道路勘测设计第三版纵断面设计

合集下载

《道路勘测设计》纵断面设计

《道路勘测设计》纵断面设计
r r V V
式中:——汽车牵引力(N); ——变速器的变速比; ——汽车发动机的转矩(N· m); ——传动系统的机械效率,载货汽车一般为0.8~0.85,小汽 车一般为0.85~0.95; ——计入轮胎变形后的车轮工作半径,一般为车轮几何半 径(m)的0.93~0.96倍。
T
Mk M T n N 0.377 MT 3600 T r r V V
二、汽车在坡道上的行驶要求
1.纵坡度力求平缓; 2.陡坡宜短,长坡道的纵坡度应加以严格限 制; 3.纵坡度的变化不宜太多,尤其应避免急剧 起伏变化,力求纵坡均匀。
T
M T r
三、汽车行驶的牵引力及运动方程
1.牵引力计算: 牵引力的大小可按下式计算: M M T n N T k 0.377 MT 3600 T ( N) (4-1)
5、汽车行驶条件分析
从汽车行驶的两个条件可以看出,要提高汽车的效 率,主要应从提高汽车牵引力和路面轮胎间的附 着力以及减小行驶阻力三方面着手。 (1)提高牵引力可以采取增加发功机扭矩、加大传 动比和提高发动机机械效率等措施。 (2)提高附着力主要是从增加路面表面粗糙度,加 强路面排水,使路面具有较大的附着系数,以及 改进汽车轮胎和粗糙度等几方面着手。 (3)减小行车阻力主要从提高路面质量,使路面平 整,减小滚动阻力,降低路线纵坡,减小坡度阻 力,改进车型,减小空气阻力等几方面着手。
T=R RW RR RI
如果节流阀部分开启,要对驱动力T进行修正。修正系数 用U表示,称为负荷率。即:
MT T U r
式中:U―――负荷率,取U=80~90%。 将有关公式代入式(2-12),则汽车的运动方程 为:
MT KAV G U G f i a r 21.15 g

道路勘测设计课程设计-纵断面设计

道路勘测设计课程设计-纵断面设计

《道路勘测设计》道路纵断面设计作业
一、目的
本作业是在学生学完《道路勘测设计》道路纵断面设计基础上进行的一次作业实战训练,有助于巩固所学专业知识,为横断面设计学习打好坚实基础。

二、基本资料
本地形图位于武夷山地区,拟新建公路穿越该区域A点至B点,交通量资料见表;穿越区道路设计起点坐标:A点(X = 532851.5770,Y = 3044868.6750,Z = 177.6 );终点坐标B点(X = 535751.2414,Y = 3044543.1403,Z =170.2);路线衔接处起点设计高程为:176.6m,路线衔接处起点设计高程为:172.5m。

本设计的起点A的里程桩号为K25+000.
三、设计步骤和方法
1、基于上次平面设计作业及地形图,按照10~20米间距在地形图上定出各个中桩位置,读出地面高程,依此点汇出纵断面(如果地形变化较大,需要进行加密);
2、进行纵断面设计;
3、编制路基设计表;
四、要求
1、所有设计必须独立完成,不得抄袭;
2、图纸规范,按A3进行打印。

五.成果提交
(一)计算说明部分
1、纵断面计算(设计标高、竖曲线各要素等)
(二)图纸部分
1、纵断面设计图
六、主要参考书目
1、《道路勘测设计》
2、《公路工程技术标准》
3、《公路路线设计规范》
4、其它相关书籍。

道路勘测设计 第2章 平面设计 (第三版)

道路勘测设计 第2章 平面设计 (第三版)


采用长的直线应注意的问题:
公路线形应与地形相适应,与景观相协调,直线的最大长度应有 所限制,当采用长的直线线形时,为弥补景观单调的缺陷,应结合 具体情况采取相应的技术措施。
(1)直线上纵坡不宜过大,易导致高速度。 ( 2 )长直线尽头的平曲线,设置标志、增加路面抗滑性能。 (3)直线应与大半径凹竖曲线组合,视觉缓和。
不宜采用长直线
二. 最大直线长度问题:
《标准》规定:直线的最大与最小长度应有所限制。
德国:20V(m)。 前苏联:8km 美国:3mile(4.38km) 我国:暂无强制规定 景观有变化 ≧20V; <3KM 景观单调 ≦ 20V
公路线形设计不是在平面线形上尽量多采用直线,或者是必须 由连续的曲线所构成, 而是必须采用与自然地形相协调的线形。
式中:V——计算行车速度,(km/h); μ——横向力系数;
ih——超高横坡度;
i1——路面横坡度。 不设超高时 :

