将军饮马的六种模型

合集下载

将军饮马问题的11个模型及例题

将军饮马问题的11个模型及例题

将军饮马问题的11个模型及例题将军饮马问题是一个经典的逻辑问题,涉及到将军如何用有限数量的马和酒到达目的地。

本文将介绍将军饮马问题的11个模型及相应的例题。

1. 直线模型将军与目的地之间没有障碍物,可以直线前进。

此时,将军只需将马拉到目的地即可。

例题1:将军与目的地之间距离为10公里,马的速度为每小时5公里,将军能否在2小时内到达目的地?2. 单个障碍物模型在将军与目的地之间存在一个障碍物,将军可以绕过该障碍物。

例题2:将军与目的地之间距离为15公里,马的速度为每小时4公里,障碍物位于距离将军起点5公里处,将军能否在3小时内到达目的地?3. 多个障碍物模型在将军与目的地之间存在多个障碍物,将军需要逐一绕过这些障碍物。

例题3:将军与目的地之间距离为20公里,马的速度为每小时6公里,障碍物位于距离将军起点分别为5公里、10公里和15公里的位置,将军能否在4小时内到达目的地?4. 跳跃模型将军可以让马跳过障碍物,从而直接到达目的地。

例题4:将军与目的地之间距离为12公里,马的速度为每小时8公里,将军在距离起点6公里处设置一个障碍物,将军能否在2小时内到达目的地?5. 限时模型将军需要在规定的时间内到达目的地。

例题5:将军与目的地之间距离为30公里,马的速度为每小时10公里,将军需要在3小时内到达目的地,是否可能?6. 守备模型目标地点有守备军,将军需要巧妙规避守备军。

例题6:将军与目的地之间距离为25公里,马的速度为每小时7公里,目的地有一支守备军位于距离目标地点10公里处,将军能否在4小时内到达目的地?7. 短平快模型将军不借助马匹,直接徒步走到目的地。

例题7:将军与目的地之间距离为8公里,将军的步行速度为每小时2公里,将军能否在4小时内到达目的地?8. 时间窗模型将军只能在规定时间范围内到达目的地。

例题8:将军与目的地之间距离为18公里,马的速度为每小时6公里,将军需要在3小时到4小时之间到达目的地,是否可能?9. 兵变模型将军需要利用敌军马匹达到目的地。

初中数学常见模型之将军饮马

初中数学常见模型之将军饮马
作法二: 作点A关于直线l的对称点A1,将点A1向右平移长度
d得到点A2,连接A2 B,交直线l于点Q,将点Q向左平移长
度d,得到点Q。
原理:两点之间,线段最短,最小值为A’’B+MN
例6:(造桥选址)将军每日需骑马从军营出发,去河岸对侧的瞭望台观察敌情, 已知河流的宽度为30米,请问,在何地修浮桥,可使得将军每日的行程最短?
证明:连接AB,与直线l 的交点Q,P为直线l上任意一点, 在⊿PAB中,由三角形三边关系可知:AP+PB≧AB(当且仅当PQ重合时取﹦)
例2:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即 PA+PB的和最小
关键:找对称点 作法:作定点B关于定直线l的对称点C,连接AC,与直线l的交点Q即为所要寻找的点,即当动点P 跑到了点Q处,PA+PB和最小,且最小值等于AC. 原理:两点之间,线段最短
作法:连接AB,作AB的中垂线与l的交点,即为所求点P 此时|PA-PB |=0
原理:线段垂直平分线上的点到线段两端的距离相等
例9:在定直线l上找一个动点C,使动点C到两个定点A与B的距离之差最大 即|PA-PB |最大
作法:延长BA交l于点C,点C即为所求, 即点B、A、C三点共线时,最大值为AB的长度。
A
E M
A
E
M
H
B
D
CB
D
C
例5:已知A、B是两个定点,在定直线l上找两个动点M与N,且MN长度等于定长d(动点M位于动 点N左侧),使AM+MN+NB的值最小.
提示:存在定长的动点问题一定要考虑平移 作法一: 将点A向右平移长度d得到点A’, 作A’关于直线l 的对 称点A’’,连接A’’B,交直线l于点N,将点N向左平移

将军饮马问题16大模型

将军饮马问题16大模型

将军饮马问题16大模型将军饮马问题是一个经典的数学问题,被广泛应用于算法设计和逻辑推理。

在这个问题中,有一个有限数量的将军和马,将军们需要同时饮马,而且马的数量要足够多,以保证每个将军都能骑到马上。

然而,问题的难点在于,如果将军们不约定时间,他们同时骑上马的可能性很小。

为解决这个问题,已经提出了许多解决方案,下面我将介绍16种解决这个问题的模型。

1. 广播模型将军们可以通过广播的方式进行通信,每个将军都可以听到其他将军的广播信号。

在某个固定时间,将军们开始广播他们已准备好骑马的消息,并等待其他将军的回应。

只有当每个将军都收到了其他将军的回应信号,他们才会同时骑上马。

2. 协商模型将军们可以通过协商的方式进行通信,每个将军都可以与其他将军直接交流。

在某个固定时间,将军们开始与其他将军交流他们已准备好骑马的消息,并等待其他将军的回应。

只有当每个将军都收到了其他将军的回应信息,他们才会同时骑上马。

3. 仲裁者模型将军们委任一个仲裁者作为中介来传递消息。

每个将军将自己已准备好骑马的消息告诉仲裁者,仲裁者负责将该消息传递给所有其他将军。

只有当每个将军都收到其他将军的消息,他们才会同时骑上马。

4. 时钟模型在固定的时间间隔内,每个将军都可以检查时钟的状态。

他们会设定一个目标时间,当时钟的时间达到目标时间时,将军们会同时骑上马。

这样,他们可以通过同步的方式来保证同时骑马。

5. 群体模型将军们通过形成一个群体来解决这个问题。

在一个固定时间,将军们同时进入群体,并在一起饮马。

这种方式需要所有将军都同意进入群体,并时刻保持一致,才能保证同时骑马。

将军们依次传递一个令牌表示自己已准备好骑马。

当每个将军都收到了令牌并且已经骑上马时,他们才会将令牌传递给下一个将军。

这种方式需要将军们按照一定的规则来传递令牌,以保证同时骑马。

7. 树模型将军们通过构建一棵树来解决这个问题。

树的根节点是一个仲裁者,每个将军是树的叶子节点。

当仲裁者收到所有将军的准备好骑马的消息时,他会通知所有将军同步骑马。

初中数学之将军饮马的6种模型(培优)

初中数学之将军饮马的6种模型(培优)

初中数学之将军饮马的六种常见模型将军饮马问题——线段和最短一.六大模型1.如图,直线l和l的异侧两点A、B,在直线l上求作一点P,使P A+PB最小。

2.如图,直线l和l的同侧两点A、B,在直线l上求作一点P,使P A+PB最小。

3.如图,点P是∠MON内的一点,分别在OM,ON上作点A,B。

使△P AB的周长最小4.如图,点P,Q为∠MON内的两点,分别在OM,ON上作点A,B。

使四边形P AQB的周长最小。

5.如图,点A是∠MON外的一点,在射线ON上作点P,使P A与点P到射线OM的距离之和最小6. .如图,点A是∠MON内的一点,在射线ON上作点P,使P A与点P到射线OM的距离之和最小二、常见题目类型一、三角形1.如图,在等边△ABC中,AB= 6,AD⊥BC,E是AC上的一点,M是AD上的一点,AE=2,求EM+EC 的最小值解:∵点C关于直线AD的对称点是点B,∴连接BE,交AD于点M,则ME+MD最小,过点B作BH⊥AC于点H,则EH = AH–AE = 3–2 = 1,BH=在直角△BHE中,BE2.如图,在锐角△ABC中,AB =BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是____.解:作点B关于AD的对称点B',过点B'作B'E⊥AB于点E,交AD于点F,则线段B'E长就是BM+MN的最小值在等腰Rt△AEB'中,根据勾股定理得到,B'E = 43.如图,△ABC中,AB=2,∠BAC=30°,若在AC、AB上各取一点M、N,使BM+MN的值最小,则这个最小值解:作AB关于AC的对称线段AB',过点B'作B'N⊥AB,垂足为N,交AC于点M,则B'N= MB'+MN = MB+MN. B'N的长就是MB+MN的最小值,则∠B'AN = 2∠BAC= 60°,AB' = AB = 2,∠ANB'= 90°,∠B' = 30°。

