七年级上册有理数复习(用)

合集下载

第一章+有理数+第8课+有理数相关概念复习课件2024-2025学年人教版数学七年级上册

第一章+有理数+第8课+有理数相关概念复习课件2024-2025学年人教版数学七年级上册

6
(4)+(+6)=__________;
12
(5)|-12|=_________;
(6)-|-12|=_________.
-12
9. 填空:
6和-6
(1)到原点的距离等于6的数有2个,分别是__________;
-7或7
(2)若|x|=7,则x=__________;
4或-4
(3)一个数的绝对值是4,则这个数是__________;
正方向
(2)数轴的三要素:①__________;②____________;③
原点
单位长度
____________.
注意:数轴的三要素缺一不可.
原点将数轴(原点除外)分成两部分,其中正方向一侧
的部分叫作数轴的正半轴,另一侧的部分叫作数轴的
负半轴。
知识点 4 相反数
符号
(1)相反数:只有________不同的两个数叫做互为相反数.
+0.04
-0.03
( 表示
圆形零件的直径,单位:mm),抽查了5个零件,超过
规定的记作正数,不足的记作负数,数据如下表(单位:
mm).
(1)哪些产品是符合要求的?
(2)在符合要求的产品中哪个质量最好?请用绝对值的
知识加以说明.
解:(1)1号,3号,4号产品是符合要求的;
(2)因为|+0.018|<|-0.021|<|+0.031|,
(4)若|a-4|+|b-3|=0,则a=_______,b=_______.
4
3
10. 比较大小,用“>”或“<”填空:


(1)15________0;
(2)-12________5;

人教版七年级上有理数全章总复习及试题

人教版七年级上有理数全章总复习及试题

人教版七年级上有理数全章总复习及试题1.1 正数与负数一、必记概念:0既,也。

在实际生活中,常常用正数和负数表示具有意义的量。

如果上升10米记作+10米,那么下降5米记作。

二、练习:1. 下列结论中错误的是()A. 零是整数B. 零不是正数C. 零是偶数D. 零不是自然数2. 如果顺时针旋转30°记作-30°,那么逆时针旋转45°记作。

3. 某人向东走5米,又回头向西走5米,此人实际距原地米。

4. 如果中午以后的2小时记作+2小时,那么+2小时前3小时应记作。

5. 观察下面依次排列的一列数,你能发现它们排列的规律是什么吗?后面空格内的三个数是什么,试把它写出来。

(1) 2、-3、4、-5、6、、、、…(2) 1、2、3、5、8、、、、…6. “一个数前面加‘-’,它一定是负数”对吗?1.2 有理数1.2.1 有理数一、必记概念:1. 正整数、零和负整数统称为;正分数和负分数统称为;和统称为有理数。

2. 把一些数放在一起,就组成一个数的,简称数集。

3. 零和正数统称为,零和负数统称为。

4. 正整数和零统称为,又统称为;零和负整数统称为。

二、练习:(一)把下列各数填在相应的集合中:-1、-0.4、35、0、13-、6、9、317-、114、-19正数集合:﹛…﹜负数集合:﹛…﹜整数集合:﹛…﹜分数集合:﹛…﹜非正数集合:﹛…﹜非负数集合:﹛…﹜非正整数集合:﹛…﹜非负整数集合:﹛…﹜(二)判断题:1. 一个有理数不是正数就是分数。

()2. 一个有理数不是整数就是分数。

()3. 有限小数和无限小数都是有理数。

()4. 0C︒表示没有温度。

()(三)选择题:5. 下列说法:(1)零是正数;(2)零是整数;(3)零是有理数;(4)零是非负数;(5)零是偶数。

其中正确的说法的个数为()A. 2个B. 3个C. 4个D. 5个6. 下列说法正确的是()A. 一个有理数不是正数就是负数B. 一个有理数不是整数就是分数C. 有理数是指整数、分数、正有理数、零、负有理数这五类D. 以上结论都不对-表示的数是()7. xA. 负数B. 正数C. 正数或负数D. 以上答案都不对8. 对于有理数a,下面说法正确的是()-表示负有理数A. a表示正有理数B. a-中必有一个是负有理数 D. 以上答案都不对C. a与a(四)填空题:10. 非负整数与正整数的区别是非负整数包括,而正整数不包括。

七年级上册第一章有理数复习教案

七年级上册第一章有理数复习教案

第一章《有理数》复习一、基本概念 1.有理数生活中的一些具有相反意义的量: 1.飞机上升500米与下降500米; 2.向东走5米与向西走6米; 3.存入1000元和支出900元。

请你将右图连线:我们可以把一种意义的量规定为正.同时把另一种与它相反意义的量规定为负,分别称它们为 正数和负数。

0既不是正数,也不是负数。

〖练一练〗“一个数,如果不是负数,就是正数。

”这句话对吗,为什么?在小学学过的数(零除外)前面加一个“—”号表示负数! 在小学学过的数(零除外)前面加一个“+”号表示正数!(通常正号可以省略) 例1 如果温度上升8℃记作 +8,下降3℃记作 -3,那么下列各数分别表示什么?(1)+5 (2)―6.8 (3) 0正数 有理数 0负数1(口答)读出下列各数,它们各是哪一类数?7 ,-7.46 , 0 , +50/7, ―2/3,-2, -7, -8, +1.3, -0.82.填空:(1) 规定赢利为正,某公司去年亏损了 2.5万元,记做____万元,今年盈 利了3.2万元, 记做_____万元;(2)规定海平面以上的海拔高度为正.新疆乌鲁木齐市高于海平面918米,记做海拔____ 米;吐鲁番盆地最低点低于海平面155米,记做海拔____米.例2 下列给出的各数,哪些是正数?哪些是负数?哪些是整数? 哪些是分数?哪些是有理数?―8.4, 22, +17/6, 0.33, 0, ―3/5盈利 存入 增加 运进 上升 涨 输 进球 南失球 赢 支出 跌 亏损 减少 运出 下降 东【选一选】把”存入银行+50元”改成使用负数的说法是( )(A)取出+50元 (B)取出-50元 (C)存入+50元 (D)存入-50元你能解释”前进-50米”的意思吗?〖课内练习〗 1 填空:(1) 汽车在一条南北走向的高速公路上行驶,规定向北行驶的路程为正. 汽车向北行驶75千米,记做____km,(或__km ),汽车向南行驶100km ,记做__km.(2)如果向银行存入50元记为50元,那么-30.50元表示________;(3)规定增加的百分比为正,增加25%记做__,-12 %表示__________.引进了负数之后,数的范围扩大了整数有理数分数小结①表示大小:②在实际中表示意义相反的量 上升5米记为:5, -8则表示下降8米。

七年级数学人教版(上册)期末复习(一)有理数

七年级数学人教版(上册)期末复习(一)有理数

每年减少 10%的过度包装纸的用量,那么可减排二氧化碳 4 280 000
t.把数 4 280 000 用科学记数法表示为 4.28×106

用科学记数法将一个数表示成 a×10n 形式的方法:(1)确定 a, |a|大于或等于 1 且小于 10;(2)确定 n,当原数的绝对值大于或等于 10 时,n 为正整数,且等于原数的整数位数减 1.
1 解:(3)相反数分别为-0.5,2,-2.5,2.5,0,1.4,-4,3.
1 绝对值分别为 0.5,2,2.5,2.5,0,1.4,4,3.
13.(20 分)计算: (1)0.125×(-7)×8. 解:原式=0.125×8×(-7) =1×(-7) =-7.
(2)-32-(-8)×(-1)5÷(-1)4. 解:原式=-9-(-8)×(-1)÷1 =-9-8 =-17.
(2)如果振子每振动 1 mm 用时 0.02 s,那么完成 8 次振动共需要 多少秒?
【解答】 (2)|+10|+|-9|+|+8|+|-6|+|+7.5|+|-6|+|+8| +|-7|=10+9+8+6+7.5+6+8+7=61.5(mm).
61.5×0.02=1.23(s). 答:完成 8 次振动共需 1.23 s.
|a+b| 当 m=2 时,2m2+1+m-3cd=0+2-3=-1;
|a+b| 当 m=-2 时,2m2+1+m-3cd=0-2-3=-5.
15.(14 分)如图,数轴上有 A,B,C 三点,它们分别表示数 a, b,c,已知|a+24|+(b+10)2=0,且 b,c 互为相反数.
(1)求 a,b,c 的值. 解:(1)因为|a+24|+(b+10)2=0, 所以 a+24=0,b+10=0,解得 a=-24,b=-10. 因为 b,c 互为相反数,所以 b+c=0.所以 c=10.

初中七年级数学上册期末专项复习4套含答案

初中七年级数学上册期末专项复习4套含答案

A. 2.2 104
B. 22 103
C. 2.2 103
8.对于用四舍五入法得到的近似数4.609万,下列说法正确的是( )
D. 0.22 105
A.它精确到千分位
B.它精确到0.01
C.它精确到万位
D.它精确到十位
9. 1 3 5 2 013 2 015 2 4 6 2 014 2 016 = ( )
么位置时,他们两家相距最远,最远是多少?处在什么位置时,他们两家相距最近,最近是多少?
23.(6分)草履虫可以吞食细菌使污水得到净化.1个草履虫每小时大约能形成60个食物泡,每个食物泡大 约吞食30个细菌,那么1个草履虫每天(以24小时计算)大约能吞食多少个细菌?100个草履虫呢?(用科 学记数法表示)
【解析】1 3 5 2013 2015 2 4 6 2014 2016 1 2 3 4 2015 2016
1 1 1 1008 .故选D.
10.【答案】B
二、
11.【答案】 7 或 9 12.【答案】713.【答案】 2 , 4 2 , 0.83 3.7 , 2
(2)计算:①
1 1 2
2
1
3
1 3
4
2
019
1
2
020

② 1 1 1
1

13 35 5 7
2 017 2 019
期末专项复习—有理数
答案解析
一、
1.【答案】C 【解析】由题意,得 8℃ 表示下降 8℃ .故选C.
2.【答案】A【解析】 1 的相反数是 1 .故选A.
2020
2020
(3)若巡逻车每一百千米耗油12升,求该晚巡逻车共耗油多少升.

