初一数学《4.1点线面体》检测试试题(人教版)_题型归纳
2024年人教版数学七年级上册4.1.2 点、线、面、体 同步练习题(含答案)
4.1.2 点、线、面、体1.下面几何体中,全是由曲面围成的是( )A.圆锥B.正方体 C.圆柱 D.球2.下列立体图形中面数相同的是( )①圆柱;②圆锥;③正方体;④四棱柱A.①④ B.①② C.②③ D.③④3. 在球、圆锥、棱柱中,由曲面和平面围成的是( )A.球和圆锥B.球和圆柱C.圆锥和圆柱D.圆柱和棱柱4. 将如图所示的直角梯形绕直线l旋转一周,得到的立体图形是( )5.下列现象能说明“面动成体”的是( )A.时钟的钟摆摆动留下的痕迹B.旋转一扇门,门在空中运动的轨迹C.扔出一块小石子,石子在天空中运动的轨迹D.一根舞动的荧光棒6.把一个直角三角形绕它的最长边旋转一周,得到的几何体是( )7. 如图,长方形绕它的一条边MN所在的直线旋转一周形成的几何体是( )8.天空中的流星划过后留下的光线,给我们以什么样的形象( ) A.点 B.线 C.面 D.体9.在以下四个几何体中,其侧面展开图不是平面图形的是( ) A.球 B.棱柱 C.圆柱 D.圆锥10.将如图所示放置的一个直角三角形ABC(∠C=90°)绕斜边AB旋转一周,所得到的几何体从正面看是( )11. 长方体有个面,有条棱,有个顶点。
12. 圆柱有个面,其中有个平面,有个曲面。
13. 下列有六个面的几何体的个数是个。
①长方体;②圆柱;③四棱柱;④正方体;⑤三棱柱14. 下列几何体中只有一个面的是,有两个面的是,有三个面的是.15. 三种常见图形旋转后的几何体:(1) 直角三角形绕直角边旋转后形成;(2) 长方形绕一边旋转后形成;(3) 半圆绕直径旋转后形成.16. 观察如图所示的棱锥,回答下列问题:(1)这个图形是平面图形还是立体图形?(2)图中有多少个顶点?多少条线段?多少个平面?(3)图中有哪些平面图形?17.(1) 观察下列多面体,并把下表补充完整.名称三棱柱四棱柱五棱柱六棱柱图形顶点数a 61012 棱数b 912面数c 58出关系式.答案:1-10 DDCDB CCBAB11. 6 12 812. 3 2 113. 314. ④③①②15. (1) 圆锥(2) 圆柱(3) 球16. 解:(1)立体图形(2)图中有5个顶点,8条线段,5个平面(3)平面图形有:点、线段、角、三角形、长方形17. 解:(1)四、五、六棱柱分别为:8,6;15,7;18;(2)b=a+c-2.。
人教版七年级数学上册点、线、面、体测试题
人教版7年级数学考试题测试题人教版初中数学第四章几何图形初步4.1.2点、线、面、体一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是A.B.C.D.2.将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是A.B.C.D.3.汽车的雨刷把玻璃上的雨水刷干净属于__________的实际应用.A.点动成线B.线动成面C.面动成体D.以上答案都不对4.一个直角三角形绕其直角边旋转一周得到的几何体可能是A.B.C.D.5.生活中我们见到的自行车的辐条运动形成的几何图形可解释为A.点动成线B.线动成面C.面动成体D.以上答案都不对二、填空题:请将答案填在题中横线上.6.雨点从高空落下形成的轨迹说明了点动成线,那么一枚硬币在光滑的桌面上快速旋转形成一个球,这说明了__________.7.将一个半圆绕它的直径所在的直线旋转一周得到的几何体是__________.8.如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的体积为__________cm3.(结果保留π)9.笔尖在纸上快速滑动写出英文字母C,这说明了__________.三、解答题:解答应写出文字说明、证明过程或演算步骤.10.将第一行的图形绕轴旋转一周,便得到第二行的几何体,用线连一连.11.现将一个长为4厘米,宽为3厘米的长方形,分别绕它的相邻两边所在的直线旋转一周,得到不同的圆柱体,它们的体积分别是多大?通过计算你发现了什么?(π取3.14)附赠材料:以学生为第一要务目标我们教育工作的最终目标只有一个:学生。
因此,我们所做的每一个决定都应该紧紧围绕这个问题:它是否对我们的学生最好?我相信,如果每个教育工作者都能时刻考虑这个问题,那么我们的教育环境一定会比现在所呈现出来的样子要好得多。
那现实究竟是怎样的?我们平时在学校是如何做决定的呢?教师都是普通人,难免会犯错误,于是有的时候大家会不自觉地选择那些对自己最好或是最简单的决定。
点线面测试题及答案初一数学知识点
点线面测试题及答案初一数学知识点
点线面测试题及答案初一数学知识点
点和线练习
第1题.以下说法中正确的语句共有几个?答:( )
①两点确定一条直线;②延长直线AB到C;③延长线段AB到C,使得AC=BC;④反向延长线段BC到D,使BD=BC;⑤线段AB与线段BA 表示同一条线段;⑥线段AB是直线AB的一部分
A.3
B.4
C.5
D.6
答案:B
第2题.下列说法中:①两条直线相交只有一个交点;②两条直线不是一定有一个公共点;③直线AB与直线BA是两条不同直线;④两条不同直线不能有两个或更多个公共点,其中正确的.是( )
A.①②
B.①④
C.①②④
D.②③④
答案:C
第3题.过平面上A,B,C三点中的任意两点作直线,可作( )
A.1条
B.3条
C.1条或3条
D.无数条
答案:C
第4题.下列语句正确的是( )
A.点a在直线l上
B.直线ab过点p
C.延长直线AB到C
D.延长线段AB到C
答案:D。
七年级数学上册4_1_2点线面体同步练习新版新人教版
4.1.2 点、线、面、体1.下面几何体中,满是由曲面围成的是( )A.圆锥B.正方体C.圆柱D.球2.以下立体图形中面数相同的是( )①圆柱;②圆锥;③正方体;④四棱柱A.①④ B.①②C.②③ D.③④3.观看如下图的棱锥,回答以下问题:(1)那个图形是平面图形仍是立体图形?(2)图中有多少个极点?多少条线段?多少个平面?(3)图中有哪些平面图形?4.如图,把长方形纸片沿图中虚线剪开得两个形状、大小相同的三角形,将这两个三角形拼在一路,使得有一条相等的边是共有的,能拼出多少种不同的几何图形(平面)?请你尝试画出来.(不包括原长方形的拼法)5. 图绕虚线旋转取得的实物图是( )6. 如图,右边的几何体是由左侧的哪个图形绕虚线旋转一周形成的( )7. 如图,长方形绕它的一条边MN所在的直线旋转一周形成的几何体是( )8.以下有六个面的几何体的个数是( )①长方体;②圆柱;③四棱柱;④正方体;⑤三棱柱A.1个B.2个C.3个D.4个9.天空中的流星划事后留下的光线,给咱们以什么样的形象( )A.点 B.线 C.面 D.体10.在以下四个几何体中,其侧面展开图不是平面图形的是( )A.圆柱 B.棱柱 C.球 D.圆锥11.将如下图放置的一个直角三角形ABC(∠C=90°)绕斜边AB旋转一周,所取得的几何体从正面看是( )12.(8分)如图,把以下平面图形(1)~(6)绕虚线旋转一周,便能形成A~F的某个几何体,请找出来.参考答案1、D2、D3、解:(1)立体图形(2)图中有5个极点,8条线段,5个平面(3)平面图形有:点、线段、角、三角形、长方形4、解:五种,别离是:五、D六、A7、C八、C九、B10、C1一、B1二、解:(1)~(6)别离对应C,D,B,A,F,E。
七年级数学上册第4章几何图形初步4.1几何图形4.1.2点线面体习题新版新人教版