V2 R 127( -i1 )
1.横向力系数μ 对行车的影响及其值的确定:

(1)危及行车安全
汽车轮胎不在路面上滑移,要求:


h
与车速、路面种类及状态、轮胎状态等有关;
式中: ihmax——允许的超高值
h w ——一年四季中路面最小的横向摩阻系数
《标准》规定: 高速公路、一级公路:不应大于10%, 其它各级公路: 不应大于8%。 在积雪冰冻地区: 不宜大于6%。
(二)最小半径的计算

最小半径的实质:
①横向力u≦摩阻力φ h, ②乘车人感觉良好。
道路:路基、路面、桥梁、涵洞、隧道和沿线设施构成的 三维实体。

道路勘测设计第四章纵断面设计

道路勘测设计第四章纵断面设计

4.4 爬坡车道与避险车道
4.4.1 爬坡车道
图4-8 爬坡车道
(1)定义
爬坡车道是在陡坡路段上坡方向行车道右侧增设的供载重 汽车行驶的专用车道。
(2)设置爬坡车道的条件
1)沿上坡方向载重车的行驶速度降低到允许最低速度以下 时,可设爬坡车道。
表4-9 上坡方向容许最低速度
设计速度/(km/h)
120 100 80
1)高速公路受地形条件或其它特殊情况限制时,经技术 经济论证合理,可增加1%。
2) 四级公路位于海拔2000m以上或积雪冰冻地区的路段, 最大纵坡不应大于8%。
3)桥上及桥头的最大纵坡:小桥与涵洞处纵坡应按路线 纵坡设计;大桥上纵坡不宜大于4%,桥头引道纵坡不宜 大于5%,引道紧接桥头部分的线形应与桥上线形相配合。
设置的竖向曲线称为竖曲线。 坡度差: wi2 i1
竖曲线的形式可采用抛物线或圆曲线。 纵断面上只计水平距离和竖直高度,斜线用坡度计。
图4-2 路线纵断面图
(2)竖曲线几何要素计算
LRw
T
L 2
E T2 2R
(3)竖曲线上任意点纵 距y 的计算
y x2 2R
H 1H 0(Tx)i.
2)计算设计高程
4.2.7 缓和坡段
缓和坡段的坡度不宜大于3%,其长度应符合所规定的最 小坡长要求。
4.2.8 纵坡设计的一般要求
(1)纵坡设计必须满足《公路工程技术标准》或《城市 道路设计规范》的各项规定。
(2)路线应有一定的平顺性,起伏不宜过大和过于频繁。
(3)纵坡设计应对沿线地形、地下管线、地质、水文、 排水等因素综合考虑。
(1)应选用较大的竖曲线半径。
当坡度差较小时,应采用较大半径; 条件受限制时可采用一般最小半径; 特殊困难不得已才允许采用极限最小半径;

道路勘测设计 纵断面设计(新)课件

道路勘测设计      纵断面设计(新)课件

纵断面设计的基本原则
满足行车安全与舒适性要求
合理设置坡度、坡长和竖曲线半径,确保车 辆安全、顺畅行驶。
经济性原则
在满足使用功能的前提下,尽量减少工程量 ,降低工程造价。
考虑排水要求
根据地形和气候条件,合理设置坡度,确保 排水顺畅。
协调性原则
纵断面设计与道路线形其他要素相协调,如 平面线形、横断面设计等。
在城市道路纵断面设计中,要特别注 意避免陡坡、急弯等不利因素,保证 行车安全和舒适度。
高速公路纵断面设计实例
高速公路纵断面设计要满足高速 行车的要求,合理设置纵坡、竖 曲线半径等参数,提高道路的线
形指标。
高速公路的纵断面设计还需要考 虑地形、地质、水文等自然条件 ,充分利用地形地势,减少工程
量,降低工程造价。
基于景观要求的纵断面设计优化
总结词:注意事项
详细描述:在基于景观要求的纵断面设计时,应注意避免对周围环境的破坏和影响。同时,应充分考 虑当地的文化特色和历史遗产,尊重和保护当地的风俗习惯和传统建筑。此外,应加强景观规划和设 计的管理和监督,确保设计的可行性和实施效果。
THANKS
感谢观看
控制高程的校核
在确定控制高程后,应进行校核, 检查是否满足规范要求和实际情况 ,如有需要可进行适当调整。
纵断面图的绘制与调整
纵断面图绘制
根据设计标高、控制点和控制高 程等数据,绘制道路的纵断面图 ,清晰地表示出道路的起伏变化

