高三化学-水解和电离
电离和水解的关系
电离和水解的关系
电离和水解是分子中的化学反应,它们之间存在一定的关系。
电离就是把分子中的原子电子脱除而形成离子,而水解是把分子中的原子电子进行重新排列,形成新的化合物,这两者之间有着密切的联系。
电离和水解是发生在分子中的重要化学反应,它们都会引起分子内部的不稳定,使得原子电子结构发生变化,从而产生新的离子或化合物。
因此,电离和水解之间存在着一定的联系。
首先,电离是化学反应中的一种,它的反应原理是原子电子结构发生变化,从而分裂出离子,也就是说,它是把分子中的原子电子脱除而形成离子。
相应地,水解也是一种化学反应,它会将分子中的原子电子重新排列,形成新的化合物。
它们都会造成分子内部发生不稳定,从而产生新的离子或化合物。
因此,电离和水解之间存在着一定的联系。
其次,电离和水解之间也存在着反过程的关系。
电离是把分子中的原子电子脱除而形成离子,那么,反过来,如果把离子放在一起,它们就会结合成分子,而这就是水解的过程,即原子电子重新排列形成新的化合物。
因此,
电离和水解之间存在着反过程的关系,两者之间是相互联系的。
最后,电离和水解之间还存在着能量的关系。
电离和水解是一种化学反应,它们都需要能量的消耗,其能量来源可以是外界的太阳能、化学反应的热量等。
而且,当发生电离或水解时,它们也会释放能量,比如说,当离子在水中结合成分子时,就会释放出能量,而这也是它们之间的关系。
总结起来,电离和水解之间存在着一定的关系,它们都会引起分子内部的不稳定,使得原子电子结构发生变化,从而产生新的离子或化合物;它们之间还存在着反过程的关系,发生电离或水解时,都会消耗和释放能量。
高三化学水解电离知识点
高三化学水解电离知识点化学是高中学习中的一门重要科目,其中水解和电离是化学中的两个基本概念,在高三学习中也是重点内容。
下面将介绍高三化学中关于水解和电离的知识点。
一、水解的概念和分类1. 水解的概念:水解是指化合物与水分子发生反应,被水分子分解成更简单的物质的过程。
2. 水解的分类:水解反应可以分为酸性水解、碱性水解和盐类水解三种类型。
- 酸性水解:当化合物与酸反应时,发生酸性水解,产生酸根离子或酸。
- 碱性水解:当化合物与碱反应时,发生碱性水解,产生碱根离子或碱。
- 盐类水解:当盐类溶解在水中时,发生盐类水解,产生盐的阳离子或阴离子与水分子反应生成的溶液。
二、水解反应的影响因素1. 温度:温度升高会加速水解反应的进行,反之则会减缓反应速率。
2. 浓度:反应物浓度的增加会导致水解反应速率的加快。
3. 原料的性质:不同种类的原料发生水解反应的速率也会不同。
三、电离的概念和分类1. 电离的概念:电离是指化合物在溶液中分解成带电离子的过程。
2. 电离的分类:电离可以分为离子的形成和电解质的分类两个方面。
- 离子的形成:当化合物溶解在水中时,其中的分子会分解成带电的离子。
- 电解质的分类:电解质可以分为强电解质和弱电解质两种类型。
四、强电解质和弱电解质1. 强电解质:具有完全电离的性质,溶解度大,溶液中离子的浓度高。
2. 弱电解质:仅部分电离,溶解度小,溶液中离子的浓度低。
五、电离度和电离常数1. 电离度:电离度是描述溶液中电解质溶解程度的物理量,用符号α 表示。
2. 电离常数:反映溶液中电解质电离程度的物理量,用符号 K 表示。
六、酸碱中的水解和电离1. 酸的水解:酸溶液中的水会发生水解反应,生成氢离子(H+),使溶液呈酸性。
2. 碱的水解:碱溶液中的水会水解生成氢氧根离子(OH-),使溶液呈碱性。
3. 酸的电离:酸溶液中的酸分子会电离生成氢离子(H+)。
4. 碱的电离:碱溶液中的碱分子会电离生成氢氧根离子(OH-)。
水解方程式和电离方程式的区别
水解方程式和电离方程式的区别水解方程式和电离方程式的区别水解方程式和电离方程式的区别一般情况下,水解与电离都是解离过程,但两者又有着本质的区别。
一、原理不同原理不同。
水解反应是水分子( H+)在溶液中分解生成氢离子( H+)、氢氧根离子( OH-)和水的反应;而电离是水的分子( H +)或者H离子( H+)在溶液中分解生成氢离子( H+)、氢氧根离子( OH-)和水的反应。
二、条件不同方程式内容不同。
水解的条件是水分子( H+)在溶液中完全解离成氢离子( H+)和氢氧根离子( OH-);而电离的条件是水分子( H+)或者H离子( H+)在溶液中部分解离成氢离子( H+)、氢氧根离子( OH-)和水;水电离的方程式为: OH-+H+==H++OH-。
结果形成不同。
水解时,水解反应中水的化合价降低,离子键断裂,化合物分解成离子化合物;电离时,电离反应中水的化合价升高,离子键断裂,水被分解成氢离子( H+)和氢氧根离子( OH-)。
三、应用范围不同。
水解是在水溶液中发生的化学反应,可以发生在酸、碱、盐溶液中,应用于中和酸、碱、盐,也常用于食品的保存、营养素的提取、农药等的除去,也用于生物大分子的提取和精制等方面。
而电离只能在水溶液中进行,用于鉴定、提纯、去除水溶性杂质等,例如在检测钠离子、镁离子等金属离子时。
四、书写形式不同。
水解反应的化学方程式用分子式表示;而电离方程式中,在分子式的右上角写明被测离子,在分子式的左下角写明生成物。
