的角.在Rt△PAB 中,AB=PA ,故∠APB=45°.所以PB 和平面PAD 所成的角的大小为45°.〔2〕证明:在四棱锥P ﹣ABCD 中,因为PA⊥底面ABCD ,CD ⊂平面ABCD ,所以CD⊥PA.因为CD⊥AC,PA∩AC=A,所以CD⊥平面PAC .又AE ⊂平面PAC ,所以AE⊥CD.由PA=AB=BC ,∠ABC=60°,可得AC=PA .因为E 是PC 的中点,所以AE⊥PC.又PC∩CD=C,所以AE⊥平面PCD .考点:直线与平面所成的角;直线与平面垂直的断定.()f x 是(),-∞+∞上的奇函数,()()2f x f x +=-,当01x ≤≤时,()f x x =.〔1〕求()f π的值;〔2〕当44x -≤≤时,求()f x 的图象与x 轴所围成图形的面积.【答案】〔1〕4π-〔2〕4 【解析】【分析】〔1〕由()()2f x f x +=-可推出函数()f x 是以4为周期的周期函数,再利用函数的周期性及奇偶性可得()()()()1444f f f f ππππ=-⨯+=-=--, 再利用函数在[]0,1上的解析式即可得解,〔2〕由函数的周期性、奇偶性及函数在[]0,1上的解析式,作出函数在[]4,4-的图像,再求()f x 的图象与x 轴所围成图形的面积即可.【详解】解:〔1〕由()()2f x f x +=-得,()()()()4222f x f x f x f x +=++=-+=⎡⎤⎣⎦,所以()f x 是以4为周期的周期函数, 所以()()()()1444f f f f ππππ=-⨯+=-=--()44ππ=--=-.〔2〕由()f x 是奇函数且()()2f x f x +=-, 得()()()1211f x f x f x -+=--=--⎡⎤⎡⎤⎣⎦⎣⎦, 即()()11f x f x +=-.故知函数()y f x =的图象关于直线1x =对称.又当01x ≤≤时,()f x x =,且()f x 的图象关于原点成中心对称,那么()f x 44x -≤≤时,()f x 的图象与x 轴围成的图形面积为S ,那么1442142OAB S S ∆⎛⎫==⨯⨯⨯= ⎪⎝⎭. 【点睛】此题考察了函数的周期性、奇偶性及函数的图像,主要考察了函数性质的应用,重点考察了作图才能,属中档题.()2cos sin 34f x x x x π⎛⎫=⋅++ ⎪⎝⎭,x R ∈.〔Ⅰ〕求()f x 的最小正周期;〔Ⅱ〕求()f x 在,44ππ⎡⎤-⎢⎥⎣⎦上的最小值和最大值. 【答案】〔Ⅰ〕π;〔Ⅱ〕最小值12-和最大值14. 【解析】 试题分析:〔1〕由利用两角和与差的三角函数公式及倍角公式将()f x 的解析式化为一个复合角的三角函数式,再利用正弦型函数()sin y A x B ωϕ=++的最小正周期计算公式2T πω=,即可求得函数()f x 的最小正周期;〔2〕由〔1〕得函数,分析它在闭区间上的单调性,可知函数()f x 在区间上是减函数,在区间上是增函数,由此即可求得函数()f x 在闭区间上的最大值和最小值.也可以利用整体思想求函数()f x 在闭区间上的最大值和最小值.由,有 ()f x 的最小正周期. 〔2〕∵()f x 在区间上是减函数,在区间上是增函数,,,∴函数()f x 在闭区间上的最大值为,最小值为.考点:1.两角和与差的正弦公式、二倍角的正弦与余弦公式;2.三角函数的周期性和单调性.22.设数列{a n }的前n 项和为S n ,a 1=1,S n +1=4a n +2.(1)设b n =a n +1−2a n ,证明:数列{b n }是等比数列;(2)求数列{a n }的通项公式.【答案】(1)见解析;(2)a n=(3n−1)·2n−2.【解析】(1)由a1=1及S n+1=4a n+2,得a1+a2=S2=4a1+2.∴a2=5,∴b1=a2−2a1=3.又①−②,得a n+1=4a n−4a n−1,∴a n+1−2a n=2(a n−2a n−1).∵b n=a n+1−2a n,∴b n=2b n−1,故{b n}是首项b1=3,公比为2的等比数列. (2)由(1)知b n=a n+1−2a n=3·2n−1,∴−=,故是首项为,公差为的等差数列.∴=+(n−1)·=,故a n=(3n−1)·2n−2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018年第一学期第一次月考试卷
高二 数学
(时间120分钟,分值150分)
说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)
第Ⅰ卷(选择题,共60分)
一、 选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项
是符合题目要求的,请将所选答案写在答题卡上) 1.集合{5|<∈*
x N x }的用列举法表示为( )
A .{0,1,2,3,4}
B .{1,2,3,4}
C .{0,1,2,3,4,5}
D .{1,2,3,4,5}
