⑥一次函数图象应用
一次函数图像及应用
一次函数图像及应用一、函数图像的定义一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图像。
二、一次函数的图像及性质三、小试身手1、画出函数y=2x-1与y=-0.5x+1的图象2、直线y=2x-3与x轴交点坐标为_______,与y轴交点坐标为_________,•图象经过第________象限,y随x增大而_________.3、分别说出满足下列条件的一次函数的图象过哪几个象限?(1)k>0 b>0 (2)k>0 b<0(3)k<0 b>0 (4)k<0 b<04、在同一直角坐标系中画出下列函数图象,并归纳y=kx+b(k、b是常数,k≠0)中b对函数图象的影响.1.y=x-1 y=x y=x+12.y=-2x+1 y=-2x y=-2x-1练习巩固1、例1 小芳以200米/分的速度起跑后,先匀加速跑5分钟,每分提高速度20米/分,又匀速跑10分钟.试写出这段时间里她跑步速度y(米/分)随跑步时间x(分)变化的函数关系式,并画出图象.2、A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡.从A城往C、D两乡运肥料费用分别为每吨20元和25元;从B城往C、D两乡运肥料费用分别为每吨15元和24元.现C乡需要肥料240吨,D乡需要肥料260吨.怎样调运总运费最少?3、从A、B两水库向甲、乙两地调水,其中甲地需水15万吨,乙地需水13万吨,A、B两水库各可调出水14万吨.从A地到甲地50千米,到乙地30千米;从B地到甲地60千米,到乙地45千米.设计一个调运方案使水的调运量(万吨·千米)最少.4、某单位急需用车,但又不准备买车,他们准备和一个体车主或一国有出租车公司其中一家签让合同.设汽车每月行驶x千米,应付给个体车主的月费用是y 1元,应付给出租车公司的月费用是y2元,y1、y2分别是x之间函数关系如下图所示.每月行驶的路程等于多少时,租两家车的费用相同,是多少元?四、课后习题1.当x <0时,函数y =-2x 的图象在A.第一象限B.第二象限C.第三象限D.第四象限2.直线x y 3-=过点(0,0)和点A.(1,-3)B.(1,3)C.(-1,-3)D.(3,-1)3.函数x y 2=与x y 3-=的共同特点是A.图象经过一、三象限B.图象经过二、四象限C.图象经过原点D.y 随着x 的增大而增大4.函数y =-x 21+1和y =x 21+1的图象交于一点,这点的坐标是A.(1,21) B.(-1,23) C.(1,0) D.(0,1)5.函数x m y )1(-=(1≠m ),y 随着x 的增大而增大,则A.m <0B.m >0C.m <1D.m >19.下面图象中,不可能是关于x 的一次函数y =mx -(m -3)的图象的是10.在同一个直角坐标系中,对于函数①y=-x-1,②y=x+1,③y=-x+1,④y=-2(x+1)的图象,下列说法正确的是A.通过点(-1,0)的是①和③B.交点在y轴上的②和④C.相互平行的是①和③D.关于x轴对称的是②和③32.某公司市场营业员销部的营销人员的个人收入与其每月的销售量成一次函数关系,其图象如图所示.由图中给出的信息可知,营销人员没有销售时的收入是A.310B.300C.290D.28033.如图,OA,BA分别表示甲、乙两名学生运动的一次函数图象,图中s和t分别表示运动路程和时间,根据图象判断快者的速度比慢者的速度每秒快A.2.5米B.2米C.1.5米D.1米34.一游泳池长90米,甲、乙二人分别在游泳池相对两边同时朝另一边游泳,甲的速度是3米/秒,乙的速度是2米/秒,图中的实线和虚线分别为甲、乙与游泳池一边的距离随游泳时间的变化而变化图象.若不计转向时间,则从开始起到3分钟止他们相遇的次数为A.2次B.3次C.4次D.5次。
《一次函数图像的应用》典型例题
《一次函数图像的应用》典型例题例1 某气象研究中心观测一场沙尘暴从发生到结束的全过程。
开始时风速平均每小时增加2千米/时,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米/时。
一段时间,风速保持不变。
当沙尘暴遇到绿色植被区时,其风速平均每小时减少1千米/时,最终停止。