4.1.2 点、线、面、体一.选择题(共16小题)1.(2018•长沙)将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是()A B C D2.(2018•朝阳区二模)如图,如图的平面图形绕直线l旋转一周,可以得到的立体图形是()A B D3.(2018•河北模拟)将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是()A B D4.(2018•二道区模拟)将下列各选项中的平面图形绕轴旋转一周,可得到图中所示的立体图形的是()A B C D5.(2017秋•房山区期末)如图所示的平面图形绕直线l旋转一周,可以得到的立体图形是()A B C D6.(2017秋•霸州市期末)将长方形绕着它的一边旋转一周得到的立体图形是()A.正方体B.长方体C.棱柱 D.圆柱7.(2017秋•五莲县期末)汽车的雨刷把玻璃上的雨水刷干净属于的实际应用是()A.点动成线 B.线动成面C.面动成体 D.以上答案都不对8.(2017秋•宿州期末)雨滴滴下来形成雨丝属于下列哪个选项的实际应用()A.点动成线 B.线动成面 C.面动成体 D.以上都不对9.(2017秋•辽阳期末)如图中的图形绕虚线旋转一周,可得到的结合体是()A B D10.(2017秋•文登区期末)将下列图形绕着直线旋转一周正好得到如图所示的图形的是()C D11.(2017秋•青秀区期末)如图,绕虚线旋转得到的实物图是()A B C D12.(2017秋•滕州市期末)圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是()C D13.(2017秋•海陵区校级月考)一个直角三角形绕其直角边旋转一周得到的几何体可能是()A B D14.(2017秋•黄岛区校级月考)如图所示,下图形绕直线l旋转360°后,能得到圆柱体的是()A B D15.(2017秋•曹县校级月考)把如图的三角形绕它的最长边旋转一周,得到的几何体为图中的()A C16.(2017秋•邵阳县校级月考)如图所示的圆台中,可由下列图中的()图形绕虚线旋转而成.A C二.填空题(共8小题)17.(2017秋•相城区期末)一个直角三角形绕其直角边旋转一周得到的几何体是.18.(2017秋•崇安区期末)雨点从高空落下形成的轨迹说明了点动成线,那么一枚硬币在光滑的桌面上快速旋转形成一个球,这说明了.19.(2017秋•阜宁县期末)将一个圆绕它的直径旋转一周形成的几何体是.20.(2016秋•龙泉驿区期末)如图,将长方形ABCD绕AB边旋转一周,得到的几何体是.21.(2016秋•邹平县期末)直角三角形绕着它的一条直角边所在直线旋转360°形成的几何体是.22.(2016秋•普宁市期末)如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的体积为cm3.(结果保留π)23.(2017秋•定陶县期中)中国武术中有“枪扎一条线,棍扫一大片”这样的说法,这句话给我们以的形象.24.(2017秋•碑林区期中)将如图所示半圆形薄片绕轴旋转一周,得到的几何体是,这一现象说明.三.解答题(共3小题)25.(2017秋•市北区期中)如图是一个长为4cm,宽为3cm的长方形纸片,该长方形纸片分别绕长、宽所在直线旋转一周(如图1、图2),会得到两个几何体,请你通过计算说明哪种方式得到的几何体的体积大(结果保留π)26.(2017秋•崇仁县校级月考)小明学习了“面动成体”之后,他用一个边长为3cm、4cm 和5cm的直角三角形,绕其中一条边旋转一周,得到了一个几何体.(1)请画出可能得到的几何体简图.(2)分别计算出这些几何体的体积.(锥体体积27.(2015秋•烟台期中)探究:有一长6cm,宽4cm的矩形纸板,现要求以其一组对边中点所在直线为轴,旋转180°,得到一个圆柱,现可按照两种方案进行操作:方案一:以较长的一组对边中点所在直线为轴旋转,如图①;方案二:以较短的一组对边中点所在直线为轴旋转,如图②.(1)请通过计算说明哪种方法构造的圆柱体积大;(2)如果该矩形的长宽分别是5cm和3cm呢?请通过计算说明哪种方法构造的圆柱体积大;(3)通过以上探究,你发现对于同一个矩形(不包括正方形),以其一组对边中点所在直线为轴旋转得到一个圆柱,怎样操作所得到的圆柱体积大(不必说明原因)?4.1.2 点、线、面、体参考答案与试题解析一.选择题(共16小题)1.【解答】解:绕直线l旋转一周,可以得到圆台,故选:D.2.【解答】解:如图,一个长方形绕轴l旋转一周得到的立体图形是圆柱.故选:B.3.【解答】解:A、上面小下面大,侧面是曲面,故A正确;B、上面大下面小,侧面是曲面,故B错误;C、是一个圆台,故C错误;D、下、上面一样大、侧面是曲面,故D错误;故选:A.4.【解答】解:A、圆柱上面加一个圆锥,圆台,故A正确;B、上面大下面小,侧面是曲面,故B错误;C、上面小下面大,侧面是曲面,故C错误;D、上面和下面同样大,侧面是曲面,故D错误.故选:A.5.【解答】解:面动成体,直角三角形绕直角边旋转一周可得圆锥,长方形绕一边旋转一周可得圆柱,那么所求的图形是下面是圆柱,上面是圆锥的组合图形.故选:C.6.【解答】解:以矩形的一边所在直线为旋转轴,形成的旋转体叫做圆柱体.故选:D.7.【解答】解:汽车的雨刷实际上是一条线,通过运动把玻璃上的雨水刷干净,所以应是线动成面.故选B.8.【解答】解:雨滴滴下来形成雨丝属于点动成线,故选:A.9.【解答】解:∵下面的长方形旋转一周后是一个圆柱,上面的直角三角形旋转一周后是一个圆锥,∴根据以上分析应是圆锥和圆柱的组合体.故选:B.10.【解答】解:根据选项中图形的特点,A、可以通过旋转得到两个圆柱;故本选项正确;B、可以通过旋转得到一个圆柱,一个圆筒;故本选项错误;C、可以通过旋转得到一个圆柱,两个圆筒;故本选项错误;D、可以通过旋转得到三个圆柱;故本选项错误.故选:A.11.【解答】解:根据旋转及线动成面的知识可得旋转后的图形为:两边为圆锥,中间为圆柱.故选:D.12.【解答】解:由长方形绕着它的一边所在直线旋转一周可得到圆柱体,如图立体图形是两个圆柱的组合体,则需要两个一边对齐的长方形,绕对齐边所在直线旋转一周即可得到,故选:A.13.【解答】解:以直角三角形的一条直角边所在直线为对称轴旋转一周,得到一个圆锥,故选:D.14.【解答】解;解:以长方形的一边为轴,旋转一周可心得到一个圆柱体;故选:C.15.【解答】解:三角形旋转得两个同底的圆锥,故选:D.16.【解答】解:圆台是梯形绕直角腰旋转而成.故选:A.二.填空题(共8小题)17.【解答】解:以直角三角形的一条直角边所在直线为对称轴旋转一周,得到一个圆锥,故答案为:圆锥.18.【解答】解:一枚硬币在光滑的桌面上快速旋转形成一个球,这说明了面动成体,故答案为:面动成体.19.【解答】解:将一个圆绕它的直径旋转一周形成的几何体是:球体.故答案为:球体.20.【解答】解:将长方形ABCD绕AB边旋转一周,得到的几何体是圆柱体,故答案为:圆柱.21.【解答】解:直角三角形绕它的直角边旋转一周可形成圆锥.故答案为:圆锥.22.【解答】解:直线AB为轴,将正方形旋转一周可得圆柱体,圆柱的高为3cm,底面直径为6cm,∴所得几何体的体积=32π•3=27π故答案为:27πcm3.23.【解答】解:枪尖可看成是点,棍可看成一条线,∴可以看成是点动成线、线动成面,故答案为:点动成线、线动成面.24.【解答】解:将如图所示半圆形薄片绕轴旋转一周,得到的几何体是球,这一现象说明面动成体.故答案为:球,面动成体.三.解答题(共3小题)25.【解答】解:如图1,绕长边旋转得到的圆柱的底面半径为3cm,高为4cm,体积=π×32×4=36πcm3;如图2,绕短边旋转得到的圆柱底面半径为4cm,高为3cm,体积=π×42×3=48πcm3.26.【解答】解:(1)以4cm为轴,得以3cm为轴,得以5cm为轴,得(2)以4cmπ×32×4=12π(cm3),以3cmπ×42×3=16π(cm3),以5cmπ2×5=9.6π(cm3).27.【解答】解:(1)方案一:π×32×4=36π(cm3),方案二:π×22×6=24π(cm3),∵36π>24π,∴方案一构造的圆柱的体积大;(2)方案一:π2×(cm3),方案二:π2×(cm3),,∴方案一构造的圆柱的体积大;(3)由(1)、(2),得以较长一组对边中点所在直线为轴旋转得到的圆柱的体积大.。