初中数学将军饮马问题的六种常见题型汇总

初中数学将军饮马问题的六种常见题型汇总

初中数学将军饮马问题的六种常见模型将军饮马问题——线段和最短一.六大模型1.如图,直线l和l的异侧两点A、B,在直线l上求作一点P,使P A+PB最小。

2.如图,直线l和l的同侧两点A、B,在直线l上求作一点P,使P A+PB最小。

3.如图,点P是∠MON内的一点,分别在OM,ON上作点A,B。

使△P AB的周长最小4.如图,点P,Q为∠MON内的两点,分别在OM,ON上作点A,B。

使四边形P AQB的周长最小。

5.如图,点A是∠MON外的一点,在射线ON上作点P,使P A与点P到射线OM的距离之和最小第 1 页共10 页第 2 页 共 10 页 6. .如图,点A 是∠MON 内的一点,在射线ON 上作点P ,使P A 与点P 到射线OM 的距离之和最小二、常见题目【1】、三角形1.如图,在等边△ABC 中,AB = 6,AD ⊥BC ,E 是AC 上的一点,M 是AD 上的一点,AE =2,求EM +EC 的最小值解: ∵点C 关于直线AD 的对称点是点B ,∴连接BE ,交AD 于点M ,则ME +MD 最小,过点B 作BH ⊥AC 于点H ,则EH = AH – AE = 3 – 2 = 1,BH =22BC CH -=2263-=33在直角△BHE 中,BE =22BH EH - =22(33)1+=272.如图,在锐角△ABC 中,AB =42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点, 则BM +MN 的最小值是____.解:作点B 关于AD 的对称点B ',过点B '作B 'E ⊥AB 于点E ,交AD 于点F ,则线段B 'E 长就是BM +MN的最小值在等腰Rt △AEB '中,根据勾股定理得到,B 'E = 43.如图,△ABC中,AB=2,∠BAC=30°,若在AC、AB上各取一点M、N,使BM+MN的值最小,则这个最小值解:作AB关于AC的对称线段AB',过点B'作B'N⊥AB,垂足为N,交AC于点M,则B'N = MB'+MN = MB+MN. B'N的长就是MB+MN的最小值,则∠B'AN = 2∠BAC= 60°,AB' = AB = 2,∠ANB'= 90°,∠B' = 30°。

专题08最值模型之将军饮马11个常考模型(模型精讲)

专题08最值模型之将军饮马11个常考模型(模型精讲)

08 最值模型之将军饮马(11个常考模型)模型背景【模型来历】早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马”的问题便流传至今.【考点】两点之间线段最短,垂线段最短;三角形两边三边关系;轴对称;平行四边形平移;【解题思路】学会化归,移花接木,化折为直【核心思想】共线与垂线段最短。

模型精讲一、两动一定型(2种模型):两定点到直线上一动点的距离和最小。

例11:如图11在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB最小.【证明】图12。

PA+PB的最小值即为线段AB的长度理由:在l上任取异于点P的一点P´,连接AP´、BP´,在△ABP’中,AP´+BP´>AB,即AP´+BP´>AP+BP ∴P为直线AB与直线l的交点时,PA+PB最小.图12lPABP'lAB图11反思:解决本题很简单,但却点明了将军饮马的解题思路。

【变式】例12 如图13,如图,定点A 和定点B 在定直线l 的同侧 要求:在直线l 上找一点P ,使得PA+PB 值最小 。

作法:图141.作A 关于直线CD 对称点A’。

2.连A’B 。

3.交点P 就是要求点。

连线长A’B 就是PA+PB 最小值。

【证明】:图15 在l 上任取异于点P 的一点P ´,连接AP ´、BP ´, 在△ABP ’中,AP ´+BP ´>AB ,即AP ´+BP ´>AP+BP ∴P 为直线AB 与直线l 的交点时,PA+PB 最小.二、造桥选址,移花接木。

2020年中考复习专题:中考中“将军饮马”问题的常见模型和典型例题 课件(共38张PPT)

2020年中考复习专题:中考中“将军饮马”问题的常见模型和典型例题 课件(共38张PPT)


A

EC
D F
G
K
H
B
小结
这节课我学到了什么? 我的收获是…… 我还有……的疑惑
选做题
( ( (
1.如图,在⊙O中,AB是⊙O的直径,AB=8cm,AC=CD=BD,M是AB上 一动点,求CM+DM的最小值。
D'
A MO
B
C
D
选做题

2.如图,MN是⊙O的直径,已知点A是⊙O上一个三等分点,点B是AN的 中点,点P是半径ON上的动点,若⊙O的半径为1,求AP+BP的最小值。
(1)分别求出a和b的值; (2)结合图象直接写出的 mx n k 解集;
x (3)在x轴上取点P,使PA-PB取得最大值时,求出点P的坐标。
y
A B′
CO
Px
B
数学活动室
1.如图,正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中
点,点M在BC边上,且BM=6.P为对角线BD上一动点,求|PM-PN|
使得△PBC的周长最小,如果存在,请求出点P的坐标;如果不存在,请
说明理由。
y
C
P
A
B
O
x
【技巧】此类问题有一个动点在一条直线上运动,在直线的一侧有两个 定点,先找出其中一个定点关于这条直线的对称点,然后连接这个对称 点和另一个定点,与已知直线有个交点,这个交点就是使得这个动点到 两个定点距离之和最小的点。
? 分别为BC、CD的中点,P是对角线BD上一点,求PM+PN的最小值。
学以致用
例 2 在正方形ABCD中,E在BC上,BE=2,CE=1,P在BD上,求PE和
PC的长度之和最小值。

将军饮马傍交河

将军饮马傍交河

中考热点之常考常新的将军饮马问题,六种常见模型尽显魅力唐朝诗人李颀的诗《古从军行》开头两句说:"白日登山望烽火,黄昏饮马傍交河。

"诗中隐含着一个有趣的数学问题。

传说亚历山大城有一位精通数学和物理的学者,名叫海伦。

一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题。

将军每天从军营A出发,先到河边饮(yìn)马,然后再去河岸同侧的B地开会,应该怎样走才能使路程最短?从此,这个被称为"将军饮马"的问题广泛流传。

这个问题的解决并不难,据说海伦略加思索就解决了它。

抽象为数学模型:直线l同侧有两个定点A、B,请在直线l上找一点C,使AC+BC最小。

假设点A、B在直线l的异侧就好了,这样我们就可以利用【点到点最值模型:两点之间线段最短】找到点C的位置了。

即连接AB交直线l于点C。

因此,我们可以找点A关于直线l的对称点,连接A’B交直线l于点C,点C即为所求!如果将军在河边的另外任一点C'饮马,所走的路程就是AC'+C'B,但是AC'+C'B=A'C'+C'B>A'B=A'C+CB=AC+CB.故在点C处饮马,路程最短。