纵断面图调整
在绘制纵断面图的过程中,应结 合实际情况和设计要求,对图进 行必要的调整,以使设计更加合
隧道进出口
隧道进出口是道路勘测设计的难点之一,需要考虑地形、地质、气象等因素, 同时要满足行车视距、通风、照明等方面的要求。在进出口处应设置缓冲段, 以减少车辆进出隧道时的明暗适应时间。

道路勘测设计 第3章 纵断面设计

道路勘测设计 第3章 纵断面设计
B
1 2 y x ix 2k
A
任一点斜率
B

dy x = +i dx k

当x=0时, 当x=L时,
i1 = i
L i 2 = + i1 k
A
= i2 i1
L = k
x R = k [1 +( + i ) 2 ]3 / 2 k
k=
L
抛物线上任一点的曲率半径为R,
dy 2 R = [1 +( ) dx d2y ]3 / 2 / 2 dx
2
2
五、坡长限制
• • • •
坡长:纵断面相邻变坡点的桩号之差 最大坡长限制 最小坡长限制 缓和坡段
缓和坡段
六.纵坡设计一般要求
1.纵坡设计必须符合坡度及坡长最小及最大值要求,各级公路的 最大纵坡值及陡坡限制坡长,一般不轻易使用,应留有余地。 2.平原、微丘地形的纵坡应均匀、平缓;丘陵地形的纵坡应避免 过分迁就地形而起伏过大;山岭重丘地形的沿河线,应尽量采 用平缓的纵坡,坡度不宜大于6%;越岭线的纵坡应力求均匀, 应尽量不采用极限或接近极限的坡度,更不宜连续采用极限长 度的陡坡夹短距离缓坡的纵坡线形,越岭线不应设置反坡。 3.纵坡线形应与地形相适应。 4.纵坡设计应结合自然条件综合考虑。 5.应尽量减少深路堑和高填方,以保证路基的稳定性。 6.纵坡设计应结合道路沿线的实际情况和具体条件进行设计,并 适当照顾农业机械、农田水利等方面的要求。
四、纵 坡
高原纵坡折减
• 1.高原为什么纵坡要折减?
• 在高海拔地区,困空气密度下降而使汽车发动机的功率、汽车的驱 动力以及空气阻力降低,导致汽车的爬坡能力下降。另外,汽车水 箱中的水易于沸腾而破坏冷却系统。

公路勘测设计 3纵断面

公路勘测设计 3纵断面

自我检测




1.道路纵断面线性要素有哪些? 2.高速、一级公路路基设计标高与二、三、四级公路路基 设计标高在横断面上位置是否相同? 3.凸形竖曲线最小半径和凹形竖曲线最小半径的限制因素 有哪些?作为最终控制竖曲线长度因素两者是否相同? 4.在道路纵断面设计时,当坡角很小时所采用的竖曲线半 径满足了规范规定的最小半径要求设计是否合理的?为什 么? 5.竖曲线在设计时应该注意哪些问题?
图3-5 竖曲线图示
三、竖曲线及竖曲线设计
竖曲线总长: L = T 竖曲线切线长: T= TA2 R ≈ L/2 = l 2 =TB h 竖曲线外距: E = 2R 竖曲线上任意点到对应切线的距离:
R 2 R*ω=R· 〡i1-i2〡 2
式中: l —为竖曲线上任意点至竖曲线起点 (终点)的距离, m; R —为竖曲线的半径,m。
团队合作□ 工作效率□ 实地测设能力□ 获取信息能力□ 写作能力□ 表达能力□
(根据小组完成任务情况填写A:优秀B:良好;C:合格;
四、公路平、纵线形组合设计
1、视觉分析
从视觉心理出发,对公路的空间线形及其与 周围自然景观和沿线建筑的协调,保持视觉的连 续性,使行车具有足够的舒适感和安全感的综合 设计称为视觉分析。
四、公路平、纵线形组合设计
2、公路平、纵线形组合设计
(1)组合原则 1)保持视觉的连续性。 2)保持平、纵线形的技术指标大小应均衡 3)选择组合得当的合成坡度,以利于路面排 水和行车安全 4)注意与周围环境相配合
1)判别竖曲线的凹凸性,计算竖曲线的要素; 2)计算竖曲线起终点的桩号; 3)计算 K2+200.00 、K2+240.00 、K2+380.00 、 K2+500.00各点的设计标高。