七年级数学有理数运算知识点整理(复习,填空题,好用)

七年级数学有理数运算知识点整理(复习,填空题,好用)

第一章:有理数总复习一、有理数的根本概念1.大于0的数叫做________;小于0的数叫做_________备注:在正数前面加“-〞的数是_______数;“0〞既不是_______,也不是______。

2.有理数:整数和分数统称有理数。

有理数的分类:3.数轴:规定了______、________和_________的直线。

性质:〔1〕在数轴上表示的两个数,右边的数总比左边的数______;〔2〕正数都______0,负数都_____0;正数______一切负数;〔3〕所有有理数都可以用数轴上的点表示。

4.相反数 :只有符号不同的两个数,其中一个是另一个的相反数。

性质:〔1〕数a 的相反数是______〔a 是任意一个有理数〕;〔2〕0的相反数是_____;〔3〕假设a 、b 互为相反数,那么________;假设a 、b 互为相反数且a 、b 都不等于零,那么_____a b;5.倒数 :乘积是___的两个数互为倒数 。

性质:〔1〕a 的倒数是____〔a ≠0〕; 〔2〕0没有倒数 (为什么);〔3〕假设a 与b 互为倒数,那么______;假设a 与b 互为负倒数,那么______。

倒数与相反数的区别和联系:〔1〕a 与-a 互为______; a 与a 1〔a ≠ 0〕互为______;〔2〕符号上:互为相反数〔除0外〕的两数的符号_____;互为倒数的两数符号______〔3〕a、b互为相反数那么_______;a、b互为倒数 ,那么_______;〔4〕相反数是本身的数是______,倒数是本身的数是______ 。

6.绝对值:一个数a的绝对值就是数轴上表示数a的点_________。

性质:〔1〕数a的绝对值记作________;〔2〕假设a>0,那么︱a︱= _____;假设a<0,那么︱a︱=______;假设a =0,那么︱a ︱=_____;〔3〕对任何有理数a,总有︱a︱≥0.7.有理数大小的比拟:〔1〕可通过数轴比拟:在数轴上的两个数,右边的数总比左边的数____;正数都____0,负数都_____0;正数____一切负数;〔2〕两个负数,绝对值大的______。

秋七年级数学上《有理数》期末复习知识点+检测试卷

秋七年级数学上《有理数》期末复习知识点+检测试卷

2022-2023七年级上期末复习(有理数)知识点1:正数负数有理数知识回顾:(1)大于0的数叫做正数,在正数前加上符号“-”(负)的数叫做负数。

用正、负数可表示一对具有相反意义的量。

(2)0既不是正数,也不是负数。

(3)正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称为有理数。

巩固练习:1.(2022-2023韶关市南雄市七上期末)如果“节约10%”记作+10%,那么“浪费6%”记作: .2.(2022-2023武汉市黄陂区七上期末)如果水位升高2m 时水位变化记作+2m ,那么水位下降3m 时水位变化记作( )A .3m ;B .-3m ;C .5m ;D .-5m 。

3.(2022-2023深圳市龙华新区七上期末)如果节约20元记作+20元,那么浪费10元记作 元.4.(2022-2023阜阳市太和县七上期末)一袋面粉的质量标识为“25±0.25千克”,则下列一袋面粉质量中,合格的是( )A .25.30千克;B .24.70千克;C .25.51千克;D .24.80千克。

5.(2022-2023北京市海淀区七上期末)在“1,-0.3,31 ,0,-3.3”这五个数中,非负有理数是 .(写出所有符合题意的数)知识点2:数轴知识回顾:(1)规定了原点、正方向和单位长度的直线叫做数轴。

一般地,规定向右的方向为正方向,因此数轴上,原点左边表示的数是负数,原点右边表示的数是正数,原点表示的数是0。

(2)设a 是一个正数,那么在数轴上,表示数a 的点与原点的距离为a ;表示数-a 的点与原点的距离为a 。

因此,数轴上与原点的距离是a 的点的两个,它们分别在原点左右,表示的数是-a 和a 。

我们说这两点关于原点对称。

巩固练习:1.(2022-2023广东省深圳市七上期末)数轴的A 点表示﹣3,让A 点沿着数轴移动2个单位到B 点,B 点表示的数是 ;线段BA 上的点表示的数是 .2.(2022-2023天津市和平区七上期末)数轴上的点A 到原点的距离是4,则点A 表示的数为( )A .4;B .﹣4;C .4或﹣4;D .2或﹣2。

第2章 有理数及其运算 小结与复习 (课件)北师大版(2024)数学七年级上册)

第2章   有理数及其运算 小结与复习 (课件)北师大版(2024)数学七年级上册)

例 2 把下列各数填在相应的括号内:-16,26,
-12,-0.92, 35,0,314,0.1008,-4.95.
正数集合:{ 26, 3 ,3 1 , 0.1008, 54
…};
负数集合:{ 26, 12, 0.92, 4.95, …};
整数集合:{ 26, 26, 12, 0,
…};
正分数集合:{ 3 ,3 1 , 0.1008, 54
大的数,也没有最小的数;正数的绝对值是正数,正数的相反数是负
数.因此只有②④正确.
针对训练
1.判断:
①不带“-”号的数都是正数 ( )
×
②如果a是正数,那么-a一定是负数( ) √
③不存在既不是正数,也不是负数的数( )
×
④一个有理数不是正数就是负数 ( )
×
⑤ 0℃表示没有温度
() ×
考点二 有理数的分类
A.1.94×10A10
B.0.194×1010
C.19.4×109
D.1.94×109
解析:194亿=19 400 000 000,根据科学记数法表示数的规律,当原数大于 10时,10的幂指数n=原数整数位数-1,则194亿=1.94×1010.故选A.
[归纳总结]
用科学记数法表示一个大于10的数,就是把这个数表示为a×10n(其 中a是整数位数只有一位的数,n是正整数)的形式.因此,准确地理 解科学记数法的概念,紧紧抓住a,n的条件是解决此类题的关键.
(1)一个数在数轴上对应的点到原点的距离叫做这个数的绝对值
5.比较两个负数的大小 两个负数,绝对值大的反而小.
三、有理数的运算
1.有理数的加法
(1)加法法则 (2)加法的运算律 2.有理数的减法