掌握了这个“将军饮马模型”的原理和结论后,我们来具体挑战一下吧!一.六大模型1.如图,直线l和l的异侧两点A.B,在直线l上求作一点P,使PA+PB最小。

2.如图,直线l和l的同侧两点A.B,在直线l上求作一点P,使PA+PB最小。

3.如图,点P是∠MON内的一点,分别在OM,ON上作点A,B。

使△PAB的周长最小4.如图,点P,Q为∠MON内的两点,分别在OM,ON上作点A,B。

使四边形PAQB的周长最小。

5.如图,点A是∠MON外的一点,在射线ON上作点P,使PA与点P到射线OM的距离之和最小6. 如图,点A是∠MON内的一点,在射线ON上作点P,使PA与点P到射线OM的距离之和最小常见题目类型1 三角形背景下的1.(2018秋黔南州期末)如图,在等边△ABC中,AB=2,N为AB上一点,且AN=1,AD=√3,∠BAC的平分线交BC于点D,M是AD上的动点,连接BM、MN,则BM+MN的最小值是()A.√3 B.2 C.1 D.3【解析】连接CN,与AD交于点M,连接BM,此时BM+MN取得最小值,由AD为∠BAC的角平分线,利用三线合一得到AD⊥BC,且平分BC,可得出BM=CM,由BM+MN=CM+MN=CN,可得出CN的长为最小值,利用等边三角形的性质及勾股定理求出即可.在Rt△ACN中,AC=AB=2,AN=1,根据勾股定理得:CN=√3,故选:A.2.(2018秋无为县期末)如图,在锐角三角形ABC中,AB=4,△ABC的面积为8,BD平分∠ABC.若M、N分别是BD、BC上的动点,则CM+MN的最小值是()A.2 B.4 C.6 D.8【解答】过点C作CE⊥AB于点E,交BD于点M′,过点M作MN′⊥BC于N′,∵BD平分∠ABC,M′E⊥AB于点E,M′N′⊥BC于N,∴M′N′=M′E,∴CE=CM′+M′E∴当点M与M′重合,点N与N′重合时,CM+MN的最小值.∵三角形ABC的面积为8,AB=4,∴1/2×4CE=8,∴CE=4.即CM+MN的最小值为4.故选:B.3.(2018秋鼓楼区期末)如图,在△ABC中,已知AB=15,BC=14,AC=13,BD平分∠ABC.若P,Q分别是BD和AB上的动点,则PA+PQ的最小值是_____.PA+PQ的最小值为12.故答案为12.类型2.正方形背景下的4.(2018秋安顺期末)如图,已知正方形ABCD的边长是为10cm,△ABE为等边三角形(点E在正方形内),若P是AC上的一个动点,PD+PE的最小值是多少()A.6cmB.8cmC.10cmD.5cm【解答】如图所示:连接BP.∵正方形ABCD的边长是为10cm,△ABE为等边三角形,∴BE=AB=10cm.∵ABCD为正方形,P是AC上的一个动点,∴PB=PD,∴PE+PD=PB+PE.∵PB+PE≥BE,∴当点E、P、B在一条直线上时,PD+PE有最小值,最小值=BE=10cm.故选:C.5.(2018春平南县期中)如图,在正方形ABCD,边长为4,E为AB上的点,AE=1,P为BC上的点,CP=2,O为AC的中点.则△EOP周长的最小值是()6.(2019江岸区校级模拟)如图,正方形ABCD中,AB=8,动点E从A出发向D运动,动点F从B出发向A运动,点E、F运动的速度相同.当它们到达各自终点时停止运动,运动过程中线段BE、CF相交于点P,H是线段CD上任意一点,则AH+PH的最小值为()【解答】如图,作点A关于直线CD的对称点A′,连接HA′.由轴对称的性质可知:HA=HA′,∴HA+HP=HA′+HP,∴当HA′+PH最短时,HA+HP的值最小,∵AE=BF,BA=BC,∠BAE=∠CBF=90°,∴△BAE≌△CBF(SAS),∴∠ABE=∠BCF,∵∠ABE+∠CBP=90°,∴∠BCP+∠CBP=90°,∴∠CPB=90°,∴点P在是以BC为直径的⊙O上运动(图中弧BP′,P′是弧BC的中点),当点P与P′重合时,HA+HP′的值最小,最小值=线段P′A′的长,作P′G⊥AD于G,类型3 矩形背景下的7.(2018江岸区校级模拟)如图,矩形ABCD中,AB=6,BC=8,P是边CD 上一点,Q是以AD为直径的半圆上一点,则BP+PQ的最小值为()【解析】设半圆的圆心为O,作O关于CD的对称点O′,连接BO′交CD于点P,连接PO交半圆O于点Q,此时BP+PQ取最小值,如图所示.过O′作O′E ⊥BC交BC的延长线于E,根据矩形的性质得到CE=DO′=4,EO′=CD=6,当BP+PQ取最小值时,BP+PQ=BO′﹣1/2OD,根据勾股定理即可得6√5﹣4.故选:D.【解答】设△PCD中CD边上的高是h.∵S△PCD=1/4S矩形ABCD,∴1/2CDh=1/4CDAD,∴h=1/2AD=2,∴动点P在与CD平行且与CD的距离是2的直线l上,∵A,D关于直线l对称,连接AC交直线l于点P′,AC的长就是所求的最短距离.在Rt△ABC中,∵AB=3,BC=4,∴根据勾股定理即可得AC=5,即PA+PB的最小值为5.故选:B.类型4 菱形背景下的10.(2019安徽模拟)如图,已知菱形ABCD的周长为16,∠ABC=60°,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为()【解答】如图,连接CP,AC,CE,交BD于P',∵四边形ABCD是菱形,∴AD=CD,∠ADP=∠CDP,PD=PD,∴△ADP≌△CDP(SAS),∴AP=CP,∴AP+EP=CP+EP,∵∠ABC=60°,AB=AC,∴△ABC是等边三角形,又∵E是AB的中点,菱形ABCD的周长为16,∴CE⊥AB,BE=2,BC=4,∴Rt△BCE中,CE=2√3,当点E,P,C在同一直线上时,即点P在点P'处时,EP+AP的最小值为CE的长,∴EP+AP的最小值为2 ,故选:B.11.(2019朝阳模拟)菱形OBCD在平面直角坐标系中的位置如图所示,顶点B(2,0),类型5 圆形背景下的12.如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,B为AN弧的中点,点P是直径MN上一个动点,则PA+PB的最小值为()类型6 一次函数背景下的13.一次函数y=kx+b的图象与x,y轴分别交于点A(2,0),B(0,4).(1)求该直线的解析式.(2)请判断点(1,2)是否在函数图象上;(3)O为坐标原点,C(1,0)为OA上的点,D(1,2)为AB上的点,P为OB上一动点,求PC+PD的最小值,并求取得最小值时P点的坐标.类型7 二次函数背景下的14.如图,在直角坐标系中,O是坐标原点,点A的坐标是(1,√3),若把线段OA绕点O逆时针旋转120°,可得线段OB.(1)求点B的坐标;(2)某二次函数的图象经过A、O、B三点,求该函数的解析式;(3)在第(2)小题所求函数图象的对称轴上,是否存在点P,使△OAP的周长最小,若存在,求点P的坐标;若不存在,请说明理由.【解析】(1)根据点A的坐标易知∠AOx=60°,若将OA逆时针旋转120°,点A的对应点B则正好落在x轴负半轴上,易求得OA的长,即可得到OB的长,从而求出点B的坐标B(﹣2,0).15.如图,在直角坐标系中,点A、B、C的坐标分别为(﹣1,0)、(3,0)(0,3),过A、B、C三点的抛物线的对称轴为直线l,D为对称轴l上一动点.①求抛物线的解析式;②求当AD+CD最小时点D的坐标,并求出AD+CD的最小值.【解析】(1)利用待定系数法即可求函数解析式y=﹣x2+2x+3;(2)抛物线的对称轴是:x=1,则A关于x=1的对称点坐标是B.∵B、C的坐标分别为(3,0)、(0,3),∴直线BC的解析式为y=﹣x+3,∵点D在直线x=1上,点D的坐标为(1,2).。

