2011最新电大高等数学基础形成性考核手册答案(含题目)
2011年中央广播电视大学建筑与管理高等数学基础形成性考核册的答案
2009年秋季开放教育招生简章合肥广播电视大学(简称合肥电大)是一所公办成人高等学校,曾荣获“安徽省办学先进单位”、“合肥市文明单位”等荣誉称号。
自1979年建校以来,学校始终坚持以人为本的办学理念,坚持质量第一、服务学生的办学方针,学校始终以满足社会需要作为办学的出发点,为社会培养各类应用型人才达两万余名,很多学生已成为各行各业的骨干力量。
开放教育是经教育部批准的,主要面向在职成人的一种新型教育形式。
中央电大和44所省级电大及其分校、教学点组成了遍布全国的现代远程开放教育教学系统。
中央电大根据全民学习、终身学习的需要开设专业和课程,聘请国内外名校名师、专家学者及行业资深人士担任课程主讲教师和教材主编,整合社会优质教学资源,通过全国电大系统实施教学组织与管理。
学习者主要利用文字教材,录音、录像教材等多种媒体教材和由计算机网络、卫星电视网络、电信网络有机结合的数字化、多媒体、交互式远程教学平台自主学习。
学生可以在家里通过因特网和中央电大及各级电大远程教学平台随时点播和下载网上教学资源,利用网上直播、双向视频系统等网络交互手段,与同学,教师进行学习交流,也可以到教学点参加集中面授学习或参加小组学习。
开放教育的毕业证书国家承认。
实行学分制,学籍自注册入学起八年内有效。
根据教育部有关要求,二年制专科、专科起点本科专业最短学习年限为两年半。
本科各专业开设的英语、计算机应用基础两门课程由教育部统一组织考试。
符合毕业要求的,颁发国家承认的专科或本科学历毕业证书,教育部给予电子注册。
学历证书注册后可通过我国高等教育学历证书查询的唯一网站“中国高等教育学生信息网”(网址:)查询。
开放教育本科专业毕业生符合学位授予要求,可以获得合作高校颁发的学士学位证书。
一、开放教育本、专科招生专业本科专业毕业证颁发院校学位授予院校入学水平测试内容1、金融学中央广播电视大学对外经济贸易大学政治经济学、货币银行学、基础会计学现代金融业务;大学语文2、行政管理武汉大学行政学、管理学、政治学、经济学、法学;大学语文3、汉语言文学(师范方向)中外文学、文学概论、基础写作、汉语;大学语文4、广告学中国传媒大学语文基础知识、广告基础知识、美术基础知识、计算机基础知识;大学语文5、土木工程(建筑管理方向)北京交通大学建筑力学、专业基础知识;高等数学6、计算机科学与技术数子电子电路基础、英语基础知识、程序设计语言(BASIC/PASCAL/语言任选);高等数学7、机械设计制造及其自动化(机电一体化系统方向)机械制造基础、电工电子基础;高等数学8、工商管理东北财经大学市场营销、工商企业经营管理、组织行为学;大学语文9、会计学北京工商大学财务会计、成本会计、管理会计;大学语文10、公共事业管理(教育管理方向)中央广播电视大学东北师范大学东北师范大学学校管理、教育行政概论、教育研究方法;大学语文11、法学中央广播电视大学中国政法大学中国政法大学法理与宪法、刑法与刑事诉讼法、民法与民事诉讼法、行政法与行政诉讼法;大学语文12、小学教育中央广播电视大学上海师范大学上海师范大学人文社会科学基础、阅读与写作;大学语文专科专业毕业证颁发院校入学水平测试内容1、法学中央广播电视大学政治(法律常识)2、行政管理3、会计学(财务会计方向)中学语文基础知识4、工商管理(企业管理方向)5、工商管理(市场营销方向)6、现代文员7、教育管理8、金融(金融与财务方向)9、计算机网络技术(网络管理方向)中学数学基础知识课程开放专科专业毕业证颁发院校入学水平测试内容★10、社会工作中央广播电视大学政治(法律常识)★11、小学教育中学语文基础知识★12、广告(营销传播方向)★13、物流管理★14、物业管理★15、电子商务中学数学基础知识★16、建筑施工与管理★17、汽车(汽车营销方向)★18、工程造价二、报读指南(一)报名资格:1、报读专科:具有高中(含中专、职高、技校)或相当于高中毕业及以上学历者。
电大经济数学基础形成性考核册及参考答案[1]
电大经济数学基础形成性考核册及参考答案[1]关建字摘要:答案,矩阵,下列,百台,产量,成本,利润,求解,未知量,对称竭诚为您提供优质文档,本文为收集整理修正,共13页,请先行预览,如有帮助感谢下载支持经济数学基础形成性考核册及参考答案作业(一)(三)解答题1.计算极限x 2-3x +21(x -2)(x -1)x -2(1)lim==-=lim lim 2x →1x →1x →12x -1(x -1)(x +1)(x +1)x 2-5x +61(x -2)(x -3)x -3(2)lim 2=lim =lim =x →2x -6x +8x →2(x -2)(x -4)x →2(x -4)2(1-x -1)(1-x +1)1-x -1lim (3)lim=x →0x →0x x (1-x +1)=limx →0-x -11=lim=-2x (1-x +1)x →0(1-x +1)351-+2x 2-3x +5x x =1lim (4)lim =x →∞x →∞3x 2+2x +42433++2x x (5)lim5x sin 3x 33sin 3x==lim x →03x sin 5x 55x →0sin 5xx 2-4(x -2)(x +2)(6)lim=lim =4x →2sin(x -2)x →2sin(x -2)1⎧x sin +b ,x <0⎪x ⎪2.设函数f (x )=⎨a ,x =0,⎪sin xx >0⎪x ⎩问:(1)当a ,b 为何值时,f (x )在x =0处有极限存在?(2)当a ,b 为何值时,f (x )在x =0处连续.答案:(1)当b =1,a 任意时,f (x )在x =0处有极限存在;(2)当a =b =1时,f (x )在x =0处连续。
3.计算下列函数的导数或微分:(1)y =x +2+log 2x -2,求y '答案:y '=2x +2ln 2+x 2x 21x ln 2(2)y =ax +b,求y 'cx +d答案:y '=a (cx +d )-c (ax +b )ad -cb=22(cx +d )(cx +d )13x -513x -5,求y '12(3)y =答案:y ==(3x -5)-y '=-32(3x -5)3(4)y =答案:y '=x -x e x ,求y '12xax -(x +1)e x(5)y =e sin bx ,求d y答案:y '=(e )'sin bx +e (sin bx )'ax ax =a e ax sin bx +e ax cos bx ⋅b=e ax (a sin bx +b cos bx )dy =e ax (a sin bx +b cos bx )dx(6)y =e +x x ,求d y1x311答案:d y =(x -2e x )d x 2x (7)y =cos x -e -x ,求d y 答案:d y =(2x e -x -n 22sin x 2x)d x(8)y =sin x +sin nx ,求y '答案:y '=n sin n -1x cos x +cos nxn =n (sin n -1x cos x +cos nx )(9)y =ln(x +1+x 2),求y '答案:1-1x 1122'=y '=(x +1+x )=(1+)=(1+(1+x )2x )2x +1+x 2x +1+x 21+x 21+x 2x +1+x 2121(10)y =2cot 1x+1+3x 2-2xx,求y 'ln 21-21-6-x +x 答案:y '=126x 2sinx4.下列各方程中y 是x 的隐函数,试求y '或d y (1)x 2+y 2-xy +3x =1,求d y 答案:解:方程两边关于X 求导:2x2cot 1x 35+2yy '-y -xy '+3=0y -3-2xd x2y -x(2y -x )y '=y -2x -3,d y =(2)sin(x +y )+e xy =4x ,求y '答案:解:方程两边关于X 求导cos(x +y )(1+y ')+e xy (y +xy ')=4(cos(x +y )+e xy x )y '=4-ye xy -cos(x +y )4-y e xy -cos(x +y )y '=xy x e +cos(x +y )5.求下列函数的二阶导数:(1)y =ln(1+x ),求y ''22-2x 2答案:y ''=22(1+x )(2)y =1-x x,求y ''及y ''(1)3-1-答案:y ''=x 2+x 2,y ''(1)=14453作业(二)(三)解答题1.计算下列不定积分3x (1)⎰xd xe3xx 3x 3xe 答案:⎰xd x =⎰()d x =+c 3e e ln e(2)⎰(1+x )2xd x113-(1+x )2(1+2x +x 2)答案:⎰d x =⎰d x =⎰(x 2+2x 2+x 2)d x x x42=2x +x 2+x 2+c35x2-4d x (3)⎰x +21x2-4d x =⎰(x -2)d x =x 2-2x +c答案:⎰2x +2(4)351⎰1-2xd x 答案:1111d x -ln1-2x +c ==-d(1-2x )⎰1-2x ⎰221-2x2(5)x 2+x d x 3211222答案:⎰x2+x d x =⎰2+x d(2+x )=(2+x )+c 322⎰(6)⎰sinx xd x答案:⎰sinx xd x =2⎰sin xd x =-2cos x +c(7)x sin⎰xd x 2答案:x sin ⎰x xd x =-2⎰xdco s d x 22x x x x +2⎰co s d x =-2x cos +4sin +c 2222=-2x cos (8)ln(x +1)d x 答案:ln(x +1)d x ==(x +1)ln(x +1)-2.计算下列定积分(1)⎰⎰⎰ln(x +1)d(x +1)⎰(x +1)dln(x +1)=(x +1)ln(x +1)-x +c⎰2-11-x d x答案:⎰12-11-x d x =1x21211252+==(x -x )+(x -x )(1-x )d x (x -1)d x -11⎰-1⎰12221(2)⎰2ed x x 22答案:⎰1121e x x -e d x ==-e d ⎰1x x21x1121=e -e(3)⎰e 31x 1+ln xd xe 311d(1+ln x )=2(1+ln x )21+ln x答案:⎰e 31x 1+ln x1d x =⎰1e 31=2π(4)⎰20x cos 2x d x ππππ111122--sin 2xdx 答案:⎰2x cos 2x d x =⎰2xd sin 2x =x sin 2x 0=⎰0002222(5)⎰e1x ln x d xe答案:⎰01x ln x d x =e 21e12122e (e +1)==ln x d x x ln x -x d ln x 1⎰⎰11422(6)⎰4(1+x e-x)d x40答案:⎰(1+x e)d x =x -⎰xd e =3-xe -x414-x -x4+⎰0e -x d x =5+5e -44作业三三、解答题1.计算(1)⎢⎡-21⎤⎡01⎤⎡1-2⎤=⎢⎥⎢⎥⎥⎣53⎦⎣10⎦⎣35⎦⎡02⎤⎡11⎤⎡00⎤(2)⎢⎥⎢00⎥=⎢00⎥0-3⎦⎣⎦⎣⎦⎣⎡3⎤⎢0⎥(3)[-1254]⎢⎥=[0]⎢-1⎥⎢⎥⎣2⎦23⎤⎡-124⎤⎡245⎤⎡1⎢⎥⎢⎥⎢⎥02.计算-122143-61⎢⎥⎢⎥⎢⎥⎢⎣1-32⎥⎦⎢⎣23-1⎥⎦⎢⎣3-27⎥⎦23⎤⎡-124⎤⎡245⎤⎡7197⎤⎡245⎤⎡1⎢⎥⎢⎥⎢⎥=⎢7120⎥-⎢610⎥0解-122143-61⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎣1-32⎥⎦⎢⎣23-1⎥⎦⎢⎣3-27⎥⎦⎢⎣0-4-7⎥⎦⎢⎣3-27⎥⎦⎡515=⎢⎢111⎢⎣-3-2⎡23-1⎤⎡123⎤3.设矩阵A =⎢⎢111⎥,B =⎢112⎥,求AB 。
高等数学基础形成性考核册和答案解析