道路勘测设计 第三章 道路纵断面设计

道路勘测设计 第三章 道路纵断面设计

四级 20 10.0
2、《规范》规定的最小合成坡度: 最小合成坡度不宜小于0.5%
当合成坡度小于0.5 %时,应采取综合排水措施,以保证路面排水畅通
3.2 纵断面坡度和坡长设计的技术标准
五、平均纵坡标准:
平均纵坡是指一定长度的连续上坡或下坡路段,纵向所克服的
高差H与路线长度L之比
I均

H L

H2 H1 L2 L1
折减值(%)
1
2
3
3.2 纵断面坡度和坡长设计的技术标准
四、合成坡度标准:
➢ 合成坡度是指由路线纵坡与弯道超高横坡(或路拱横坡) 组合而成的坡度,其方向即流水方向
➢ 合成坡度的计算公式为:
I i横2 i纵2
式中:I ——合成坡度(%) i横——超高横坡度或路拱横坡度(%) i纵——路线设计纵坡坡度(%)
一、竖曲线的设置原因、形状及设计原理:
1、设置竖曲线的作用: ➢ 缓和纵向变坡处行车动量变化而产生的冲击作用 ➢ 确保公路纵向行车视距 ➢ 与平曲线恰当组合,有利于路面排水、改善行车的视线
诱导作用及行车舒适感 2、竖曲线的形状:圆曲线或抛物线
《规范》规定宜用圆曲线
3.3 纵断面竖曲线设计的技术标准
BPDn-1 Hn-1
HT = Hn - in( BPDn - LP)
5、竖曲线上加桩点设计高程的计算:
设计高程:
HS = HT ± y
(凸竖曲线取“-”,凹竖曲线取“+”)
其中: y ——竖曲线上任一点纵距;y x2
直坡段上,y=0
2R
x ——竖曲线上任一点离开起(终)点距离
LP—BPDn-1
Hn
x
HT

道路勘测与规划设计第三章纵断面设计

道路勘测与规划设计第三章纵断面设计



地面线:根据中线上各桩点的高程而点绘的一条不规则的 折线。平面确定后,地面线自然就唯一的确定下来。反映 了路线中线处的地形起伏情况。 设计线:满足一定的技术标准和要求的,由设计人员确定 的一条具有规则形状的几何线形,反映了路线的起伏变化 情况。由直坡段和竖曲线构成。
坡度=两变坡点高差/平 距 直坡段 坡长:两变坡点水平距 离
2、道路阻力 (1)滚动阻力 汽车的轮胎具有弹性,所以当车轮滚动时,轮胎会连续反复 地发生变形。车轮轮胎的变形属弹塑性体的变形,导致能 量损失。 (2)坡度阻力 汽车在坡道倾角为α的道路上行驶时,车重G在平行于路面 方向的分力为Gsinα,上坡时它与汽车前进方向相反,阻 碍汽车行驶;而下坡时与前进方向相同,助推汽车行驶。






3、《标准》规定:二、三、四级公路越岭路线的平均纵 坡应符合以下规定: 越岭路段的相对高差为200m~500m时,平均纵坡以接 近5.5%为宜。 越岭路段的相对高差大于500m时,平均纵坡以接近5% 为宜。 在任一连续3km路段的平均纵坡不宜大于5.5%。 城市道路的平均纵坡按上述规定减少1.0%。对于海拔 3000m以上的高原地区,平均纵坡应较规定值减少0.5% ~1.0%。
4、最小坡长 (1)理由:过短,则变坡点个数增加,行车时颠簸频繁,

影响行车平顺性;过短,则不能满足设置最短竖曲线这一
几何条件的要求。从路容美观、相邻两竖曲线的设置和纵 面视距等也要求坡长应有一定最短长度。
(2)《标准》和《城规》规定,各级道路最短坡长应按表 3-14和表3-15选用。在平面交叉口、立体交叉的匝道以及 过水路面地段,最短坡长可不受此限。
上坡为正
下坡为负
平坡为0

《道路勘测设计》14-4-3 纵断面设计

《道路勘测设计》14-4-3 纵断面设计

1. 直线与纵断面的组合
(1)平面直线与纵面直线组合(纵坡不变的直线)
(2)平面直线与竖曲线组合要素
断背曲线
断背曲线的改善
(3)直线与纵断面应避免的组合