2022—2023学年人教版数学七年级上册期末复习(1)有理数

2022—2023学年人教版数学七年级上册期末复习(1)有理数

人教版数学7年级上册期末复习(1)有理数一、考点过关【考点1】正数、负数的判断及意义1.下列数:91-,1.5,23,136,7,0中,负数的个数是( ) A.1个 B.2个 C.3个 D.4个2.(2020·中山市期末)如果把顺时针方向转30°记为+30°,那么逆时针方向转45°,记为 .3.先向南走5 m ,再向南走-4 m 的意义是( )A.先向南走5 m ,再向南走4 mB.先向南走5 m ,再向北走-4 mC.先向北走-5 m ,再向南走4 mD.先向南走5 m ,再向北走4 m【考点2】有理数的分类4.在1+,2,0,5-,133-这几个数中,整数有( ) A.1个 B.2个 C.3个 D.4个5.在有理数0,23,5,3.2,12-中,分数有( ) A.1个 B.2个 C.3个 D.4个【考点3】数轴6.(阳江阳东区期末)如图所示的数轴上,被叶子盖住的点表示的数可能是( )A.-1.3B.1.3C.3.1D.2.37.一只蜗牛在数轴上爬行,从原点出发爬行3个单位长度到达终点,那么这个终点表示的数是 .【考点4】相反数、绝对值、倒数8.(锦州中考)6-的相反数是( )A.6B.-6C.16D.16- 9.(2020·邵阳)2020的倒数是( )A.-2020B.2020C.12020D.12020- 10.若一个数的绝对值是9,则这个数是( )A.9B.-9C.9或-9D.011.检测篮球时,超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,下面最接近标准的是( )12.下列几组数中,不相等的是( ) A.3-+和()3+- B. 5-和5--C.()7+-和()7-- D.()2-+和2-+ 【考点5】有理数的大小比较13.(2020·龙华区期末)下列各数中,最小的一个数是( )A.-3B.-1C.0D.214.(2020·潮阳区期末)比较大小:34-0.8- (填“>”或“<”)【考点6】科学记数法15.(2020·顺德区期末)用科学记数法表示水星的半径24400000m 为 m. 16.2020年11月1日是深圳市第四个“人才日”,截至目前,全市人才总量超过600万人,将600万用科学记数法表示为( )A.2 610⨯B.6 610⨯C.7 0.610⨯D.7 610⨯17.(2020·揭西县期末)华为Mate 30 5G 系列是近期相当火爆的5G 国产手机,它采用的麒麟990 5G 芯片在指甲盖大小的面积上集成了103亿个晶体管,将103亿用科学记数法表示为( )A.91.0310⨯B.910.310⨯C.111.0310⨯D.101.0310⨯【考点7]近似数18.按要求取近似数:(1)12.365≈ (精确到0.1);(2)7.6034≈ (精确到百分位);(3)64900≈ (精确到千位).【考点8】有理数的计算19.(2020·黄埔区期末)计算:(1)()()35-+-= ;(2)()()1215---= ;(3)()()133-⨯-= .20.(2020·封开县期末)()842-+÷-= .21.如果()2130x y -+-=,则()2x y -= . 二、核心考题1.既是负数又是整数的是( )A.1-B.15- C. 1.5- D.+6 2.(2020·坪山区期末)某天最高气温为5℃,最低气温为-1℃,则这天最高气温比最低气温高 ℃.3.(佛山顺德区期末)下列运算结果正确的是( )A.()325---=-B.()239-=- C.527-+=- D 210 533⨯= 4.(2020·天河区期末)计算:()()32212410⨯---÷+.5.(2020·惠城区期末)计算:()()23224133-+---⨯⎡⎤⎣⎦. 6.计算:232146232⎛⎫ ⎪⎝⎭-+-⨯-÷ 7.某冷冻厂的冷库温度是-4 ℃,现有一批食品需要在-28℃的温度下冷藏,如果冷库每小时降温6 ℃,问几小时能达到所需求的温度?8.王先生到市行政中心大楼办事,假定乘电梯向上一楼记作+1,向下一楼记作-1,王先生从1楼出发,电梯上下楼层依次记录如下(单位:层):+6,-3,+10,-8,+12,-7,-10.(1)请你通过计算说明王先生最后是否回到出发点1楼;(2)该中心大楼每层高3 m ,电梯每向上或向下1 m 需要耗电0.2度,根据王先生现在所处位置,请你算算,他办事时电梯需要耗电多少度?9.某市客运管理部门对“十一”国庆假期七天客流变化量进行了不完全统计,数据如下(用正数表示客流量比前一天上升数,用负数表示比前一天下降数):与9月30日相比,10月7日的客流量是上升了还是下降了?变化了多少?10.(茂名高州市期中)某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表: 与标准质量的差值(单位:g )-5 -2 0 1 3 6 袋数 1 4 3 4 5 3(2)标准质量为450 g ,则抽样检测的总质量是多少克?三、满分冲刺1.绝对值大于1而不大于3的整数有( )A.1个B.2个C.3个D.4个 日期1日 2日 3日 4日 5日 6日 7日 变化/万人 20 -3 -10 -3 2 9 32.若x 是-3的相反数,5y =,则x y +的值为( )A.2B.8C.-8或2D.8或-23.若x y =,则x 与y 之间的关系是( )A.相等B.互为相反数C.相等或互为相反数D.无法判断4.(2020·海珠区期末)若 0a b c ++=且a b c >>,则下列几个数中:()22;;;;a b ab ab b ac b c +--+①②③④⑤,一定是正数的有 (填序号).5.(肇庆期中)已知ab o >,则||||||a b ab a b ab++= . 6.观察如图所示的程序,若输出的结果为3,则输入的x 值为( )A.1B.-2C. -1或2D.1或27.定义:α是不为1的有理数,我们把11a-称为α的差倒数.例如:2的差倒数是1 1,112---=的差倒数是111(1)2=--.已知1213a a =,是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…,依次类推,解决下列问题:(1)2a = ,3a = ,4a = ;(2)20192000 a a = .8.【数形结合思想】(河北中考)在一条不完整的数轴上从左到右有点A B C ,,,其中21AB BC ==,,如图所示.设点A B C ,,所对应数的和是p .(1)若以B 为原点,写出点A C ,所对应的数,并计算p 的值;若以C 为原点,p 又是多少?(2)若原点О在图中数轴上点C 的右边,且28CO =,求p .9.【分类讨论思想】(2020·福田区期末)已知数轴上两点A B ,对应的数分别为13-,,点Р为数轴上一动点,其对应的数为x .(1)若点Р为AB 的中点,直接写出点Р对应的数;(2)数轴的原点右侧有点Р,使点Р到点A 、点B 的距离之和为8.请直接写出x 的值. x = ;(3)现在点A 、点B 分别以每秒2个单位长度和每秒0.5个单位长度的速度同时向右运动,同时点P 以每秒6个单位长度的速度从表示数1的点向左运动.当点A 与点B 之间的距离为3个单位长度时,点P 所对应的数是多少?人教版数学7年级上册期末复习(1)有理数一、考点过关1.B2.-45°3.D4.C5.C6.D7.+3或-38.B9.C10.C 11.B 12.C 13.A 14.> 15.72.4410⨯ 16.B 17.D 18.(1)12.4 (2)7.60 (3)46.510⨯ 19.(1)-8 (2)3 (3)1 20.-10 21.4二、核心考题1.A2.63.D4.解:原式()214410=⨯--÷+21107=--+=5.解:原式()816193=-+--⨯⎡⎤⎣⎦[]81683=-++⨯840=-+=326.解:原式32166223⎛⎫ ⎪⎝⎭=-+-⨯⨯ 32161223⎛⎫ ⎪⎝⎭=-+-⨯ 16188=-+-6=-7.解:根据题意,得()42864⎡⎤⎣-⎦--÷=(小时),答:4小时能达到所需求的温度.8.解:(1)()()()()()()()6310812710++-+++-+++-+-6310812710=-+-+--=28-28=0∴王先生能回到出发点1楼(2)王先生走过的路程是()36310812710⨯++-+++-+++-+-()36310812710=⨯++++++=3×56=168 (m )∴他办事时电梯需要耗电168×0.2=33.6度.9.解:20310329318---+++=(万人)答:与9月30日相比,10月7日的客流量是上升了.变化了18万人.10.解:(1)()512403143563-⨯+-⨯+⨯+⨯+⨯+⨯ 58041518=--++++1337=-+=24克2420 1.2÷=克答:这批样品的平均质量比标准质量多,多1.2克.(2)24450202490009024+⨯=+=克.答:抽样检测的总质量是9024克.三、满分冲刺1.D2.D3.C4.①④⑤5.3或-16.C7.(1)32 -2 13 (2)23- 8.解:(1)若以B 为原点,则C 表示1,A 表示-2,∴1021p =+-=-若以C 为原点,则A 表示-3,B 表示-1,∴3104p =--+=-(2)若原点O 在图中数轴上点C 的右边,且CO =28,则C 表示-28,B 表示-29,A 表示-31,∴31292888p =---=-.9.解:(1)点P 所对应的数1312x -+== (2)∵点P 在原点右侧,∴1x >-①当点P 在原点和B 点之间时,由题意,得()138x x --+-=方程无解②当点P 在B 点右侧时,由题意,得()138x x --+-=解得x =5故答案为:5(3)设移动的时间为t 秒,①当点A 在点B 的左边,使AB =3时,有()30.5213t t +--= 解得23t = 此时点P 移动的距离为2643⨯= 因此点P 所表示的数为143-=-,②当点A 在点B 的右边,使AB =3时,有()2130.53t t --+= 解得143t =此时点P移动的距离为14628⨯=,3-=-,因此点P所表示的数为12827所以当点A与点B之间的距离为3个单位长度时,点P所对应的数是-3或-27.。

人教版七年级数学上册第一章《有理数》期末复习知识点+易错题(含答案)

人教版七年级数学上册第一章《有理数》期末复习知识点+易错题(含答案)

人教版七年级数学上册期末复习有理数知识点+易错题有理数习知识点复习1、有理数的定义:________和________统称为有理数。

2、有理数的分类:按照符号分类,可以分为________、________和________;按照定义分类,可以分为________和________:整数分为________、________和________;分数分为________和________。

3、数轴的定义:规定了________、________和________的________叫数轴。

4、数轴的三要素:数轴的三要素是指________、________和________,缺一不可。

5、用数轴比较有理数的大小:在数轴上,________的点表示的数总比________的点表示的数大。

6、绝对值的定义:数轴上____________与________的________,叫做这个数的绝对值。

7、绝对值的表示方法如下:-2的绝对值是2,记作________;3的绝对值是3,记作________;0的绝对值是________。

8、相反数的定义:__________、__________的两个数互为相反数,其中一个数是另一个数的________。

9、表示一个数的相反数就是在这个数的前面添一个________号,如2的相反数可表示为________。

10、有理数加法法则:①同号两数相加,取________的符号,并把________相加;②异号两数相加,________相等时,和为________;绝对值不等时,取__________符号,并用________________。

③一个数与0相加,________。

11、有理数减法法则:减去一个数,等于____________。

12、有理数加法运算律:加法交换律:a+b=________;加法结合律:(a+b)+c=________。

13、有理数乘法法则:两数相乘,同号________,异号________,并把________相乘;任何数与0相乘都得________。

人教版七年级数学上册 有理数的加减复习 (部分含答案)

人教版七年级数学上册  有理数的加减复习  (部分含答案)