高等数学基础第一次作业第1章 函数第2章 极限与连续(一)单项选择题⒈下列各函数对中,( C )中的两个函数相等. A. 2)()(x x f =,x x g =)( B. 2)(x x f =,x x g =)(C. 3ln )(x x f =,x x g ln 3)(= D. 1)(+=x x f ,11)(2--=x x x g⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于(C )对称.A. 坐标原点B. x 轴C. y 轴D. x y = ⒊下列函数中为奇函数是( B ).A. )1ln(2x y +=B. x x y cos =C. 2xx a a y -+= D. )1ln(x y += ⒋下列函数中为基本初等函数是(C ). A. 1+=x y B. x y -= C. 2xy = D. ⎩⎨⎧≥<-=0,10,1x x y⒌下列极限存计算不正确的是( D ).A. 12lim 22=+∞→x x x B. 0)1ln(lim 0=+→x x C. 0sin lim=∞→x x x D. 01sin lim =∞→x x x ⒍当0→x 时,变量( C )是无穷小量.A. xx sin B. x 1C. xx 1sin D. 2)ln(+x⒎若函数)(x f 在点0x 满足( A ),则)(x f 在点0x 连续。
A. )()(lim 00x f x f x x =→ B. )(x f 在点0x 的某个邻域内有定义C. )()(lim 00x f x f x x =+→ D. )(lim )(lim 0x f x f x x x x -+→→=(二)填空题⒈函数)1ln(39)(2x x x x f ++--=的定义域是(3, +∞).⒉已知函数x x x f +=+2)1(,则=)(x f x 2 - x .⒊=+∞→x x x)211(lim e 1/ 2 .⒋若函数⎪⎩⎪⎨⎧≥+<+=0,0,)1()(1x k x x x x f x ,在0=x 处连续,则=k e .⒌函数⎩⎨⎧≤>+=0,sin 0,1x x x x y 的间断点是 x=0 .⒍若A x f x x =→)(lim 0,则当0x x →时,A x f -)(称为 无穷小量 .(三)计算题 ⒈设函数⎩⎨⎧≤>=0,0,e )(x x x x f x 求:)1(,)0(,)2(f f f -.解:f(-2) = - 2,f(0) = 0, f(1) = e⒉求函数x x y 12lglg -=的定义域. 解:由012>-xx 解得x<0或x>1/2,函数定义域为(-∞,0)∪(1/2,+∞) ⒊在半径为R 的半圆内内接一梯形,梯形的一个底边与半圆的直径重合,另一底边的两个端点在半圆上,试将梯形的面积表示成其高的函数. 解:如图梯形面积A=(R+b)h ,其中22h R b -=∴⒋求⒌求⒍求⒎求.⒏求⒐求hh R R A )(22-+=2322sin 233sin 3lim 2sin 3sin lim 00==→→xx x x x x x x 2)1()1sin(1lim )1sin(1lim 121-=-++=+--→-→x x x x x x x 33cos 33sin 3lim 3tan lim 00==→→x x x x x x x xx x x xx x x sin )11()11)(11(limsin 11lim 222020++-+++=-+→→0sin 11lim sin )11(1)1(lim 20220=++=++-+=→→x xx x x x x x x xx x x x x x x x x x )341(lim )343(lim )31(lim +-+=+-+=+-∞→∞→∞→4443])341[(lim ---+=+-+=e x x 2)4)(2(lim86lim 2=--=+-x x x x⒑设函数⎪⎩⎪⎨⎧-<+≤≤->-=1,111,1,)2()(2x x x x x x x f 讨论)(x f 的连续性,并写出其连续区间.解:∴函数在x=1处连续不存在,∴函数在x=-1处不连续高等数学基础第二次作业第3章 导数与微分(一)单项选择题⒈设0)0(=f 且极限x x f x )(lim0→存在,则=→xx f x )(lim0( B ). A. )0(f B. )0(f ' C. )(x f ' D. 0⒉设)(x f 在0x 可导,则=--→hx f h x f h 2)()2(lim000(D ). A. )(20x f '- B. )(0x f ' C. )(20x f ' D. )(0x f '-⒊设xx f e )(=,则=∆-∆+→∆xf x f x )1()1(lim0(A ).A. eB. e 2C. e 21D. e 41⒋设)99()2)(1()(---=x x x x x f ,则=')0(f (D ).A. 99B. 99-C. !99D. !99- ⒌下列结论中正确的是( C ).A. 若)(x f 在点0x 有极限,则在点0x 可导.B. 若)(x f 在点0x 连续,则在点0x 可导.C. 若)(x f 在点0x 可导,则在点0x 有极限.1)(lim 1)21()(lim 121===-=-+→→x f x f x x )1(1)(lim 1f x f x ==→011)(lim 1)(lim 11=+-=≠-=-+-→-→x f x f x x )(lim 1x f x -→D. 若)(x f 在点0x 有极限,则在点0x 连续. (二)填空题⒈设函数⎪⎩⎪⎨⎧=≠=0,00,1sin )(2x x xx x f ,则=')0(f 0 . ⒉设x x x f e 5e )e (2+=,则=xx f d )(ln d (2/x)lnx+5/x .⒊曲线1)(+=x x f 在)2,1(处的切线斜率是 1/2 .⒋曲线x x f sin )(=在)1,4π(处的切线方程是 y=1 .⒌设x x y 2=,则='y 2x 2x(lnx+1).⒍设x x y ln =,则=''y 1/x .(三)计算题⒈求下列函数的导数y ':⑴x x x y e )3(+= y=(x 3/2+3)e x ,y '=3/2x 1/2e x +(x 3/2+3)e x=(3/2x 1/2+x 3/2+3)e x⑵x x x y ln cot 2+= y '=-csc 2x + 2xlnx +x⑶xx y ln 2= y '=(2xlnx-x)/ln 2x⑷32cos x x y x += y '=[(-sinx+2x ln2)x 3-3x 2(cosx+2x )]/x6⑸xx x y sin ln 2-==⑹x x x y ln sin 4-= y '=4x 3-cosxlnx-sinx/x⑺xx x y 3sin 2+= y '=[(cosx+2x)3x -(sinx+x 2)3x ln3]/32x=[cosx+2x-(sinx+x 2)ln3]/3x⑻x x y x ln tan e += y '=e x tanx+e x sec 2x+1/x = e x (tanx+sec 2x)+1/x ⒉求下列函数的导数y ': ⑴21e x y -= ⑵3cos ln x y =⑶x x x y = y=x 7/8 y '=(7/8)x -1/8 ⑷3x x y += ⑸x y e cos 2= ⑹2e cos x y =221(2)sin (ln )cos sin x x x x x xx---⑺nx x y n cos sin = y '=nsin n-1xcosxcosnx - nsin n xsin nx ⑻2sin 5x y = ⑼x y 2sin e = ⑽22e x x x y += ⑾xxx y e e e +=⒊在下列方程中,y y x =()是由方程确定的函数,求'y : ⑴y x y 2e cos = 方程对x 求导:y 'cosx-ysinx=2 y 'e 2yy '=ysinx / (cosx-2e 2y )⑵x y y ln cos = 方程对x 求导:y '= y '(-siny)lnx +(1/x)cosyy '=[(1/x)cosy] / (1+sinylnx)⑶yx y x 2sin 2= 方程对x 求导:2siny + y '2xcosy=(2xy-x 2 y ')/y 2y '=2(xy –y 2siny) /(x 2+2xy 2cosy)⑷y x y ln += 方程对x 求导:y '=1+ y '/y , y '=y /(y-1)⑸2e ln y x y =+ 方程对x 求导:1/x+ y 'e y =2y y ', y '=1/x(2y-e y ) ⑹y y x sin e 12=+ 方程对x 求导:2y y '=e x siny + y ' e x cosyy '= e x siny/(2y- e x cosy)⑺3e e y x y -= 方程对x 求导:y 'e y =e x -3y 2 y ', y '=e x /e y +3y 2⑻y x y 25+= 方程对x 求导:y '=5x ln5 + y '2y ln2, y '=5x ln5 /(1-2y ln2) ⒋求下列函数的微分y d : ⑴x x y csc cot +=⑵xxy sin ln =⑶x xy +-=11arcsin⑷311xxy +-=⑸x y e sin 2=⑹3e tan x y =⒌求下列函数的二阶导数: ⑴x x y ln = ⑵x x y sin = ⑶x y arctan = ⑷23x y = (四)证明题设)(x f 是可导的奇函数,试证)(x f '是偶函数.证明:由 f(x)= - f(-x) 求导f '(x)= - f '(-x)(-x)' f '(x)= f '(-x), ∴f'(x)是偶函数高等数学基础第三次作业第4章 导数的应用(一)单项选择题⒈若函数)(x f 满足条件(D ),则存在),(b a ∈ξ,使得ab a f b f f --=)()()(ξ.A. 在),(b a 内连续B. 在),(b a 内可导C. 在),(b a 内连续且可导D. 在],[b a 内连续,在),(b a 内可导⒉函数14)(2-+=x x x f 的单调增加区间是(D ). A. )2,(-∞ B. )1,1(- C. ),2(∞+ D. ),2(∞+- ⒊函数542-+=x x y 在区间)6,6(-内满足(A ). A. 先单调下降再单调上升 B. 单调下降 C. 先单调上升再单调下降 D. 单调上升⒋函数)(x f 满足0)(='x f 的点,一定是)(x f 的(C ).A. 间断点B. 极值点C. 驻点D. 拐点⒌设)(x f 在),(b a 内有连续的二阶导数,),(0b a x ∈,若)(x f 满足(C ),则)(x f 在0x 取到极小值. A. 0)(,0)(00=''>'x f x f B. 0)(,0)(00=''<'x f x fC. 0)(,0)(00>''='x f x fD. 0)(,0)(00<''='x f x f⒍设)(x f 在),(b a 内有连续的二阶导数,且0)(,0)(<''<'x f x f ,则)(x f 在此区间内是(A ). A. 单调减少且是凸的 B. 单调减少且是凹的 C. 单调增加且是凸的 D. 单调增加且是凹的⒎设函数a ax ax ax x f ---=23)()(在点1=x 处取得极大值2-,则=a ( ).A. 1B.31 C. 0 D. 31-(二)填空题⒈设)(x f 在),(b a 内可导,),(0b a x ∈,且当0x x <时0)(<'x f ,当0x x >时0)(>'x f ,则0x 是)(x f 的 极小值 点.⒉若函数)(x f 在点0x 可导,且0x 是)(x f 的极值点,则=')(0x f 0 .⒊函数)1ln(2x y +=的单调减少区间是 (-∞,0) .⒋函数2e )(x xf =的单调增加区间是 (0,+∞) .⒌若函数)(x f 在],[b a 内恒有0)(<'x f ,则)(x f 在],[b a 上的最大值是 f(a) . ⒍函数3352)(x x x f -+=的拐点是 x=0 .⒎若点)0,1(是函数2)(23++=bx ax x f 的拐点,则=a ,=b .(三)计算题⒈求函数223)5()1(-+=x x y 的单调区间和极值. 解:y '=(x-5)2+2(x+1)(x-5)=3(x-1)(x-5)由y '=0求得驻点x=1,5. (-∞,1)和 (5,+∞)为单调增区间, (1,5)为单调减区间,极值为Y max =32,Y min =0。
高等数学基础形成性考核册和答案解析