中考数学:'将军饮马'所有模型及变式——终极篇

中考数学:'将军饮马'所有模型及变式——终极篇

中考数学:'将军饮马'所有模型及变式——终极篇以微课堂初中精品微课,数学奥林匹克国家一级教练执教。

一、模型展现(1)直线型模型1:在直线l上求作点P,使PA+PB最小.原理:两点之间,线段最短.PA+PB最小值即为AB长.模型2:在直线l上求作点P,使PA+PB最小.原理:和最小,同侧转异侧.两点之间,线段最短.模型3:在直线l上求作点P,使|PA-PB|最大.原理:两边之差小于第三边,|PA-PB|最大值即为AB长.模型4:在直线l上求作点P,使|PA-PB|最大.原理:差最大,异侧转同侧.两边之差小于第三边.变式:在直线l上求作点P,使l平分∠APB,与此作法相同.模型5:在直线l上求作点P,使|PA-PB|最小.原理:|PA-PB|最小为0,中垂线上的点到线段两端的距离相等.(2)角型模型6:在OA,OB上求作点M,N,使△PMN周长最小.原理:作两次对称,两点之间,线段最短.模型7:在OA,OB上求作点M,N,使四边形PQMN周长最小.原理:P,Q分别作对称,两点之间,线段最短.模型8:在OA,OB上求作点M,N,(1)使PM+MN最小.(2)使PN+MN最小.原理:先连哪个点,就先做关于那个点所在射线的对称点.垂线段最短.模型9:P,Q为OA,OB的定点,在OA,OB上求作点M,N,使PN+NM +MQ最小.原理:两点之间,线段最短,PN+NM+MQ最小值即为P’Q’的长.(3)平移型模型10:在直线l上求作点M,N,使MN=a,且AM+MN+NB最小.原理:将l上的MN转化到B’B.(问题情境:将军从军营A出发,去河边l饮马,饮马完在河边牵马散步a米,回军营B.可以转化为饮完马,直接去军营B,在到达之前散步.)模型11(造桥选址):直线l1∥l2,在l1上求作点M,在l2上求作点N,使MN⊥l1,且AM+MN +NB最小.原理:将MN转化为AA’.(可以理解为在A处先走过桥的路,再直达点B.)二、典型例题例1:(模型2)从点A(0,2)发出的一束光线,经x轴反射,过点B(4,3),求从点A到点B所经过的路径长.解析:例2:(模型4)已知点A(1,3)、B(3,-1),点M在x轴上,当AM-BM最大时,点M的坐标为______解析:例3:(模型10)如图,当四边形PABN的周长最小时,a=______解析:例4:(模型11)解析:例5:(结合勾股)如图,在等边△ABC中,AB=6,N为AB上一点,且AN=2,∠BAC的平分线交BC于点D,M是AD上的动点,连结BM、MN,则BM+MN的最小值是_____解析:小结:所有类型已归纳完,更多内容,详见八上11讲期中专题一将军饮马类题型全覆盖暑假特辑10《轴对称》之“将军饮马”(上)暑假特辑11《轴对称》之“将军饮马”(下)本讲思考题:已知点A(-3,-4)和B(-2,1).(1)试在y轴上求一点P,使PA+PB的值最小(2)试在y轴上求一点P,使|QA-QB|的值最大(3)若C(0,m),D(0,m-2),当m为何值时,四边形ABCD的周长最小.答案:(1) P (0,-1)(2) Q (0,11)(3) m = -0.2End欢迎收看《以微课堂》微课,欢迎收看《以微课堂》微课,作者简介:四星级重点中学高级教师、数学名师。

将军饮马的六种模型

将军饮马的六种模型

将军饮马的六种模型将军饮马问题是一个经典的最优化问题,常见的有六种模型。

一、六大模型1.给定直线l和直线l的异侧两点A、B,在直线l上求一点P,使PA+PB最小。

2.给定直线l和直线l的同侧两点A、B,在直线l上求一点P,使PA+PB最小。

3.给定∠MON内一点P,在OM、ON上分别作点A、B,使△PAB的周长最小。

4.给定∠MON内的两点P、Q,在OM、ON上分别作点A、B,使四边形PAQB的周长最小。

5.给定∠MON外的一点A,在射线ON上作点P,使PA与点P到射线OM的距离之和最小。

6.给定∠MON内的一点A,在射线ON上作点P,使PA与点P到射线OM的距离之和最小。

二、常见题目Part1、三角形1.在等边△ABC中,AB=6,AD⊥BC,E是AC上的一点,M是AD上的一点,AE=2,求EM+EC的最小值。

解:连接BE,交AD于点M,则ME+MD最小。

过点B作BH⊥AC于点H,则EH=AH–AE=3–2=1.在直角△BHE中,BE=√(BH^2+HE^2)=√(3^2+1^2)=√10.因此,EM+EC=BE+BC-2AE=√10+6-2×2=√10+2.2.在锐角△ABC中,AB=√2,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是多少?解:作点B关于AD的对称点B',过点B'作B'E⊥AB于点E,交AD于点F,则线段B'E长就是BM+MN的最小值。

在XXX△AEB'中,根据勾股定理得到,B'E=√2.因此,XXX√2.3.在△ABC中,AB=2,∠BAC=30°,若在AC、AB上各取一点M、N,使BM+MN值最小,则这个最小值是多少?解:作AB关于AC的对称线段AB',过点B'作B'N⊥AB,垂足为N,交AC于点M,则B'N=MB'+MN=MB+MN。

将军饮马问题,掌握这十个数学模型就够了

将军饮马问题,掌握这十个数学模型就够了

将军饮马问题,掌握这⼗个数学模型就够了“将军饮马”问题是初中数学中⾮常重要的数学知识和⼏何模型,也是求线段最值问题的最常⽤数学模型。

将军饮马问题是⼀个有故事的数学问题,故事⼤意如下:唐朝诗⼈李颀的诗《古从军⾏》开头两句说:'⽩⽇登⼭望烽⽕,黄昏饮马傍交河。

'诗中隐含着⼀个有趣的数学问题。

传说亚历⼭⼤城有⼀位精通数学和物理的学者,名叫海伦,⼀天,⼀位罗马将军专程去拜访他,向他请教⼀个百思不得其解的问题。

将军每天从军营A出发,先到河边饮(yìn)马,然后再去河岸同侧的B地开会,应该怎样⾛才能使路程最短?从此,这个被称为'将军饮马'的问题⼴泛流传。

将军饮马问题的最基础模型探究:这个问题的解决并不难,据说海伦略加思索就解决了它。

抽象为数学模型:直线l同侧有两个定点A、B,请在直线l上找⼀点C,使AC+BC最⼩。

假设点A、B在直线l的异侧就好了,这样我们就可以利⽤【点到点最值模型:两点之间线段最短】找到点C的位置了。

即连接AB交直线l于点C。

因此,我们可以找点A关于直线l的对称点,连接A’B交直线l于点C,点C即为所求!如果将军在河边的另外任⼀点C'饮马,所⾛的路程就是AC'+C'B,但是AC'+C'B=A'C'+C'B>A'B=A'C+CB=AC+CB.故在点C处饮马,路程最短。