水解方程式和电离方程式的联系从物质的水溶液中,以分子或离子的形式电离出某些元素的化学反应来考虑,这样的反应叫做电离反应。
水解反应和电离反应之间具有密切的联系,电离方程式与水解方程式互相联系。
操作方法不同。
水解反应中,分子式的上下同时有标明该反应生成物和反应物的化学式;电离方程式则只需要在分子式的左下角标明反应物和生成物。
水解方程式和电离方程式的转化将电离方程式和水解方程式代入化学式中,利用等效平衡原理,由水解反应电离方程式,可以推导出水解方程式,反之亦然。
电离和水解
电离和水解
电离和水解是有机物分子中的原子间关系破坏,从而产生更小的离子或者分子团体的一种化学反应。
电离是指有机物分子中的原子间共价键断裂,产生两个或多个离子,这种反应可以用来分离有机物中的离子或分子团体,也可以用来识别有机物中的原子组成,并把它们分离出来。
水解是指在水作用下,有机物分子中的原子间共价键断裂,形成氢离子H + 和其他离子。
水解反应通常发生在受水的作用,如有机分子中的水合物,例如醇、酮、醛等,或者有机物分子中的键类似于醇和醛的键,如羧酸等,都会发生水解反应。
电离和水解反应都是催化剂反应,催化剂可以加速反应的速度,使反应过程更快更有效。
电离反应通常使用强酸或强碱作为催化剂,而水解反应则使用水或氢氧化物作为催化剂。
电离反应可以将有机物分子中的原子或分子组成分离出来,以便进行精确分析。
水解反应有助于破坏有机物中的共价键,可以改变有机物的性质,使得有机物更容易反应,从而促进新物质的生成。
电离反应和水解反应都是重要的有机化学反应,它们不仅可以对有机物进行分离和识别,而且还可以用来制备新物质,促进有机物的合成反应。
水解方程式和电离方程式的区别
水解方程式和电离方程式的区别有机物水解,生成氢氧化物和氢离子或氧离子,其方程式为:水解方程式和电离方程式的区别:分子、原子间以共价键结合,而在水溶液中,由于氢氧根离子的水解而产生氢离子。
前者是中学化学,后者是高中化学;中学化学一般没有涉及这种反应,电离方程式就更不用提了。
通常说某物质水解(电离)生成什么气体,这里水解产生的气体就是原物质,而产生的新物质是“某气体”,也叫电离产生的气体。
例如NaOH(Na+水解)===NaOH+OH-中,水解产生的Na+是电离产生的NaOH(酸),即电离方程式。
简单的说,水解方程式写的是反应物和生成物的化学式,而电离方程式写的是离子的化学式。
水解方程式是不能简写的。
如下列反应物分别是: Na2O3和NaOH,生成物分别是Na2O3和NaOH,生成物的化学式就应该是NaOH(OH-)和Na2O3(OH-因为电离生成的离子和电子的个数都相等,而两者所得的电子个数不同。
因此要么写成1个离子+ 1个电子= 2个离子,要么写成2个电子+ 1个离子= 2个电子。
最重要的是:不同的水解反应会产生不同的氢氧根离子。
有机物的水解反应有两类:一类是在水溶液中进行的,称之为“可逆反应”,如:①碳酸钠溶液与二氧化碳反应生成碳酸氢钠;②氨水和碳酸钠溶液反应生成氨气和水;③乙醇和盐酸反应生成氯化氢和水;④糖类和盐酸反应生成二氧化碳和水。
另一类是在碱性条件下进行的,称之为“不可逆反应”,如:①硫酸铜溶液与碳酸钠溶液反应生成氯化铜和水;②醋酸钠溶液与盐酸反应生成二氧化碳和水。
在学习水解方程式时必须掌握的关键是“碳酸氢钠溶液”、“乙醇”和“醋酸钠溶液”。
2。
简述物质水解的实质:任何一种物质在水溶液中发生水解反应,均是氢离子与氢氧根离子相互交换的结果,而且有水解程度的大小问题。
(1)在一定温度下,大多数非电解质的水解程度较小。
(2)电解质的水解比较复杂,除水解程度较小外,还有强弱问题。
(3)许多离子化合物的水解属于吸热反应。
高三化学电离与水解知识点
高三化学电离与水解知识点电离与水解是高中化学中重要的知识点,涉及到溶液的离子化程度、酸碱中和反应等概念。
本文将围绕电离与水解的定义、化学平衡中的应用以及相关实例进行详细阐述。
一、电离与水解的定义电离是指化学物质在溶液中或熔融状态下,通过释放离子而转变为离子的过程。
以强酸HCl为例,当它溶解在水中时,会释放出H+离子和Cl-离子:HCl(气体)→ H+(溶液)+ Cl-(溶液)水解是指化学物质在水溶液中与水发生反应,产生离子和水的过程。
以强碱NaOH为例,当它溶解在水中时,会发生水解反应:NaOH(固体)+ H2O(液体)→ Na+(溶液)+ OH-(溶液)二、化学平衡中的电离与水解在酸碱中和反应中,离子的电离与水解是化学平衡过程中重要的组成部分。
根据勒夏特列原理,对于弱电解质溶液,它的电离与水解可以相互制约,形成动态平衡。
以弱酸HAc(醋酸)的电离与水解为例,该过程可以表达为如下平衡反应:HAc(溶液)⇄ H+(溶液)+ Ac-(溶液)在水中,HAc分子发生电离,部分转化为离子H+和Ac-,同时也会出现Ac-与水分子的水解反应:Ac-(溶液)+ H2O(溶液)⇄ HAc(溶液)+ OH-(溶液)这两个反应相互制约,不断进行,直到达到化学平衡。
三、电离与水解的相关实例1. 酸碱指示剂的应用酸碱指示剂是根据溶液的酸碱性质发生颜色变化的物质。
这种颜色变化与指示剂分子的电离与水解有关。