高等数学基础第一次作业第1章 函数第2章 极限与连续(一)单项选择题⒈下列各函数对中,( C )中的两个函数相等.A. 2)()(x x f =,x x g =)( B. 2)(x x f =,x x g =)(C. 3ln )(x x f =,x x g ln 3)(= D. 1)(+=x x f ,11)(2--=x x x g⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于(C )对称.A. 坐标原点B. x 轴C. y 轴D. x y = ⒊下列函数中为奇函数是( B ).A. )1ln(2x y += B. x x y cos =C. 2xx a a y -+= D. )1ln(x y +=⒋下列函数中为基本初等函数是(C ). A. 1+=x y B. x y -= C. 2xy = D. ⎩⎨⎧≥<-=0,10,1x x y⒌下列极限存计算不正确的是( D ).A. 12lim 22=+∞→x x x B. 0)1ln(lim 0=+→x x C. 0sin lim =∞→x x x D. 01sin lim =∞→x x x⒍当0→x 时,变量( C )是无穷小量.A. xxsin B. x 1C. xx 1sin D. 2)ln(+x⒎若函数)(x f 在点0x 满足( A ),则)(x f 在点0x 连续。
A. )()(lim 00x f x f x x =→ B. )(x f 在点0x 的某个邻域内有定义C. )()(lim 00x f x f x x =+→ D. )(lim )(lim 0x f x f x x x x -+→→=(二)填空题⒈函数)1ln(39)(2x x x x f ++--=的定义域是(3, +∞). ⒉已知函数x x x f +=+2)1(,则=)(x f x 2 - x .⒊=+∞→x x x)211(lim e 1/ 2 .⒋若函数⎪⎩⎪⎨⎧≥+<+=0,0,)1()(1x k x x x x f x ,在0=x 处连续,则=k e .⒌函数⎩⎨⎧≤>+=0,sin 0,1x x x x y 的间断点是 x=0 .⒍若A x f x x =→)(lim 0,则当0x x →时,A x f -)(称为 无穷小量 .(三)计算题 ⒈设函数⎩⎨⎧≤>=0,0,e )(x x x x f x 求:)1(,)0(,)2(f f f -. 解:f(-2) = - 2,f(0) = 0, f(1) = e⒉求函数x x y 12lglg -=的定义域. 解:由012>-xx 解得x<0或x>1/2,函数定义域为(-∞,0)∪(1/2,+∞)⒊在半径为R 的半圆内内接一梯形,梯形的一个底边与半圆的直径重合,另一底边的两个端点在半圆上,试将梯形的面积表示成其高的函数. 解:如图梯形面积A=(R+b)h ,其中22h R b -=∴⒋求⒌求⒍求⒎求.⒏求⒐求hh R R A )(22-+=2322sin 233sin 3lim 2sin 3sin lim 00==→→xx x x x x x x 2)1()1sin(1lim )1sin(1lim 121-=-++=+--→-→x x x x x x x 33cos 33sin 3lim 3tan lim 00==→→xx xx x x x xx x x xx x x sin )11()11)(11(limsin 11lim 222020++-+++=-+→→0sin 11lim sin )11(1)1(lim 20220=++=++-+=→→x xx x x x x x x xx x x x x x x x x x )341(lim )343(lim )31(lim +-+=+-+=+-∞→∞→∞→4443])341[(lim ---+=+-+=e x x 2)4)(2(lim86lim 22=--=+-x x x x⒑设函数⎪⎩⎪⎨⎧-<+≤≤->-=1,111,1,)2()(2x x x x x x x f 讨论)(x f 的连续性,并写出其连续区间.解:∴函数在x=1处连续不存在,∴函数在x=-1处不连续高等数学基础第二次作业第3章 导数与微分(一)单项选择题⒈设0)0(=f 且极限x x f x )(lim0→存在,则=→xx f x )(lim 0( B ).A. )0(fB. )0(f 'C. )(x f 'D. 0⒉设)(x f 在0x 可导,则=--→hx f h x f h 2)()2(lim000(D ). A. )(20x f '- B. )(0x f ' C. )(20x f ' D. )(0x f '-⒊设xx f e )(=,则=∆-∆+→∆xf x f x )1()1(lim 0(A ).A. eB. e 2C. e 21D. e 41⒋设)99()2)(1()(---=x x x x x f ,则=')0(f (D ).A. 99B. 99-C. !99D. !99- ⒌下列结论中正确的是( C ).A. 若)(x f 在点0x 有极限,则在点0x 可导.B. 若)(x f 在点0x 连续,则在点0x 可导.C. 若)(x f 在点0x 可导,则在点0x 有极限.1)(lim 1)21()(lim 121===-=-+→→x f x f x x )1(1)(lim 1f x f x ==→011)(lim 1)(lim 11=+-=≠-=-+-→-→x f x f x x )(lim 1x f x -→D. 若)(x f 在点0x 有极限,则在点0x 连续. (二)填空题⒈设函数⎪⎩⎪⎨⎧=≠=0,00,1sin )(2x x xx x f ,则=')0(f 0 . ⒉设xx x f e 5e )e (2+=,则=xx f d )(ln d (2/x)lnx+5/x . ⒊曲线1)(+=x x f 在)2,1(处的切线斜率是 1/2 .⒋曲线x x f sin )(=在)1,4π(处的切线方程是 y=1 .⒌设xx y 2=,则='y2x 2x(lnx+1).⒍设x x y ln =,则=''y 1/x .(三)计算题⒈求下列函数的导数y ':⑴x x x y e )3(+= y=(x 3/2+3)e x ,y '=3/2x 1/2e x +(x 3/2+3)e x=(3/2x 1/2+x 3/2+3)e x⑵x x x y ln cot 2+= y '=-csc 2x + 2xlnx +x⑶xx y ln 2= y '=(2xlnx-x)/ln 2x⑷32cos x x y x += y '=[(-sinx+2x ln2)x 3-3x 2(cosx+2x )]/x6⑸xx x y sin ln 2-==⑹x x x y ln sin 4-= y '=4x 3-cosxlnx-sinx/x⑺xx x y 3sin 2+= y '=[(cosx+2x)3x -(sinx+x 2)3x ln3]/32x=[cosx+2x-(sinx+x 2)ln3]/3x⑻x x y x ln tan e += y '=e x tanx+e x sec 2x+1/x = e x (tanx+sec 2x)+1/x ⒉求下列函数的导数y ': ⑴21e x y -= ⑵3cos ln x y =⑶x x x y = y=x 7/8 y '=(7/8)x -1/8 ⑷3x x y += ⑸x y e cos 2= ⑹2e cos x y =221(2)sin (ln )cos sin x x x x x xx---⑺nx x y n cos sin = y '=nsin n-1xcosxcosnx - nsin n xsin nx ⑻2sin 5x y = ⑼x y 2sin e = ⑽22e x x x y += ⑾xxx y e e e +=⒊在下列方程中,y y x =()是由方程确定的函数,求'y : ⑴y x y 2e cos = 方程对x 求导:y 'cosx-ysinx=2 y 'e 2yy '=ysinx / (cosx-2e 2y )⑵x y y ln cos = 方程对x 求导:y '= y '(-siny)lnx +(1/x)cosyy '=[(1/x)cosy] / (1+sinylnx)⑶yx y x 2sin 2= 方程对x 求导:2siny + y '2xcosy=(2xy-x 2 y ')/y 2y '=2(xy –y 2siny) /(x 2+2xy 2cosy)⑷y x y ln += 方程对x 求导:y '=1+ y '/y , y '=y /(y-1)⑸2e ln y x y =+ 方程对x 求导:1/x+ y 'e y =2y y ', y '=1/x(2y-e y ) ⑹y y x sin e 12=+ 方程对x 求导:2y y '=e x siny + y ' e x cosyy '= e x siny/(2y- e x cosy)⑺3e e y x y -= 方程对x 求导:y 'e y =e x -3y 2 y ', y '=e x /e y +3y 2⑻y x y 25+= 方程对x 求导:y '=5x ln5 + y '2y ln2, y '=5x ln5 /(1-2y ln2) ⒋求下列函数的微分y d : ⑴x x y csc cot +=⑵xxy sin ln =⑶x xy +-=11arcsin⑷311xxy +-=⑸x y e sin 2=⑹3e tan x y =⒌求下列函数的二阶导数: ⑴x x y ln = ⑵x x y sin = ⑶x y arctan = ⑷23x y = (四)证明题设)(x f 是可导的奇函数,试证)(x f '是偶函数.证明:由 f(x)= - f(-x) 求导f '(x)= - f '(-x)(-x)' f '(x)= f '(-x), ∴f'(x)是偶函数高等数学基础第三次作业第4章 导数的应用(一)单项选择题⒈若函数)(x f 满足条件(D ),则存在),(b a ∈ξ,使得ab a f b f f --=)()()(ξ.A. 在),(b a 内连续B. 在),(b a 内可导C. 在),(b a 内连续且可导D. 在],[b a 内连续,在),(b a 内可导⒉函数14)(2-+=x x x f 的单调增加区间是(D ). A. )2,(-∞ B. )1,1(- C. ),2(∞+ D. ),2(∞+- ⒊函数542-+=x x y 在区间)6,6(-内满足(A ). A. 先单调下降再单调上升 B. 单调下降 C. 先单调上升再单调下降 D. 单调上升⒋函数)(x f 满足0)(='x f 的点,一定是)(x f 的(C ).A. 间断点B. 极值点C. 驻点D. 拐点⒌设)(x f 在),(b a 内有连续的二阶导数,),(0b a x ∈,若)(x f 满足(C ),则)(x f 在0x 取到极小值. A. 0)(,0)(00=''>'x f x f B. 0)(,0)(00=''<'x f x fC. 0)(,0)(00>''='x f x fD. 0)(,0)(00<''='x f x f⒍设)(x f 在),(b a 内有连续的二阶导数,且0)(,0)(<''<'x f x f ,则)(x f 在此区间内是(A ). A. 单调减少且是凸的 B. 单调减少且是凹的 C. 单调增加且是凸的 D. 单调增加且是凹的⒎设函数a ax ax ax x f ---=23)()(在点1=x 处取得极大值2-,则=a ( ).A. 1B.31 C. 0 D. 31-(二)填空题⒈设)(x f 在),(b a 内可导,),(0b a x ∈,且当0x x <时0)(<'x f ,当0x x >时0)(>'x f ,则0x 是)(x f 的 极小值 点.⒉若函数)(x f 在点0x 可导,且0x 是)(x f 的极值点,则=')(0x f 0 .⒊函数)1ln(2x y +=的单调减少区间是 (-∞,0) .⒋函数2e )(x xf =的单调增加区间是 (0,+∞) .⒌若函数)(x f 在],[b a 内恒有0)(<'x f ,则)(x f 在],[b a 上的最大值是 f(a) . ⒍函数3352)(x x x f -+=的拐点是 x=0 .⒎若点)0,1(是函数2)(23++=bx ax x f 的拐点,则=a ,=b .(三)计算题⒈求函数223)5()1(-+=x x y 的单调区间和极值.解:y '=(x-5)2+2(x+1)(x-5)=3(x-1)(x-5)由y '=0求得驻点x=1,5. (-∞,1)和 (5,+∞)为单调增区间, (1,5)为单调减区间,极值为Y max =32,Y min =0。
【高等数学基础】形成性考核册答案.