【整合】人教版七年级数学上册412点、线、面、体同步测试题.doc
4・1・2点、线、面、体同步测试题一、填空题1. 长方体有 ______ 个面,有 _________ 条棱,有 _______ 个顶点;圆柱有 ________ 个面,其中有 ________个平面,有 _______ 个曲面.2. 从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积为______________ .3. 薄薄的硬币在桌面上转动时,看上去像球,这说明了 ______________________ •4. 将硬币的直径垂直桌面快速旋转吋,我们看到的几何体是—球 _______ •5. __________________ 如图的几何体有 个面, _______ 条棱, ___________________________ 个顶点,它是由简单的几何体 _________ 和 ___________组成的.6. ____________________________________________________ 将图中的直角三角板ABC 绕AC 边旋转一周得到的儿何体是 _____________________________________________二、选择题7. 下列现象不能体现线动成面的是()A. 用平口铲子铲去墙面上的大片污渍B.用一条拉直的细线切一块豆腐C.流星划过天空留下运动轨迹D.用木板的边缘将沙坑里的沙推平&如果一个直棱柱有12个顶点,那么它的面的个数是A. 10 C.8 D.79. 一个几何体的表面展开图如图所示,A. 四棱锥B.四棱柱C.三棱锥D.三棱柱10. 下列现象不能体现线动成面的是() A. 用平口铲子铲去墙面上的大片污渍B.9B.用一条拉直的细线切一块豆腐C.流星划过天空留下运动轨迹11 .左图屮的图形绕虚线旋转一周,可得到的几何体是()q □ v o ABC12. 下列儿何体的所有面都不是平而图形的是(A. 正方体C.圆柱13. 在球、圆锥、圆柱、棱柱屮,由曲面和平面围成的是(14. 将一个直角梯形绕直线1旋转一周可以得到如图的立体图形,这个直角梯形与直线I 的关系是()15.下雨时,司机会打开雨刷器,雨刷器在运动时会形成一个扇而,这是因为()A.点动成线B.线动成面C.面动成体D.面面相交形成线16. 若一个棱柱有10个顶点,则下列说法正确的是()A.这个棱柱有4个侧面B.这个棱柱有5个侧面C.这个棱柱的底面是十边形D.这个棱柱是一个十棱柱三、解答题17. 航天飞机拖着“长长的火焰二我们用数学知识可解释为点动成线.用数学知识解释下列现象:(1) 一只小蚂蚁爬行留下的路线可解释为 _________________________ ・(2) _______________________________________________________ 电动车车辐条运动形成的图形可解释为 .18.观察如图所示的图形,写出下列问题的结果:(1) __________________ 这个图形的名称是 ;(2) ______________ 这个儿何体有 _____________ 个面,有 ____________ 个底面,有 _______ 个侧而,底而是 形,侧面是_______ 形.(3)侧血的个数与底血多边形的边数有什么关系?)B.圆锥 D.球 A. 球和圆锥 B. 球和圆柱C. 圆锥和圆柱D. 圆柱和棱柱图V 中的几何体由几个面围成?面与面相交成几条线?它们是直的还是曲的?20.如图所示,长方形绕虚线旋转一周后,形成的图形是什么?旋转半周呢?19 •如图所示:■Z参考答案一、填空题1. 长方体有6 _______ 个面,有_12 ______ 条棱,有—8_个顶点;圆柱有―3_个面,其中有 ___ 2 ___ 个平面,有 ______ 1_个曲面.2. 从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零3. 薄薄的硬币在桌面上转动时,看上去像球,这说明了 ____________ .4. 将硬币的直径垂直桌面快速旋转时,我们看到的几何体是 球____ 16_条棱,—9—个顶点,它是由简单的几何体—四棱锥. 和_四棱柱______ 组成的.6. ________________________________________________________ 将图中的直角三角板ABC 绕AC 边旋转一周得到的儿何体是—圆锥 _____________________________________二、选择题7. 下列现象不能体现线动成面的是(C ) A. 用平口铲子铲去墙面上的大片污渍 B. 用一条拉直的细线切一块豆腐 C. 流星划过天空留下运动轨迹 D. 用木板的边缘将沙坑里的沙推平8. 如果一个直棱柱有12个顶点,那么它的面的个数是 (C ) A.10 C.8 D.79. 一个几何体的表面展开图如图所示,A. 四棱锥B. 四棱柱C. 三棱锥D. 三棱柱5.如图的几何体有9 个面,B.910.下列现象不能体现线动成血的是(C )A. 用平口铲子铲去墙面上的大片污渍B. 用一条拉直的细线切一块豆腐C. 流星划过天空留下运动轨迹 11. 左图中的图形绕虚线旋转一周,可得到的几何体是(C )q □ v 9 □AB CD12. 下列几何体的所有而都不是平而图形的是(D )A.正方体B.圆锥C.圆柱D.球13. 在球、圆锥、圆柱、棱柱屮,由曲面和平面围成的是(C )A.球和圆锥B.球和圆柱C.圆锥和圆柱D.圆柱和棱柱14. 将一个直角梯形绕直线1旋转一周可以得到如图的立体图形,这个直角梯形与直线1的关系是(15. 下雨时,司机会打开雨刷器,雨刷器在运动时会形成一个扇面,这是因为( B ) A.点动成线B.线动成面 C •面动成体 D.面面相交形成线 16. 若一个棱柱有10个顶点,则下列说法正确的是(B )A. 这个棱柱有4个侧而B. 这个棱柱有5个侧面C. 这个棱柱的底面是十边形D.这个棱柱是一个十棱柱三、解答题17. 航天飞机拖着“长长的火焰二我们用数学知识可解释为点动成线.用数学知识解释下列现象: (1)_只小蚂蚁爬行留下的路线可解释为 点动成线.(2)电动车车辐条运动形成的图形可解释为 __________________ .18.观察如图所示的图形,写出下列问题的结果:(1) 这个图形的名称是六棱柱 ;(2) 这个几何体有—个面•有2个底面•有—个侧面,底面是六边 形,侧面是 形.(3) 侧面的个数与底而多边形的边数有什么关系? 解:(3)侧面的个数与底面多边形的边数相等.长方19 •如图所示:图V 中的几何体由几个面围成?面与面相交成几条线?它们是直的还是曲的?解:图V 屮的几何体有2个面,其屮一个是平面,一个是曲面,面与面相交有1条线,是一条曲线.20 •如图所示,长方形绕虚线旋转一周后,形成的图形是什么?旋转半周呢?LI解:长方形绕图示虚线旋转一周后形成的图形是圆柱,旋转半周所形成的图形也是圆柱.d ©③,① o 1。
人教版七年级数学上册点线面体同步测试(含答案)