要点概述:1.初中数学线段最值问题可以总结为三类,点与点、点与线和线与线之间的最值,⼀般需要⽤到以下知识点:2.将军饮马问题的核⼼思想,它的核⼼思想是“化折为直”,“化折为直”是初中数学最重要的⼀个解题思想,将军饮马,费马点,胡不归,阿⽒圆等最值问题,都⽤到“折化直”的数学转换思想。

化折为直的⽅法有轴对称,平移,构造⼦母相似三⾓形,三⾓函数转换等等,将军饮马问题⼤都采⽤的是轴对称来实现“折化直”的⽬标。

将军饮马模型

将军饮马模型

将军饮马问题将军饮马问题=轴对称问题=最短距离问题(轴对称是工具,最短距离是题眼)。

所谓轴对称是工具,即这类问题最常用的做法就是作轴对称。

而最短距离是题眼,也就意味着归类这类的题目的理由。

比如题目经常会出现线段 a+b 这样的条件或者问题。

一旦出现可以快速联想到将军饮马问题,然后利用轴对称解题。

1.将军饮马故事“将军饮马”问题是数学问题中的经典题目,主要转化成“两点之间线段最短问题”原题:如图,一位将军,从A地出发,骑马到河边给马饮水,然后再到B地,问怎样选择饮水的地点,才能使所走的路程最短?AB模型一:一条定直线,同侧两定点在直线l的同侧有两点A,B,在L上求一点P,使得PA+PB值最小。

一般做法:作点 A(B)关于直线的对称点,连接 A’B,A’B 与直线交点即为所求点。

A’B即为最短距离。

理由:A’为 A 的对称点,所以无论 P 在直线任何位置都能得到 AP=A’P。

所以 PA+PB=PA’+PB。

这样问题就化成了求 A’到 B 的最短距离,直接相连就可以了。

例一:某供电部门准备在输电主干线L上连接一个分支线路,分支点为M,同时向新落成的A、B两个居民小区送电。

已知两个居民小区A、B分别到主干线的距离AA1=2千米,BB1=1千米,且A1B1=4千米。

(1)如果居民小区A、B位于主干线L的两旁,如图(1)所示,那么分支点M 在什么地方时总路线最短?最短线路的长度是多少千米?(2)如果居民小区A、B位于主干线L的同旁,如图(2)所示,那么分支点M 在什么地方时总路线最短?此时分支点M与A1的距离是多少千米?模型二:一条定直线,一定点,一动点如图,已知直线L 和定点A ,在直线K 上找一点M,在直线L 上找一点P ,使得AP+PB 值最小。

模型三:一定点,两条定直线如图,在∠OAB 内有一点 P ,在 OA 和 OB 各找一个点 M 、N ,使得△PMN 周长最短(题 眼)。

一般做法:作点 P 关于 OA 和 OB 的对称点 P1、P2。

中考复习专题:中考中“将军饮马”问题的常见模型及典型例题 课件(共38张PPT)

中考复习专题:中考中“将军饮马”问题的常见模型及典型例题 课件(共38张PPT)
x (1)求a,b的值;
(2)点P、Q分别是x轴、y轴上的动点,当四边形PABQ的周长取最小值时.
①求直线PQ的解析式;②求四边形PABQ周长的最小值。
y
y
B.
A
Q
PO
x
B . B′
A
Q
PO
x
A′
中考复习专题:中考中“将军饮马” 问题的 常见模 型及典 型例题 课件(共38张PPT)
中考复习专题:中考中“将军饮马” 问题的 常见模 型及典 型例题 课件(共38张PPT)
典例探究
例7
如图,已知点A(
1 2
,y1),B(2,y2)为反比例函数
y
1 的图 x
象上的两点,动点P(x,0)在x轴正半轴上运动,当AP-BP最大时,点
P的坐标是( D )
A、( 1 ,0) B、( 1 ,0) 2
C、( 3 ,0) 2
D、( 5 ,0) 2
y
A
y x 5 2
B
O
P
P
x
中考复习专题:中考中“将军饮马” 问题的 常见模 型及典 型例题 课件(共38张PPT)
梳理体系
【将军饮马问题模型5】同侧两点差的最值问题
A
B l
P (1)
|PA-PB|最大问题
A
B
P
l
(2)
|PA-PB|最小问题
中考复习专题:中考中“将军饮马” 问题的 常见模 型及典 型例题 课件(共38张PPT)
中考复习专题:中考中“将军饮马” 问题的 常见模 型及典 型例题 课件(共38张PPT)
y A
D E OC B x
y
A
C
D
E
C′O C

初中数学,“将军饮马”的七大模型.doc

初中数学,“将军饮马”的七大模型.doc

初中数学,“将军饮马”的七大模型让我们先来了解“将军饮马”这个故事。

古希腊亚里山大里亚城有一位久负盛名的学者,名叫海伦。

有一天,有位将军不远千里专程前来向海伦求教一个百思不得其解的问题:如图,将军A从出发到河边饮马,然后再到B地军营视察,显然有许多走法.问怎样走路线最短呢?精通数理的海伦稍加思索,便作了完善的回答.这个问题后来被人们称作“将军饮马”问题.下面我们来看看数学家是怎样解决的.海伦发现这是一个求折线和最短的数学问题.根据公理:连接两点的所有线中,线段最短.若A、B在河流的异侧,直接连接AB,AB与l的交点即为所求.若A、B在河流的同侧,根据两点间线段最短,那么显然要把折线变成直线再解.将军饮海伦解决本问题时,是利用作对称点把折线问题转化成直线现在人们把凡是用对称点来实现解题的思想方法叫对称原理,即轴对称思想轴对称的两个图形有如下性质:①关于某条直线对称的两个图形是全等形;②对称轴是任何一对对应点所连线的垂直平分线;③两个图形关于某条直线对称,如果他们的对应线段或延长线相交,那么交点在对称轴上.将军饮马的数学问题,考察的知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。

解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。

共有七大模型:模型1,PA+PB最小模型2,PA-PB最小模型3,PA-PB最大【变形】异侧时,也可以问:在直线l上是否存在一点P 使得直线l为∠APB的角平分线模型4,周长最短模型5,“过河”最短距离模型6,线段和最小模型7,在直角坐标系的运用题目巩固1.如图,直线l 和l 的异侧两点A、B,在直线l 上求作一点P,使PA+PB 最小。

2.如图,直线l 和l 的同侧两点A、B,在直线l 上求作一点P,使PA+PB 最小。

3.如图,点P 是∠MON 内的一点,分别在OM,ON 上作点A,B。

使△PAB 的周长最小4.如图,点P,Q 为∠MON 内的两点,分别在OM,ON 上作点A,B。

初中数学将军饮马五大模型七类题型及答案

初中数学将军饮马五大模型七类题型及答案

将军饮马五大模型七类题型(模型梳理与题型分类讲解)第一部分【知识点归纳】【理论依据】路径最短、线段和最小、线段差最大、周长最小等一系列最值问题。

【方法原理】1.两点之间,线段最短;2.三角形两边之和大于第三边,两边之差小于第三边;3.中垂线上的点到线段两端点的距离相等;4.垂线段最短.【基本模型】【模型一:两定交点型】如图1,直线l和l的异侧两点A.B,在直线l上求作一点P,使P A+PB最小;图1【模型二:两定一动型】如图2,直线l和l的同侧两点A.B,在直线l上求作一点P,使P A+PB最小(同侧转化为异侧);图2【模型三:一定两动型】如图3,点P是∠MON内的一点,分别在OM,ON上作点A,B。