1【高等数学基础】作业1答案:第1章函数极限与连续一、单项选择题1.C2.C3.B4.C5.D6.C7.A二、填空题1.(3+∞,; 2.2x x -; 34.e ; 5.0x =; 6.无穷小量.三、计算题1.解:(22, f =-(00, f =(11. f e e == 2.解:要使21lgx x- 有意义,必须 210, 0x x x -⎧>⎪⎨⎪≠⎩解得:10, 2x x <>或(211lg, . 2x y x -⎛⎫∴=∞⋃+∞ ⎪⎝⎭函数的定义域为-,0 3.解:如图,梯形ABCD 为半圆O 的内接梯形,AB DC AB 2R DE x ,=,高=, OD DEO 连接则为直角三角形,2DC OC ==((((122S , 0DE DC AB x R x R x R ∴+=+=+<<1梯形的面积S=2即其中4.解:原式=000sin 3233sin 323limlim lim . 3sin 2223sin 22x x x x x x x x x x x →→→⋅⋅=⋅=5.解:原式=((11111lim1lim lim 12sin 1sin 1x x x x x x x x x →-→-→-++⋅-=⋅-=-++6.解:原式=000sin 33sin 31lim3lim lim 3. 3cos33cos3x x x x x x x x x→→→⋅=⋅=7.解:原式=2110. x x →→==8.解:原式=4334441lim 1. 33x x x e x x -+---→∞⎡⎤--⎛⎫⎛⎫⎢⎥+= ⎪⎪⎢⎥++⎝⎭⎝⎭⎣⎦AE BOC29.解:原式=((444222lim lim . 4113x x x x x x x x →→---==---高等数学基础】作业2答案:导数与微分一、单项选择题1.B2.D3.A4.D5.C二、填空题1.0; 2.2ln 5x x +; 3.12; 4.10y -=; 5.(22ln 1x x x +; 6.1 x.三、计算题1. 求下列函数的导数y ':(3132223(13, 3212.2x xxx y x e y x e x e y e ⎛⎫⎛⎫'=+∴=++ ⎪⎪⎝⎭⎝⎭'=解:即 (22211122ln 2ln . sin sin y x x x x x x x x x'=-++⋅=-++解: ((2221132ln 2ln 1. ln ln x y x x x x x x x⎛⎫'=-⋅=- ⎪⎝⎭解: (((((3264414sin 2ln 23cos 221ln 23sin 3cos . x xxy x x x x xx x x x x x⎡⎤'=-+-+⎣⎦=--+解: ((222221152sin ln cos sin 12ln cos . sin sin y x x x x x x x x x xx x x x⎡⎤⎛⎫'=---- ⎪⎢⎥⎝⎭⎣⎦--=+⋅解:(3sin 64cos ln . xy x x x x'=--解: (((((222173cos 23ln 3sin 31cos 2sin ln 3ln 3. 3x x x x y x x x x x x x x ⎡⎤'= +-+⎣⎦=+--解:3(22118tan cos 11tan . cos x x x y e x e x xe x x x'=+⋅+⎛⎫=++ ⎪⎝⎭解:2. 求下列函数的导数y ': (1y ''=⋅=解:((1sin 2cos tan . cos cos x y x x x x''=⋅=-=-解: (112711288273, . 8y x x x x y x -⎡⎤⎛⎫⎢⎥'=⋅=∴= ⎪⎢⎥⎝⎭⎢⎥⎣⎦解: ((42sin sin 2sin cos sin 2. y x x x x x ''=⋅=⋅=解: ((225cos 2cos . y x x x x ''=⋅=解: ((6sin . x xxx y e e ee ''⋅=-⋅解:=-sin((((1117sin cos cos sin sin sin cos cos sin sin sin cos 1.n n n n y n x x nx x nx nn x x nx x nx n x n x ---'=⋅⋅+⋅-⋅=⋅-=⋅+解: ((sin sin 85ln 5sin 5cos ln 5. x x y x x ''=⋅⋅=解: ((cos cos 9cos sin . xx y ex xe ''=⋅=-解:3. 在下列方程中,(y y x =是由方程确定的函数,求y ':(((2221cos sin 2,cos sin , sin . cos y y yy x y x e y y x e y x y xy x e''+-=⋅'-='∴=-解:((cos 2sin ln , cos 1sin ln , cos .1sin ln yy y y x xyy x y xyy x y x ''=-⋅+'+='∴=+解:4(3sin , 21sin cos , 21.2sin cos xy y y y y y y y y y y =''+⋅='∴=+解:两边求导,得(41. y y y y y'''⋅=+1解:=1+ ((152,12, 1. 2y yye y y y xy e y x y x y e ''+⋅=⋅'-='∴=- ((62sin cos , 2cos sin ,sin . 2cos x x xx x xy y e y e y y y ey y e y e y y y e y''⋅=+⋅⋅'-='∴=-解:((22273,3,. 3y x yx xy e y e y y ey y e e y e y''⋅=-⋅'+='∴=+解:((85ln 52ln 2,12ln 25ln 5,5ln 5.12ln 2x y yx x y y y y y ''=+⋅'-='∴=-解:4. 求下列函数的微分dy :(((221csc cot csc csc cot csc , csc cot csc .y x x x x x x dy y dx x x x dx '=--=-+'∴==-+ 解:(2221sin cos ln sin cos ln 2, sin sin sin cos ln .sin x x xx x x xy x x xx x x xdy dx x x--'==-∴= 解:5(32sin cos sin 2, sin 2.y x x x dy xdx '==∴= 解:(2224sec sec ,sec .x x x xy e e e x dy e xdx '=⋅=∴= 解:5.求下列函数的二阶导数:(12332211, 2111. 224y x y x x ---'==⎛⎫''∴=⋅-=- ⎪⎝⎭解:(223ln 3,3ln 3.x xy y '=''∴=解:(213, 1. y xy x'=''∴=-解:((4sin cos , cos cos sin 2cos sin .y x x x y x x x x x x x '=+''∴=+-=-解:四、证明题((((((((((,,1, f x fx f x f x f x f x f x f x f x -=-''∴-=-⎡⎤⎡⎤⎣⎦⎣⎦''-⋅-=-''-='∴证:由题设,有即是偶函数.【高等数学基础】作业3答案第四章导数的应用一、单项选择题1.D2.D3.A4.C5.C6.A二、填空题1.极小值; 2.0; 3.(,0-∞; 4.(0, +∞; 5.(f a ; 6.(0,2.三、计算题(((((212521535101, 5.y x x x x x x x '=-++-=--===1. 解:令,得:列表如下6((( , 5, , 5. 3250. y ∴∞+∞函数的单调增区间为-,1单调减区间为1,当x=1时,函数取得极大值;当x=时,函数取得极小值([(][]((([]222. 22210, 1. 0,10; 1,30. 230,31. 03, 12, 36,0360.y xx x x yx y y x x xy y y y x x'=-=-==''∈<∈>∴=-+====∴= 解:令得当时,当时,函数在区间上的极值点为又函数-2+3在,上的最大值为,最小值为(((223. , , , 2,(0 0,11 212, 1, .P x y PA d y x x d d x x y y P P ==≥=='======⨯==∴解:设所求的点则令得易知,是函数d 的极小值点,也是最小值点. 此时,所求的点为或4. 解:如图所示,圆柱体高h 与底半径r 满足222h r L +=圆柱体的体积公式为 h r V 2π= 将222r L h =-代入得22(V L h h π=- 求导得22222(2( (3 V h L h L h ππ'=-+-=- 令0='V得h =,并由此解出r =. 即当底半径r L =,高h L =时,圆柱体的体积最大.5. 解:设圆柱体半径为R ,高为h ,则72222, 222V Vh S Rh R R R Rππππ==+=+表面积2240V S R R Rπ'=-==令得0,0S S ⎛⎫''∈<+∞> ⎪⎪⎝⎭R 时,时, S R ∴=的极小值点,也是最小值点. 此时答:当2πV R = 4πV h =时表面积最大.6. 解:设长方体的底边长为x 米,高为h 米. 则 2262.562.5x hh x ==由得用料的面积为:(2225040S x xh x x x=+=+>,令32250201255S x x x x '=-===得,易知,5S x =是函数的极小值点,也是最小值点. 答:当该长方体的底边长为5米,高为2.5米时用料最省。
2017年电大中央电大2011最新经济数学基础形成性考核册答案全解
2011最新经济数学基础形成性考核册答案全解作业(一)(一)填空题 1.___________________sin lim=-→xxx x .答案:0 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:13.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 2 5.设x x x f sin )(=,则__________)2π(=''f .答案:2π- (二)单项选择题 1. 函数212-+-=x x x y 的连续区间是( )答案:D A .),1()1,(+∞⋃-∞ B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 下列极限计算正确的是( )答案:B A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xxx3. 设y x =lg2,则d y =( ).答案:B A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( )是错误的.答案:BA .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.当0→x 时,下列变量是无穷小量的是( ). 答案:C A .x2 B .xxsin C .)1ln(x + D .x cos (三)解答题 1.计算极限(1)=-+-→123lim 221x x x x )1)(1()1)(2(lim 1+---→x x x x x = )1(2lim 1+-→x x x = 21-(2)8665lim 222+-+-→x x x x x =)4)(2()3)(2(lim 2----→x x x x x = )4(3lim 2--→x x x = 21(3)x x x 11lim--→=)11()11)(11(lim 0+-+---→x x x x x =)11(lim+--→x x x x =21)11(1lim 0-=+--→x x(4)=+++-∞→42353lim 22x x x x x 31423531lim 22=+++-∞→xx x x x (5)=→xxx 5sin 3sin lim0535sin 33sin 5lim 0x x x x x →=53 (6)=--→)2sin(4lim 22x x x 4)2sin()2)(2(lim 2=-+-→x x x x2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(1)当1=b ,a 任意时,)(x f 在0=x 处有极限存在; (2)当1==b a 时,)(x f 在0=x 处连续。