人教版七年级数学上册4.1.2 点线面体同步测试(含答案)一、单选题1.下列几何图形与相应语言描述相符的个数有()A.1 个B.2 个C.3 个D.4 个2.如图,用一个平面去截正方体截面形状不可能...为下图中的()A.B.C.D.3.观察下图,把左边的图形绕着给定的直线旋转一周后,可能形成的立体图形是()A.B.C.D.4.如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C.D.5.用一个平面去截圆柱体,则截面形状不可能是()A.正方形B.三角形C.长方形D.圆6.如图,有一个棱长是4cm的正方体,从它的一个顶点处挖去一个棱长是1cm的正方体后,剩下物体的表面积和原来的表面积相比较()A.变大了B.变小了C.没变D.无法确定变化7.用一个平面去截正方体,截面的形状不可能是()A.四边形B.五边形C.六边形D.七边形8.十个棱长为a的正方体摆放成如图的形状,这个图形的表面积是()A.36a2B.36a C.6a2D.30a29.用一个平面去截圆柱体,则截面形状不可能是()A.梯形B.正方形C.长方形D.圆10.用一个平面去截下列四个几何体,可以得到三角形截面的几何体有()A.1个B.2个C.3个D.4个二、填空题11.如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱,所得几何体的俯视图的周长是.12.一个长方形绕着它的一条边旋转一周,所形成的几何体是.13.用个平面去截下列几何体:①球体、②圆锥、③圆柱、④正三枝柱、⑤长方体,得到的截面形状可能是三角形的有(写出正确的序号).14.若三棱柱的高为6 cm,底面边长都为5 cm,则三棱柱的侧面展开图的周长为cm,面积为cm2.15.如图,正方体的棱长为a,沿着共一个顶点的三个正方形的对角线裁截掉一个几何体之后,截面△ABC的面积=.三、解答题16.如图所示为一个正方体截去两个角后的立体图形,如果照这样截取正方体的八个角,则新的几何体的棱有多少条?请说明你的理由.17.如图所示,一个长方体的长.宽.高分别是10cm,8cm,6cm,有一只蚂蚁从点A 出发沿棱爬行,每条棱不允许重复,则蚂蚁回到点 A 时,最多爬行多远?并把蚂蚁所爬行的路线用字母按顺序表示出来.18.图中的立体图形是由哪个平面图形旋转后得到?请用线连起来.19.探究:有一弦长6cm,宽4cm的矩形纸板,现要求以其一组对边中点所在直线为轴,旋转180°,得到一个圆柱,现可按照两种方案进行操作:方案一:以较长的一组对边中点所在直线为轴旋转,如图①;方案二:以较短的一组对边中点所在直线为轴旋转,如图②.(1)请通过计算说明哪种方法构造的圆柱体积大;(2)如果该矩形的长宽分别是5cm和3cm呢?请通过计算说明哪种方法构造的圆柱体积大;(3)通过以上探究,你发现对于同一个矩形(不包括正方形),以其一组对边中点所在直线为轴旋转得到一个圆柱,怎样操作所得到的圆柱体积大(不必说明原因)?20.长和宽分别是4cm和2cm的长方体分别沿长、宽所在直线旋转一周得到两个几何体,哪个几何体的体积大?为什么?21.下图是长方体的表面展开图,将它折叠成一个长方体.(1)哪几个点与点N重合?(2)若AE=CM=12cm,LE=2cm,KL=4cm,求这个长方体的表面积和体积. 22.在一块长为7x+5y,宽为5x+3y的长方形铁片的四个角都剪去一个边长为x+y的小正方形,然后折成一个无盖的盒子,求这个盒子的表面积(用含x、y的代数式表示).23.有3个棱长分别是3cm,4cm,5cm的正方体组合成如图所示的图形.其露在外面的表面积是多少?(整个立体图形摆放在地上)24.将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现在有一个长为4厘米,宽为3厘米的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱体,它们的体积分别是多大?答 案1.C 2.A 3.C 4.B 5.B 6.C 7.D 8.A 9.A 10.B 11.8 12.圆柱体13.②④⑤ 14.42;90 15.√3a 216.解:∵一个正方体有12条棱,一个角上裁出3条棱,即8个角共3×8条棱,∴12+3×8=36条.故新的几何体的棱有36条17.解:由于不能重复且最后回到点 A 处,那么经过的棱数便等于经过的顶点数,当走的路线最长时必过所有顶点,则选择合理的路线时尽可能多地经过长为 10CM 的棱即可. 10×4+8×2+6×2=68(cm) ,所以最多爬行 68CM .路线举例: A →B →C →D →H →G →F →E →A . 18.解:如图.19.解:(1)方案一:π×32×4=36π(cm 3),方案二:π×22×6=24π(cm 3),∵36π>24π,∴方案一构造的圆柱的体积大;(2)方案一:π×(52)2×3=754π(cm 3), 方案二:π×(32)2×5=454π(cm 3), ∵754π>454π, ∴方案一构造的圆柱的体积大;(3)由(1)、(2),得以较长一组对边中点所在直线为轴旋转得到的圆柱的体积大.20.【解答】解:分两种情况:①绕长所在的直线旋转一周得到圆柱体积为:π×22×4=16π(cm3);②绕宽所在的直线旋转一周得到圆柱体积为:π×42×2=32π(cm3).∵16π<32π,∴绕宽所在的直线旋转一周得到圆柱体积大.21.解:结合图形可知,折叠成一个长方体后,与字母N重合的点有2个:点F和点J;(2)若AE=CM=12cm,LE=2cm,KL=4cm,求这个长方体的表面积和体积.解:由AE=CM=12cm,KL=4cm,可得CH=CM-LK=12-4=8cm,长方体的表面积;2×(8×4+2×4+2×8)=112cm2;体积:4×8×2=64cm3.(1)解:结合图形可知,折叠成一个长方体后,与字母N重合的点有2个:点F和点J;(2)解:由AE=CM=12cm,KL=4cm,可得CH=CM-LK=12-4=8cm,长方体的表面积;2×(8×4+2×4+2×8)=112cm2;体积:4×8×2=64cm3.22.解:由题意,得(7x+5y)(5x+3y)−4(x+y)2=35x2+21xy+25xy+15y2−4(x2+2xy+y2)=35x2+46xy+15y2−4x2−8xy−4y2 =31x2+38xy+11y2.∴这个盒子的表面积为(31x2+38xy+11y2) .23.解:露在外面的表面积:5×5+4×(3×3+4×4+5×5)=25+4×(9+16+25)=225cm2.24.解:绕长所在的直线旋转一周得到圆柱体积为:π×32×4=36πcm3.绕宽所在的直线旋转一周得到圆柱体积:π×42×3=48πcm3。
人教版七年级数学上册4.1.2点、线、面、体 课堂小测
4.1.2点、线、面、体课堂小测
一,选择题
1.将图中的三角形绕虚线旋转一周,所得的几何体是( )
A. B. C. D.
2.下面现象说明“线动成面”的是( )
A.旋转一扇门,门在空中运动的痕迹
B.扔一块小石子,石子在空中飞行的路线
C.天空划过一道流星
D.汽车雨刷在挡风玻璃上面画出的痕迹
3.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征,甲同学:它有4个面是三角形;乙同学:它有8条棱,该模型的形状对应的立体图形可能是( )
A.三棱柱
B.四棱柱
C.三棱锥
D.四棱锥
4.下列几何体中,由一个平面和一个曲面围成的是( )
A.圆柱
B.圆锥
C.圆台
D.球
5.在图(1)中的几何体是由图(2)中的__________绕线旋转一周得到的().
6.围成下列几何体:球、三棱锥、圆锥、圆柱、正方体、棱柱的面中,包含有曲面的有__________个().
A.1 B.2 C.3 D.4
7.如图,这是一个正三棱柱,则从上面看到的图为().
8.下面形状的四张纸板,按图中线经过折叠可以围成一个三棱柱的是().
9.一个长方体被一刀切去一部分,剩下的部分可能是().