结合风速与时间的图像,回答下列问题:(1)在y 轴( )内填入相应的数值; (2)沙尘暴从发生到结束,共经过多少小时?(3)求出当25 x 时,风速y (千米/时)与时间x (小时)之间的函数关系式。
例 2 某批发商欲将一批海产品由A 地运往B 地.汽车货运公司和铁路货运公司均开办海产品运输业务.已知运输路程为120千米,汽车和火车的速度分别为60千米/时、100千米/时.两货运公司的收费项目及收费标准如下表所示:注:“元/吨·千米”表示每吨货物每千米的运费,“元/吨·小时”表示每吨货物每小时的冷藏费.(1)设该批发商待运的海产品有x (吨),汽车货运公司和铁路货运公司所要收取的费用分别为1y (元)和2y (元),试求1y 与2y 与x 的函数关系式;(2)若该批发商待运的海产品不少于30吨,为节省运费,他应该选择哪个货运公司承担运输业务?例3某市20位下岗职工在近郊承包了50亩土地,这些地可种蔬菜、烟叶或小麦,种这几种农作物每亩所需职工数和产值预测如下表:请你设计一个种植方案,使每亩地都种上农作物,20位职工都有工作,且使农作物预计总产值最多.例4下表所示为装运甲、乙、丙三种蔬菜的重量及利润,某汽车公司计划装运甲、乙、丙三种蔬菜到外地销售(每辆汽车按规定满载,并且每辆汽车只能装一种蔬菜).(1)若用8辆汽车装运乙、丙两种蔬菜11吨到A地销售,问装运乙、丙两种蔬菜的汽车各多少辆?(2)公司计划用20辆汽车装运甲、乙、丙三种蔬菜36吨到B地销售(每种蔬菜不少于一车),如何装运,可使公司获得最大利润?最大利润是多少?例5 我省某水果种植场今年喜获丰收,据估计,可收获荔枝和芒果共200吨.按合同,每吨荔枝售价为人民币0.3万元,每吨芒果售价为人民币0.5万元.现设销售这两种水果的总收入为人民币y万元,荔枝的产量为x吨(0<x<200).(1)请写出y关于x的函数关系式;(2)若估计芒果产量不小于荔枝和芒果总产量的20%,但不大于60%,请求出y值的范围.例6 A市和B市分别有某种库存机器12台和6台,现决定支援C村10台,D村8台.已知从A市调运一台机器到C村和D村的运费分别是400元和800元,从B市调运一台机器到C村和D村的运费分别是300元和500元.(1)设B市运往C村机器x台,求总运费W(元)关于x的函数关系式;(2)若要求总运费不超过9000元,共有几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少?参考答案例1 分析 (1)沙尘暴开始时,风速平均每小时增加2千米,那么4小时后,风速达到8千米,后来的6个小时中,风速每小时增加4千米,那么6个小时风速增加24千米,达到32千米/时,后来风速平均每小时减少1千米,那么已达到32千米/时的沙尘暴要32个小时才平息。
4.4《一次函数图像的应用》 北师大版八年级数学上册课件
想一想
(1).一箱汽油可供摩托车行驶多少千米? (2). 摩托车每行驶100千米消耗多少升? (3). 油箱中的剩余油量小于1升时将自 动报警.行驶多少千米后,摩托车将自动报警?
(1)当 y=0时, x=500,因此一箱汽油可 供摩托车行驶500千米.
(2).x从100增加到200时, y从8减少到6,减少了2, 因此摩托车每行驶100千米消耗2升汽油.
V/万米3
t/天
想一想
(1).干旱持续10天,蓄水量为多少?连续 干旱23天呢?
分析:干旱10天求蓄水量就是已知自变量 t=10求对应的因变量的值-----数
体现在图象上就是找一个点,使点的横坐 标是10,对应在图象上找到此点纵坐标的 值(10,V)--------形
答:持续干旱10天,储水量时1000万 立方米;持续干旱23天,储水量是750 万立方米。
V/万米3
(10,1000) (23,750)
t/天
(2).蓄水量小于400 万立方米时,将发生 严重的干旱 警报.干旱多少天后将发出 干旱警报? 干旱40天后将发出干旱警报
V/万米3
(40,400)
t/天
(3).按照这个规律,预计持续干旱多少天 水库将干涸? 60天后水库将干涸
V/万米3
60 t/天
作业布置
(100,8) (200,6)
(3).当y=1时,x=450,因此行驶了450千米 后,摩托车将自动报警.