高等数学基础形成性考核册与答案
高等数学基础第一次作业第1章函数第2章极限与连续(一)单项选择题⒈下列各函数对中,(C)中的两个函数相等.A.2f(x)(x),g(x)xB.2f(x)x,g(x)xC.3f(x)lnx,g(x)3lnxD.f(x)x1,g( x)2xx11⒉设函数f(x)的定义域为(,),则函数f(x)f(x)的图形关于(C)对称.A.坐标原点B.x轴C.y轴D.yx⒊下列函数中为奇函数是(B).2A.yln(1x)B.yxcosxC.xa xayyln(1x)D.2⒋下列函数中为基本初等函数是(C).A.yx1B.yxC.2yxD. y11,,xx⒌下列极限存计算不正确的是(D).2x A.lim12x2x B.limln(1x)0x0sinx C.lim0xx1 D.limxsin0xx⒍当x0时,变量(C)是无穷小量.A. s inxxB.1xC.1xsinln(x2)D.x⒎若函数f(x)在点x0满足(A),则f(x)在点x0连续。
A.limf(x)f(x0)xxB.f(x)在点x0的某个邻域内有定义C.limf(x)f(x)0 xx0 D.limf(x)limf(x)xxxx00(二)填空题2x9⒈函数(x)ln(1x)f的定义域是(3,+∞).x3⒉已知函数fx1)xx(2,则f(x)x2-x.⒊11/2 lime(1)xx2x.1⒋若函数f(x)x(1x),x0xk,x0,在x0处连续,则ke.⒌函数x1,x0y的间断点是x=0.sinx,x0⒍若limf(x)Axxx时,f(x)A称为无穷小量.,则当x(三)计算题⒈设函数f(x)xex ,,xx求:f(2),f(0),f(1).解:f(-2)=-2,f(0)=0,f(1)=e⒉求函数y2x1lglg的定义域.x2x1解:由0x 解得x<0或x>1/2,函数定义域为(-∞,0)∪(1/2,+∞)⒊在半径为R的半圆内内接一梯形,梯形的一个底边与半圆的直径重合,另一底边的两个端点在半圆上,b试将梯形的面积表示成其高的函数.解:如图梯形面积A=(R+b)h,其中b2hR2∴⒋求22A(R Rh)limx0sinsin3x2xlimx032s in3x3xsin2x2xh32h RRRlimx12xsin(x11)limx1xsin( x11)(x1)2⒌求⒍求limx0tanx3xlimx03sin3x3xcos3x3⒎求.221x1(1x1)(1xlimlimsinx2x(11)sin0x0x2x1)2(1x)1xxlimlim0sinx22xx0(1x1)sinx1x1⒏求x1x34xxlim()lim()lim(1xx3x3xxx4)3xx3444[(1)]2⒐求x3x6x8(x2)(x4)2limelimlim24x4x54xx1)(x4)3x4x(3(1)x3⒑设函数2(x2),x14 f(x)x,1x1讨论f(x)的连续性,并写出其连续区间.x1,x1解:limx12f(x)(12)1limf(x)x11∴函数在x=1处连续limf(x)1f(1)x l imf(x)1limf(x)1101x1x1limx1f(x) 不存在,∴函数在x=-1处不连续高等数学基础第二次作业第3章导数与微分(一)单项选择题⒈设f(0)0且极限limx0 f(x)x存在,则limx0f(x)x(B).A.f(0)B.f(0)C.f(x)D.0⒉设f(x)在x0可导,则f(x2h)limh02hf( x)(D).A.2f(x0)B.f(x0)C.2f(x0)D.f(x0)⒊设xf(x)e,则limx0f(1 x)fx(1)(A).A.eB.2e1 C.e2 1 D.e 4⒋设f(x)x(x1)(x2)(x99),则f(0)(D).A.99B.99C.99!D.99!⒌下列结论中正确的是(C).A.若f(x)在点x0有极限,则在点x0可导.B.若f(x)在点x0连续,则在点x0可导.C.若f(x)在点x0可导,则在点x0有极限.D.若f(x)在点x0有极限,则在点x0连续.(二)填空题⒈设函数12xsin,x0 f(x),则f(0)0.x0,x0⒉设x2xxf(e)e5e ,则d(lnx(2/x)lnx+5/xf).d x是1/2.⒊曲线f(x)x1在(1,2)处的切线斜率π⒋曲线f(x)sinx在,1)(处的切线方程是y=1.42x(lnx+1)2x,则y2x⒌设.yx⒍设yxlnx,则y1/x.(三)计算题⒈求下列函数的导数y:⑴y(xx3)e x y=(x 3/2+3)e x,y'=3/2x1/2e x+(x3/2+3)e x=(3/2x1/2+x3/2+3)e x1/2+x3/2+3)e x ⑵ycotxx2lnxy'=-csc2x+2xlnx+x⑶yxln2xy'=(2xlnx-x)/ln 2x⑷y c os xx32xy'=[(-sinx+2 x ln2)x3-3x2(cosx+2x)]/x6⑸yln xsin2 xx =12 (2x)sinx(lnxx)cosxx2sinx⑹yx4sinxlnxy'=4x3-cosxlnx-sinx/x2sinxxyx-(sinx+x2)3x ln3]/32x⑺y'=[(cosx+2x)3x3=[cosx+2x-(sinx+x2)ln3]/3x x tanx+e x sec2x+1/x=e x(tanx+sec2x)+1/x⑻ye x tanxlnxy'=e⒉求下列函数的导数y:⑴ye 12 x⑵ylncosx3⑶yxxxy=x 7/8y'=(7/8)x-1/8⑷y3xx⑸ycose x2⑹y2x cosen-1xcosxcosnx-nsin n xsinnx⑺ysin n xcosnxy'=nsin⑻ysin52x2⑼yxsine ⑽yx 2x2 x e⑾yxx ee e x⒊在下列方程中,yy(x)是由方程确定的函数,求y:2y⑴yxy2cose方程对x求导:y'cosx-ysinx=2y'e2yy'=ysinx/(cosx-2e)⑵ycosylnx方程对x求导:y'=y'(-siny)lnx+(1/x)cosyy'=[(1/x)cosy]/(1+sinylnx)⑶2x2xsiny方程对x求导:2siny+y'2xcosy=(2xy-x2y')/y22y')/y2yy'=2(xy–y2siny)/(x2+2xy2cosy)⑷yxlny方程对x求导:y'=1+y'/y,y'=y/(y-1)y=2yy',y'=1/x(2y-e y)⑸lnxe y y2方程对x求导:1/x+y'exsiny+y 'e x cosy ⑹y 21e xsiny 方程对x 求导:2yy '=ey '=exsiny/(2y-e xcosy)yx2xy2⑺eey 3yx 方程对x 求导:y 'e =e-3yy ',y '=e/e+3y ⑻y5x 2y方程对x 求导:y '=5xln5+y '2y ln2,y '=5x ln5/(1-2yln2)⒋求下列函数的微分dy : ⑴ycotxcscx ⑵ yln sin x x⑶ yarcsin1 1 x x ⑷3y1 1 x x⑸ysin 2e x⑹ ytan 3xe⒌求下列函数的二阶导数: ⑴yxlnx ⑵yxsinx ⑶yarctanx⑷ y 2x3 (四)证明题设f (x)是可导的奇函数,试证f(x )是偶函数.证明:由f (x)=-f(-x)求导f '(x)=-f '(-x)(-x)' f '(x)=f '(-x),∴f '(x)是偶函数高等数学基础第三次作业第4章导数的应用(一)单项选择题⒈若函数f(x)满足条件(D ),则存在(a,b),使得 A.在(a,b)内连续 B.在(a,b)内可导 C.在(a,b)内连续且可导D.在[a,b]内连续,在(a,b)内可导 2x⒉函数f(x )x41的单调增加区间是(D ). A.(,2)B.(1,1) C.(2,)D.(2,)2x⒊函数yx45在区间(6,6)内满足(A ). ff (b)f(a) (). baA.先单调下降再单调上升B.单调下降C.先单调上升再单调下降D.单调上升⒋函数f(x )满足f(x)0的点,一定是f(x)的(C ). A.间断点B.极值点 C.驻点D.拐点⒌设f(x)在(a,b)内有连续的二阶导数,(,) x 0ab ,若f(x)满足(C ),则f(x)在x 0取到极小 值.A.f(x 0)0,f(x 0)0B.f(x 0)0,f(x 0)0C.f(x 0)0,f(x 0)0D.f(x 0)0,f(x 0)0⒍设f(x)在(a,b)内有连续的二阶导数,且f(x)0,f(x)0,则f(x)在此区间内是(A ). A.单调减少且是凸的B.单调减少且是凹的C.单调增加且是凸的D.单调增加且是凹的3()2⒎设函数f(x)axaxaxa 在点x1处取得极大值2,则a (). A.1B. 1 3 C.0D.1 3(二)填空题⒈设f(x)在(a,b)内可导,x 0(a,b),且当xx 0时f (x)0,当xx 0时f (x)0,则x 0是 f(x)的极小值点.⒉若函数f(x)在点x 0可导,且x 0是f(x)的极值点,则f(x 0)0.2⒊函数yln(1x)的单调减少区间是(-∞,0).⒋函数 2xf(x)e 的单调增加区间是(0,+∞).⒌若函数f(x)在[a,b]内恒有f(x)0,则f(x)在[a ,b]上的最大值是f(a).⒍函数3 f(x)25x3x 的拐点是x=0. 3bx2⒎若点(1,0)是函数f(x)ax2的拐点,则a ,b . (三)计算题3⒈求函数 2 2y(x1)(x5)的单调区间和极值.解:y '=(x-5) 2 +2(x+1)(x-5)=3(x-1)(x-5)由y '=0求得驻点x=1,5.列表x(-∞,1)1(1,5)5(5,+∞) y '+0—0+y ↑Y max =32↓Y min =0↑(-∞,1)和(5,+∞)为单调增区间,(1,5)为单调减区间,极值为Y max=32,Ymin=0。
最新电大经济数学基础形成性考核册及参考-答-案