(3)直线与纵断面应避免的组合 纵断面上:避免能看到纵坡起伏三次以上。
驼峰
波浪形
2. 平曲线与纵断面的组合
(1)平曲线与纵面直线组合 组合时要注意平曲线半径与纵坡度协调,要避免急弯与陡坡相重合。 (2)平曲线与竖曲线的组合 ①平曲线与竖曲线应相互重合,且平曲线应稍长于竖曲线。 平竖曲线顶点重合,且平包竖。竖曲线的起终点最好分别放在平曲线的两个 缓和曲线内,其中任一点都不要放在缓和曲线以外的直线上,也不要放在圆 弧段之内。
②平曲线与竖曲线大小应保持均衡 半径:竖曲线半径大约为平曲线半径的10~20倍时 长度:平曲线应稍长于竖曲线 平曲线和竖曲线其中一方大而平缓,那么另一方就不要形成多 而小。一个长的平曲线内有两个以上竖曲线,或一个大的竖曲 线含有两个以上平曲线,看上去非常别扭。
一个平曲线上连续多个竖曲线
②平曲线与竖曲线大小应保持均衡
④平、竖曲线应避免的组合
要避免使凸形竖曲线的顶部或凹形竖曲线的底部与反向平曲 线的拐点重合。 小半径竖曲线不宜与缓和曲线相重叠。 计算行车速度 ≥40km/h的道路,应避免在凸形竖曲线顶部或 凹形竖曲线底部插入小半径的平曲线。 在长平曲线内,要尽量设计成直坡线,避免设置短的、半径小 的竖曲线。避免在一个平曲线上连续出现多个凹、凸竖曲线。
(1)应在视觉上能自然引导驾驶员的视线,并保持视觉的连续性。
(2)注意保持平、纵线形的技术指标大小应均衡 ,使线形在视觉上、 心理上保持协调。 (3)选择组合得当的合成坡度,以利于路面排水和行车安全。 (4)应注意线形与自然环境和景观的配合与协调。

道路勘测设计-纵断面设计

道路勘测设计-纵断面设计
(2)最小纵坡
公路:从排水角度考虑,路堑以及其它横向排水不畅路段,纵坡应不小于0.3%。否则,边沟应作纵向排水设计。 城市道路:最小纵坡度应不小于0.5%,困难时可大于或等于0.3%;否则,应设置锯齿形偏沟或采取其他排水措施。
2. 纵坡及坡长设计
为保证车辆纵向行驶的稳定性,避免出现纵向滑移。 与道路设计速度、所在地区自然条件有关。
道路勘测设计
单击此处添加副标题
单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观点。
交通工程教研室
第四章 纵断面设计
内容提要
项目背景
单击此处添加正文
02.
项目概况
单击此处添加正文
1. 纵断面及设计高程
(1) 纵断面 设计线 地面线 规定:填挖高(施工高度)=设计高程-地面高程 “+”值为填 “-”值为挖
(5)平均纵坡
(车连续行驶在较大陡坡上,将影响汽车发动机的正常使用,并危及行车安全,故当连续纵坡大于5%时,应在其间设置纵坡不大于3%的缓和路段,其长度不应小于100m。
2. 纵坡及坡长设计
平均坡度,是指在一定长度范围内,路线上两点间的高差值与相应水平距离之比,用 i平均(%)表示,其计算公式为: i平均=h/L (相对高差/路线长度) 越岭路段,相对高差为200m~500m时,平均纵坡不应大于5.5%; 相对高差大于500m时,平均纵坡不应大于5%; 任意连续3km路段的平均纵坡不应大于5.5%。
② 考虑夜间行车前灯照射角的影响
在竖曲线上,设竖曲线长大于视距长,知竖距Y=S2/2R且Y= h0+ S·tanα
取h0=0.75m,α=1°,则Rmin=S2/(1.5+0.0349S)