有理数加减法复习一、选择题1. 如果把收入100元记作+100元,那么支出80元记作( )A. +20元B. +100元C. +80元D. -80元2. 下列有关“0”的叙述中,错误的是( )A. 不是负数,是正数B. 不是有理数,是整数C. 是整数,也是有理数D. 不是正数,也不是负数3. 有理数a ,b 在数轴上对应点的位置如图所示,下列说法中正确的是( )A. a >bB. a >b 1C. D.4. -2的相反数是( )A. 2B.C.D.5. -2018的绝对值是( )A. 20181B. -2018C. 2018D. 20181- 6. 计算|-5+2|的结果是( )A. 3B. 2C. -3D. -27. 如图,52的倒数在数轴上表示的点位于下列两个点之间( )A. 点E 和点FB. 点F 和点GC. 点F 和点GD. 点G 和点H8. 下列说法错误的是( )A. -2的相反数是2B. 3的倒数C.D. 、0、4这三个数中最小的数是09.抚顺一天早晨的气温是-21℃,中午的气温比早晨上升了14℃,中午的气温是()A. B. C. D.10.两个数的差是负数,则这两个数一定是()A.被减数是正数,减数是负数B.被减数是负数,减数是正数C.被减数是负数,减数也是负数D.被减数比减数小11.下列各式的结果与式子-1-2+3的结果不相等的是()A.(-1)+(-2)+(+3)B.(-1)-2+(+3)C.(-1)+(-2)-(-3)D.(-1)-(-2)-(-3)12.下列四句话:①如果两个数的差是正数,那么这两个数都是正数;②减去一个数,等于加上这个数的相反数;③如果两个数互为相反数,那么它们的差为0;④0减去任何有理数,其差是减数的相反数.其中正确的有()A.1个B.2个C.3个D.4个13.(2017·如东模拟)已知a=5,|b|=8,且满足a+b<0,则a-b的值为()A.13 B.-13 C.3 D.-314.若三个有理数的和为0,则下列结论正确的是()A.这三个数都是0B.最少有两个数是负数C.最多有两个数是正数D.这三个数互为相反数15.计算(-1.387)+(-3.617)+(+2.387)时,比较简单的方法是( )A.先求前两个数的和B.先求后两个数的和C.先求第一个数和最后一个数的和D.先求整数部分的和,再求出小数部分的和解:(1)甲:+2万元;乙:-0.2万元;丙:+0.2万元.(2)甲商场的效益最好,乙商场的效益最差.2-(-0.2)=2.2(万元),相差2.2万元.2.回答下列问题:(1)数轴上表示-3的点与表示4的点相距多少个单位长度?(2)数轴上表示2的点先向右移动2个单位长度,再向左移动5个单位长度,最后到达的点表示的数是多少?(3)数轴上若点A表示的数是2,点B与点A间的距离为3,则点B表示的数是多少?(4)若|a-3|=2,|b+2|=1,且数a,b在数轴上表示的点分别是点A,点B,则A,B两点间的最大距离是多少?最小距离是多少?22.解:(1)数轴上表示-3的点与表示4的点相距|-3-4|=7(个)单位长度.(2)数轴上表示2的点先向右移动2个单位长度,再向左移动5个单位长度,最后到达的点表示的数是2+2-5=-1.(3)数轴上若点A表示的数是2,点B与点A间的距离为3,则点B表示的数是2-3=-1或2+3=5.(4)因为|a-3|=2,|b+2|=1,所以a为5或1,b为-1或-3,则A,B两点间的最大距离是8,最小距离是2.3.已知|a|=3,|b|=5,且a<b,求a-b的值.解:因为|a|=3,|b|=5,所以a=±3,b=±5.因为a<b,所以当a=3时,b=5,则a-b=-2;当a=-3时,b=5,则a-b=-8.故a-b的值是-8或-2.4.若m,n互为相反数,则|2+m+(-1)+n|的值是多少?解:因为m,n互为相反数,所以m+n=0,所以|2+m+(-1)+n|=|2+(-1)+m+n|=|1+m+n|=|1+0|=1.5.10名同学参加体能测试,以80分为标准,超过的分数记为正数,不足的分数记为负数,评分记录如下:+10分,+15分,-10分,-9分,-8分,+1分,+2分,-3分,-2分,+1分.这10名同学的总分是多少?解:(+10)+(+15)+(-10)+(-9)+(-8)+(+1)+(+2)+(-3)+(-2)+(+1)=[(+B.16+⎝ ⎛⎭⎪⎫-27+⎝ ⎛⎭⎪⎫-56+⎝ ⎛⎭⎪⎫+57=⎣⎢⎡⎝ ⎛⎭⎪⎫-27+ ⎦⎥⎤⎝ ⎛⎭⎪⎫-56+⎣⎢⎡⎦⎥⎤16+⎝ ⎛⎭⎪⎫+57 C .(-2.6)+(+3.4)+(+1.7)+(-2.5)=[(-2.6)+(-2.5)]+[(+3.4)+(+1.7)]D .9+(-2)+(-4)+1+(-1)=[9+(-2)+(-4)+(-1)]+16.一小商店一周的盈亏情况如下(盈利为正,单位:元):128.3,-25.6,-15,27,-7,36.5,98.则小商店该周的盈亏情况是( )A .盈利240元B .亏损240元C .盈利242.2元D .亏损242.2元2.用适当的方法计算下列各题:(1)(+7)+(-21)+(-7)+(+21);(2)⎝⎛⎭⎫-37+⎝⎛⎭⎫+15+⎝⎛⎭⎫+27+⎝⎛⎭⎫-115; (3)⎝⎛⎭⎫-25+⎝⎛⎭⎫-14+⎝⎛⎭⎫+75。