经济数学基础形成性考核册及参考答案作业(一)(一)填空题1.___________________sin lim=-→xxx x .答案:0 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:13.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 2 5.设x x x f sin )(=,则__________)2π(=''f .答案:2π- (二)单项选择题 1. 函数212-+-=x x x y 的连续区间是( )答案:DA .),1()1,(+∞⋃-∞B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 下列极限计算正确的是( )答案:B A.1lim=→xx x B.1lim 0=+→xx x C.11sinlim 0=→x x x D.1sin lim =∞→xxx3. 设y x =lg2,则d y =( ).答案:B A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( )是错误的.答案:BA .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微5.当0→x 时,下列变量是无穷小量的是( ). 答案:C A .x2 B .xxsin C .)1ln(x + D .x cos (三)解答题 1.计算极限(1)21123lim 221-=-+-→x x x x (2)218665lim 222=+-+-→x x x x x (3)2111lim 0-=--→x x x (4)3142353lim 22=+++-∞→x x x x x (5)535sin 3sin lim 0=→x x x (6)4)2sin(4lim 22=--→x x x2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在?答案:当1=b ,a 任意时,)(x f 在0=x 处有极限存在; (2)当b a ,为何值时,)(x f 在0=x 处连续. 答案:当1==b a 时,)(x f 在0=x 处连续。
中央广播电视大学-经济数学基础形成性考核册答案
xe − x
)dx
0
∫ ∫ ∫ 答案:
4
(1 +
0
xe−x )dx =
x
4 1
−
4 xde−x =3 − xe−x
0
4 0
+
4 e−xdx = 5 + 5e−4
0
作业三 (一)填空题
⎡1 0 4 − 5⎤
1.设矩阵 A = ⎢⎢3 − 2 3
2
⎥ ⎥
,则
A
的元素
a
23
=
__________________
∫ B. dx = 15 −1
∫ C. π (x 2 + x3 )dx = 0 −π
π
∫ D. sin xdx = 0 −π
答案:D
5. 下列无穷积分中收敛的是(
∫ A. +∞ 1 dx
1x
答案:B
∫ B. +∞ 1 dx
1 x2
(三)解答题
1.计算下列不定积分
).
∫ C. +∞ e xdx 0
+∞
1
=
x→2 x 2 − 6x + 8 x→2 (x − 2)(x − 4) x→2 (x − 4) 2
1− x −1 ( 1− x −1)( 1− x +1)
(3) lim
= lim
x→0
x
x→0
x( 1− x +1)
−x
−1
1
= lim
= lim
=−
x→0 x( 1 − x +1) ( x→0 1 − x +1) 2
= lim
=4
x→2 sin(x − 2) x→2 sin( x − 2)
高等数学基础形成性考核册及答案
高等数学基础第一次作业第1章 函数 第2章 极限与连续 (一)单项选择题⒈下列各函数对中,( C )中的两个函数相等.A. 2)()(x x f =,x x g =)( B. 2)(x x f =,x x g =)(C. 3ln )(x x f =,x x g ln 3)(= D. 1)(+=x x f ,11)(2--=x x x g⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于(C )对称. A. 坐标原点 B. x 轴 C. y 轴 D. x y = ⒊下列函数中为奇函数是( B ).A. )1ln(2x y += B. x x y cos =C. 2xx a a y -+= D. )1ln(x y +=⒋下列函数中为基本初等函数是(C ). A. 1+=x y B. x y -= C. 2xy = D. ⎩⎨⎧≥<-=0,10,1x x y ⒌下列极限存计算不正确的是( D ).A. 12lim 22=+∞→x x x B. 0)1ln(lim 0=+→x x C. 0sin lim=∞→x x x D. 01sin lim =∞→xx x⒍当0→x 时,变量( C )是无穷小量. A.x x sin B. x1C. xx 1sinD. 2)ln(+x ⒎若函数)(x f 在点0x 满足( A ),则)(x f 在点0x 连续。
A. )()(lim 00x f x f x x =→ B. )(x f 在点0x 的某个邻域内有定义C. )()(lim 00x f x f x x =+→ D. )(lim )(lim 0x f x f x x x x -+→→=(二)填空题 ⒈函数)1ln(39)(2x x x x f ++--=的定义域是(3, +∞).⒉已知函数x x x f +=+2)1(,则=)(x f x 2- x .⒊=+∞→xx x)211(lim e 1/ 2 . ⒋若函数⎪⎩⎪⎨⎧≥+<+=0,0,)1()(1x k x x x x f x ,在0=x 处连续,则=k e .⒌函数⎩⎨⎧≤>+=0,sin 0,1x x x x y 的间断点是 x=0 .⒍若A x f x x =→)(lim 0,则当0x x →时,A x f -)(称为 无穷小量 .(三)计算题 ⒈设函数⎩⎨⎧≤>=0,0,e )(x x x x f x 求:)1(,)0(,)2(f f f -.解:f(-2) = - 2,f(0) = 0, f(1) = e ⒉求函数xx y 12lglg -=的定义域. 解:由012>-xx 解得x<0或x>1/2,函数定义域为(-∞,0)∪(1/2,+∞) ⒊在半径为R 的半圆内内接一梯形,梯形的一个底边与半圆的直径重合,另一底边的两个端点在半圆上,试将梯形的面积表示成其高的函数.解:如图梯形面积A=(R+b)h ,其中22h R b -=∴hh R R A )(22-+=3sin x⒋求⒌求⒍求⒎求.⒏求⒐求⒑设函数⎪⎩⎪⎨⎧-<+≤≤->-=1,111,1,)2()(2x x x x x x x f 讨论)(x f 的连续性,并写出其连续区间.解:∴函数在x=1处连续不存在,∴函数在x=-1处不连续2)1()1sin(1lim )1sin(1lim 121-=-++=+--→-→x x x x x x x 33cos 33sin 3lim 3tan lim 00==→→x xx x x x x x x x x x x x x sin )11()11)(11(lim sin 11lim 222020++-+++=-+→→0sin 11lim sin )11(1)1(lim 20220=++=++-+=→→x x x xx x x x x xx x x x x x x x x x )341(lim )343(lim )31(lim +-+=+-+=+-∞→∞→∞→43443)341(])341[(lim ---+∞→=+-+-+=e x x x x 32)4)(1()4)(2(lim 4586lim 4224=----=+-+-→→x x x x x x x x x x 1)(lim 1)21()(lim 121===-=-+→→x f x f x x )1(1)(lim 1f x f x ==→011)(lim 1)(lim 11=+-=≠-=-+-→-→x f x f x x )(lim 1x f x -→高等数学基础第二次作业第3章 导数与微分 (一)单项选择题 ⒈设0)0(=f 且极限x x f x )(lim→存在,则=→xx f x )(lim 0( B ).A. )0(fB. )0(f 'C. )(x f 'D. 0 ⒉设)(x f 在0x 可导,则=--→hx f h x f h 2)()2(lim000(D ).A. )(20x f '-B. )(0x f 'C. )(20x f 'D. )(0x f '- ⒊设xx f e )(=,则=∆-∆+→∆xf x f x )1()1(lim(A ).A. eB. e 2C.e 21 D. e 41 ⒋设)99()2)(1()(---=x x x x x f ,则=')0(f (D ). A. 99 B. 99- C. !99 D. !99- ⒌下列结论中正确的是( C ).A. 若)(x f 在点0x 有极限,则在点0x 可导.B. 若)(x f 在点0x 连续,则在点0x 可导.C. 若)(x f 在点0x 可导,则在点0x 有极限.D. 若)(x f 在点0x 有极限,则在点0x 连续. (二)填空题⒈设函数⎪⎩⎪⎨⎧=≠=0,00,1sin )(2x x xx x f ,则=')0(f 0 .⒉设x xx f e 5e)e (2+=,则=xx f d )(ln d (2/x)lnx+5/x . ⒊曲线1)(+=x x f 在)2,1(处的切线斜率是1/2. ⒋曲线x x f sin )(=在)1,4π(处的切线方程是y=1.⒌设xxy 2=,则='y2x 2x (lnx+1).⒍设x x y ln =,则=''y 1/x .(三)计算题⒈求下列函数的导数y ':⑴x x x y e )3(+= y=(x 3/2+3)e x ,y '=3/2x 1/2e x +(x 3/2+3)e x =(3/2x 1/2+x 3/2+3)e x⑵x x x y ln cot 2+= y '=-csc 2x + 2xlnx +x⑶xx y ln 2= y '=(2xlnx-x)/ln 2x⑷32cos x x y x += y '=[(-sinx+2x ln2)x 3-3x 2(cosx+2x )]/x6⑸xx x y sin ln 2-==⑹x x x y ln sin 4-= y '=4x 3-cosxlnx-sinx/x⑺xx x y 3sin 2+= y '=[(cosx+2x)3x -(sinx+x 2)3x ln3]/32x =[cosx+2x-(sinx+x 2)ln3]/3x⑻x x y x ln tan e += y '=e x tanx+e x sec 2x+1/x = e x (tanx+sec 2x)+1/x221(2)sin (ln )cos sin x x x x x xx---⒉求下列函数的导数y ': ⑴21ex y -=⑵3cos ln x y =⑶x x x y = y=x 7/8 y '=(7/8)x -1/8 ⑷3x x y += ⑸x y e cos 2= ⑹2e cos x y =⑺nx x y n cos sin = y '=nsin n-1xcosxcosnx - nsin n xsin nx ⑻2sin 5x y = ⑼x y 2sin e = ⑽22e x x x y += ⑾xxx y e e e +=⒊在下列方程中,y y x =()是由方程确定的函数,求'y : ⑴y x y 2e cos = 方程对x 求导:y 'cosx-ysinx=2 y 'e 2yy '=ysinx / (cosx-2e 2y )⑵x y y ln cos = 方程对x 求导:y '= y '(-siny)lnx +(1/x)cosyy '=[(1/x)cosy] / (1+sinylnx)⑶yx y x 2sin 2= 方程对x 求导:2siny + y '2xcosy=(2xy-x 2 y ')/y 2y '=2(xy –y 2siny) /(x 2+2xy 2cosy)⑷y x y ln += 方程对x 求导:y '=1+ y '/y , y '=y /(y-1) ⑸2e ln y x y =+ 方程对x 求导:1/x+ y 'e y =2y y ', y '=1/x(2y-e y ) ⑹y y x sin e 12=+ 方程对x 求导:2y y '=e x siny + y ' e x cosyy '= e x siny/(2y- e x cosy)⑺3e e y x y -= 方程对x 求导:y 'e y =e x -3y 2 y ', y '=e x /e y +3y 2 ⑻y x y 25+= 方程对x 求导:y '=5x ln5 + y '2y ln2, y '=5x ln5 /(1-2y ln2) ⒋求下列函数的微分y d : ⑴x x y csc cot += ⑵xxy sin ln =⑶xxy +-=11arcsin ⑷311xxy +-= ⑸x y e sin 2= ⑹3e tan x y =⒌求下列函数的二阶导数: ⑴x x y ln = ⑵x x y sin = ⑶x y arctan = ⑷23x y = (四)证明题设)(x f 是可导的奇函数,试证)(x f '是偶函数. 