《道路勘测设计》第3章纵断面设计课后习题及答案

《道路勘测设计》第3章纵断面设计课后习题及答案

第三章 纵断面设计3-9 某条道路变坡点桩号为K25+460.00,高程为780.72.m ,i1=0.8%,i2=5%,竖曲线半径为5000m 。

(1)判断凸、凹性;(2)计算竖曲线要素;(3)计算竖曲线起点、K25+400.00、K25+460.00、K25+500.00、终点的设计高程。

解:(1)判断凸、凹性0%2.4%8.0%512>=-=-=i i ω,凹曲线(2)竖曲线要素计算m R L 210%2.45000=⨯==ω;m LT 1052==; m R T E 1.150002105222=⨯==(3)设计高程计算起点里程桩号=交点里程桩号—T 终点里程桩号=交点里程桩号+T =K25+460.00-105 = K25+460.00+105 = K25+355 = K25+565 第一种方法:(从交点开算)里程桩号 切线高程 竖距R x h 22= 设计高程起点 K25+355 780.72-105×0.8%=779.88 0202==R h 779.88+0=779.88 K25+400 780.72-60×0.8%=780.24 2.02452==Rh 780.24+0.2=780.44 K25+460 780.72-0×0.8%=780.72 1.121052==Rh 780.24+1.1=781.82 K25+500 780.72+40×5%=782.72 42.02652==R h 782.72+0.42=783.14 终点 K25+565 780.72+105×5%=785.97 0202==Rh 785.97+0=785.97第二种方法:(教材上的方法-从起点开算)里程桩号 切线高程 竖距R x h 22= 设计高程起点 K25+355 780.72-105×0.8%=779.88 0202==R h 779.88+0=779.88 K25+400 779.88+45×0.8%=780.24 2.02452==Rh 780.24+0.2=780.44 K25+460 779.88+105×0.8%=780.72 1.121052==R h 780.24+1.1=781.82 K25+500 779.88+145×0.8%=781.04 1.221452==R h 781.04+2.1=783.14 终点 K25+565 779.88+210×0.8%=781.56 41.422102==Rh 781.56+4.41=785.97 3-10某城市I 级干道,其纵坡分别为i1=-2.5%、i2=+1.5%,变坡点桩号为K1+520.00,标高为429.00m ,由于受地下管线和地形限制,曲线中点处的标高要求不低于429.30m ,且不高于429.40m ,试确定竖曲线的半径,并计算K1+500.00、K1+520.00、K1+515.00点的设计标高。

道路勘测技术__第三章纵断面设计

道路勘测技术__第三章纵断面设计

驱动力T为节流阀全开的情况。如果节 流阀部分开启时,要对驱动力T进行修正。 修正系数用U表示,称之为负荷率,一般负 荷率U=80~90%。
MT KAV 2 G U G( f i ) a r 21.15 g
4.汽车行驶条件
必要条件(即驱动条件),即: T≥R 充分条件是驱动力小于或等于轮胎于路 面之间的附着力,即: T≤φ· Gk
(3)不限长度的最大纵坡确定
根据V2可得D2,则
i2 D2 f
四、最小纵坡
1.要求设置最小纵坡的路段
(1)挖方路段 (2)设置边沟的低填方路段 (3)其它横向排水不畅的路段。
2.最小纵坡
应设置不小于0.3%的纵坡(一般情况下以采用不小于0.5% 为宜)。对于干旱地区,以及横向排水良好、不产生路面积水 的路段,也可不受此最小纵坡的限制。 高速公路的路面排水一般采用集中排水的方式,其直坡段 或半径大于不设超高最小半径的路堤路段的最小纵坡仍应不小 于0.3%。 在弯道超高渐变段上,当行车道外侧边缘的纵坡与超高附 加坡度(即超高渐弯率)方向相反时,设计最小纵坡不宜小于 ( p 0.3% )。
驱动轮上的扭矩Mk用一对力偶P 和F代替,F作用在轮缘上与路面水 平反力Pa抗衡,P(T)作用在轮轴上 推动汽车前进,称为驱动力(或称 牵引力),与汽车行驶阻力Z®抗 衡。
• (1)发动机功率P与扭矩M • 汽车行驶牵引力来源:汽油与空气在发
动机汽缸燃烧产生膨胀气体,输出有效功率 N(kw);通过活塞将热能转化为机械能,驱使 曲轴(每分钟n转r/min)产生扭矩M(N· m); 再通过变速器、万向节头传动轴、主传动器、 差速器和后半轴等,将M传递到驱动轮产生 Mk。 P=Mn/9549 M=9549P/n n与P在一定油门开度下,都存在一定关 系。当油门全开时, n与P通常用曲线图表示 P=P( n ),称为发动机外特性曲线(也称为 功率曲线)。根据外特性曲线可确定其相应 的扭矩曲线M=M( n )。