A.三棱柱B.四棱柱
C.五棱柱D.以上都有可能
10.如图,为一个多面体的表面展开图,每个面内都标注了数字.若数字为6的面是底面,则朝上一面所标注的数字为().。
人教版七年级上册《4.1.2点、线、面、体》同步练习含答案
第四章几何图形初步4.1几何图形4.1.2 点、线、面、体1.下面几何体中,全是由曲面围成的是( )A.圆锥 B.正方体C.圆柱D.球2.下列立体图形中面数相同的是( )①圆柱;②圆锥;③正方体;④四棱柱A.①④B.①②C.②③D.③④3.观察如图所示的棱锥,回答下列问题:(1)这个图形是平面图形还是立体图形?(2)图中有多少个顶点?多少条线段?多少个平面?(3)图中有哪些平面图形?4.如图,把长方形纸片沿图中虚线剪开得两个形状、大小相同的三角形,将这两个三角形拼在一起,使得有一条相等的边是共有的,能拼出多少种不同的几何图形(平面)?请你尝试画出来.(不包括原长方形的拼法)5. 图绕虚线旋转得到的实物图是( )6. 如图,右边的几何体是由左边的哪个图形绕虚线旋转一周形成的( )7. 如图,长方形绕它的一条边MN所在的直线旋转一周形成的几何体是( )8.下列有六个面的几何体的个数是( )①长方体;②圆柱;③四棱柱;④正方体;⑤三棱柱A.1个 B.2个 C.3个 D.4个9.天空中的流星划过后留下的光线,给我们以什么样的形象( )A.点B.线C.面D.体10.在以下四个几何体中,其侧面展开图不是平面图形的是( )A.圆柱B.棱柱C.球D.圆锥11.将如图所示放置的一个直角三角形ABC(∠C=90°)绕斜边AB旋转一周,所得到的几何体从正面看是( )12.(8分)如图,把下列平面图形(1)~(6)绕虚线旋转一周,便能形成A~F的某个几何体,请找出来.参考答案1、D2、D3、解:(1)立体图形 (2)图中有5个顶点,8条线段,5个平面 (3)平面图形有:点、线段、角、三角形、长方形4、解:五种,分别是:5、D6、A7、C8、C9、B10、C11、B12、解:(1)~(6)分别对应C,D,B,A,F,E。
七年级数学上册412点线面体习题新版新人教版
(1)如果将图中①~⑤的平面图形绕虚线旋转一周,可 以得到I~Ⅴ的几何体,请你把有对应关系的平面图形 与几 Ⅴ 的 几 何 体 中 , 有 顶 点 的 几 何 体 是 Ⅰ__、__Ⅱ__、__Ⅲ,没有顶点的几何体是__Ⅳ__、__Ⅴ__. (3)图Ⅴ中的几何体由几个面围成?面与面相交成几条 线?它们是直的还是曲的? Ⅴ中的几何体有2个面,其中一个是平面,一个是曲 面,面与面转而成的立体图形 8.(娄底中考)如图,长方形绕它的一条边MN所在的直 线旋转一的平面图形绕轴旋转一周,库文档分 享
13.下列有关圆柱、圆锥相同点和不同点的描述,错 误的是( C ) A.围成圆柱、圆锥的面都有曲面 B.两者都有一个面是圆形的 C.两者都有顶直线l旋转一周可以得到如图的 立体图形,这个直角梯形与直线l的关系是( B )
图1
A.空心圆柱 C.空心球
图2 ____个面,有____1_2___条棱,有 ____8____个顶点;圆柱有____3____个面,其中有 ____2____个平面,有____1____个曲面. 6.旋转门旋转一周,形成了一个圆柱,这说明了 __面_一个多面体的一个面是多边形,其 余各面是有一个公共顶点的三角形,那么这个多面体叫 做棱锥.如图是一个四棱柱和一个六棱锥,它们都有12 条棱.下列棱柱中和九棱锥的棱数相等的是( B ) A.五棱柱 B.六棱柱 C.七棱柱 D.八棱柱
10.将图中的直角三角板ABC绕AC边旋转一周得到的 几何列立体图形中,面数最多的是( C )
A.四棱锥
B.长方体
C.五棱柱
D.六面体
12.下列几何体的所有面都不是平面图形的是( D )
A.正方体
B.圆锥Biblioteka C.圆柱 牛牛文档分 享
人教版初中数学七年级上册《4.1.2 点、线、面、体》同步练习卷(含答案解析
人教新版七年级上学期《4.1.2 点、线、面、体》同步练习卷一.选择题(共8小题)1.如图中的图形绕虚线旋转一周,可得到的组合体是()A.B.C.D.2.一个直角三角形绕其直角边旋转一周得到的几何体可能是()A.B.C.D.3.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是()A.B.C.D.4.下面现象说明“线动成面”的是()A.旋转一扇门,门在空中运动的痕迹B.扔一块小石子,石子在空中飞行的路线C.天空划过一道流星D.汽车雨刷在挡风玻璃上面画出的痕迹5.将图中的三角形绕直线l旋转一周后得到的几何体是()A.B.C.D.6.下列说法:①一点在平面内运动的过程中,能形成一条线段;②一条线段在平面内运动的过程中,能形成一个平行四边形;③一个三角形在空间内运动的过程中,能形成一个三棱柱;④一个圆形在空间内平移的过程中,能形成一个球体.其中正确的是()A.①②③④B.①②③C.②③④D.①③④7.生活中我们见到的自行车的辐条运动形成的几何图形可解释为()A.点动成线B.线动成面C.面动成体D.以上答案都不对8.用钢笔写字是一个生活中的实例,用数学原理分析,它所属于的现象是()A.点动成线B.线动成面C.线线相交D.面面相交二.填空题(共4小题)9.如图,一个边长为2的正方形和等腰直角三角形的一边重合,组成了一个平面图形,如果将它绕AB所在直线按逆时针方向旋转180°,得到一个几何体,=h)则这个几何体的体积为.(圆锥的体积公式为:V圆锥10.如图所示,1条直线将平面分成2个部分,2条直线最多可将平面分成4个部分,3条直线最多可将平面分成7个部分,4条直线最多可将平面分成11个部分.现有n条直线最多可将平面分成56个部分,则n的值为.11.将一个长4cm宽2cm的矩形绕它的一边所在的直线旋转一周,所得几何体的体积为cm3.12.写出下面给出的平面图形以虚线为轴旋转一周得到的立体图形名称.由图(1)可得到的立体图形的名称是;由图(2)可得到的立体图形的名称是;由图(3)可得到的立体图形的名称是.三.解答题(共7小题)13.如图是一个长为4cm,宽为3cm的长方形纸片,该长方形纸片分别绕长、宽所在直线旋转一周(如图1、图2),会得到两个几何体,请你通过计算说明哪种方式得到的几何体的体积大(结果保留π)14.如图,长方形的长和宽分别是7cm和3cm,分别绕着它的长和宽所在的直线旋转一周,回答下列问题:(1)如图(1),绕着它的宽所在的直线旋转一周,所得到的是什么样的几何体?得到的几何体的体积是多少?(π取3.14)(2)如图(2),绕着它的长所在的直线旋转一周,所得到的是什么样的几何体?得到的几何体的体积是多少?(π取3.14)15.如图所示,已知直角三角形纸板ABC,直角边AB=4cm,BC=8cm.(1)将直角三角形纸板绕三角形的边所在的直线旋转一周,能得到种大小不同的几何体?(2)分别计算绕三角形直角边所在的直线旋转一周,得到的几何体的体积?(圆锥的体积=πr2h,其中π取3)16.如图,上面的平面图形绕轴旋转一周,可以得出下面的立体图形,请你把有对应关系的平面图形与立体图形连接起来.17.将第一行的图形绕轴旋转一周,便得到第二行的几何体,用线连一连.18.第一行的图形绕虚线转一周,能形成第二行的某个几何体,按要求填空.图1旋转形成,图2旋转形成,图3旋转形成,图4旋转形成,图5旋转形成,图6旋转形成.19.如图,把一长方形在直线m上翻滚,请在图中作出A点所经过的路径.