七年级数学上册第一章《有理数》知识点复习

七年级数学上册第一章《有理数》知识点复习

七年级数学上册第一章《有理数》知识点复习一、选择题1.(0分)下列四种说法:①减去一个数,等于加上这个数的相反数;②两个互为相反数的数和为0;③两数相减,差一定小于被减数;④如果两个数的绝对值相等,那么这两个数的和或差等于零.其中正确的说法有()A.4个B.3个C.2个D.1个B解析:B【分析】根据有理数的减法运算法则对各小题分析判断即可得解.【详解】①减去一个数等于加上这个数的相反数,故本小题正确;②互为两个相反数的两数相加得零,故本小题正确;③减数是负数时,差大于被减数,故本小题错误;④如果两个数的绝对值相等,这两个数可能相等,也可能互为相反数,故本小题正确;综上所述,正确的有①②④共3个.故选B.【点睛】本题考查了相反数的定义,有理数的减法,是基础题,熟记运算法则是解题的关键.2.(0分)下列说法正确的是( )A.近似数1.50和1.5是相同的B.3520精确到百位等于3600C.6.610精确到千分位D.2.708×104精确到千分位C解析:C【分析】相似数和原值是不相同的;3520精确到百位是3500;2.708×104精确到十位.【详解】A、近似数1.50和1.5是不同的,A错B、3520精确到百位是3500,B错D、2.708×104精确到十位.【点睛】本题考察相似数的定义和科学计数法.3.(0分)下列说法中,其中正确的个数是()(1)有理数中,有绝对值最小的数;(2)有理数不是整数就是分数;(3)当a表示正有理数,则-a一定是负数;(4)a是大于-1的负数,则a2小于a3A.1 B.2 C.3 D.4C解析:C【解析】【分析】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.解:(1)有理数中,绝对值最小的数是0,符合题意;(2)有理数不是整数就是分数,符合题意;(3)当a 表示正有理数,则-a 一定是负数,符合题意;(4)a 是大于-1的负数,则a 2大于a 3,不符合题意,故选:C .【点睛】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.此题考查了有理数的乘方,正数与负数,有理数,以及绝对值,熟练掌握运算法则是解本题的关键.4.(0分)下列算式中,计算结果是负数的是( )A .3(2)⨯-B .|1|-C .(2)7-+D .2(1)- A 解析:A【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】解:3(2)6,故选项A 符合题意,|1|1-=,故选项B 不符合题意,(2)75-+=,故选项C 不符合题意,2(1)1-=,故选项D 不符合题意,故选:A .【点睛】题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 5.(0分)正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是( )A .点CB .点DC .点AD .点B B解析:B【分析】由题意可知转一周后,A 、B 、C 、D 分别对应的点为1、2、3、4,可知其四次一次循环,由此可确定出2016所对应的点.【详解】当正方形在转动第一周的过程中,1对应的点是A ,2所对应的点是B ,3对应的点是C ,4对应的点是D ,∴四次一循环,∵2016÷4=504,∴2016所对应的点是D ,故答案选B.【点睛】本题主要考查了数轴的应用,解本题的要点在于找出问题中的规律,根据发现的规律可以6.(0分)用计算器求243,第三个键应按( )A .4B .3C .y xD .=C解析:C【解析】用计算器求243,按键顺序为2、4、y x 、3、=.故选C.点睛:本题考查了熟练应用计算器的能力,解题关键是熟悉不同的按键功能. 7.(0分)若|x|=7|y|=5x+y>0,,且,那么x-y 的值是 ( ) A .2或12B .2或-12C .-2或12D .-2或-12A 解析:A【分析】由绝对值性质可知x 和y 均有两种可能取值,再根据x+y>0排除不可能取值,代入求值即可.【详解】 由x 7=可得x=±7,由y 5=可得y=±5,由x+y>0可知:当x=7时,y=5;当x=7时,y=-5,则x y 75122-=±=或,故选A【点睛】绝对值具有非负性,因此去绝对值时要根据题干条件全面考虑.8.(0分)下列说法中正确的是( )A .a -表示的数一定是负数B .a -表示的数一定是正数C .a -表示的数一定是正数或负数D .a -可以表示任何有理数D 解析:D【分析】直接根据有理数的概念逐项判断即可.【详解】解:A. a -表示的数不一定是负数,当a 为负数时,-a 就是正数,故该选项错误;B. a -表示的数不一定是正数,当a 为正数时,-a 就是负数,故该选项错误;C. a -表示的数不一定是正数或负数,当a 为0时,-a 也为0,故该选项错误;D. a -可以表示任何有理数,故该选项正确.故选:D .【点睛】此题主要考查有理数的概念,熟练掌握有理数的概念是解题关键.9.(0分)若1<x <2,则|2||1|||21x x x x x x ---+--的值是( ) A .﹣3 B .﹣1C .2D .1D【分析】在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号.【详解】解:12x <<,20x ∴-<,10x ->,0x >,∴原式1111=-++=,故选:D .【点睛】 本题主要考查了绝对值,代数式的化简求值问题.解此题的关键是在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号.10.(0分)6-的相反数是( )A .6B .-6C .16D .16- B 解析:B【详解】先根据绝对值的定义化简|-6|,再由相反数的概念解答即可.解:∵|-6|=6,6的相反数是-6,∴|-6|的相反数是-6.故选B . 二、填空题11.(0分)把67.758精确到0.01位得到的近似数是__.76【分析】根据要求进行四舍五入即可【详解】解:把67758精确到001位得到的近似数是6776故答案是:6776【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数 解析:76.【分析】根据要求进行四舍五入即可.【详解】解:把67.758精确到0.01位得到的近似数是67.76.故答案是:67.76.【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数.12.(0分)在|﹣3|、﹣32、﹣(﹣3)2、﹣(3﹣π)、﹣|0|中,负数的个数为_____.2个【分析】分别计算出题目中所给的每一个数即可作出判定【详解】∵|﹣3|=3﹣32=﹣9﹣(﹣3)2=﹣9﹣(3﹣π)=π﹣3﹣|0|=0∴﹣32﹣(﹣3)2是负数故答案为2个【点睛】此题考查的知识解析:2个分别计算出题目中所给的每一个数,即可作出判定.【详解】∵|﹣3|=3,﹣32=﹣9,﹣(﹣3)2=﹣9,﹣(3﹣π)=π﹣3,﹣|0|=0,∴﹣32、﹣(﹣3)2是负数.故答案为2个.【点睛】此题考查的知识点是正数和负数,关键是理解负数的概念,而且要把这些数化为最后结果才能得出正确答案.这就又要理解平方、绝对值,正负号的变化等知识点.13.(0分)小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数有______.012【分析】根据题意可以确定被污染部分的取值范围继而求出答案【详解】设被污染的部分为a 由题意得:-1<a <3在数轴上这一部分的整数有:012∴被污染的部分中共有3个整数分别为:012故答案为012解析:0,1,2【分析】根据题意可以确定被污染部分的取值范围,继而求出答案.【详解】设被污染的部分为a ,由题意得:-1<a <3,在数轴上这一部分的整数有:0,1,2.∴被污染的部分中共有3个整数,分别为: 0,1,2.故答案为0,1,2.【点睛】考查了数轴,解决此题的关键是确定被污染部分的取值范围,理解整数的概念. 14.(0分)若有理数a ,b 满足()26150a b -+-=,则ab =__________.90【分析】本题可根据非负数的性质两个非负数相加和为0这两个非负数的值都为0解出ab 的值再把ab 的值代入ab 中即可解出本题【详解】解:依题意得:|a-6|=0(b-15)2=0∴a-6=0b-15=解析:90【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出a ,b的值,再把a、b的值代入ab中即可解出本题.【详解】解:依题意得:|a-6|=0,(b-15)2=0,∴a-6=0,b-15=0,∴a=6,b=15,∴ab=90.故答案是:90.【点睛】本题考查了非负数的性质,两个非负数相加,和为0,这两个非负数的值都为0.15.(0分)观察下面一列数:—1,2,—3,4,—5,6,—7,…,将这列数排成下列形式.按照上述规律排下去,那么第10行从左边数第9个数是______;数—201是第______行从左边数第______个数90155【分析】根据数的排列每一行的最后一个数的绝对值等于行数的平方并且奇数都是负数偶数都是正数求出第9行的最后一个数的绝对值然后加上9即为第10行从左边数第9个数;求出与201最接近平方数为19解析:90, 15, 5.【分析】根据数的排列,每一行的最后一个数的绝对值等于行数的平方,并且奇数都是负数,偶数都是正数,求出第9行的最后一个数的绝对值,然后加上9即为第10行从左边数第9个数;求出与201最接近平方数为196,即可得解.【详解】∵第9行的最后一个数的绝对值为92=81,∴第10行从左边数第9个数的绝对值是81+9=90,∵90是偶数,∴第10行从左边数第9个数是正数,为90,∵142=196,201-196=5,∴数-201是第15行从左边数起第5个数.故答案为90,15,5.【点睛】本题是对数字变化规律的考查,观察出每一行的最后一个数的绝对值等于行数的平方是解题的关键.16.(0分)一个班有45个人,其中45是_____数;大门约高1.90 m,其中1.90是_____数.准确近似【分析】根据准确数和近似数的定义对数据进行判断【详解】一个班有45个人其中45是准确数;大门约高190m其中190是近似数故答案为:准确;近似【点睛】本题考查了近似数近似数与精确数的接近程度解析:准确近似【分析】根据准确数和近似数的定义对数据进行判断.【详解】一个班有45个人,其中45是准确数;大门约高1.90 m,其中1.90是近似数.故答案为:准确;近似.【点睛】本题考查了近似数.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位.17.(0分)下列各组式子:①a﹣b与﹣a﹣b,②a+b与﹣a﹣b,③a+1与1﹣a,④﹣a+b 与a﹣b,互为相反数的有__.②④【分析】直接利用互为相反数的定义分析得出答案【详解】解:①a-b与-a-b=-(a+b)不是互为相反数②a+b与-a-b是互为相反数③a+1与1-a不是相反数④-a+b与a-b是互为相反数故答案解析:②④【分析】直接利用互为相反数的定义分析得出答案.【详解】解:①a-b与-a-b=-(a+b),不是互为相反数,②a+b与-a-b,是互为相反数,③a+1与1-a,不是相反数,④-a+b与a-b,是互为相反数.故答案为:②④.【点睛】本题考查了互为相反数,正确把握相反数的定义是解题的关键.18.(0分)若三个互不相等的有理数,既可以表示为3,a b+,b的形式,也可以表示为0,3ab,a的形式,则4a b-的值________.15【分析】根据分母不等于0可得b≠0进而推得a+b=0再求出=-3解得b=-3a=3然后代入进行计算即可【详解】解:∵三个互不相等的有理数既可以表示为3的形式也可以表示为的形式∴∴=∴∴==∴==解析:15【分析】根据分母不等于0,可得b≠0,进而推得a+b=0,再求出3ab=-3,解得b=-3.a=3,然后代入4a b -进行计算即可.【详解】解:∵三个互不相等的有理数,既可以表示为3、a b +、b 的形式,也可以表示为0、3a b、a 的形式 ∴0b ≠,∴a b +=0, ∴3a 3b=-, ∴b =3-,a =3,∴4a b -=123+=15.故答案为15.【点睛】本题考查了代数式求值及其有理数的相关概念,根据题意推得b≠0、 a+b=0、3a b =-3是解答本题的关键.19.(0分)如果点A 表示+3,将A 向左移动7个单位长度,再向右移动3个单位长度,则终点表示的数是__________.-1【分析】根据向右为正向左为负根据正负数的意义列式计算即可【详解】根据题意得终点表示的数为:3-7+3=-1故答案为-1【点睛】本题考查了数轴正负数在实际问题中的应用在本题中向左向右具有相反意义可解析:-1【分析】根据向右为正,向左为负,根据正负数的意义列式计算即可.【详解】根据题意得,终点表示的数为:3-7+3=-1.故答案为-1.【点睛】本题考查了数轴,正负数在实际问题中的应用,在本题中向左、向右具有相反意义,可以用正负数来表示,从而列出算式求解.20.(0分)已知4a a =>,6b =,则+a b 的值是________.2或-10【分析】利用绝对值的代数意义确定出a 与b 的值即可求出所求【详解】解:∵|a|=4>a|b|=6∴a=-4b=6或-6当a=-4b=6时a+b=-4+6=2;当a=-4b=-6时a+b=-4 解析:2或-10【分析】利用绝对值的代数意义确定出a 与b 的值,即可求出所求.【详解】解:∵|a|=4>a ,|b|=6,∴a=-4,b=6或-6,当a=-4,b=6时,a+b=-4+6=2;当a=-4,b=-6时,a+b=-4-6=-10.故答案为:2或-10.【点睛】此题考查了有理数的加法,以及绝对值,熟练掌握绝对值的代数意义是解本题的关键.三、解答题21.(0分)阅读下列材料:(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,即当0x <时,1x x x x ==--.用这个结论可以解决下面问题:(1)已知a ,b 是有理数,当0ab ≠时,求a b a b+的值; (2)已知a ,b ,c 是有理数,0a b c ++=,0abc <,求b c a c a b a b c +++++的值. 解析:(1)2或2-或0;(2)-1.【分析】(1)分三种情况讨论,①0,0a b >>,②0,0a b <<,③0ab <,分别根据题意化简即可;(2)由0a b c ++=整理出,,a b c b c a a c b +=-+=-+=-,判断a b c ,,中有两正一负,再整体代入,结合题意计算即可.【详解】(1)0ab ≠∴①0,0a b >>,==1+1=2a b a b a b a b ++; ②0,0a b <<,==11=2a b a b a b a b+-----; ③0ab <,=1+1=0a b a b+-, 综上所述,当0ab ≠时,a b a b +的值为:2或2-或0; (2)0a b c ++=,0abc <,,a b c b c a a c b ∴+=-+=-+=-即a b c ,,中有两正一负, ∴==()1b c a c a b a b c a b c a b c a b c a b c+++---++++-++=-. 【点睛】本题考查绝对值的非负性以及有理数的运算等知识,是重要考点,难度一般,掌握相关知识是解题关键.22.(0分)计算下列各题:(1)(14﹣13﹣1)×(﹣12); (2)(﹣2)3+(﹣3)×[(﹣4)2﹣6].解析:(1)13;(2)-38【分析】(1)根据乘法分配律可以解答本题;(2)根据有理数的乘方、有理数的乘法和加减法可以解答本题.【详解】解:(1)(14﹣13﹣1)×(﹣12) =14×(﹣12)﹣13×(﹣12)﹣1×(﹣12) =(﹣3)+4+12=13;(2)(﹣2)3+(﹣3)×[(﹣4)2﹣6]=(﹣8)+(﹣3)×(16﹣6)=(﹣8)+(﹣3)×10=(﹣8)+(﹣30)=﹣38.【点睛】本题考查有理数的混合计算,掌握有理数混合运算的顺序,会利用简便运算简化运算是解题关键.23.(0分)计算:(1)-8+14-9+20(2)-72-5×(-2) 3+10÷(1-2) 10解析:(1)17;(2)1.【分析】(1)原式利用加法结合律相加即可求出值;(2)原式先计算乘方运算,再计算乘除法运算,最后算加减运算即可求出值.【详解】解:(1)814920--++()()=891420--++=17-+34=17(2)2310752+()(1012)--⨯-÷-()1=4958+10--⨯-÷=49+40+10-=1【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.(0分)计算(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦解析:(1)-6;(2)52-【分析】(1)根据加法运算律计算即可;(2)先算括号里面,再算括号外面的即可;【详解】(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭, ()1140363177⎛⎫=-++-+ ⎪⎝⎭, 42=--,=-6;(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦, 111923=--⨯⨯, 312=--, 52=-. 【点睛】本题主要考查了有理数的混合运算,准确应用加法运算律解题的关键.25.(0分)以1厘米为1个单位长度用直尺画数轴时,数轴上互为相反数的点A 和点B 刚好对着直尺上的刻度2和刻度8.(1)写出点A 和点B 表示的数;(2)写出在点B 左侧,并与点B 距离为9.5厘米的直尺左端点C 表示的数;(3)若直尺长度为a 厘米,移动直尺,使得直尺的长边CD 的中点与数轴上的点A 重合,求此时左端点C 表示的数.解析:(1)点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是-6.5;(3)3-0.5a【分析】(1)根据AB=8-2=6,点A 和点B 表示的数是互为相反数,即可得到结果;(2)利用点B 表示的数3减去9.5即可得到答案;(3)利用中点表示的数向左移动0.5a 个单位计算即可.【详解】(1)∵AB=8-2=6,点A 和点B 表示的数是互为相反数,∴点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是:3-9.5=-6.5;(3)∵直尺长度为a 厘米,直尺中点表示的数是-3,∴直尺此时左端点C 表示的数-3-0.5a .【点睛】此题考查利用数轴表示数,数轴上两点之间的距离,数轴上点移动的规律,熟记数轴上点移动的规律进行计算是解题的关键.26.(0分)计算:(1)231+-+;(2)()3202111024⎡⎤-⨯+-÷⎣⎦. 解析:(1)6;(2)12-【分析】 (1)先化简绝对值,再算加法即可求解;(2)先算乘方,再算括号里面的,最后算乘除即可.【详解】(1)原式=2+3+1=6;(2)原式=1(108)4-⨯-÷=124-⨯÷=1124-⨯⨯=12- 【点睛】此题考查有理数的混合运算,掌握运算顺序和运算法则是解答此题的关键.27.(0分)给出四个数:3,4--,2,6,计算“24点”,请列出四个符合要求的不同算式. (可运用加、减、乘、除、乘方运算,可用括号;注意:例如4(123)24⨯++=与(213)424++⨯=只是顺序不同,属同一个算式.)算式1:_________________;算式2_______________;算式3:_________________;算式4_______________;解析:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【分析】由241212,=+ 可得()342624,-⨯-+⨯=由()2438=-⨯-,可得()()342624,-⨯-+-=由()24124,=-⨯- 可得()()643224,⨯-⨯-+=由()2446=-⨯-,可得()()()()43624624-⨯--÷=-⨯-=,从而可得答案.【详解】解:算式1:()()3426121224,-⨯-+⨯=+=算式2:()()()()34263824,-⨯-+-=-⨯-=算式3:()()()()643224124,⨯-⨯-+=-⨯-=算式4:()()()()()()43624334624,-⨯--÷=-⨯--=-⨯-=故答案为:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法,注意本题答案不唯一,这是一道开放性的题目,同时考查了学生的逆向思维. 28.(0分)计算 ①()115112236⎛⎫--+--- ⎪⎝⎭ ②()32112114132⎛⎫⎛⎫-÷-⨯--- ⎪ ⎪⎝⎭⎝⎭③524312(4)()12(152)2-÷-⨯-⨯-+④()()213132123242834⎛⎫⎛⎫-÷--+-⨯- ⎪ ⎪⎝⎭⎝⎭ ⑤222019111()22(1)2⎡⎤---÷--⨯-÷-⎢⎥⎣⎦ 解析:①-2;②458-;③-10;④-9;⑤-13. 【分析】 ①先去括号和绝对值,在进行加减运算即可.②先运算乘方,去括号,再将除法改为乘法,最后进行混合运算即可. ③先运算乘方,再去括号,最后进行混合运算即可.④先运算乘方,利用乘法分配律去括号,再将除法改为乘法,最后进行混合运算即可.⑤先运算乘方,再将除法改为乘法,再去括号,去绝对值,最后进行混合运算即可.【详解】①原式14171236=+-- 386176666=+-- 2=-.②原式3274()(3)()48=-⨯-⨯--- 2798=-+ 458=-. ③原式3132(4)12(1516)4=-÷-⨯-⨯-+ 181214=⨯-⨯ 10=-.④原式()()()()1171542242424834=⨯--⨯--⨯-+⨯- 8335690=-++-9=-.⑤原式11(12)2(1)4=---÷-⨯÷- 1(142)2=-+-⨯-⨯1(6)2=-+-⨯112=--13=-.【点睛】本题考查有理数的混合运算,掌握有理数混合运算的顺序是解答本题的关键.。