(450,1)
如何解答实际情景函数图象的信息?
1:理解横纵坐标分别表示的的实际意义
2:分析已知(看已知的是自变量还是因 变量),通过做x轴或y轴的垂线,在图象 上找到对应的点,由点的横坐标或者纵坐 标的值读出要求的值
《一次函数图像的应用》第二课时教学课件
l2
l1
40
20
-4
-3
-2
-1 O
1
2
3
4
5
6
7
8
9
10 11 12
t /分
课堂小结
你有哪些收获?有什么困惑? 当一个坐标系中出现多个函数 图象时,你怎样处理?
作业布置 习题6.7 1、2
12 14
t /分
(5)当 A 逃到离海岸12海里的公海时,B 将 无法对其进行检查。照此速度, B 能否在 A 逃入公海前将其拦截?
从图中可以看出,l1 与 l2 交点P的纵坐标小于12,
10 8 6 4 2 O 2 4 6 8 10 12 14
s /海里
l2 A
P
l1 B
这说明在 A 逃 入公海前,我 边防快艇 B能 够追上 A。
当销售量为2吨时,销售收入= 2000 元,
y/元
6000
L1 销售收入
5000
4000
3000
2000 1000
x/吨 O
1 2 3 4 5 6
l2 反映了该公司产品的销售成本与销售量的关系, 根据图意填空:
当销售成本=4500元时,销售量= 5 吨;
y/元
6000 5000
l2 销售成本
4000
s /海里
8 6 4 2 O 2 4 6 8 10 12 1415 t
l2 A
l1 B
这表明,15 分钟时 B尚 未追上 A。
/分
(4)如果一直追下去,那么 B 能否追A?
如图延伸l1 、l2 相交于点P。
s /海里
一次函数图象的应用课件
目 录
• 一次函数图象的概述 • 一次函数图象在实际生活中的应用 • 一次函数图象与其他数学知识的结合应用 • 一次函数图象的应用实例分析 • 总结与展望
01
一次函数图象的概述
一次函数图象的定义
01
02
03
一次函数图象
一次函数y=kx+b(k≠0 )的图象是一条直线。
教学方法单一
部分教师在教授一次函数图象时 ,过于注重理论教学,缺乏实际 应用的结合,导致学生难以理解
其实际意义和应用价值。
技术应用不足
现代技术如几何画板、数学软件等 在课堂上的应用不足,限制了学生 对于函数图象动态变化的理解。
学生实践机会少
由于应试教育的影响,学生往往缺 乏实际操作和实践的机会,导致对 一次函数图象的理解停留在理论层 面。
对未来应用的展望与期待
加强技术与教学的结合
期待未来能更多地利用现代技术,使一次函数图象的教学更加生 动、形象,提高学生的学习兴趣和参与度。
注重实际应用与问题解决
希望教师在教学中能更多地引入实际问题,让学生在实际操作中理 解和掌握一次函数图象的应用。
培养学生的创新思维
期待未来的一次函数图象教学能够更加注重培养学生的创新思维和 解决问题的能力,而不仅仅是知识的灌输。
们的位置。
ቤተ መጻሕፍቲ ባይዱ
连线
用直线将这些点连接起 来,形成一次函数的图
象。
验证
根据题目要求或实际应 用需要,验证所绘制的 图象是否符合实际情况
。
02
一次函数图象在实际生活 中的应用
一次函数图象在物理中的应用
总结词
物理现象的数学描述
详细描述
一次函数的函数图像与方程解析解的实际应用
一次函数的函数图像与方程解析解的实际应用一次函数是数学中常见的一种函数类型,它可以表示为y = ax + b的形式,其中a和b为已知值,x和y为自变量和因变量。
在这篇文章中,我们将讨论一次函数的函数图像以及如何使用方程解析解来解决实际应用问题。
一、一次函数的函数图像一次函数的函数图像是一条直线,其斜率确定了直线的倾斜程度,截距则决定了直线与y轴的交点。
根据斜率的正负,可以判断直线是上升还是下降。
下面我们来看几个具体的例子。
1. 实例一:y = 2x + 1这个函数表示了一个斜率为2,截距为1的直线。
根据斜率的正值,我们知道这条直线上升。
当x增加1个单位时,y增加2个单位。
当x减小1个单位时,y减小2个单位。
通过这些关系,我们可以画出该函数的函数图像。