如甲基橙指示剂,在酸性溶液中会接受H+离子而发生电离,呈现红色;在碱性溶液中,指示剂分子与OH-离子发生水解,呈现黄色。
通过观察指示剂的颜色变化,可以判断溶液的酸碱性质。
2. 酸碱中和反应酸碱中和反应是指酸溶液与碱溶液按化学计量比发生完全反应的过程。
在这个过程中,酸与碱溶液中的离子发生重新组合,形成中和盐和水。
例如,盐酸和氢氧化钠反应生成氯化钠和水的化学方程式为:HCl(溶液)+ NaOH(溶液)→ NaCl(溶液)+ H2O(溶液)该反应中,HCl中的H+离子与NaOH中的OH-离子结合,生成中和盐NaCl和水。
高中化学--高考总复习五――电离与水解 6.电离与水解
高考总复习五――电离与水解6.电离与水解[考点扫描]1.强弱电解质与结构的关系及其判断方法。
2.弱电解质的电离平衡及电离方程式的书写。
3.水的离子积常数及其影响因素。
4.溶液中c(H+)、溶液的pH与溶液的酸碱性的关系:5.有关pH的计算。
6.盐类的水解的实质和规律。
7.盐类水解离子方程式的书写。
8.盐类水解的影响因素。
9.盐类水解的应用,溶液中微粒的成分及浓度。
[知识指津]1.强电解质和弱电解质的比较离子2.弱电解质的电离平衡的特征:(1)“动”:电离平衡是动态平衡,(2)“定”:溶液中分子和离子的浓度保持不变;(3)“变”:条件改变,平衡被破坏。
影响电离平衡的因素主要是:温度、浓度和同离子,可运用勒夏特列原理判断条件改变时电离平衡移动的方向。
弱电解质电离方程式的书写应注意多元弱酸分步电离;多元弱碱电离过程复杂,一步写出。
3.电解质溶液的导电能力与离子浓度及离子所带电荷数有关,溶液中自由移动的离子浓度越大,离子所带电荷数越高,导电能力越强,反之亦然。
强电解质溶液导电能力不一定强。
4.常温下水的离子积Kω=c(H+)·c(OH-)=1×10-14不仅适用于纯水,还适用于稀的水溶液(包括酸性溶液、中性溶液和碱性溶液),在任何情况下,c(H+)或c(OH-)都不会等于零,所以任何水溶液中H+和OH-总是同时存在,只是相对含量不同而已。
但任何溶液中由H2O电离出的c(H+)和c(OH-)总是相等。
水的离子积常数Kω只与温度有关,温度升高,水的电离程度增大。
5.pH的适用范围:适用于c(H+)或c(OH-)为1mol/L以下的稀溶液,pH的取值范围为0-14。
当pH小于0或pH大于14时,溶液较浓,则直接用c(H+)或c(OH-)来表示其酸碱性强弱较为方便。
其中:c(H+)越大,pH越小,溶液酸性越强;c(OH-)越大,pH越大,溶液碱性越强。
pH改变一个单位,溶液中c(H+)便改变10倍,如pH每增大一个单位,c(H+)就减小10倍。
水解和电离的例子
水解和电离的例子
水解和电离是化学中常见的两种反应类型,它们在许多化学过程中起着重要的作用。
下面将列举十个关于水解和电离的例子,以便更好地理解它们的概念和应用。
1. 水的自离解:在常温下,水分子可以发生自离解反应,生成氢离子(H+)和氢氧根离子(OH-)。
2. 酸的电离:例如盐酸(HCl)溶于水中时,会电离成氯离子(Cl-)和氢离子(H+)。
3. 碱的电离:例如氢氧化钠(NaOH)溶于水中时,会电离成氢氧根离子(OH-)和钠离子(Na+)。
4. 盐的水解:例如氯化铵(NH4Cl)溶于水中时,会发生水解反应生成氨气(NH3)和盐酸(HCl)。
5. 酯的水解:例如乙酸乙酯(CH3COOC2H5)与水反应时,发生酯水解反应生成乙酸和乙醇。
6. 碳酸盐的水解:例如二氧化碳溶于水中形成碳酸,碳酸又可以进一步水解成氢离子和碳酸根离子。
7. 脂肪酸的水解:例如三酸甘油酯(三酸甘油酯)在酶的催化下水解成甘油和脂肪酸。
8. 蛋白质的水解:例如消化系统中的胃酸和胃酶可以将蛋白质水解成氨基酸。
9. 纤维素的水解:例如木质纤维素可以通过酸或酶的作用水解成葡萄糖单体。
10. 焦炭的水解:例如高温下,焦炭可以与水蒸气反应生成氢气和一氧化碳。
这些例子展示了水解和电离在化学反应中的重要性和广泛应用。
水解是指化合物与水反应生成其他化合物的过程,而电离是指化合物在溶液中分解成离子的过程。
这些反应对于理解化学反应的机制、调节溶液的pH值、生物化学过程以及工业生产等都具有重要意义。
通过研究和理解水解和电离反应,我们可以更好地认识和应用化学知识。
电离和水解的区别
电离和水解的区别
电离是电解质在水溶液中或熔融状态下离解成自由移动阴阳离
子的过程。
水解是一种化工单元过程,是利用水将物质分解形成新的物质的过程。
电离有两种,一种是化学上的电离,另一种是物理上的电离。
水解的种类非常多,例如无机盐的水解就有强酸强碱盐、强酸弱碱盐、强碱弱酸盐和弱酸弱碱盐四种。
电离只适用于经典物理和玻尔模型,使原子和分子电离完全确定性,即每一个问题,始终有一个明确的和可计算的答案。
水解的应用非常广泛,例如碱水解的应用,自从人类首次行走在地球上,人类遗体通常是埋葬或火化。
水解和电离都是物质与水之间的互相作用,水解呢,可理解为和水的复分解反应,就是和水的氢氧根或氢离子反应,使反应的氢离子或氢氧根浓度减少,所以水解促进水的电离,电离呢!比如水吧,理解上说呢,就是物质本身的分解反应,比如说水,电离出氢哗氦糕教蕹寄革犀宫篓氧根和氢离子,它的深层的概念也不需要知道!