证明:由 f(x)= - f(-x) 求导f '(x)= - f '(-x)(-x)' f '(x)= f '(-x), ∴f '(x)是偶函数高等数学基础第三次作业第4章 导数的应用 (一)单项选择题⒈若函数)(x f 满足条件(D ),则存在),(b a ∈ξ,使得ab a f b f f --=)()()(ξ.A. 在),(b a 内连续B. 在),(b a 内可导C. 在),(b a 内连续且可导D. 在],[b a 内连续,在),(b a 内可导⒉函数14)(2-+=x x x f 的单调增加区间是(D ).A. )2,(-∞B. )1,1(-C. ),2(∞+D. ),2(∞+- ⒊函数542-+=x x y 在区间)6,6(-内满足(A ).A. 先单调下降再单调上升B. 单调下降C. 先单调上升再单调下降D. 单调上升⒋函数)(x f 满足0)(='x f 的点,一定是)(x f 的(C ). A. 间断点 B. 极值点C. 驻点D. 拐点⒌设)(x f 在),(b a 内有连续的二阶导数,),(0b a x ∈,若)(x f 满足(C ),则)(x f 在0x 取到极小值.A. 0)(,0)(00=''>'x f x fB. 0)(,0)(00=''<'x f x fC. 0)(,0)(00>''='x f x fD. 0)(,0)(00<''='x f x f⒍设)(x f 在),(b a 内有连续的二阶导数,且0)(,0)(<''<'x f x f ,则)(x f 在此区间内是(A ). A. 单调减少且是凸的 B. 单调减少且是凹的 C. 单调增加且是凸的 D. 单调增加且是凹的⒎设函数a ax ax ax x f ---=23)()(在点1=x 处取得极大值2-,则=a ( ).A. 1B.31 C. 0 D. 31-(二)填空题⒈设)(x f 在),(b a 内可导,),(0b a x ∈,且当0x x <时0)(<'x f ,当0x x >时0)(>'x f ,则0x 是)(x f 的 极小值 点.⒉若函数)(x f 在点0x 可导,且0x 是)(x f 的极值点,则=')(0x f 0 . ⒊函数)1ln(2x y +=的单调减少区间是 (-∞,0) .⒋函数2e )(x xf =的单调增加区间是 (0,+∞) .⒌若函数)(x f 在],[b a 内恒有0)(<'x f ,则)(x f 在],[b a 上的最大值是 f(a) . ⒍函数3352)(x x x f -+=的拐点是 x=0 .⒎若点)0,1(是函数2)(23++=bx ax x f 的拐点,则=a ,=b .(三)计算题⒈求函数223)5()1(-+=x x y 的单调区间和极值.解:y '=(x-5)2+2(x+1)(x-5)=3(x-1)(x-5) 由y '=0求得驻点x=1,5. 列表max min ⒉求函数322)2(x x y -=在区间]3,0[内的极值点,并求最大值和最小值. 解:y '=2x-2,驻点x=1是极小值点,在区间[0,3]上最大值为y(3)=6,最小值为y(1)=2。
国开电大《高等数学基础》形考任务参考答案
国开电大《高等数学基础》形考任务参考答案一、选择题1.答案:B 解析:题意为求函数f(f)=f2−4f+3的零点个数。
首先根据一元二次方程的求解公式可得$x=\\frac{-b±\\sqrt{b^2-4ac}}{2a}$,其中f=1,f=−4,f=3。
代入求解得到两个解f=1和f=3,即方程有两个零点,所以选项 B 是正确的。
2.答案:C 解析:题目给出了两个不等式,要求找出满足两个不等式同时成立的f的范围。
首先解不等式2f+ 1>3得到 $x>\\frac{1}{2}$,然后解不等式f2−5f+6> 0可以化简为(f−3)(f−2)>0,根据零点的性质得到f<2或f>3,所以合并两个不等式的解集得到$x>\\frac{1}{2}$ 且f<2或 $x>\\frac{5}{3}$ 且f>3,化简得到 $x>\\frac{5}{3}$ 且f>3,即f>3。
所以选项C 是正确的。
3.答案:A 解析:题目给出了一个反比例函数$y=\\frac{a}{x}+b$,求其中的常数f和f。
根据题意,函数的图像经过点(2,3)和(4,1),代入这两个点的坐标可以得到两个方程:$$ \\begin{cases} 3=\\frac{a}{2}+b \\\\ 1=\\frac{a}{4}+b \\end{cases} $$4.解方程组得到f=−4和f=5,所以选项 A 是正确的。
5.答案:D 解析:根据角度的定义可知,一直线与平面的交角为直角。
所以选项 D 是正确的。
6.答案:B 解析:根据等差数列的通项公式f f=f1+(f−1)f,其中f f为第f项,f1为第一项,f为公差。
根据题意可得f f=3+(f−1)2。
代入f=10可得f10= 3+(10−1)2=21,所以选项 B 是正确的。
二、填空题1.答案:$\\frac{1}{10}$ 解析:根据条件所给出的正方形的性质,可以得到正方形的边长为 10。
【高等数学基础】形成性考核册答案(大专科)
【高等数学基础】形成性考核册答案【高等数学基础】形考作业1答案:第1章 函数第2章 极限与连续(一)单项选择题⒈下列各函数对中,(C )中的两个函数相等.A. 2)()(x x f =,x x g =)(B. 2)(x x f =,x x g =)(C. 3ln )(x x f =,x x g ln 3)(=D. 1)(+=x x f ,11)(2--=x x x g 分析:判断函数相等的两个条件(1)对应法则相同(2)定义域相同A 、2()f x x ==,定义域{}|0x x ≥;x x g =)(,定义域为R定义域不同,所以函数不相等;B 、()f x x ==,x x g =)(对应法则不同,所以函数不相等;C 、3()ln 3ln f x x x ==,定义域为{}|0x x >,x x g ln 3)(=,定义域为{}|0x x >所以两个函数相等D 、1)(+=x x f ,定义域为R ;21()11x g x x x -==+-,定义域为{}|,1x x R x ∈≠ 定义域不同,所以两函数不等。
故选C⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于(C )对称.A. 坐标原点B. x 轴C. y 轴D. x y =分析:奇函数,()()f x f x -=-,关于原点对称偶函数,()()f x f x -=,关于y 轴对称()y f x =与它的反函数()1y f x -=关于y x =对称,奇函数与偶函数的前提是定义域关于原点对称设()()()g x f x f x =+-,则()()()()g x f x f x g x -=-+=所以()()()g x f x f x =+-为偶函数,即图形关于y 轴对称故选C⒊下列函数中为奇函数是(B ).A. )1ln(2x y += B. x x y cos = C. 2xx a a y -+= D. )1ln(x y += 分析:A 、()()()()22ln(1)ln 1y x x x y x -=+-=+=,为偶函数B 、()()()cos cos y x x x x x y x -=--=-=-,为奇函数或者x 为奇函数,cosx 为偶函数,奇偶函数乘积仍为奇函数C 、()()2x xa a y x y x -+-==,所以为偶函数D 、()ln(1)y x x -=-,非奇非偶函数故选B⒋下列函数中为基本初等函数是(C ).A. 1+=x yB. x y -=C. 2x y =D. ⎩⎨⎧≥<-=0,10,1x x y 分析:六种基本初等函数(1) y c =(常值)———常值函数(2) ,y x αα=为常数——幂函数(3) ()0,1x y a a a =>≠———指数函数(4) ()log 0,1a y x a a =>≠———对数函数(5) sin ,cos ,tan ,cot y x y x y x y x ====——三角函数 (6) [][]sin ,1,1,cos ,1,1,tan ,cot y arc x y arc x y arc x y arc x=-=-==——反三角函数分段函数不是基本初等函数,故D 选项不对对照比较选C⒌下列极限存计算不正确的是(D ).A. 12lim 22=+∞→x x x B. 0)1ln(lim 0=+→x x C. 0sin lim =∞→x x x D. 01sin lim =∞→xx x 分析:A 、已知()1lim 00n x n x→∞=> 2222222211lim lim lim 1222101x x x x x x x x x x x →∞→∞→∞====++++ B 、0limln(1)ln(10)0x x →+=+= 初等函数在期定义域内是连续的C 、sin 1limlim sin 0x x x x xx →∞→∞== x →∞时,1x 是无穷小量,sin x 是有界函数, 无穷小量×有界函数仍是无穷小量D 、1sin1lim sin lim 1x x x x x x →∞→∞=,令10,t x x =→→∞,则原式0sin lim 1t t t →== 故选D⒍当0→x 时,变量(C )是无穷小量.A. x x sinB. x1C. xx 1sin D. 2)ln(+x 分析;()lim 0x af x →=,则称()f x 为x a →时的无穷小量 A 、0sin lim 1x x x→=,重要极限 B 、01lim x x→=∞,无穷大量 C 、01lim sin 0x x x →=,无穷小量x ×有界函数1sin x仍为无穷小量 D 、()0limln(2)=ln 0+2ln 2x x →+= 故选C⒎若函数)(x f 在点0x 满足(A ),则)(x f 在点0x 连续。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学基础形考作业1答案:第1章 函数 第2章 极限与连续(一)单项选择题⒈下列各函数对中,(C )中的两个函数相等. A. 2)()(x x f =,x x g =)( B. 2)(x x f =,x x g =)(C. 3ln )(x x f =,x x g ln 3)(= D. 1)(+=x x f ,11)(2--=x x x g⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于(C )对称. A. 坐标原点 B. x 轴 C. y 轴 D. x y = ⒊下列函数中为奇函数是(B ).A. )1ln(2x y +=B. x x y cos =C. 2xxaa y -+= D. )1ln(x y +=⒋下列函数中为基本初等函数是(C ). A. 1+=x y B. x y -=C. 2xy = D. ⎩⎨⎧≥<-=0,10,1x x y⒌下列极限存计算不正确的是(D ). A. 12lim22=+∞→x xx B. 0)1ln(lim 0=+→x xC. 0sin lim=∞→xx x D. 01sinlim =∞→xx x⒍当0→x 时,变量(C )是无穷小量. A.xx sin B.x1C. xx 1sin D. 2)ln(+x⒎若函数)(x f 在点0x 满足(A ),则)(x f 在点0x 连续。