七年级数学上册有理数分类复习题

七年级数学上册有理数分类复习题

有理数复习资料知识点1:有理数的基本概念中考要求:有理数 理解有理数的意义会比较有理数的大小数轴 能用数轴上的点表示有理数;知道实数与数轴上的点的对应关系会借助数轴比较有理数的大小 相反数 会用有理数表示具有相反意义的量,借助数轴理解相反数的意义,会求实数的相反数掌握相反数的性质绝对值 借助数轴理解绝对值的意义,会求实数的绝对值会利用绝对值的知识解决简单的化简问题 知识点总结:正数、负数、有理数随着同学们视野的拓展,小学学过的自然数、分数和小数已经不能满足认知需要了.譬如一些具有相反意义的量,收入300元和支出200元,向东50米和向西30米,零上6C ︒和零下4C ︒等等,它们不但意义相反,而且表示一定的数量,怎么表示它们呢?我们把一种意义的量规定为正的,把另一种和它意义相反的量规定为负的,这样就产生了正数和负数.正数:像3、1、0.33+等的数,叫做正数.在小学学过的数,除0外都是正数.正数都大于0.负数:像1-、3.12-、175-、2008-等在正数前加上“-”(读作负)号的数,叫做负数.负数都小于0.0既不是正数,也不是负数.一个数字前面的“+”,“-”号叫做它的符号. 正数前面的“+”可以省略,注意3与3+表示是同一个正数. 用正、负数表示相反意义的量:如果正数表示某种意义,那么负数表示它的相反的意义,反之亦然. 譬如:用正数表示向南,那么向北3km 可以用负数表示为3km -.“相反意义的量”包括两个方面的含意:一是相反意义;二是相反意义的基础上要有量. 有理数:按定义整数与分数统称有理数. ()⎧⎧⎫⎪⎬⎪⎨⎭⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数自然数整数零有理数按定义分类负整数正分数分数负分数 ()()⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数按符号分类零零既不是正数,也不是负数负整数负有理数负分数 注:⑴正数和零统称为非负数;⑵负数和零统称为非正数; ⑶正整数和零统称为非负整数; ⑷负整数和零统称为非正整数.板块一、基本概念 例题讲解1、选择下面是关于0的一些说法,其中正确说法的个数是( )①0既不是正数也不是负数;②0是最小的自然数;③0是最小的正数;④0是最小的非负数;⑤0既不是奇数也不是偶数.A.0B.1C.2D.3 2、下面关于有理数的说法正确的是( ). A .有理数可分为正有理数和负有理数两大类.B. 正整数集合与负整数集合合在一起就构成整数集合C. 整数和分数统称为有理数D. 正数、负数和零的统称为有理数板块二、数轴、相反数、倒数、绝对值3、a 和b 是满足ab ≠0的有理数,现有四个命题: ①224a b -+的相反数是224a b -+;②a b -的相反数是a 的相反数与b 的相反数的差; ③ab 的相反数是a 的相反数和b 的相反数的乘积;④ab 的倒数是a 的倒数和b 的倒数的乘积.其中真命题有( )A. 1个B. 2个C. 3个D. 4个4、一个数的绝对值大于它本身,那么这个数是( )A 、正有理数B 、负有理数C 、零D 、不可能 5、数轴上离开原点2个单位长度的点表示的数是____________;6、有理数-3,0,20,-1.25,1.75,-∣-12∣,-(-5)中,正整数有________个, 非负数有______个;7、绝对值最小的有理数是________;绝对值等于3的数是______; 绝对值等于本身的数是_______;绝对值等于相反数的数是_________数;一个数的绝对值一定是________数。