2.4
21
dx x ⎰等于 ( ) A .2ln 2- B .2ln 2 C .ln 2- D .ln 2
3.下列式子不正确的是 ( )
A .()
23cos 6sin x x x x '+=- B .()1ln 22ln 2x x x x '-=-
C. ()2sin 22cos 2x x '= D .2sin cos sin x x x x x x '-⎛⎫= ⎪⎝⎭
4.下列函数中,在( 0,+∞ )上为增函数的是( )
A. y =sin2x
B. y =x3-x
C. y =xex
D. y =ln(1+x)-x 5. 函数x
e x x
f )3()(-=的单调递增区间是
( )
A. )2,(-∞ B .(0,3) C .(1,4) D. ),2(+∞ 6.若曲线2
y x ax b =++在点(0,)b 处的切线方程是10x y -+=,则( )
A .1,1a b ==
B .1,1a b =-=
C .1,1a b ==-
D .1,1a b =-=-
7.如果10N 的力能使弹簧压缩10cm ,为在弹性限度内将弹簧从平衡位置拉到离平衡位置6cm 处,则克服弹力所做的功为( )
A 0.28J
B 0.12J
C 0.26J
D 0.18J
8.已知
2
2
316
x k dx +=⎰(),则k =
A. 1
B. 2
C. 3
D. 4
9.设f(x)、g(x)分别是定义在R 上的奇函数和偶函数,当x <0时,()()()()f x g x f x g x ''+>0. 且 A .(-3,0)∪(3,+∞) B .(-3,0)∪(0, 3) C .(-∞,- 3)∪(3,+∞) D .(-∞,- 3)∪(0, 3)
10.对于R 上可导的任意函数()f x ,若满足(2)()0x f x '->,则必有
A. (2)(0)(3)f f f <<-
B. (3)(0)(2)f f f -<<
C. (0)(2)(3)f f f <<-
D. (2)(3)(0)f f f <-<
12.函数()y f x =在定义域3
(,3)
2-内可导,其图象如图所示,记()y f x =的导函数为()y f x '=,则不等式()0f x '≤的解集为 ( )
A .[)
1,12,33⎡⎤-⎢
⎥⎣⎦
B .
[]481,2,33⎡⎤
-⎢⎥
⎣⎦ C .[]31,1,222⎡⎤-⎢⎥⎣⎦ D .3148,1,,32233⎛⎤⎡⎤⎡⎫-- ⎪⎥⎢⎥⎢⎝⎦⎣⎦⎣⎭
第Ⅱ卷(非选择题,共90分)
二、填空题(每小题5分,共20分.请将答案写在答题卡上.) 13.设集合{1,2,3}A =,集合{2,2}B =-,则A ∪B = . 13. 3
22
1(3)x dx
--⎰
=_______________
14.求曲线
sin x
y x =
在点M (π,0)处的切线方程_______________
15.函数
3
()31f x x x =-+在闭区间[-3,0]上的最大值、最小值分别是_______________
2017-2018学年第一学期高二数学第一次月考答题卷
一、选择题(每小题5分,共60分)
题号 1 2 3 4 5 6 7 8 9 10 11 12 答案
二、填空题(每小题5分,共20分)
11. ; 12. ;13. ; 14. .
三、解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)
班级 姓名 学号 ……………密………………………………封……………………………线…………………………………………………
17、已知函数
3
()3f x x x =-. (Ⅰ)求)2(f '的值; (Ⅱ)求函数()f x 的单调区间.
18、已知函数⎥⎦
⎤⎢⎣⎡∈++-=1,32,322
3x x x x y ,求此函数的(1)单调区间; (2)值域.
19.设函数
32
()2338f x x ax bx c =+++在1x =及2x =时取得极值. (Ⅰ)求a 、b 的值;
(Ⅱ)若对于任意的[03]x ∈,
,都有2
()f x c <成立,求c 的取值范围.
19、 已知曲线2
1:2C y x =与
2
21
:2C y x =在第一象限内交点为P. (1)求过点P 且与曲线2C 相切的直线方程;
(2)求两条曲线所围图形(如图所示阴影部分)的面积S.
21.请你设计一矩形海报, 要求版心面积为162dm2, 上、下两边各空2dm ,左、右两边各空1dm. 如何设计海报的尺寸, 才能使四周空白面积最小?
21、某市旅游部门开发一种旅游纪念品,每件产品的成本是15元,销售价是20元,月平均销售a 件.通过改进工艺,产品的成本不变,质量和技术含金量提高,市场分析的结果表明,如果产
品的销售价提高的百分率为(01)x x <<,那么月平均销售量减少的百分率为2x .记改进工艺后,
旅游部门销售该纪念品的月平均利润是y (元).
(Ⅰ)写出y 与x 的函数关系式;
(Ⅱ)改进工艺后,确定该纪念品的售价,使旅游部门销售该纪念品的月平均利润最大。