人教新版七年级上学期《4.1.2 点、线、面、体》同步练习卷参考答案与试题解析一.选择题(共8小题)1.如图中的图形绕虚线旋转一周,可得到的组合体是()A.B.C.D.【分析】根据面动成体的原理:下面的长方形旋转一周后是一个圆柱,上面的直角三角形旋转一周后是一个圆锥,所以应是圆锥和圆柱的组合体.【解答】解:∵下面的长方形旋转一周后是一个圆柱,上面的直角三角形旋转一周后是一个圆锥,∴根据以上分析应是圆锥和圆柱的组合体.故选:B.【点评】此题主要考查了平面图形与立体图形的联系,可把较复杂的图形进行分解旋转,然后再组合,学生应注意培养空间想象能力.2.一个直角三角形绕其直角边旋转一周得到的几何体可能是()A.B.C.D.【分析】根据面动成体,可得答案.【解答】解:以直角三角形的一条直角边所在直线为对称轴旋转一周,得到一个圆锥,故选:D.【点评】本题考查了点、线、面、体,点动成线,线动成面,面动成体:以直角三角形的一条直角边所在直线为对称轴旋转一周得到圆锥.3.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是()A.B.C.D.【分析】如图本题是一个平面图形围绕一条边为中心对称轴旋转一周根据面动成体的原理即可解.【解答】解:由长方形绕着它的一边所在直线旋转一周可得到圆柱体,如图立体图形是两个圆柱的组合体,则需要两个一边对齐的长方形,绕对齐边所在直线旋转一周即可得到,故选:A.【点评】本题考查面动成体,需注意可把较复杂的体分解来进行分析.4.下面现象说明“线动成面”的是()A.旋转一扇门,门在空中运动的痕迹B.扔一块小石子,石子在空中飞行的路线C.天空划过一道流星D.汽车雨刷在挡风玻璃上面画出的痕迹【分析】根据点动成线,线动成面,面动成体对各选项分析判断后利用排除法求解.【解答】解:A、旋转一扇门,门在空中运动的痕迹是“面动成体”,故本选项错误;B、扔一块小石子,石子在空中飞行的路线是“点动成线”,故本选项错误;C、天空划过一道流星是“点动成线”,故本选项错误;D、汽车雨刷在挡风玻璃上面画出的痕迹是“线动成面”,故本选项正确.故选:D.【点评】本题考查了点、线、面、体的知识,主要是考查学生立体图形的空间想象能力及分析问题,解决问题的能力.5.将图中的三角形绕直线l旋转一周后得到的几何体是()A.B.C.D.【分析】根据面动成体,可得答案.【解答】解:三角形旋转得两个同底的圆锥,故选:B.【点评】本题考查了点线面体,利用面动成体是解题关键.6.下列说法:①一点在平面内运动的过程中,能形成一条线段;②一条线段在平面内运动的过程中,能形成一个平行四边形;③一个三角形在空间内运动的过程中,能形成一个三棱柱;④一个圆形在空间内平移的过程中,能形成一个球体.其中正确的是()A.①②③④B.①②③C.②③④D.①③④【分析】根据点动成线,可以判断①;根据线动成面,可以判断②;根据面动成体,可以判断③;根据平移的性质,可以判断④.【解答】解:①一点在平面内运动的过程中,能形成一条线段是正确的;②一条线段在平面内运动的过程中,能形成一个平行四边形是正确的;③一个三角形在空间内运动的过程中,能形成一个三棱柱是正确的;④一个圆形在空间内平移的过程中,能形成一个圆柱,原来的说法错误.故选:B.【点评】此题考查了点、线、面、体,关键是掌握平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.7.生活中我们见到的自行车的辐条运动形成的几何图形可解释为()A.点动成线B.线动成面C.面动成体D.以上答案都不对【分析】根据从运动的观点来看点动成线,线动成面,面动成体可得答案.【解答】解:生活中我们见到的自行车的辐条运动形成的几何图形可解释为:线动成面,故选:B.【点评】此题主要考查了点、线、面、体,关键是掌握四者之间的关系.8.用钢笔写字是一个生活中的实例,用数学原理分析,它所属于的现象是()A.点动成线B.线动成面C.线线相交D.面面相交【分析】根据点动成线,线动成面,面动成体进行解答.【解答】解:用钢笔写字是点动成线,故选:A.【点评】此题主要考查了点线面体,题目比较简单.二.填空题(共4小题)9.如图,一个边长为2的正方形和等腰直角三角形的一边重合,组成了一个平面图形,如果将它绕AB所在直线按逆时针方向旋转180°,得到一个几何体,=h)则这个几何体的体积为π.(圆锥的体积公式为:V圆锥【分析】将该平面图形绕AB所在直线按逆时针方向旋转180°,得到一个由半个圆锥和半个圆柱组成的几何体,依据圆锥的体积公式和圆柱的体积公式进行计算即可.【解答】解:将该平面图形绕AB所在直线按逆时针方向旋转180°,得到一个由半个圆锥和半个圆柱组成的几何体,这个几何体的体积=(π×22×2+π×22×2)=π,故答案为:π.【点评】本题主要考查了几何体的体积,解决问题的关键是掌握圆锥的体积公式和圆柱的体积公式.10.如图所示,1条直线将平面分成2个部分,2条直线最多可将平面分成4个部分,3条直线最多可将平面分成7个部分,4条直线最多可将平面分成11个部分.现有n条直线最多可将平面分成56个部分,则n的值为10.【分析】n条直线最多可将平面分成S=1+1+2+3…+n=n(n+1)+1,依此可得等量关系:n条直线最多可将平面分成56个部分,列出方程求解即可.【解答】解:依题意有n(n+1)+1=56,解得n1=﹣11(不合题意舍去),n2=10.答:n的值为10.故答案为:10.【点评】考查了点、线、面、体,规律性问题及一元二次方程的应用;得到分成的最多平面数的规律是解决本题的难点.11.将一个长4cm宽2cm的矩形绕它的一边所在的直线旋转一周,所得几何体的体积为16π或32πcm3.【分析】根据圆柱体的体积=底面积×高求解,注意底面半径和高互换得圆柱体的两种情况.【解答】解:分两种情况:①绕长所在的直线旋转一周得到圆柱体积为:π×22×4=16π(cm3);②绕宽所在的直线旋转一周得到圆柱体积为:π×42×2=32π(cm3).故它们的体积分别为16πcm3或32πcm3.故答案为:16π或32π.【点评】本题考查圆柱体的体积的求法,注意分情况讨论,难度适中.12.写出下面给出的平面图形以虚线为轴旋转一周得到的立体图形名称.由图(1)可得到的立体图形的名称是圆柱;由图(2)可得到的立体图形的名称是圆锥;由图(3)可得到的立体图形的名称是球.【分析】根据点动成线,线动成面,面动成体,即可解答.【解答】解:由图(1)可得到的立体图形的名称是圆柱;由图(2)可得到的立体图形的名称是圆锥;由图(3)可得到的立体图形的名称是球;故答案为:圆柱,圆锥,球.【点评】此题主要考查立体图形中的旋转体,也就是把一个图形绕一条直线旋转得到的图形,要掌握基本的图形特征,才能正确判定.三.解答题(共7小题)13.如图是一个长为4cm,宽为3cm的长方形纸片,该长方形纸片分别绕长、宽所在直线旋转一周(如图1、图2),会得到两个几何体,请你通过计算说明哪种方式得到的几何体的体积大(结果保留π)【分析】绕长旋转得到的圆柱的底面半径为4cm,高为6cm,从而计算体积即可;绕宽旋转得到的圆柱底面半径为6cm,高为4cm,从而计算体积进行比较即可.【解答】解:如图1,绕长边旋转得到的圆柱的底面半径为3cm,高为4cm,体积=π×32×4=36πcm3;如图2,绕短边旋转得到的圆柱底面半径为4cm,高为3cm,体积=π×42×3=48πcm3.因此绕短边旋转得到的圆柱体积大.