七年级上册数学: 有理数运算复习

七年级上册数学: 有理数运算复习
值. 若干个非负数相加和为0, 则每个加数均为0.
若(a-3)2+|b+a|+(c-2)4=0,求ca+bc的值. 17
若m、n满足|3m-6|+(n+4)2=0 ,则mn=_-_8_.
19.若 a 3, b 5 (1)若ab 0,则a b __±__8_____ (2)若ab 0,则a b __±__2_____ (3)若a b 0,则ab __-1_5_或__-2___
)
C
(A) 1个 (B) 2个 (C) 3个 (D) 4个
近似数85.70的有效数字是(
)
D
(A)8,5,7 (B)7,0 (C)8,5 (D)8,5,7,0
用科学记数法表示-5670000B时,应为(
)
(A)-567×104
(B)-5.67×106
(C)-5.67×107 (D)-5.67×104
关系是-------------------------------------------------------( D )
(A)两个都正
(B)两个都负
(C)一正一负 且负的绝对值较大
(D)一正一负且正的绝对值较大
小明的爸爸买了一种股票,每股8元,下表记录了在一周内该 股票的涨跌情况:





星期
(C)零减去一个数仍得这个数 (D)减去一个负数,差一定大于被减数
一、选择题
1.两个有理数的和为负数,那么这两个数 一定()。
(A)都是负数 (B)至少有一个数是负数 (C)有一个是0 (D)绝对值不相等 2.如果减数是负数,那么()。 (A)差比被减数小 (B)差比被减数大 (C)差是正数

人教版七年级上册数学课件:第一章有理数复习(共98张PPT)

人教版七年级上册数学课件:第一章有理数复习(共98张PPT)

则a= ±5 ,b= -8 。
科学记数法、近似数
1. 把一个大于10的数记成a×10n的形式,其中a是整数 数位只有一位的数,这种记数法叫做科学记数法 .
2..与实际完全符合的数是准确数,接近实际但又与实际 数值有差别的数叫近似数。
3.精确度: 一个近似数四舍五入到哪一位,就称这个数
精确到哪一位.
2)0的相反数是0.
3)若a、b互为相反数,则a+b=0.
-4
4
-2 2
-4 -3 –2 –1 0 1 2 3 4
相反数
1、-5的相反数是 5 ; 2、-((-17))如的果相a反=数-是1-37,那;么-a=__1__3__;
(2)如果-x=-6,那么x=___6___; 3、 a+2的相反数是_-_(_a__+_2;)或-a-2
分数有:-3.14,- 2 , -(- 2 ), 1 ,- 1 5 924
正整数有:12,|-8|
非负整数集有
负分数有:-3.14,- 2 ,- 1 54
非负数有:12,0,-(- 2 ),|-8|, 1 92
数轴定义及性质
规定了原点、正方向和单位长度的直线.
-3 –2 –1 0 1 2 3 4
1) 在数轴上表示的两个数,右边的数总比左边的数大;
(2)原式=(-3)+(-18)=-21 (3)原式=0 +(+3)= 3 (4)原式= (-3) +(+18)= 15
加减法可以统一成加法
把下式写成省略加号的和的形式,并把它读出来 (-3)+(-8)-(-6)+(-7)
解:原式=-3-8+6-7 读作“-3,-8,+6,-7的和 或负3减8加6减7

人教版七年级数学上册第章有理数单元复习课件

人教版七年级数学上册第章有理数单元复习课件
五、近似数 1.按照要求取近似数
四舍五入到某一位,就说这个数近似数精确到那一位. 2.由近似数判断精确度
考点一 正、负数的意义
例1 下列各数中,哪些是正数?哪些是负数?
+0.005,-100, 2 3
,-
5 4 ,0.333…,-4,
5,0.
导引:直接根据定义判断即可.
解:正数:+0.005, 2, 0.333, 5; 3
4.相反数 (1)只有符号不同的两个数叫做互为相反数 (2)互为相反数的两个数到原点的距离相等
5.绝对值 (1)一个数在数轴上对应的点到原点的距离 叫做这个数的绝对值 (2)一个正数的绝对值是它本身.
一个负数的绝对值是它的相反数. 0的绝对值是0.
6.有理数大小的比较 (1)数轴上表示的两个数,右边的总比左边的大. (2)正数大于0,0大于负数,正数大于负数;
负数:-100, - 5,-4. 4
考点一 正、负数的意义
注意带单位
例2 如果-4米表示向东走4米,那么向西走2米记作+_2_米___. 【解析】根据题意,可知向东记为负,向西记为正, 故向西走2米记做+2米.
方法总结
根据相反意义合理使用正、负数对实际问题进行表示. 一般情况下,把向北(东)、上升、增加、收入等规定为正, 把它们的相反意义规定为负
⑤ 0℃表示没有温度
( ×)
【解析】①0不带“-”号,但0不是正数,故①错误;
②正数的相反数是负数,故②正确;③同①,故③错
误;④同③,故④错误;⑤0℃并不是表示没有温度,
它是介于正温度与负温度之间,故⑤错误.
方法总结
0既不是正数也不是负数,0的相反数是它本身. 0不仅能表示没有,而且表示正、负之间的分界值.

七年级上第1章有理数复习教案(5篇材料)

七年级上第1章有理数复习教案(5篇材料)

七年级上第1章有理数复习教案(5篇材料)第一章有理数复习教学目标:1:识记有理数的基本概念;2:能够运用相关基础知识,解决简单的数学问题;3.掌握并运用有理数的运算规则和规律进行计算。

教学中的重点和难点:有理数的基本概念和算法。

教学过程:(一)有理数的基本概念一:正数和负数1、正数:大于0的数叫做正数。

2、负数:在正数前面加上负号“-”的数,比0小的数叫做负数。

3、0:既不是正数也不是负数,是正数和负数的分界。

4.同一个问题中,正数和负数分别代表意义相反的量。

二:有理数:可以写成分数的形式,这样的数叫做有理数。

有理数的两种分类三:数轴:定义原点、正方向、单位长度的直线称为数轴。

数轴满足以下要求:(1)在直线上任取一个点表示数0,这个点叫做原点;(2)通常直线上的右(或上)方向为正方向,选择合适的长度作为单位长度。

数轴上表示的两个数中,右边的数总是大于左边的数;所有有理数都可以用数轴上的点来表示。

关于有理数和数轴的练习4:倒数绝对值相等,只有符号不同的两个数叫做互为相反数。

其中一个是另一个的相反数。

数a的相反数是-a,(a是任意一个有理数);0的相反数是0.若a、b互为相反数,则a+b=0.相反数的相关练习题五:倒数乘积是1的两个数互为倒数.a的倒数是;0没有倒数;若a与b互为倒数,则ab=1.倒数相关练习题倒数、相反数区别:1:互为倒数的两个数符号相同,互为相反数的两个数符号相反。

2:0没有倒数,0的相反数是0。

3:倒数对于本身的数是1或-1。

4:两个相反数之和为0,两个倒数之积为1。

示例:六:绝对值数轴上表示数a的点与原点的距离叫做数a的绝对值。

记做|a|。

由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。

a一个正数的绝对值是它本身;若a>0,则︱a︱= a;一个负数的绝对值是它的相反数;若a<0,则︱a︱=-a;0的绝对值是0.若a =0,则︱a︱= 0;对任何有理数a,总有︱a︱≥0.绝对值知识的相关练习题例题:七:有理数大小的比较:1)数轴比较:在数轴上的两个数,右边的数总比左边的数大;正数都大于0,负数都小于0;正数大于一切负数;2)两个负数,较大的绝对值较小。

初一上册数学期末重点知识点复习总结11篇

初一上册数学期末重点知识点复习总结11篇

初一上册数学期末重点知识点复习总结优秀11篇初一数学上册复习资料篇一有理数的加减法①有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加。

2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

3.一个数同0相加,仍得这个数。

加法的交换律和结合律②有理数减法法则:减去一个数,等于加这个数的相反数。

七年级上册数学期末复习资料篇二第二章有理数1 、正数与负数在以前学过的0以外的数前面加上负号“—”的数叫负数。

与负数具有相反意义,即以前学过的0以外的数叫做正数(根据需要,有时在正数前面也加上“+”)。

2 、有理数(1) 正整数、0、负整数统称,正分数和负分数统称。

整数和分数统称。

0既不是数,也不是数。

(2) 通常用一条直线上的点表示数,这条直线叫数轴。

数轴三要素:原点、、单位长度。

在直线上任取一个点表示数0,这个点叫做。

(3) 只有符号不同的两个数叫做互为相反数。

例:2的相反数是;-2的相反数是;0的相反数是(4) 数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