使△P AB 的周长最小。

图3【模型四:两定两动型】如图4,点P,Q为∠MON内的两点,分别在OM,ON上作点A,B。

使四边形P AQB的周长最小。

图4【模型五:一定两动(垂线段最短)型】如图5,点A是∠MON外的一点,在射线ON上作点P,使P A 与点P到射线OM的距离之和最小。

图5【模型六:一定两动,找(作)对称点转化型】如图6,点A是∠MON内的一点,在射线ON上作点P,使P A与点P到射线OM的距离之和最小。

图6【题型目录】【题型1】两定一动型.......................................................3;【题型2】一定两动(两点之间线段最短)型...................................6;【题型3】一定两动(垂线段最短)型.........................................9;【题型4】两定两动型.......................................................12;【题型5】一定两动(等线段)转化型.........................................14;【题型6】直通中考.........................................................18;【题型7】拓展延伸.........................................................21;第二部分【题型展示与方法点拨】【题型1】两定一动型;1.(23-24八年级上·河北廊坊·期中)如图,在△ABC中,∠BAC=90°,AB=12,AC=16,BC=20,将△ABC沿射线BM折叠,使点A与BC边上的点D重合.(1)线段CD的长是;(2)若点E是射线BM上一动点,则△CDE周长的最小值是.2.(22-23八年级上·广西南宁·期末)如图,点E在等边△ABC的边BC上,BE=4,射线CD⊥BC,垂足为点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+FP的值最小时,BF=5,则AB 的长为.3.(23-24八年级下·河南郑州·阶段练习)如图,在△ABC中,AB=AC.在AB、AC上分别截取AP、PQ的长为半径作弧,两弧在∠BAC内交于点AQ,使AP=AQ.再分别以点P,Q为圆心,以大于12R,作射线AR,交BC于点D.已知BC=5,AD=6.若点M、N分别是线段AD和线段AB上的动点,则BM+MN的最小值为.【题型2】一定两动(两点之间线段最短)型;4.(23-24七年级下·陕西西安·期末)如图,在锐角△ABC中,∠ABC=30°,AC=4,△ABC的面积为5,P为△ABC内部一点,分别作点P关于AB,BC,AC的对称点P1,P2,P3,连接P1P2,PP3,则2P1P2+ PP3的最小值为.5.(23-24八年级上·北京海淀·期中)如图,已知∠MON=30°,在∠MON的内部有一点P,A为OM上一动点,B为ON上一动点,OP=a,当△P AB的周长最小时,∠APB=度,△P AB的周长的最小值是.6.(22-23八年级上·新疆乌鲁木齐·期末)如图,已知∠AOB的大小为α,P是∠AOB内部的一个定点,且OP=5,点E、F分别是OA、OB上的动点,若△PEF周长的最小值等于5,则α=()A.30°B.45°C.60°D.90°【题型3】一定两动型(垂线段最短);7.(2024八年级上·全国·专题练习)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,AD是∠BAC的平分线,若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A.2.4B.3C.4D.58.(23-24七年级下·广东深圳·期末)如图,在等腰三角形ABC中,AB=AC,AD⊥BC,点D为垂足,E、F分别是AD、AB上的动点.若AB=6,△ABC的面积为12,则BE+EF的最小值是()A.2B.4C.6D.89.(23-24八年级·江苏·假期作业)如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是.【题型4】两定两动型;10.(22-23八年级上·湖北武汉·期末)如图,∠AOB=20°,M,N分别是边OA,OB上的定点,P,Q分别是边OB,OA上的动点,记∠OPM=α,∠OQN=β,当MP+PQ+QN最小时,则关于α,β的数量关系正确的是()A.β-α=30°B.β+α=210°C.β-2α=30°D.β+α=200°【题型5】一定两动(等线段)转化型;11.(23-24九年级下·广西南宁·开学考试)如图,△ABC是等边三角形,AB=4.过点A作AD⊥BC于点D,点P是直线AD上一点,以CP为边,在CP的下方作等边△CPQ,连接DQ,则DQ的最小值为.12.(23-24八年级下·湖北武汉·阶段练习)如图,在Rt△ABC中,∠BAC=90°,AC=6,BC=10,D、E分别是AB、BC上的动点,且CE=BD,连接AE、CD,则AE+CD的最小值为.13.(2024·安徽合肥·二模)如图,△ABC和△ADE都是等腰三角形,且∠BAC=∠DAE=120°,AB=8,O是AC的中点,若点D在直线BC上运动,连接OE,则在点D运动过程中,OE的最小值为()A.42B.433 C.32D.2第三部分【中考链接与拓展延伸】【题型6】直通中考14.(2023·辽宁锦州·中考真题)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=4,按下列步骤作图:①在AC和AB上分别截取AD、AE,使AD=AE.②分别以点D和点E为圆心,以大于12DE的长为半径作弧,两弧在∠BAC内交于点M.③作射线AM交BC于点F.若点P是线段AF上的一个动点,连接CP,则CP+12AP的最小值是.15.(2020·新疆·中考真题)如图,在△ABC中,∠A=90°,∠B=60°,AB=4,若D是BC边上的动点,则2AD+DC的最小值为.【题型7】拓展延伸16.(2024·辽宁葫芦岛·二模)在△ABC中,∠ABC=60°,BC=4,AC=5,点D,E在AB,AC边上,且AD=CE,则CD+BE的最小值是.17.(23-24八年级上·湖北武汉·阶段练习)如图,等腰△ABC中,∠BAC=100°,BD平分∠ABC,点N为BD上一点,点M为BC上一点,且BN=MC,若当AM+AN的最小值为4时,AB的长度是.将军饮马五大模型七类题型(模型梳理与题型分类讲解)第一部分【知识点归纳】【理论依据】路径最短、线段和最小、线段差最大、周长最小等一系列最值问题。

(完整版)将军饮马模型(终稿)

(完整版)将军饮马模型(终稿)

将军饮马模型一、背景知识:【传说】早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马”的问题便流传至今.【问题原型】将军饮马造桥选址费马点【涉及知识】两点之间线段最短,垂线段最短;三角形两边三边关系;轴对称;平移;【解题思路】找对称点,实现折转直二、将军饮马问题常见模型1.两定一动型:两定点到一动点的距离和最小例1:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB最小.作法:连接AB,与直线l的交点Q,Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB最小,且最小值等于AB。