又比如说HCL电离时产生氢离子和氯离子,虽然是和水有关系,但理解可认为就是它自己的反应!当然HCL电离出的7氢离子增大了溶液中氢离子的浓度,水的电离就会受到抑制!还有注意硫酸氢钠,
这种东西比较特殊在有水的情况下,它电离出钠离子和氢离子和硫酸根离子,在融熔状态下,它只电离出钠离子和硫酸氢根离子!。
高三化学-水解和电离
电离与水解电解质溶液中有关离子浓度的判断是近年高考的重要题型之一。
解此类型题的关键是掌握“两平衡、两原理〞,即弱电解质的电离平衡、盐的水解平衡和电解质溶液中的电荷守恒、物料守恒原理。
首先,我们先来研究一下解决这类问题的理论根底。
一、电离平衡理论和水解平衡理论1.电离理论:⑴弱电解质的电离是微弱的,电离消耗的电解质及产生的微粒都是少量的,同时注意考虑水的电离的存在;⑵多元弱酸的电离是分步的,主要以第一步电离为主;2.水解理论:从盐类的水解的特征分析:水解程度是微弱的〔一般不超过2‰〕。
例如:NaHCO3溶液中,c(HCO3―)>>c(H2CO3)或c(OH―)理清溶液中的平衡关系并分清主次:⑴弱酸的阴离子和弱碱的阳离子因水解而损耗;如NaHCO3溶液中有:c(Na+)>c(HCO3-)。
⑵弱酸的阴离子和弱碱的阳离子的水解是微量的〔双水解除外〕,因此水解生成的弱电解质及产生H+的〔或OH-〕也是微量,但由于水的电离平衡和盐类水解平衡的存在,所以水解后的酸性溶液中c(H+)〔或碱性溶液中的c(OH-)〕总是大于水解产生的弱电解质的浓度;⑶一般来说“谁弱谁水解,谁强显谁性〞,如水解呈酸性的溶液中c(H+)>c(OH-),水解呈碱性的溶液中c(OH-)>c(H+);⑷多元弱酸的酸根离子的水解是分步进展的,主要以第一步水解为主。
二、电解质溶液中的守恒关系1、电荷守恒:电解质溶液中的阴离子的负电荷总数等于阳离子的正电荷总数,电荷守恒的重要应用是依据电荷守恒列出等式,比拟或计算离子的物质的量或物质的量浓度。
如〔1〕在只含有A+、M-、H+、OH―四种离子的溶液中c(A+)+c(H+)==c(M-)+c(OH―),假设c(H+)>c(OH―),那么必然有c(A+)<c(M-)。
书写电荷守恒式必须①准确的判断溶液中离子的种类;②弄清离子浓度和电荷浓度的关系。
例:NH4Cl溶液:c(NH+ 4)+ c(H+)= c(Cl-)+ c(OH-)Na2CO3溶液:c(Na+)+ c(H+)= 2c(CO2-3)+ c(HCO-3)+ c(OH-)NaHCO3溶液:c(Na+)+ c(H+)= 2c(CO2-3) + c(HCO-3)+ c(OH-)NaOH溶液:c(Na+) + c(H+)= c(OH-)Na3PO4溶液:c(Na+) + c(H+) = 3c(PO3-4) + 2c(HPO2-4) + c(H2PO-4) + c(OH-)2、物料守恒:就电解质溶液而言,物料守恒是指电解质发生变化〔反响或电离〕前某元素的原子〔或离子〕的物质的量等于电解质变化后溶液中所有含该元素的原子〔或离子〕的物质的量之和。
水解和电离的例子
水解和电离的例子
水解和电离是化学反应中常见的两种过程。
水解反应是一种化学反应,其中水分子与另一化合物发生反应,导致该化合物分解。
这个过程通常涉及到强电解质分解成弱电解质的反应。
例如,当氯化铁(FeCl3)与水反应时,会生成氢氧化铁(Fe(OH)3)和盐酸(HCl)。
这个反应可以表示为:FeCl3 + H2O → Fe(OH)3 + 3HCl。
在这个反应中,水分子参与了氯化铁的分解,生成了氢氧化铁和盐酸。
电离则是电解质在水溶液中或熔融状态下离解成自由移动阴阳离子的过程。
这个过程是可逆的,即离子可以在水中重新组合成原来的电解质。
例如,硫酸铜(CuSO4)在水溶液中会电离成铜离子(Cu²⁺)和硫酸根离子(SO₄²⁻)。
这个反应可以表示为:CuSO4 → Cu²⁺ + SO₄²⁻。
在这个反应中,没有水分子的参与,硫酸铜直接分解成了铜离子和硫酸根离子。
请注意,以上两个例子都是简化的化学反应表示,实际的反应过程可能更为复杂。
同时,不是所有的化合物都会发生水解或电离反应,这取决于化合物的性质和条件。
化学水解电离知识点总结
化学水解电离知识点总结一、化学水解的概念1. 化学水解是指物质在水或者酸性条件下发生水解反应,分解成更简单的物质或者离子的过程。
水解反应可以是酸催化或者碱催化的。
2. 化学水解是一种重要的化学反应,应用广泛。
例如,碳酸氢钠在水中水解产生碳酸钠和二氧化碳;酯在碱性条件下水解成醇和钠盐;蛋白质在酸性条件下发生水解而蛋白质分解成氨基酸。
3. 化学水解的反应速率受多种因素影响,如反应物的浓度、温度、催化剂,溶液的PH值等。
二、化学水解的影响因素1. 温度:化学水解反应的速率随温度的升高而增加,符合阿伦尼乌斯方程。
一般来说,每升高10摄氏度,反应速率会增加大约2倍。
2. 酸碱性条件:酸催化的水解反应和碱催化的水解反应具有不同的机理和速率。
酸性条件下,通常是由质子提供催化作用,例如,葡萄糖在稀硫酸中发生水解反应。
碱性条件下,通常是由羟基离子提供催化作用,如酯在碱性条件下的水解反应。
3. 反应物的浓度:反应物的浓度越高,化学水解反应速率越高。
这是因为反应物的浓度越高,有效碰撞的概率也越高。
4. 催化剂:催化剂可以促进化学水解反应的进行,通过提高反应物的活化能降低反应速率。
催化剂可以是酸、碱、金属离子或者酶等。
5. 溶液的PH值:溶液的PH值对化学水解反应也有很大的影响。
在酸性条件下,一些酯类物质更容易发生水解;在碱性条件下,酸性物质更容易发生水解。
三、化学水解的应用1. 化学水解在化工生产中有广泛应用。
例如,纤维素、淀粉等天然高分子化合物的生产中都需要进行化学水解来获得单糖、葡聚糖等单体物质。
2. 化学水解在生物工程中也有着重要应用。
通过水解,可以将生物质转化成可燃气体或者生产生物柴油。
3. 化学水解在生物技术、医药制药等领域也有重要应用。
例如,通过酸水解可以将蛋白质分解成氨基酸,然后再制备多肽药物。
四、化学电离的概念1. 化学电离是指物质在水溶液中,被溶解成离子的过程。