两个负数,绝对值大的反而小。

3 、有理数的加减法(1)有理数加法法则:①同号两数相加,取相同的,并把绝对值相加。

②绝对值不相等的异号两数相加,取符号,并用减去较小的绝对值。

互为相反数的两个数相加和为0。

③一个数同0相加,仍得这个数。

(2) 有理数减法法则:减去一个数,等于加这个数的相反数。

4、有理数的乘除法(1) 有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。

(2) 乘积是1的两个数互为倒数。

例:-的倒数是;绝对值是;相反数是。

(3) 有理数除法法则1:除以一个不等于0的数,等于乘这个数的倒数。

有理数除法法则2:两数相除,同号得,异号得,并把相除。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 有理数【知识点一】 有理数的分类按有理数的定义分类: 按有理数的性质符号分类:0⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数负整数有理数正分数分数负分数 0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数负整数负有理数负分数 “0”不是正数也不是负数,是正数与负数的分界点,是一个中性数。

例1、把下列各数填入相应的大括号内:①-7;②3.01;③300%;④-0.142857;⑤0.1;⑥0;⑦39;⑧-113355;⑨-3;⑩722;⑾3.1416;⑿ 5(1)正数:{ } (2)负数:{ } (3)正整数:{ } (4)负整数:{ } (5)正分数:{ } (6)非正分数:{ } 1、用-a 表示的数一定是( )A 、负数B 、负整数C 、正数或负数D 、以上结论都不对2、下列说法正确的是( )A 、整数就是正整数和负整数B 、分数包括正分数、负分数C 、正有理数和负有理数组成全体有理数D 、一个数不是正数就是负数。

3、下列说法正确的是( ) A 、一个有理数不是整数就是分数B 、正整数和负整数统称为整数C 、正整数、负整数、正分数、负分数统称为有理数D 、0不是有理数4、下列说法:①正有理数是正整数和正分数的统称;②整数是正整数和负整数的统称;③有理数是正整数、负整数、正分数、负分数的统称;④0是偶数,但不是自然数;⑤偶数包括0,其中正确的是( )A 、①②B 、①②③C 、③④D 、①⑤5、在有理数中,是整数而不是正数的是_______________,是分数而不是负分数的是________________。

6、最大的负整数是______,最小的正整数是______,最大的非正数是______,最小的非负数是______。

【知识点二】 数轴规定了原点、______、______的直线叫做数轴。

(1)数轴是一条直线,可以向两端无限延伸;(2)数轴有三要素:原点、正方向、单位长度,三者缺一不可;(3)原点的选定、正方向的取向、单位长度大小的确定,都是根据实际情况来定。

画数轴的基本步骤:(1)画线;(2)取点;(3)选方向;(4)定单位长度。

例2、下列说法错误的是( ) A 、数轴的三要素是原点,正方向、单位长度 B 、数轴上的每一个点都表示一个有理数C 、数轴上右边的点总比左边的点所表示的数大D 、表示负数的点位于原点左侧1、下列图形中是数轴的是( )A 、B 、C 、D 、2、在数轴上,原点及原点右边的点表示的数是( )A 、正数B 、整数C 、非负数D 、非正数 3、一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,这时它表示的数是( )A 、2B 、4C 、-1D 、-24、下列说法正确的是( ) A 、数轴是一条可以无限延伸的直线B 、表示-a 的点一定在原点左侧C 、在数轴上表示-4的点和表示+2的点距离是2D 、数轴上表示-3的点,在原点左侧3个单位处5、数轴上点A 、B 分别表示数2-和4,数轴上点C 到A 、B 的距离相等,点C 表示的数是_________。

6、数轴上表示1-与表示5的两点间的距离是_________。

7、如图,小玉在写作业时不慎将墨水滴在数轴上,根据图中的数据,试确定墨迹盖住的整数共有哪几个?8、如图,数轴上有A 、B 、C 三点,请回答下面的问题:(1)将点B 在数轴上移动3个单位长度后,所表示的数是什么?(2)怎样在数轴上移动点C ,使移动后的点C 与点A 间的距离等于点B 与点A 的距离?此时点C 表示的数什么?例3、数a ,b 在数轴上对应点的位置如图所示,则a ____b 。

(填“>”“<”或“=”)。

1、用数轴比较下列数的大小: -0.5,1,-3,0,2.52、按从小到大的顺序,用“<”号把下列数连接起来。

142-,23,0.6,-0.6, 4.2-3、m ,n 都是负数,n 比m 大,那么在数轴上,m 、n 都在原点的_________侧,m 点比n 点距离原点____。

【知识点三】 相反数————“形影不离”只有符号不同的两个数叫做互为相反数。

相反数的性质:(1)一般地,a 的相反数是_______,a -的相反数是________;0的相反数是______;; (2)如果两个数互为相反数,那么这两个数的和为______;反之,如果两个数的和为______,那么这两个数互为相反数。

(若a 、b 互为相反数,则a + b =0,反之也成立。

)在数轴上,表示互为相反数(0除外)的两个点,位于原点的两侧,并且到原点的距离_______。

例4、根据数轴所示填写下表:数轴上的点 A B C D所表示的数 -1 313 相反数1 A 、正数和负数互为相反数 B 、a 的相反数是负数 C 、相反数等于它本身的数只有0 D 、a -的相反数是正数2、下列说法中正确的是( )A 、正数和负数互为相反数B 、符号不同的两个数互为相反数C 、任何一个有理数都有相反数D 、数轴上原点两边的两个点所表示的数互为相反数 3、如图,在数轴上,表示互为相反数的点是( )A 、点A 和点DB 、点B 和点CC 、点A 和点CD 、点B 和点D4、若一个数的相反数比这个数大,则这个数是( )A 、正数B 、负数C 、0D 、负数和05、在数轴上与原点的距离是315的点表示的数是__________,它们互为___________6、在数轴上,若点A 和点B 分别表示互为相反数的两个数,并且这两点间的距离是2018,则这两个点所表示的数分别是______、______。

7、(1)若-3和3a 互为相反数,求a 的值。

(2)若3a -与5a +互为相反数,求a 的值。

【知识点四】 多重符号的化简若一个正数前面有偶数个“-”号,则可以把“-”号一起去掉; 若一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号; 0前面不论有多少个“-”,化简后仍是0.例5、化简:+⎥⎦⎤⎢⎣⎡--)43(=________;(){}2018---⋯⋯-⎡⎤⎣⎦,在2018前面有2019个负号,则化简的结果是________ 1、下列各式中,错误的是( )A 、)51()2.0(++=-- B 、)5()5(-+=+-C 、[]6)6(=---D 、0=-02、(1)-(+23)是________的相反数。

(2)若()0.8m -=--,则m =_______。

3、已知()2a ---=⎡⎤⎣⎦,求a -的相反数。

【知识点五】 规律例6、观察图中正方形四个顶点所标的数字规律,可知数2018应标在( )第4个正方形第3个正方形第2个正方形第1个正方形1615129743A 、第504个正方形的左下角B 、第504个正方形的右上角C 、第505个正方形的左上角D 、第505个正方形的右上角1、将一串有理数按下列规律排列,回答下列问题:(1)在A 处的数是正数还是负数?(2)负数排在A 、B 、C 、D 中的什么位置?(3)第2018个数是正数还是负数?排在对应于A 、B 、C 、D 中的位置?例7、观察下列各组数,请找出它们的排列规律,并写出每组后面的2个数: (1)2-、0、2、4、…… (2)1、12-、23、34-、45、56-、……(3)1、0、1-、0、1、0、1-、0、……2、观察下列各组数,请找出它们的排列规律,并写出每组后面的2个数: (4)2、4、6-、8、10、12-、14、…… (5)1-、12、13-、14、15-、16、…… (6)0、3-、8、15-、24、35-、……(7)2、3-、2、3-、2、3-、2、3-、……【闯关小测试】1、“牛牛”饮料公司的一种瓶装饮料外包装上有“500±30(mL )”字样,请问“±30 mL ”是什么含义?质检局对该产品抽查5瓶,容量分别为503 mL ,511 mL ,489 mL ,473 mL ,527 mL ,问抽查产品的容量是否合格?2、a 为任意自然数,包括a 在内的三个连续的自然数可以表示为( ) A 、a -2,a -1,a B 、a -3,a -2,a -1 C 、a ,a +1,a +2 D 、a -1,a ,a +13、在数轴上点A 表示的数是3-,与点A 相距两个单位的点表示的数是_________。

4、点A 在原点的左边,距原点4个单位,如果把点A 沿数轴向右移动8个单位,到达点B ,那么点A 表示的数是_________,点B 表示的数是_________。

5、任意取三个数,一个正整数,一个负整数,一个负分数,在数轴上表示它们及其相反数。

6、若21x +是-9的相反数,求x 的值。

7、多重符号的化简:①(){}2-+--⎡⎤⎣⎦=________;②14⎧⎫⎡⎤⎛⎫----⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭=_______;③(){}8+-+-⎡⎤⎣⎦=______ 8、已知x 的相反数是-2,且2310x a +=,求a 的值。

9、一滴墨水滴在了数轴上,请根据图中所显示的数据判断被墨迹盖住的整数有________个。

10、观察下面一列数,探求其规律:12-、23、34-、45、56-、67、……(1)写出第79、80、81项的三个数;(2)第2018个数是什么?(3)如果这一列数无限排列下去,与哪两个数越来越接近?。

相关文档
最新文档