道路勘测设计 5第三章纵断面设计第5、6节

道路勘测设计   5第三章纵断面设计第5、6节

• 一、视觉分析 • 二、道路平、纵线形组合设计
《道路勘测设计》
第五节
一、视觉分析
道路平、纵线形组合设计
道路平、纵线形组合是指在满足汽车运动学和动力学要 求的前提下,研究如何满足视觉和心理方面的连续、舒适与 周围环境相协调的要求,并有良好的排水条件。
1.视觉分析的意义
视觉分析:从视觉心理出发,对道路的空间线形及其与周 围自然景观和沿线建筑的协调等进行研究分析,以保持视觉 的连续性,空间环境的协调性,使行车具有足够的舒适感和 安全感的综合设计称为视觉分析。
不应重合设置的半径临界值
V R平 R竖
80 400 5000
60 200 2500
40 100 2000
《道路勘测设计》
二、道路平、纵线形组合设计 (一)平、纵组合的设计原则 (二)平、纵组合的设计的基本要求 (三)平、纵线形组合设计要点
(四)平、纵线形设计中应注意避免的组合
(五)道路线形与景观的协调配合
《道路勘测设计》
(三)平、纵线形组合设计要点:
1. 平面直线与纵断面的组合
《道路勘测设计》
(1)平面直线与纵面直坡组合(直-直(坡度不变)组合)
《道路勘测设计》
•(2)平面直线与凹型竖曲线组 合 (凹型直线)
凹形直线
•(3)平面直线与凸型竖 曲线组合 (凸型直线) •直线上一次变坡是很好的平、纵组 合,从美学观点讲以包括一个凸型竖 曲线为好,而包括一个凹型线次之 直线中短距离内二次以上大的(即ω 大于1%)变坡会形成反复 凸凹的“驼峰”和“凹陷”。
《道路勘测设计》
《道路勘测设计》
《道路勘测设计》
第五节
道路平、纵线形组合设计
• 一、视觉分析 • 二、道路平、纵线形组合设计
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动效率为:ηT<1.0;
传到驱动轮上的扭矩Mk为:
Mk=MγηT
驱动轮上的转速nk为:
nn nk i0ik
车速V与发动机转速关系:
V 2 r n 60 0.377 nr
1000
(km / h)
3.汽车的驱动力
大 驱 动 力 与 高 速 不 可 兼 得
(1)滚动阻力 产生功率消耗原因: ①轮胎变形时,材料内部摩擦; ②柔性路面变形,产生摩擦; ③路面不平整造成震动和撞击。
滚动阻力与汽车的总重力成正比,若坡道倾角为α时,其 值可用下式计算。
Rf=Gfcosα
α一般较小,认为cosα≈1,则 Rf=Gf (N)
式中:Rf——滚动阻力(N); G——车辆总重力(N); f——滚动阻力系数, 与路面类型、轮胎结构和行驶速度等有关,如水泥沥青
v——汽车与空气的相对速度(m/s),可近似地取汽车的行驶速度。
将车速v(m/s)化为V(km/h)并化简,得
Rw
KAV2 21.15
(N)
对汽车列车的空气阻力,一般可按每节挂车的空 气阻力为其牵引车的20%折算。
V=100km/h时,一半的功率用来克服空气阻力
2.道路阻力
道路阻力:由弹性轮胎变形和道路的不同路面类型及纵坡度 而产生的阻力,主要包括滚动阻力和坡度阻力。
路面f=0.01-0.02,土路f=0.07-0.15。
(2)坡度阻力
汽车在倾角为α的道路上行驶:车重G产生水平分力Gsinα,上坡时阻 碍汽车行驶;下坡时助推汽车行驶。计算式:
Ri=Gsinα
因α较小,认为sinα≈tgα=i,则
Ri=Gi (N)
式中:Ri——坡度阻力 (N);
G——车辆总重力(N);
本章主要内容:
纵断面的概念及组成要素 最大纵坡和最小纵坡 坡长限制和缓和坡段 平均纵坡和合成坡度 竖曲线要素与竖曲线最小半径
视觉分析与平、纵配合
纵断面设计方法、步骤及成果
第一节 概 述
定义:沿道路中线竖向剖面的展开图即为路线纵断面。
纵断面设计:研究路线线位高度及坡度、坡长变化情 况的过程。
任务:研究纵断面线形的几何构成及其大小与长度。
r 21.15
g