【点评】本题考查了点、线、面、体的知识,熟记常见平面图形旋转可得到什么立体图形是解决本题的关键,另外要掌握圆柱的体积计算公式.14.如图,长方形的长和宽分别是7cm和3cm,分别绕着它的长和宽所在的直线旋转一周,回答下列问题:(1)如图(1),绕着它的宽所在的直线旋转一周,所得到的是什么样的几何体?得到的几何体的体积是多少?(π取3.14)(2)如图(2),绕着它的长所在的直线旋转一周,所得到的是什么样的几何体?得到的几何体的体积是多少?(π取3.14)【分析】(1)根据矩形绕一条边旋转得到圆柱,根据圆柱的体积公式,可得答案;(2)根据矩形绕一条边旋转得到圆柱,根据圆柱的体积公式,可得答案.【解答】解:(1)得到的是底面半径是7cm,高是3cm的圆柱,V=3.14×72×3=461.58(cm3),答:得到的几何体的体积是461.58cm3;(2)得到的是底面半径是3cm,高是7cm的圆柱,V=3.14×32×7=197.82(cm3),答:得到的几何体的体积是197.82cm3.【点评】本题考查了点、线、面、体,矩形绕一边旋转是圆柱,圆柱的体积公式:πr2h.15.如图所示,已知直角三角形纸板ABC,直角边AB=4cm,BC=8cm.(1)将直角三角形纸板绕三角形的边所在的直线旋转一周,能得到3种大小不同的几何体?(2)分别计算绕三角形直角边所在的直线旋转一周,得到的几何体的体积?(圆锥的体积=πr2h,其中π取3)【分析】(1)将直角三角形纸板ABC绕三角形的三条边所在的直线旋转一周,能得到3种大小不同的几何体.(2)如果以AB所在的直线旋转一周得到的圆锥的底面半径是8厘米,高是4厘米;如果以BC所在的直线旋转一周得到的圆锥的底面半径是4厘米,高是8厘米,根据圆锥的体积公式:v=πr2h,把数据代入公式解答.【解答】解:(1)将直角三角形纸板ABC绕三角形的三条边所在的直线旋转一周,能得到3种大小不同的几何体.(2)以AB为轴:×3×82×4=×3×64×4=256(立方厘米);以BC为轴:×3×42×8=×3×16×8=128(立方厘米).答:以AB为轴得到的圆锥的体积是256立方厘米,以BC为轴得到的圆锥的体积是128立方厘米.故答案为:3.【点评】此题考查了点、线、面、体,关键是理解掌握圆锥的特征,以及圆锥体积公式的灵活运用.16.如图,上面的平面图形绕轴旋转一周,可以得出下面的立体图形,请你把有对应关系的平面图形与立体图形连接起来.【分析】根据“面动成体”的原理,结合图形特征进行旋转,判断出旋转后的立体图形即可.【解答】解:连线如下:【点评】本题考查了图形的旋转,注意培养自己的空间想象能力.17.将第一行的图形绕轴旋转一周,便得到第二行的几何体,用线连一连.【分析】根据图形,结合想象,即可选出答案.【解答】解:如图所示,A旋转后得出图形c,B旋转后得出图形d,C旋转后得出图形a,D旋转后得出图形e,E旋转后得出图形b.【点评】本题考查了点、线、面、体等知识点的应用,主要考查学生的理解能力、空间想象能力和观察能力.18.第一行的图形绕虚线转一周,能形成第二行的某个几何体,按要求填空.图1旋转形成d,图2旋转形成a,图3旋转形成c,图4旋转形成f,图5旋转形成b,图6旋转形成e.【分析】根据旋转的特点和各几何图形的特性判断即可.【解答】解:图1旋转形成d,图2旋转形成a,图3旋转形成c,图4旋转形成f,图5旋转形成b,图6旋转形成e.【点评】本题考查了平面图形与立体图形的联系,难度不大,学生应注意培养空间想象能力.19.如图,把一长方形在直线m上翻滚,请在图中作出A点所经过的路径.【分析】由题意可知,A点所经过的路径是先以长方形的长为半径,旋转90°,再以长方形的对角线为半径,旋转90°所对应的弧长.【解答】解:如图所示.【点评】本题考查了点动成线,画图时注意半径的确定.。
七年级数学上册4.1.2点、线、面、体课时测试(含解析)(新版)新人教版
点、线、面、体(时间:30分钟,满分72分)班级:___________姓名:___________得分:___________一、选择题(每题3分)1.下列几何体中,属于棱柱的有()A.6个 B.5个 C.4个 D.3个【答案】D【解析】试题分析:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱,由此可选出答案.解:根据棱柱的定义可得:符合棱柱定义的有第一、三、六个几何体都是棱柱,共三个.故选D.考点:认识立体图形.2.如图是一无盖长方体盒子的展开图(重叠部分不计),则该无盖长方体的容积为()A.4B.3C.8D.12【答案】C【解析】试题分析:根据图示可得长方体的长为4,宽为2,高为1,则V=4×2×1=8.考点:长方体的展开图形.3.圆锥体是由下列哪个图形绕自身的对称轴旋转一周得到的()A.正方形 B.等腰三角形 C.圆 D.等腰梯形【答案】B.【解析】试题解析:等腰三角形底边上的中线所在直线为对称轴旋转一周,因而得到一个圆锥.故选B.考点:点、线、面、体.4.如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是()A.五棱柱 B.六棱柱 C.七棱柱 D.八棱柱【答案】B【解析】试题分析:根据棱锥的特点可得九棱锥侧面有9条棱,底面是九边形,也有9条棱,共9+9=18条棱,然后分析四个选项中的棱柱棱的条数可得答案.解:九棱锥侧面有9条棱,底面是九边形,也有9条棱,共9+9=18条棱,A、五棱柱共15条棱,故A误;B、六棱柱共18条棱,故B正确;C、七棱柱共21条棱,故C错误;D、八棱柱共24条棱,故D错误;故选:B.考点:认识立体图形.5.长方体的截面中,边数最多的多边形是()A.四边形 B.五边形 C.六边形 D.七边形【答案】C【解析】试题分析:长方体的截面,最多可以经过6个面,所以边数最多的截面是六边形.解:长方体的截面中,边数最多的多边形是六边形.如:在长方体ABCD﹣A′B′C′D′中,取BC、CD、BB′、DD′、A′B′、A′D′的中点,可以证明它们都在同一平面,那么,这个截面就是六边形.故选C.考点:截一个几何体.6.将如图所示的直角梯形绕直线l旋转一周,得到的立体图形是()A. B. C. D.【答案】D【解析】试题分析:根据直角梯形上下底不同得到旋转一周后上下底面圆的大小也不同,进而得到旋转一周后得到的几何体的形状.解:题中的图是一个直角梯形,上底短,下底长,绕对称轴旋转后上底形成的圆小于下底形成的圆,因此得到的立体图形应该是一个圆台.故选D.考点:点、线、面、体.7.将下面的直角梯形绕直线l旋转一周,可以得到如图立体图形的是()【答案】B.【解析】试题分析:面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.解:A、是直角梯形绕底边旋转形成的圆台,故A错误;B、是直角梯形绕垂直于底的腰旋转形成的圆台,故B正确;C、是梯形底边在上形成的圆台,故C错误;D、是梯形绕斜边形成的圆台,故D错误.故选:B.考点:点、线、面、体.8.下列说法错误的是()A.长方体、正方体都是棱柱B.六棱柱有六条棱、六个侧面C.三棱柱的侧面是三角形D.球体的三种视图均为同样的图形【答案】C【解析】试题分析:利用常见立体图形的特征分析判定即可.解:A、长方体、正方体都是棱柱,此选项正确,B、六棱柱有六条棱、六个侧面,此选项正确,C、三棱柱的侧面是平行四边形或长方形或正方形,此选项错误,D、球体的三种视图均为同样的图形,此选项正确,故选:C.