通常是指电解质在水中产生离子。
2. 化学电离是一种重要的化学现象,大部分物质在水中都会发生电离,形成离子和非离子物质。
电离和水解
电离和水解电离和水解是化学反应的主要类别,它们是发生变化的重要过程,是一种能够用于获得能量的重要化学反应。
它们分别属于电解质和非电解质的水解反应。
电离是电解质分子水解反应的过程,它可以使电解质分子拆分成多个带有正电荷的离子;而水解是类似非电解质物质分子水解反应的过程,可以使其分子拆分成多个产物(包括少量水)。
电离电离是一种将特定物质分子拆分成多个带有正电荷的离子的反应。
它是利用电源(例如电池)把正电荷和负电荷之间的电位差产生的过程。
电离发生时,发电池端的正电荷的诱导电场会拉动电解质物质的正电荷,使其分子拆分成多个带有正电荷的离子;而负电荷端的电位差会拉动物质分子的负电荷,使其分子拆分成多个带有负电荷的离子。
电离过程中,获得的热量是电池端和负电荷端电位差产生的,可以用于分子的安定和发生变化。
电离的应用电离的主要应用有:用于分离细胞液中的离子,如钠、钾、钙等离子;用于离子交换法提取金属离子,如铜离子;用于酸碱中和,可以形成碱金属氢氧化物;用于分离不同结构的离子;将可溶性物质拆分成其各自的离子,如氯化物、硫酸盐、硝酸盐等;用于水池、水箱、水槽等水体处理,可以清除水中的有机物和无机物等。
水解水解是一种将特定分子拆分成多个产物(包括少量水)的反应。
它是利用水分子的能量拆分物质分子的过程,与水的氧原子之间的电荷交换通过氢键产生能量。
当水解反应发生时,水分子的能量便会转移到物质分子上,使其形成一个稳定的结构;同时,水分子也会把分子拆分为若干产物,如少量水。
水解的应用水解的主要应用有:用于水体处理,可以清除水中的有机物和无机物;用于农业中,可以发挥释放肥料中的有效元素的作用;用于食品加工,具有发酵和保藏食品的作用;用于电子行业,可以提高电子元件的稳定性;用于医药行业,可以提取激素等药物;用于化学行业,可以进行复杂反应产物的分离等。
结论电离和水解是常见的化学反应,也是能量转化的重要过程。
它们分别属于电解质和非电解质的水解反应,它们的反应机理和产物不同。
高中化学电离水解精品讲义
高中化学电离、水解精品讲义一、弱电解质的电离1. 电解质:在水溶液中活熔融状态下能导电的化合物。
2. 非电解质:在水溶液中或熔融状态下不能导电的化合物。
3. 电解质、非电解质、强电解质与弱电解质的比较类别电解质强电解质溶于水后或熔融状态下概念能完全电离的电解质离子化合物、某些共价化化合物类型合物电离程度溶液中存在的粒子(水分子不计)完全电离只有电离出的阴、阳离子,不存在电解质分子绝大多数的盐(包括难溶性盐);强酸:HCl、部分电离既有电离出来的阴、阳离子,又有电解质分子极少数盐;弱酸:CH3COOH、H2CO3、等;弱碱:非金属氧化物:CO2、SO2、ClO2等;部分非金属氧化物:NH3、CH4、SiH4等;大多数有机物:C2H5OH、C12H22O11(蔗糖)、CCl4等都是化合物不电离只有非电解质分子的电解质某些共价化合物下都不能导电的化合物某些共价化合物弱电解质溶于水后只有部分电离非电解质在水溶液中和熔融状态HNO3、H2SO4等;强碱:HClO实例 KOH、NaOH、Ba(OH)2等 NH3・H2O、Cu(OH)2、Fe(OH)3等;水也是弱电解质相同点思考:一种物质的水溶液能导电,原物质一定是电解质吗?分析:不一定!关键要分清发生电离散是否要原物质本身。
有可能溶于水时就发生了化学变化如(1)Cl2(2)CO2?溶于水??? 碳酸溶液↓ ↓ 非电解质 H2CO3电离(3)Na2O?溶于水??? 氯水 ?溶于水??? NaOH溶液↓ ↓ 即不是电解质 HCl、HClO 又不是非电解质发生电离↓ ↓ 虽不是本身电离子 NaOH电离但可在熔融态电离,故它属强电解质注意:(1)电解质的强弱与溶解性无关,某些盐如BaSO4、CaCO3等,虽难溶于水却是强电解质,因为它们溶于水的部分是完全电离的,尽管很难测出它们的导电性。
某些盐如HgCl2、Pb(CH3OO)2等尽管能溶于水,却部分电离,是弱电解质。
2025届高三化学一轮专题复习讲义(13)-专题三第六讲 电离和水解平衡
2025届高三化学一轮专题复习讲义(13)专题三 基本理论3-6 电离和水解平衡(一)(1课时,共2课时)【复习目标】1.了解电离度,学会简单计算,能从定性和定量两个方面理解电离平衡常数。
2.能从图像视角判断强弱电解质在稀释、反应条件下溶液中离子浓度、导电性、电离度、pH变化等方面的异同。
3.了解水的离子积、溶液的酸碱性、pH 等概念。
4.理解盐类水解的概念、条件、本质、特点和规律,认识影响盐类水解的根本因素是内因,理解外因对盐类水解影响的结果。
【重点突破】1.了解中和滴定的原理及实验操作、中和滴定曲线的绘制。
能用数据、图表、符号等描述实验证据并据此进行分析推理形成结论;能对实验方案、实验过程和实验结论进行评价,提出进一步探究的设想。
2.认识盐类的水解平衡在实际生产、生活以及实验中的应用。
【真题再现】例1.(2023·湖南卷)常温下用浓度为0.0200mol·L -1的NaOH 标准溶液滴定浓度均为0.0200mol·L -1的HCl 和CH 3COOH 的混合溶液,滴定过程中溶液的pH 随的变化曲线如图所示。
下列说法错误的是A .K a(CH 3COOH)约为10-4.76B .点a :c (Na +)=c (Cl -) =c (CH 3COO -)+ c (CH 3COOH)C .点b :c (CH 3COOH)<c (CH 3COO -)D .水的电离程度:a <b <c <d 解析:根据CH 3COOHCH 3COO -+H +,可近似认为a 点c (H +)=c (CH 3COO -),又a 点pH=3.38,c(H +)=10-3.38 mol·L -1,故K a(CH 3COOH)≈10-3.38×10-3.380.0100=10-4.76,A 项正确;a 点HCl 恰好被完全中和,由物料守恒可得溶液中c (Na +)=c (Cl -) =c (CH 3COO -)+ c (CH 3COOH),B 项正确;b 点溶液pH <7,即以CH 3COOH 的电离为主,即溶液中c(CH 3COOH)<c(CH 3COO -),C 项正确;a 、b 两点溶液呈酸性,水的电离均受到抑制,溶液pH 越小,水的电离受抑制程度越大,c 点酸碱恰好完全中和,CH 3COO -水解促进水的电离,d 点NaOH 过量,又抑制水的电离,故D 项错误。