U-负荷率(节流阀部分开启),一般U=80-90%
2.汽车的行驶条件
汽车在道路上行驶:
驱动力=行驶阻力时,汽车就等速行驶; 驱动力 >行驶阻力时,汽车就加速行驶; 驱动力 <行驶阻力时,汽车就减速行驶,直至停车。
汽车行驶的必要条件(即驱动条件) :
T≥R
汽车行驶的充分条件:
依据:汽车的动力特性、道路等级、当地的自然地理 条件以及工程经济性等。
路线纵断面图构成:
地面线:根据中桩点的高程绘的一条折线; 设计线:路线上各点路基设计高程的连线。 变坡导线:变坡点间的连线
路线纵断面图构成:
地面线:根据中桩点的高程绘的一条折线; 设计线:路线上各点路基设计高程的连线。 变坡导线:变坡点间的连线
纵断面设计内容:坡度及坡长
竖曲线
路堤
路堑
第二节 汽车的动力特性
(一).行驶力学 1.汽车的驱动力 2.汽车的行驶阻力 3.汽车的行驶条件
一、汽车的驱动力
汽车的动力来源: 汽车行驶的驱动力来自它的内燃发动机。 汽油燃烧-热能-机械能P-曲轴扭矩M-驱动轮Mk-驱动车轮
汽车传动系统:
1.发动机功率N\曲轴扭矩M 及发动机转速n的关系
功率N与产生的扭矩M的关系:
N M n 2r M n (kW )
r 60 1000 9549
M 9549 N n
T r
(N • m)
N-有效功率
M
发动机转速特性曲线:
N-n曲线(功率曲线)、M-n曲线(扭矩曲线)
2.驱动轮扭矩Mk
发动机曲轴上的扭矩M经过变速箱(速比ik)和主传动器 (速比i0)两次变速
ik——变速箱的速比。
汽车的总行驶阻力R为:
R=Rw十RR十RI
三、汽车的运动方程式与行驶条件
1.汽车的运动方程式
驱动力=各阻力之和,称为驱动平衡。其驱动平衡方程 式(也称汽车的运动方程式)为
T=R=Rw+RR+RI
代入表达式,汽车的运动方程式为:
U MT KAV2 G(f i) G a
驱动力小于或等于轮胎与路面之间的附着力,即
T≤Gk
式中:——附着系数,
取决于:路面的粗糙和潮湿泥泞程度,
轧胎的花纹和气压,
车速和荷载等;
Gk——驱动轮荷载, 小汽车=(0.5~0.65)G;
载重车=(0.65~0.80)G.
路面类型
干燥
路面状况
潮湿
泥泞
冰滑
水泥混凝土路面
0.7
0.5
平移质量的惯性力
G R I1 ma g a
旋转质量的惯性力矩
RI2
I d dt
惯性阻力计算:
G RI g a
(N)
式中:δ——惯性力系数(或旋转质量换算系数)。
δ=l+δ1+δ2ik2 式中:δ1——表示汽车车轮惯性力的影响系数,δ1=0.03~0.05;
δ2——表示发动机飞轮惯性力的影响系数, 小客车δ2=0.05~0.07,载重汽车δ2=0.04~0.05;
T
Mk r
MT r
0.377 n V
MT
N 3600
V
T
(N)
N Mn 9549
(kW)
二、汽车的行驶阻力
1.空气阻力
迎面空气质点的压力+车后的真空吸力+空气质点与车身摩擦力= 空气阻力。
Rw
1 2
KAv 2
式中:K——空气阻力系数,它与汽车的流线型有关; ρ——空气密度,一般ρ=1.2258(N·s2/m4); A——汽车迎风面积(或称正投影面积)(m2);
i ——道路纵坡度,上坡为正;下坡为负。
滚动阻力和坡度阻力均与道路状况有关,且都与 汽车的总重力成正比,将它们统称为道路阻力,以 RR表示
RR=G(f+i)
式中:f+i——统称道路阻力系数。
3.惯性阻力
汽车的质量:平移质量
旋转质量
克服质量变速运动时产生的惯性力和惯性力矩称为惯性阻
力,用RI表示。
地面高程:中线上地面点高程。 设计高程:两种规定 公路: 城市道路:
路基
一般公路,路基未设加宽超高前的路肩边缘的高程。
设计标高
设分隔带公路,一般为分隔带外边缘。 设计标高
城市道路:行车道中线 中央分隔带中线
设计标高
路基高度:横断面上设计高程与地面高程之高差。
路堤:设计高程大于地面高程。
路堑:设计高程小于地面高程。
相关文档
最新文档