考点:认识立体图形;简单几何体的三视图.9.沿图中虚线旋转一周,能围成的几何体是下面几何体中的()A. B. C. D.【答案】B【解析】试题分析:根据该图形的上下底边平行且相等的特点可得旋转一周后得到的平面应是平行且全等的关系,据此找到正确选项即可.解:易得该图形旋转后可得上下底面是平行且半径相同的2个圆,应为圆柱,故选B.考点:点、线、面、体.10.(2015秋•丹江口市期末)在下列立体图形中,只需要一个面就能围成的是()A.正方体 B.圆锥 C.圆柱 D.球【答案】D【解析】试题分析:根据立体图形的特征,可得答案.解:A、正方体需要六个面,故A不符合题意;B、圆锥需要两个面,故B不符合题意;C、圆柱需要三个面,故C不符合题意;D、球只需一个面,故D符合题意;故选:D.考点:认识立体图形.11.(2015秋•龙海市期末)把14个棱长为1的正方体,在地面上堆叠成如图所示的立方体,然后将露出的表面部分染成红色,那么红色部分的面积为()A.21 B.24 C.33 D.37【答案】C【解析】试题分析:此题可根据表面积的计算分层计算得出红色部分的面积再相加.解:根据题意得:第一层露出的表面积为:1×1×6﹣1×1=5,第二层露出的表面积为:1×1×6×4﹣1×1×13=11,第三层露出的表面积为:1×1×6×9﹣1×1×37=17,所以红色部分的面积为:5+11+17=33.故选:C.考点:几何体的表面积.二、填空题(每题3分)12.一个正方体的六个面上分别标有﹣1,﹣2,﹣3,﹣4,﹣5,﹣6中的一个数,各个面上所标数字都不相同,如图是这个正方体的三种放置方法,三个正方体下底面所标数字分别是a,b,c,则a+b+c+abc= .【答案】﹣85.【解析】试题分析:根据与﹣2相邻的面的数字有﹣1、﹣4、﹣5、﹣6判断出﹣2的对面数字是﹣3,与﹣4相邻的面的数字有﹣1、﹣2、﹣3、﹣5判断出﹣4的对面数字是﹣6,然后确定出a、b、c的值,相加即可.解:由图可知,∵与﹣2相邻的面的数字有﹣1、﹣4、﹣5、﹣6,∴﹣2的对面数字是﹣3,∵与﹣4相邻的面的数字有﹣1、﹣2、﹣3、﹣5,∴﹣4的对面数字是﹣6,∴a=﹣3,b=﹣6,c=﹣4,∴a+b+c+abc=﹣3﹣6﹣4﹣3×6×4=﹣85.故答案为:﹣85.考点:专题:正方体相对两个面上的文字.13.如图,在一次数学活动课上,张明用17个边长为1的小正方形搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要个小立方体,王亮所搭几何体的表面积为.【答案】19,48.【解析】试题分析:首先确定张明所搭几何体所需的正方体的个数,然后确定两人共搭建几何体所需小立方体的数量,求差即可.解:∵王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体,∴该长方体需要小立方体4×32=36个,∵张明用17个边长为1的小正方形搭成了一个几何体,∴王亮至少还需36﹣17=19个小立方体,表面积为:2×(9+7+8)=48,故答案为19,48.考点:由三视图判断几何体.14.六棱柱有面.【答案】8.【解析】试题分析:根据六棱柱的概念和定义即解.解:六棱柱上下两个底面,侧面是6个长方形,所以共有8个面.故答案为:8.考点:认识立体图形.15.用6根火柴最多组成个一样大的三角形,所得几何体的名称是.【答案】4,三棱锥或四面体.【解析】试题分析:用6根火柴,要使搭的个数最多,就要搭成立体图形,即三棱锥.解:要使搭的个数最多,就要搭成三棱锥,这时最多可以搭4个一样的三角形.图形如下:故答案为:4,三棱锥或四面体.考点:认识立体图形.16.若一直棱柱有10个顶点,那么它共有条棱.【答案】15.【解析】试题分析:若这个直棱柱有10个顶点,则它是五棱柱,上下两个底面共有10条棱,侧面有5条棱,所以共有15条棱.故答案为15.考点:由顶点数确定棱柱名称.17.笔尖在纸上写字说明;车轮旋转时看起来象个圆面,这说明;一枚硬币在光滑的桌面上快速旋转形成一个球,这说明.【答案】点动成线;线动成面;面动成体【解析】试题分析:根据点动成线,线动成面,面动成体填空即可.解:笔尖在纸上写字说明点动成线;车轮旋转时看起来象个圆面,这说明线动成面;一枚硬币在光滑的桌面上快速旋转形成一个球,这说明面动成体.故答案为:点动成线;线动成面;面动成体.考点:点、线、面、体.18.(2015秋•孝义市期末)如图是以长为120cm,宽为80cm的长方形硬纸,在它的四个角处各剪去一个边长为20cm的正方形后,将其折叠成如图所示的无盖的长方体,则这个长方体的体积为.【答案】64000立方厘米.【解析】试题分析:要求这个长方体的体积,需要知道它的长、宽、高,由题意可知:长方体的长与宽即硬纸片长、宽分别减去小正方形两个边长,长方体的高即小正方形的边长,再根据长方体的体积(容积)公式:v=abh,把数据代入公式解答.解:(120﹣20×2)×(80﹣20×2)×20=80×40×20=64000(立方厘米)答:这个长方体的体积是64000立方厘米.故答案为:64000立方厘米.考点:展开图折叠成几何体.三解答题19.(8分)将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现在有一个长为4cm、宽为3cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱体,它们的体积分别是多大?【答案】36πcm3,48πcm3.【解析】试题分析:根据圆柱体的体积=底面积×高,分底面半径为4cm、高为3cm和底面半径为3cm、高为4cm两种情况计算即可.试题解析:解:绕长所在的直线旋转一周得到圆柱体积为:π×32×4=36πcm3.绕宽所在的直线旋转一周得到圆柱体积:π×42×3=48πcm3.考点:圆柱体的体积.20.(10分)长12米,宽5米,高3米的教室,抹上石灰,扣除门窗黑板面积9.8平方米,抹石灰的面积有多少平方米?【答案】152.2平方米.【解析】试题分析:用教室的表面积减去地板的面积减去门窗黑板面积,即可得抹石灰的面积.试题解析:解:12×5×2+12×3×2+3×5×2-12×5=162㎡162-9.8=152.2㎡答:抹石灰的面积有152.平方米.考点:长方体、正方体表面积与体积计算的应用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学《4.1点线面体》检测试试题(人教版)_题型归纳
5分钟训练(预习类训练,可用于课前)
1.圆锥可以看作是由一个_______旋转得到的()
A.矩形(长方形)
B.等腰梯形
C.半圆
D.直角三角形
思路解析:拿一个三角板旋转,不难得出答案?
答案:D
2.包围着几何体的是_______,面与面相交形成______,线与线相交形成_______.答案:面线点
3.数一数长方体、四面体的面数、棱数和顶点数,并填下表:
名称面数(f)顶点数(v)棱数(e)
长方形
四面体
思路解析:利用实物我们不难得到长方体、四面体的面数、棱数和顶点数.
答案:
名称面数(f)顶点数(v)棱数(e)
长方体6812
四面体446
10分钟训练(巩固类训练,可用于课后)
1.五棱柱的面有()
A.5个
B.6个
C.7个
D.8个
思路解析:棱柱有两个底面,关键数清有几个侧面?
答案:C
2.图4-1-11的图形中绕直线l旋转一周,能得到右边立体图形的是()
图4-1-11。