高考化学水解电离知识点
高考化学水解电离知识点在高考化学中,水解电离是一个重要的知识点。
它涉及到溶液的酸碱性质、离子平衡等方面内容。
本文将从酸碱概念、酸碱溶液的离子平衡、强弱酸碱的水解电离等多个角度来详细讨论水解电离的相关知识。
一、酸碱概念酸是指能产生H+离子(即氢离子)的物质,它能够与碱发生中和反应。
碱是指能产生OH-离子(即氢氧根离子)的物质,它能够与酸发生中和反应。
这是我们常见的酸碱概念。
但是在化学中,我们还可以通过溶液是否导电来判断它是酸性溶液还是碱性溶液。
酸性溶液和碱性溶液导电的原理是由于酸和碱在水中发生了水解电离。
二、酸碱溶液的离子平衡当酸和碱溶解在水中时,会发生水解电离反应,产生离子,从而形成酸性或碱性溶液。
水解电离是指溶质的分子在溶液中解离成离子的过程。
对于酸和碱来说,它们的水解电离是有限度的,不是所有酸和碱都能够完全电离。
例如,硫酸是一种强酸,它在水中完全电离为氢离子和硫酸根离子。
而乙酸是一种弱酸,它在水中只有一部分电离,大部分存在于分子状态。
同样,钠氢氧化物是一种强碱,完全电离为氢氧根离子和钠离子;氨水是一种弱碱,只有少部分电离。
三、强弱酸碱的水解电离强酸和强碱的水解电离可以看做是一个完全反应的过程,反应的正方向和逆方向同时发生,但正逆反应速度相同,达到动态平衡。
例如,盐酸溶液的水解电离方程式为:HCl + H2O ⇌ H3O+ + Cl-。
在动态平衡状态下,溶液中存在相应的离子浓度。
对于弱酸和弱碱而言,它们的电离度较低,仅有一部分分子电离成离子。
以乙酸溶液为例,它的水解电离方程式为:CH3COOH + H2O ⇌CH3COO- + H3O+。
在这个反应中,左右两边溶质的浓度并不相等,而是达到了动态平衡。
四、酸碱水解电离的平衡常数对于酸碱的水解电离反应,我们可以通过平衡常数来描述。
平衡常数(Ka)等于反应物离子浓度乘积与产物离子浓度乘积的比值。
对于酸的电离反应,Ka越大,说明酸的电离程度越高;反之,Ka越小,说明酸的电离程度越低。
高中化学水解与电离问题窍门
如何化学水解与电离问题的窍门1. 理解水解与电离的基本概念在学习化学水解与电离问题之前,我们首先需要了解水解与电离的基本概念。
化学水解是指化合物与水发生反应,使化合物分解成两个或多个物质的过程。
而电离则是指分子或原子在溶液中失去或获得电荷的过程。
这两个概念是化学课程中的基础知识,对于理解化学反应和性质起着至关重要的作用。
2. 深入分析水解与电离的原理水解与电离是化学反应中常见的一种类型,我们需要深入分析它们的原理。
在水解中,通常涉及到酸碱中和、酶催化等化学过程,而电离则涉及到离子的生成和溶液的电导性等方面。
通过深入分析水解与电离的原理,可以帮助我们更好地理解这些化学过程的发生机制。
3. 解析高中化学水解与电离问题的解题思路在高中化学学习中,水解与电离问题常常出现在考试中。
为了解决这类问题,我们需要掌握一定的解题思路。
通常可以从化合物的性质、反应条件、反应类型等方面入手,结合水解与电离的基本原理,有针对性地解答问题。
我们还可以通过实际例题来加深理解和掌握解题技巧。
4. 总结与回顾总结与回顾在学习过程中尤为重要。
针对水解与电离问题,我们可以通过总结基本概念、原理和解题思路,来全面、深刻地理解这一知识点。
回顾自己的学习笔记和习题练习,可以帮助我们不断巩固和提升对水解与电离的理解能力。
在我看来,水解与电离是化学中的重要概念,它们不仅有助于我们理解化学反应的基本原理,也对于日常生活中的许多现象有着重要的解释作用。
我们应该在学习过程中多加关注,深入理解,并且不断进行实际应用和思考,以提升自己的化学素养。
通过以上分析和讨论,我们可以更全面地理解高中化学水解与电离问题的窍门。
希望这篇文章能够帮助你更好地掌握这一知识点,为你的学习提供一定的帮助和启发。
水解与电离是化学中的重要概念,对于理解化学反应和性质起着至关重要的作用。
通过深入学习和掌握这些知识,我们可以更好地理解化学反应的发生机制,为我们的学习和实践提供指导。
化学水解,电离知识点
一、盐类水解的实质盐电离出来的某些离子(一般是弱酸根离子或弱碱阳离子)跟水电离出来的H+或OH-结合生成了弱电解质,促使水的电离平衡发生移动,结果溶液中c(H+)、c(OH-)发生了相对改变,从而使溶液呈一定的酸碱性。
盐类的水解程度一般都很小,且是可逆反应,书写水解方程式时以一般不会产生沉淀和气体,生成物不应加沉淀符号(↓)或气体符号(↑)。
二、盐类水解的类型和规律1、强碱弱酸盐水解,溶液呈碱性,pH>7,如CH3COONa、NaCO3等。
多元弱酸根离子是分步水解的,且第一步水解程度>>第二步水解程度,溶液的酸碱性主要决定于第一步水解程度。
如Na2CO3在水溶液中水解应分两步写:①CO32-+H2HCO3-+OH-,②HCO3-+H2H2CO3+OH-多元弱酸的酸式根离子同时具备电离和水解两种趋势:HRH+---+R2(电离,呈酸性),HR+H2H2R+OH(水解,呈碱性),这需要具体分析。
很显然如果电离趋势占优势,则显酸性,如:---H2PO4、HSO3,如果水解趋势占优势,则显碱性,如:HCO3、HS-、HPO42-等。
2、强酸弱碱盐水解,溶液呈酸性,pH<7,如NH4Cl、Al2(SO4)33、强酸强碱盐不水解,溶液呈中性,pH=7,如NaCl、KNO34、弱酸弱碱盐水解,溶液呈什么性由水解生成的弱酸、弱碱的相对强弱比较来决定。
当遇到某些弱酸弱碱盐两种离子都发生水解,应在同一离子..方程式中表示,而且因强烈水解,若是水解产物中有气体或难溶物质或易分解物质的话,这类水解往往能进行到底,这样水解方程式应用“=”号表示,并在生成的沉淀和气体的后面标上“↓”或“↑”。