原理:两点之间线段最短。

证明:连接AB,与直线l的交点Q,P为直线l上任意一点,在⊿PAB中,由三角形三边关系可知:AP+PB≧AB(当且仅当PQ重合时取﹦)例2:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB的和最小.关键:找对称点作法:作定点B关于定直线l的对称点C,连接AC,与直线l的交点Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB和最小,且最小值等于AC.原理:两点之间,线段最短证明:连接AC,与直线l的交点Q,P为直线l上任意一点,在⊿PA C中,由三角形三边关系可知:AP+PC≧AC(当且仅当PQ重合时取﹦)2.两动一定型例3:在∠MON的内部有一点A,在OM上找一点B,在ON上找一点C,使得△BAC周长最短.作法:作点A关于OM的对称点A’,作点A关于ON的对称点A’’,连接A’ A’’,与OM交于点B,与ON交于点C,连接AB,AC,△ABC即为所求.原理:两点之间,线段最短例4:在∠MON的内部有点A和点B,在OM上找一点C,在ON上找一点D,使得四边形ABCD周长最短.作法:作点A关于OM的对称点A’,作点B关于ON的对称点B’,连接A’ B’,与OM交于点C,与ON 交于点D,连接AC,BD,AB,四边形ABCD即为所求.原理:两点之间,线段最短3.两定两动型最值例5:已知A、B是两个定点,在定直线l上找两个动点M与N,且MN长度等于定长d(动点M位于动点N 左侧),使AM+MN+NB的值最小.提示:存在定长的动点问题一定要考虑平移作法一:将点A向右平移长度d得到点A’,作A’关于直线l的对称点A’’,连接A’’B,交直线l 于点N,将点N向左平移长度d,得到点M.作法二:作点A关于直线l的对称点A1,将点A1向右平移长度d得到点A2,连接A2 B,交直线l于点Q,将点Q向左平移长度d,得到点Q。

将军饮马的六种模型

将军饮马的六种模型

将军饮马的六种模型将军饮马,是中国古代战争策略中的经典战术之一。

通过观察马,了解将军的心思,进而进行军事决策。

将军饮马虽然源于古代战争,但其思想也可以应用于现代管理和决策中。

在现代社会中,可以将将军饮马的思想应用到各种管理模型中,以期提供全面、客观、有效的决策支持。

本文将介绍六种基于将军饮马思想的模型,并对其应用领域进行简要分析。

一、马的姿态模型在将军饮马中,将军观察马展示出的姿态,来判断敌情。

而在管理和决策中,我们也可以通过观察员工或团队展示的姿态,来了解他们的态度、能力和潜力。

例如,一个员工是否充满自信和积极的态度,是否展示出自主解决问题的能力,这些都可以为管理者提供重要的参考信息。

二、军心模型将军饮马中,将军观察马的冷静与否,来判断士兵们的情绪状态。

同样,在管理中,管理者可以通过观察员工的情绪和表现来判断团队的士气和动力。

如果员工们表现出疲惫、消极或情绪低落,可能需要及时采取措施调整团队心态,提高士气。

三、战术模型将军饮马中,将军观察马的行动方式,来判断敌情并制定战术。

在管理决策中,管理者可以观察员工或团队的行动方式和工作方法,来判断他们的能力和适应性。

通过了解员工的工作方式,可以更好地进行任务分配和资源管理,使团队的工作更加高效。

四、资源模型将军饮马中,将军观察马数量和状态,来判断可用资源。

在管理决策中,管理者需要了解团队的资源情况,包括人力、物资、资金等。

通过了解资源状况,管理者可以更好地进行资源分配,确保团队工作的顺利进行。

五、协调模型将军饮马中,将军观察马是否协调一致,来判断士兵团结力。

在管理中,管理者可以通过观察员工的协作和团队合作能力,来判断团队的团结力和协作效率。

如果员工们能够协同合作、相互支持,将会提升整个团队的工作效果。

六、判断模型将军饮马中,将军通过观察马的各种表现,来综合判断敌情和决策方向。

在管理决策中,管理者也需要通过综合观察员工的各种表现和信息,来做出决策。

通过收集和分析各种信息,管理者能够更准确地判断当前形势,做出合理决策。

将军饮马问题16大模型

将军饮马问题16大模型

将军饮马问题16大模型将军饮马问题源于中国古代的一个寓言故事,讲述的是三位将军跟随他们的军队来到一座河边准备渡河,但只有一条小船,这条小船一次只能搭载两人。

如果将军A和将军B在船上,将军C在岸边,将军C将会受到辱骂,如果将军A和将军C在船上,将军B在岸边,将军B也会受到辱骂,问题是如何让这三位将军都安全地渡河而不受辱骂。

这个问题启发了许多数学家和逻辑学家,有各种不同的解法。

下面将介绍将军饮马问题的16种不同模型。

模型1:最直接的解法最直接的解法是将将军A和将军B一同乘坐小船去对岸,然后将将军A带船返回,将将军C载到对岸。

模型2:穷举法穷举法是一种比较笨拙但可以解决问题的方法,即穷尽所有可能的情况。

这种方法虽然有效,但耗时较长。

模型3:递归法递归法是将问题分解成较小规模的子问题,并逐步解决。

这种方法可以节省时间和精力,但需要较高的逻辑思维能力。

模型4:数学推导法通过数学推导,可以将将军饮马问题转化为数学模型,从而得出解答。

这种方法需要较强的数学功底。

模型5:逻辑推理法逻辑推理法是通过逻辑推理和思维分析,得出解决将军饮马问题的方法。

这种方法强调思维的逻辑性和推理能力。

模型6:图论模型图论是数学的一个分支,可以用来描述将军饮马问题中的交叉关系和路径规划。

通过构建相应的图模型,可以更清晰地解决问题。

模型7:概率模型概率模型是通过概率计算和推测,找出解决将军饮马问题的可能性和概率分布。

这种方法适用于对问题进行全面分析和评估。

模型8:动态规划法动态规划法是针对多阶段决策问题的一种解决方法,可以在问题空间中寻找最优解。

这种方法适用于将军饮马问题的场景。

模型9:模拟法模拟法是通过模拟将军饮马问题的场景,以实验测算的方式找出最佳解决方案。

这种方法可以直观地展示问题的复杂性和解决路径。

模型10:启发式算法启发式算法是通过启发性的思考和优化方法,寻找将军饮马问题的最佳解决方案。

这种方法可以在复杂问题中找到较好的解决途径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

将军饮马的六种常见模型将军饮马问题——线段和最短一.六大模型1.如图,直线l和l的异侧两点A、B,在直线l上求作一点P,使P A+PB最小。

2.如图,直线l和l同侧两点A、B,在直线l上求作一点P,使P A+PB最小。

3.如图,点P是∠MON内一点,分别在OM,ON上作点A,B。

使△P AB的周长最小4.如图,点P,Q为∠MON内的两点,分别在OM,ON上作点A,B。

使四边形P AQB的周长最小。

5.如图,点A是∠MON外的一点,在射线ON上作点P,使P A与点P到射线OM的距离之和最小6. .如图,点A 是∠MON 内的一点,在射线ON 上作点P ,使P A 与点P 到射线OM 的距离之和最小二、常见题目Part 1、三角形1.如图,在等边△ABC 中,AB = 6,AD ⊥BC ,E 是AC 上的一点,M 是AD 上的一点,AE =2,求EM +EC 的最小值解: ∵点C 关于直线AD 的对称点是点B ,∴连接BE ,交AD 于点M ,则ME +MD 最小,过点B 作BH ⊥AC 于点H ,则EH = AH – AE = 3 – 2 = 1,BH =22BC CH -=2263-=33在直角△BHE 中,BE =22BH EH - =22(33)1+=272.如图,在锐角△ABC 中,AB =42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点, 则BM +MN 的最小值是____.解:作点B 关于AD 的对称点B ',过点B '作B 'E ⊥AB 于点E ,交AD 于点F ,则线段B 'E 长就是BM +MN的最小值在等腰Rt △AEB '中,根据勾股定理得到,B 'E = 43.如图,△ABC中,AB=2,∠BAC=30°,若在AC、AB上各取一点M、N,使BM+MN值最小,则这个最小值解:作AB关于AC的对称线段AB',过点B'作B'N⊥AB,垂足为N,交AC于点M,则B'N= MB'+MN = MB+MN. B'N的长就是MB+MN最小值,则∠B'AN= 2∠BAC= 60°,AB' = AB= 2,∠ANB'= 90°,∠B' = 30°。