A. )()(lim 00x f x f x x =→ B. )(x f 在点0x 的某个邻域内有定义C. )()(lim 00x f x f x x =+→ D. )(lim )(lim 0x f x f x x x x -+→→=(二)填空题⒈函数)1ln(39)(2x x x x f ++--=的定义域是()+∞,3.⒉已知函数x x x f +=+2)1(,则=)(x fx 2-x .⒊=+∞→xx x)211(lim 21e .⒋若函数⎪⎩⎪⎨⎧≥+<+=0,0,)1()(1x k x x x x f x ,在0=x 处连续,则=k e .⒌函数⎩⎨⎧≤>+=0,sin 0,1x x x x y 的间断点是0=x .⒍若A x f x x =→)(lim 0,则当0x x →时,A x f -)(称为时的无穷小量0x x →。
(三)计算题⒈设函数⎩⎨⎧≤>=0,0,e )(x x x xf x求:)1(,)0(,)2(f f f -.解:()22f -=-,()00f =,()11f e e ==⒉求函数21lgx y x-=的定义域.解:21lg x y x -=有意义,要求21x x x -⎧>⎪⎪⎨⎪≠⎪⎩解得1020x x x ⎧⎪⎪><⎨⎪≠⎪⎩或则定义域为1|02x x x ⎧⎫<>⎨⎬⎩⎭或 ⒊在半径为R 的半圆内内接一梯形,梯形的一个底边与半圆的直径重合,另一底边的两个端点在半圆上,试将梯形的面积表示成其高的函数. 解: D A R O h EB C设梯形ABCD 即为题中要求的梯形,设高为h ,即OE=h ,下底CD =2R 直角三角形AOE 中,利用勾股定理得AE ==则上底=2AE =故((22hS R h R =+=+⒋求xx x 2sin 3sin lim→.解:0sin 3sin 33sin 3333limlimlim sin 2sin 2sin 22222x x x xxxx x x x x xxxx→→→⨯==⨯⨯=133122⨯=⒌求)1sin(1lim21+--→x x x .解:21111(1)(1)111limlimlim2sin(1)sin(1)sin(1)11x x x x x x x x x x x →-→-→---+---====-++++⒍求x x x 3tan lim→.解:000tan 3sin 31sin 311limlimlim 3133cos 33cos 31x x x x x x xxx x x →→→==⨯⨯=⨯⨯=⒎求xx x sin 11lim2-+→.解:21limlimlimsin x x x x→→→-==()0l i ms i n 1111)x x x x→===+⨯⒏求xx x x )31(lim +-∞→.解:1143331111(1)[(1)]1lim ()lim ()limlim 33311(1)[(1)]3xx xx xx x x x x x ex x x ex exx x----→∞→∞→∞→∞--+--=====++++⒐求4586lim224+-+-→x x x x x .解:()()()()2244442682422limlimlim54411413x x x x x x x x x x x x x →→→---+--====-+----⒑设函数⎪⎩⎪⎨⎧-<+≤≤->-=1,111,1,)2()(2x x x x x x x f讨论)(x f 的连续性。
解:分别对分段点1,1x x =-=处讨论连续性 (1)()()()1111lim lim 1lim lim 1110x x x x f x x f x x →-+→-+→--→--==-=+=-+=所以()()11lim lim x x f x f x →-+→--≠,即()f x 在1x =-处不连续(2)()()()()()221111lim lim 2121lim lim 111x x x x f x x f x x f →+→+→-→-=-=-====所以()()()11lim lim 1x x f x f x f →+→-==即()f x 在1x =处连续由(1)(2)得()f x 在除点1x =-外均连续高等数学基础作业2答案:第3章 导数与微分(一)单项选择题⒈设0)0(=f 且极限xx f x )(lim→存在,则=→xx f x )(lim(C ).A. )0(fB. )0(f 'C. )(x f 'D. 0cvx⒉设)(x f 在0x 可导,则=--→hx f h x f h 2)()2(lim000(D ).A. )(20x f '-B. )(0x f 'C. )(20x f 'D. )(0x f '- ⒊设xx f e )(=,则=∆-∆+→∆x f x f x )1()1(lim(A ).A. eB. e 2C.e 21 D.e 41⒋设)99()2)(1()(---=x x x x x f ,则=')0(f (D ). A. 99 B. 99- C. !99 D. !99- ⒌下列结论中正确的是(C ).A. 若)(x f 在点0x 有极限,则在点0x 可导.B. 若)(x f 在点0x 连续,则在点0x 可导.C. 若)(x f 在点0x 可导,则在点0x 有极限.D. 若)(x f 在点0x 有极限,则在点0x 连续.(二)填空题⒈设函数⎪⎩⎪⎨⎧=≠=0,00,1sin)(2x x xx x f ,则=')0(f 0 . ⒉设x x x f e 5e )e (2+=,则=xx f d )(ln d xxx5ln 2+。
⒊曲线1)(+=x x f 在)2,1(处的切线斜率是21=k 。
⒋曲线x x f sin )(=在)1,2π(处的切线方程是1=y 。
⒌设x x y 2=,则='y )ln 1(22x x x +⒍设x x y ln =,则xy 1=''。
(三)计算题⒈求下列函数的导数y ': ⑴x x x y e )3(+=解:()()()'++'+='xxex x e x xy 33 xxe x e x212323)3(++=⑵x x x y ln cot 2+=解:()()()'+'+'='x x x x x y ln ln cot 22x x x x ln 2csc2++-=⑶xxy ln 2=解:()()xx x x x y 222lnln ln'-'='xx x x 2lnln 2-=⑷32cos xx y x+=解:()()()()23332cos 2cosx x x xx y xx'+-'+=' 4)2(cos 3)2ln 2sin (xx x x xx +-+-=⑸xx x y sin ln 2-=解:()()()x x xx x xx y 222sinsin ln sin ln'--'-='xxx x x xx 22sincos )(ln )21(sin ---=⑹x x x y ln sin 4-= 解:()()()'-'-'='x x x x xy ln sin lnsin 4x x xx x ln cos sin 43--= ⑺xxx y 3sin 2+=解:()()()()22233sin 3sinxxxxx xx y '+-'+='xxx x x x x 2233ln 3)(sin )2(cos 3+-+=⑻x x y x ln tan e += 解:()()()'+'+'='x x ex ey xxln tan tan xxe x e x x1costan 2++=⒉求下列函数的导数y ': ⑴xy e=解:()()xxxexxe ey 212121=⨯='='-⑵x y cos ln =解:()x x x xy tan cossin sin cos 1-=-=-='⑶x x x y =解:'⎪⎪⎭⎫⎝⎛='87x y 8187-=x ⑷x y 2sin=解:()x x x x x y 2sin 2cos sin 2sin sin 2=⋅='='⑸2sin x y = 解:x x x x y cos 22cos 2=⋅='⑹2ecos xy =解:()2222sin 2sin xxxxexee ey -='-='⑺nx x y ncos sin =解:()()'+'='nx x nx x y nncos sincos sin )sin(sincos cos sin1nx x n nx x x n nn -=-⑻xy sin 5=解:xx x x y sin sin 5cos 5ln cos 5ln 5=⨯=' ⑼xy cos e =解:()xxxex ey cos cos sinsin -=-='⒊在下列方程中,y y x =()是由方程确定的函数,求'y : ⑴yx y 2ecos =解:y e x y x y y'=-'22sin cos yex x y y 22c o s s i n -='⑵x y y ln cos =解:xy x y y y 1.cos ln .sin +'=' )ln sin 1(cos x y x y y +='⑶yxy x 2sin 2=解:222sin 2.cos 2yy x yx y y y x '-=+' y yyx yx y x y sin 22)cos 2(222-=+' 22c o s 2s i n 22xy xy y y xy y +-='⑷y x y ln +=解:1+'='yy y 1-='y y y⑸2e ln y x y =+ 解:y y y e xy'='+21 )2(1ye y x y -='⑹y y x sin e 12=+解:xxe y y y e y y .sin .cos 2+'=' ye y y e y xxc o s 2s i n -='⑺3e e y x y -=解:y y e y e x y '-='23 23y ee y yx +='⑻y x y 25+=解:2ln 25ln 5yx y y '+=' 2ln 215ln 5y xy -='⒋求下列函数的微分y d :(注:dx y dy '=) ⑴x x y csc cot += 解:x x x y cot csc csc 2--=' d x xx xd y )s i n c o s c o s 1(22--=⑵xx y sin ln =解:='y x xx x x2sincos ln sin 1- dx xxx x xdy 2sincos ln sin 1-=⑶x y 2sin=解:x x y cos sin 2=' xdx x dy cos sin 2= ⑹xy e tan =解:xxe e y ⋅='2sec dx e edx e e dy xxx x22sec sec 33=⋅=⒌求下列函数的二阶导数: ⑴x y = 解:2121-='xy 2323412121---=⎪⎭⎫ ⎝⎛-∙=''x x y⑵xy 3=解:3ln 3x y =' xx y 33ln 3ln 33ln 2⋅=⋅⋅=''⑶x y ln =解:xy 1=' 21xy -=''⑷x x y sin =解:x x x y cos sin +=' ()x x x x x x x y sin cos 2sin cos cos -=-++=''(四)证明题设)(x f 是可导的奇函数,试证)(x f '是偶函数. 证:因为f(x)是奇函数 所以)()(x f x f -=-两边导数得:)()()()1)((x f x f x f x f =-'⇒'-=--' 所以)(x f '是偶函数。