如2Al3++3S2-+6H2O=2Al(OH)3↓+3H2S↑。
5、三大水解规律。
三、影响盐类水解的因素1、盐类本身的性质这是影响盐类水解的内在因素。
组成盐的酸或碱越弱,盐的水解程度越大,其盐溶液的酸性或碱性就越强。
2、温度由于盐的水解作用是中和反应的逆反应,所以盐的水解是吸热反应,温度升高,水解程度增大。
电离方程式和水解方程式的区别
电离方程式和水解方程式的区别
电离方程式和水解方程式是化学反应中常见的两种反应形式。
在一定条件下,两种反应对溶质的行为和得到的产物完全不同。
这里,我们将更加详细地讨论电离方程式和水解方程式之间的区别。
首先,电离方程式和水解方程式的重要区别在于参与反应的物质。
电离方程式是一种电荷的分离反应,它是在电荷的作用下,使非电介质分子分离,生成正负离子,同时生成电解质。
相反,水解方程式是一种物质的分解反应,它是由水分子分解物质,形成氢离子和其他产物,其中氢离子是水解方程式的主要产物。
其次,电离方程式和水解方程式在反应条件上也有显著的区别。
电离方程式的反应条件是较高的温度,以及足够的电荷,而水解方程式的反应条件是较低的温度,只需要一个弱酸或弱碱。
此外,电离方程式和水解方程式的反应物也完全不同。
电离方程式可以用于电荷介质和非电介质分子之间的反应,甚至可以用于生物分子的反应,而水解方程式仅适用于水解反应,例如乙酸乙酯,乙醇和乙酸反应。
最后,电离方程式和水解方程式的反应产物也完全不同。
电离方程式可以生成正负离子,电解质和电介质,而水解方程式可以产生氢离子,水,碳酸钠,碳酸氢钠,乙酸乙酯等其他产物。
总而言之,电离方程式和水解方程式有着显著的区别。
电离方程式是电荷的分离反应,而水解方程式是物质的分解反应。
电离方程式反应的条件比水解方程式更加苛刻,参与反应的物质也是完全不同的,
最后,电离方程式和水解方程式的反应产物也有很大的差异。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三化学-水解和电离电离与水解电解质溶液中有关离子浓度的判断是近年高考的重要题型之一。
解此类型题的关键是掌握“两平衡、两原理”,即弱电解质的电离平衡、盐的水解平衡和电解质溶液中的电荷守恒、物料守恒原理。
首先,我们先来研究一下解决这类问题的理论基础。
一、电离平衡理论和水解平衡理论1.电离理论:⑴弱电解质的电离是微弱的,电离消耗的电解质及产生的微粒都是少量的,同时注意考虑水的电离的存在;⑵多元弱酸的电离是分步的,主要以第一步电离为主;2.水解理论:从盐类的水解的特征分析:水解程度是微弱的(一般不超过2‰)。
例如:NaHCO3溶液中,c(HCO3―)>>c(H2CO3)或c(OH― )理清溶液中的平衡关系并分清主次:⑴弱酸的阴离子和弱碱的阳离子因水解而损耗;如NaHCO3溶液中有:c(Na+) > c(HCO3-)。
⑵弱酸的阴离子和弱碱的阳离子的水解是微量的(双水解除外),因此水解生成的弱电解质及产生H+的(或OH-)也是微量,但由于水的电离平衡和盐类水解平衡的存在,所以水解后的酸性溶液中c(H+)(或碱性溶液中的c(OH-))总是大于水解产生的弱电解质的浓度;⑶一般来说“谁弱谁水解,谁强显谁性”,如水解呈酸性的溶液中c(H+)>c(OH-),水解呈碱性的溶液中c(OH-)>c(H+);⑷多元弱酸的酸根离子的水解是分步进行的,主要以第一步水解为主。
二、电解质溶液中的守恒关系1、电荷守恒:电解质溶液中的阴离子的负电荷总数等于阳离子的正电荷总数,电荷守恒的重要应用是依据电荷守恒列出等式,比较或计算离子的物质的量或物质的量浓度。
如(1)在只含有A+、M-、H+、OH―四种离子的溶液中c(A+)+c(H+)==c(M-)+c(OH―),若c(H +)>c(OH―),则必然有c(A+)<c(M-)。
书写电荷守恒式必须①准确的判断溶液中离子的种类;②弄清离子浓度和电荷浓度的关系。
例:NH4Cl溶液:c(NH+ 4)+ c(H+)= c(Cl-)+ c(OH-)Na2CO3溶液:c(Na+)+ c(H+)= 2c(CO2- 3)+c(HCO- 3)+ c(OH-)NaHCO3溶液:c(Na+)+ c(H+)= 2c(CO2- 3) + c(HCO- 3)+ c(OH-)NaOH溶液:c(Na+) + c(H+)= c(OH-)Na3PO4溶液:c(Na+) + c(H+) = 3c(PO3- 4) +2c(HPO2- 4) + c(H2PO- 4) + c(OH-)2、物料守恒:就电解质溶液而言,物料守恒是指电解质发生变化(反应或电离)前某元素的原子(或离子)的物质的量等于电解质变化后溶液中所有含该元素的原子(或离子)的物质的量之和。
NH4Cl溶液:化学式中N:Cl=1:1,即得到,c(NH+4)+ c(NH3•H2O) = c(Cl-)Na2CO3溶液:Na:C=2:1,即得到,c(Na+) = 2c(CO2- 3 + HCO- 3 + H2CO3)NaHCO3溶液:Na:C=1:1,即得到,c(Na+) = c(CO2- 3)+ c(HCO- 3) + c(H2CO3)写这个等式要注意,把所有含这种元素的粒子都要考虑在内,可以是离子,也可以是分子实质上,物料守恒属于原子个数守恒和质量守恒。
在Na2S溶液中存在着S2―的水解、HS―的电离和水解、水的电离,粒子间有如下关系c(S2―)+c(HS―)+c(H2S)==1/2c(Na+) ( Na+,S2―守恒)C(HS―)+2c(S2―)+c(H)==c(OH―) (H、O原子守恒)在NaHS溶液中存在着HS―的水解和电离及水的电离。
HS―+H2O H2S+OH―HS―H++S2―H2O++OH―从物料守恒的角度分析,有如下等式:c(HS―)+C(S2―)+c(H2S)==c(Na+);从电荷守恒的角度分析,有如下等式:c(HS―)+2(S2―)+c(OH―)==c(Na+)+c(H+);将以上两式相加,有:c(S2―)+c(OH―)==c(H2S)+c(H+) 得出的式子被称为质子守恒3、质子守恒:无论溶液中结合氢离子还是失去氢离子,但氢原子总数始终为定值,也就是说结合的氢离子的量和失去氢离子的量相等。