∴AN = 1,在直角△AB'N中,根据勾股定理B'N =3Part2、正方形1.如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,DN+MN的最小值为_________。

即在直线AC上求一点N,使DN+MN最小。

解:故作点D关于AC的对称点B,连接BM,交AC于点N。

则DN+MN=BN+MN=BM。

线段BM的长就是DN+MN的最小值。

在直角△BCM中,CM=6,BC=8,则BM=10。

故DN+MN的最小值是102.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.23B.26C.3D.6解:即在AC上求一点P,使PE+PD的值最小。

点D关于直线AC的对称点是点B,连接BE交AC于点P,则BE = PB+PE = PD+PE,BE的长就是PD+PE的最小值BE=AB =233.在边长为2㎝的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为____________㎝(结果不取近似值).解:在AC上求一点P,使PB+PQ的值最小∵点B关于AC的对称点是D点,∴连接DQ,与AC的交点P就是满足条件的点DQ = PD+PQ = PB+PQ,故DQ长就是PB+PQ的最小值在直角△CDQ中,CQ=1,CD=2,根据勾股定理,得,DQ=54.如图,四边形ABCD是正方形,AB= 10cm,E为边BC的中点,P为BD上的一个动点,求PC+PE 的最小值;解:连接AE,交BD于点P,则AE就是PE+PC最小值在直角△ABE中,求得AE的长为55Part3、矩形1.如图,若四边形ABCD是矩形,AB = 10cm,BC = 20cm,E为边BC上的一个动点,P为BD上的一个动点,求PC+PD的最小值;解:作点C关于BD的对称点C',过点C',作C'B⊥BC,交BD于点P,则C'E就是PE+PC的最小值直角△BCD中,CH=20 5直角△BCH中,BH=85△BCC'的面积为:BH×CH = 160∴C'E×BC = 2×160则CE' = 16Part4、菱形1.如图,若四边形ABCD是菱形,AB=10cm,∠ABC=45°,E为边BC上的一个动点,P为BD上的一个动点,求PC+PE的最小值;解:点C关于BD的对称点是点A,过点A作AE⊥BC,交BD于点P,则AE就是PE+PC的最小值在等腰△EAB中,求得AE的长为52Part5、直角梯形1.已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=DC=5,点P在BC上秱动,则当P A+PD取最小值时,△APD中边AP上的高为()A、21717B、41717C、81717D、3解:作点A关于BC的对称点A',连接A'D,交BC于点P则A'D = P A'+PD = P A+PD A'D的长就是P A+PD的最小值S△APD = 4在直角△ABP中,AB = 4,BP = 1,根据勾股定理,得AP17∴AP上的高为:817 21717=Part6、圆形1.已知⊙O的直径CD为4,∠AOD的度数为60°,点B是AD的中点,在直径CD上找一点P,使BP+AP的值最小,并求BP+AP的最小值.解:在直线CD上作一点P,使P A+PB的值最小作点A关于CD的对称点A',连接A'B,交CD于点P,则A'B的长就是P A+PB最小值连接OA',OB,则∠A'OB=90°,OA' = OB = 4根据勾股定理,A'B=422.如图,MN是半径为1的⊙O直径,点A在⊙O上,∠AMN=30°,B为AN弧的中点,P是直径MN上一动点,则P A+PB的最小值为( )A. 22B. 2C. 1D. 2解:MN上求一点P,使P A+PB的值最小作点A关于MN的对称点A',连接A'B,交MN于点P,则点P就是所要作的点A'B的长就是P A+PB的最小值连接OA'、OB,则△OA'B是等腰直角三角形∴A'B=2Part7、一次函数20.一次函数y=kx+b的图象与x、y轴分别交于点A(2,0),B(0,4).(1)求该函数的解析式;(2)O为坐标原点,设OA、AB的中点分别为C、D,P为OB上一动点,求PC+PD的最小值,并求取得最小值时P点坐标.解:(1)由题意得:0=2x +b ,4=b 解得 k =-2,b =4,∴ y =-2x +4(2)作点C 关于y 轴的对称点C ',连接C 'D ,交y 轴于点P则C 'D =C 'P +PD = PC +PDC 'D 就是PC +PD 的最小值连接CD ,则CD =2,CC ′=2在直角△C 'CD 中,根据勾股定理 C 'D =22求直线C 'D 的解析式,由C '(-1,0),D (1,2)∴有0=-k +b ,2=k +b解得 k =1,b =1,∴ y =x +1当x =0 时,y =1,则P (0,1)Part 8、二次函数1.如图,在直角坐标系中,点A 的坐标为(-2,0),连结0A ,将线段OA 绕原点O 顺时针旋转120。

,得到线段OB .(1)求点B 的坐标;(2)求经过A 、O 、B 三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 周长最小?若存在求出点C 坐标;若不存在,请说明理由.解:(1)B (13)(2) y 2323x x + (3)∵点O 关于对称轴的对称点是点A ,则连接AB ,交对称轴于点C ,则△BOC 的周长最小y 2323x x ,当x =-1 时,y 3∴C (-132.如图,在直角坐标系中,A ,B ,C 坐标分别为(-1,0),(3,0),(0,3),过A ,B ,C 三点的抛物线对称轴为直线l ,D 为直线l 上的一个动点,(1)求抛物线的解析式;(2)求当AD+CD最小时点D的坐标;(3)以点A为圆心,以AD为半径作圆A;解:(1)①证明:当AD+CD最小时,直线BD与圆A相切;②写出直线BD与圆A相切时,点D的另一个坐标。

(2)连接BC,交直线l于点D,则DA+DC = DB+DC = BC,BC的长就是AD+DC的最小值BC:y=-x+3则直线BC与直线x=1的交点D(1,2),3.抛物线y = ax2+bx+c(a≠0)对称轴为x = -1,与x轴交于A、B两点,与y轴交于点C,其中A(-3,0)、C(0,-2)(1)求这条抛物线的函数表达式.(2)已知在对称轴上存在一点P,使得△PBC的周长最小.请求出点P的坐标.(3)若点D是线段OC上的一个动点(不与点O、点C重合).过点D作DE//PC交x轴于点E,连接PD、PE.设CD的长为m,△PDE的面积为S.求S与m之间的函数关系式.试说明S是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.(1)由题意得129302b a a b c c ⎧=⎪⎪-+=⎨⎪=-⎪⎩, 解得23432a b c ⎧=⎪⎪⎪=⎨⎪=-⎪⎪⎩∴抛物线的解析式为224233y x x =+-(2)点B 关于对称轴对称点是点A ,连接AC 交对称轴于点P ,则△PBC 周长最小. 设直线AC 的解析式为y = kx +b , ∵A (-3,0),C (0,-2),则032k b b==+⎧⎨-=⎩,解得 k =23- ,b =-2 ∴直线AC 的解析式为 y =23-x –2 把x =-1 代入得y =43-,∴P (-1,43-)(3)S 存在最大值∵DE //PC , ∴OE /OA = OD /OC ,即OE /3 = (2-m )/2OE =3-32m ,AE =OA –OE =32m方法一,连接OPS =S 四边形PDOE –S △OED =S △POE +S △POD –S △OED=12×(3 -32m )×43+12×(2 -m )×1-12×(3-32m )×(2-m ) =34-m 2 +32m=34-(m-1)2+34∴,当m=1时,S最大3 4方法二,S = S△OAC–S△AEP–S△OED–S△PCD=34-m2 +32m =34-(m-1)2+34。

相关文档
最新文档