实际上,有了上面2个守恒就够了,质子守恒不需要背。
例如:NH4Cl溶液:电荷守恒:c(NH+ 4) + c(H+) = c(Cl-) + c(OH-)物料守恒:c(NH+ 4) + c(NH3•H2O) = c(Cl-)处理一下,约去无关的Cl-,得到,c(H+) = c(OH-)+ c(NH3•H2O),即是质子守恒Na2CO3溶液:电荷守恒:c(Na+) + c(H+) = 2c(CO2- 3) + c(HCO - 3) + c(OH-)物料守恒:c(Na+) = 2c(CO2- 3 + HCO- 3 +H2CO3)处理一下,约去无关的Na+,得到,c(HCO- 3) +2c(H2CO3) + c(H+) = c(OH-),即是质子守恒NH4Cl溶液,水电离出的,c(H+) = c(OH-),但是部分OH-被NH+ 4结合成NH3•H2O,而且是1:1结合,而H+不变,所以得到,c(H+) = 原来的总c(OH-) = 剩余c(OH-) + c(NH3•H2O)Na2CO3溶液,水电离出的,c(H+) = c(OH-),但是部分H+被CO2- 3结合成HCO- 3,而且是1:1结合,还有部分继续被HCO- 3结合成H2CO3,相当于被CO2- 3以1:2结合,而OH-不变,所以得到,c(OH-) = 原来总c(H+) = c(HCO- 3) + 2c(H2CO3)+ 剩余c(H+)现将此类题的解题方法作如下总结。
二、典型题――溶质单一型 1、弱酸溶液中离子浓度的大小判断解此类题的关键是紧抓弱酸的电离平衡 0.1mol/L 的H 2S 溶液中所存在离子的浓度由大到小的排列顺序是_________________解析:在H 2S 溶液中有下列平衡:H 2SH ++HS ―;HS―H ++S 2―。
已知多元弱酸的电离以第一步为主,第二步电离较第一步弱得多,但两步电离都产生H +,因此答案应为:c(H+)>c(HS ―)>c(S 2―)>c(OH ―)弱酸溶液中离子浓度大小的一般关系是:C(显性离子) > C(一级电离离子) > C(二级电离离子) > C(水电离出的另一离子)2、能发生水解的盐溶液中离子浓度大小比较---弱酸强碱型解此类题型的关键是抓住盐溶液中水解的离子 在CH 3COONa 溶液中各离子的浓度由大到小排列顺序正确的是( )A 、 c(Na +)>c(CH 3COO ―)>c(OH ―)>c(H +) B 、 c(CH 3COO ―)>c(Na +)>c(OH ―)>c(H +) C 、 c(Na +)>c(CH 3COO ―)>c(H +)>c(OH ―) D 、 c(Na +)>c(OH ―)>c(CH 3COO ―)>c(H +) 解析:在CH 3COONa 溶液中: CH 3COONaNa ++CH 3COO ― ,CH 3COO ―+H 2OCH 3COOH+OH ―;而使c(CH 3COO ―)降低且溶液呈现碱性,则c(Na+)>c(CH 3COO ―),c(OH ―)>c(H +),又因一般盐的水解程度较小,则c(CH 3COO ―)>c(OH ―),因此A 选项正确。
一元弱酸盐溶液中离子浓度的一般关系是:C(不水解离子) > C(水解离子)>C(显性离子)>C(水电离出的另外一种离子)[点击试题]在Na 2CO 3溶液中各离子的浓度由小到大的排列顺序是______解析:在Na 2CO 3溶液中,Na 2CO 3==2Na ++CO 32―,CO 32―+H 2OHCO 3―+OH ― ,HCO 3―+H 2OH 2CO 3+OH ―。
CO 32―水解使溶液呈现碱性,则C(OH ―)>C(H +),由于CO 32―少部分水解,则C(CO 32―)>C(HCO 3―),HCO 3―又发生第二步水解,则C(OH ―)>C(HCO 3―),第二步水解较第一步水解弱得多,则C(HCO 3―)与C(OH ―)相关不大,但C(H +)比C(OH ―)小得多,因此C(HCO 3―) > C(H +)。
此题的答案为:C(H+)<C(HCO 3―)<C(OH ―)<C(CO 32―)<C(Na +)二元弱酸盐溶液中离子浓度的一般关系是:C(不水解离子)> C(水解离子)>C(显性离子)>C(二级水解离子)>C(水电离出的另一离子)[点击试题]判断0.1mol/L 的NaHCO 3溶液中离子浓度的大小关系 解析:因NaHCO 3==Na++HCO 3―,HCO 3―+H 2O2CO 3+OH ―,HCO 3―H ++CO 32― 。
HCO 3―的水解程度大于电离程度,因此溶液呈碱性,且C(OH ―) > C(CO 32―)。
由于少部分水解和电离,则C(Na +)>C(HCO 3―)>C(OH ―)>C(H +) > C(CO 32―)。
二元弱酸的酸式盐溶液中离子浓度大小的一般关系是:C(不水解离子)>C(水解离子)>C(显性离子)>C(水电离出的另一离子)>C(电离得到的酸根离子)三、典型题----两种电解质溶液相混合型的离子浓度的判断解此类题的关键是抓住两溶液混合后生成的盐的水解情况以及混合时弱电解质有无剩余,若有剩余,则应讨论弱电解质的电离。
下面以一元酸、一元碱和一元酸的盐为例进行分析。
1、强酸与弱碱混合[点击试题]PH=13的NH 3·H 2O 和PH=1的盐酸等体积混合后所得溶液中各离子浓度由大到小的排列顺序是____________解析:PH==1的HCl ,C(H +)==0.1 mol/L ,PH=13的NH 3·H 2O ,C(OH ―)== 0.1 mol/L ,则NH 3 ·H 2O 的浓度远大于0.1 mol/L ,因此,两溶液混合时生成NH 4Cl 为强酸弱碱盐,氨水过量,且C(NH 3 ·H 2O)>C(NH 4Cl),则溶液的酸碱性应由氨水决定。
即NH 3·H 2O 的电离大于NH 4+的水解,所以溶液中的离子浓度由大到小的顺序为:C(NH 4+)>C(Cl ―)>C(OH ―)>C(H +)。