2. 实例二:y = -3x + 2这个函数表示了一个斜率为-3,截距为2的直线。
根据斜率的负值,我们知道这条直线下降。
当x增加1个单位时,y减小3个单位。
当x减小1个单位时,y增加3个单位。
同样地,我们可以通过这些关系画出该函数的函数图像。
通过观察这些例子,我们可以发现直线的倾斜程度(斜率)以及它与y轴的交点(截距)等信息可以从一次函数的解析解中推导出来。
这样,我们可以在解析解的基础上直观地了解一次函数的函数图像。
二、一次函数方程解析解的实际应用一次函数的解析解除了可以用来绘制函数图像之外,还可以应用于解决实际问题。
我们将通过以下两个实际应用问题来说明。
1. 实例一:销售收入问题假设一个公司以每件产品x销售价y的方式进行销售。
已知该公司每个月的固定成本是1000元,每件产品的可变成本是30元。
我们希望找到销售多少件产品时,公司能够实现盈亏平衡。
根据以上信息,我们可以写出一次函数的方程:总收入 = 总成本根据题意,总收入为yx,总成本为1000 + 30x。
将它们相等并整理方程,可得:yx = 1000 + 30x解这个一次方程,我们可以求得x的解析解。
一次函数的应用课件(共31张PPT)
直线
未知数
方程或方程组
3.一次函数的图象与性质.
图象:一次函数y=kx+b(k≠0)的图象是一条 ,通常叫做直线y=kx+b.
性质:对于一次函数y=kx+b,当 时,y随x的 而 ;当 时,y随x的 而 .
(1)完成下面的表格
(2)你能探索L与n之间的函数解析式吗?这个函数是一次函数吗?试写出L与n的函数解析式。
(3)求n=20时L的值。
14
17
20
北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台。假定每台计算机的运费如下表,求
华氏温度y看作x的函数,建立直角坐标系,把表中每一对(x,y)的值作为点的坐标,在直角坐标系中描出表中相应的点,观察这些点是否同在一条直线上.
(2)你能利用(1)中的图象,写出y与x的函数表达式吗?
(3)除了小亮所说的方法外,你能通过分析上表中两个变量间的数量关系,判断它们之间是一次函数关系吗?
(4)你能求出华氏温度为0度(即0˚F )时,摄氏温度是多少度?
10.6 一次函数的应用
1.一次函数图象的画法.
通常过 , 两点画一条 ,就是函数y=kx+b(k≠0)的图象.
2.待定系数法.
先设出表达式中的 ,再根据所给条件,利用 确定这些未知数.这种方法叫待定法.
在例1 的解决过程中,是从现实生活中抽象出数学问题,用数学符号建立函数表达式,表示数学问题中变量之间的数量关系和变化规律.因此函数也是一种重要的数学模型.
梯形个数n
1
2
3
4
5
6
…
所拼得四边形的周长L
一次函数的图象和性质运用
分析:本题y随x变化的规律分 成两段:前5分钟与后10分 钟.写y随x 变化函数关系式 时要分成两部分.画图象时也
要分成两段来画,且要注意各
自变量的取值范围.
我们时,要特别注意自变量 取值范围的划分,既要科 学合理,又要符合实际.
20x 200 解:y=
一次函数图象的应用
Y
X O
试一试: 某手机的电板剩余电y毫安是充满电 y 后使用天数x的一次函数,图象如下 :
毫 安 ①请分别说明A,B,C三个点的坐标含义
②此种手机的电板最大带电是多少毫安?
A(2,600)
B(4,200) C(5,0) x/天
函数的图象是满足函数关系式 所有点 的集合
你能准确画出函数y=12-2x (3<x<6) 的图象?
与通话时间t(分钟)之
y
间的函数关系的图像
· 1)写出y与t之间的函数 4.4
关系式
2.4 A B
c
2)通话2分钟应付通话
费多少元?通话7分钟 呢?
3 5t
小结:
一次函数的图象在日 常生活中大量的存在,通 过观察和应用这些图象 可以帮助我们获取更多 的信息,解决更多的问题.
有遗传、变异等生命特征,【;/yangzhi/ 养殖技术 ;】chǎnɡmiàn?【并重】bìnɡzhònɡ动同等重视:预防和治疗~。 【菜子】càizǐ名①(~儿)蔬菜的种子。【埗】bù同“埠”(多用于地名):深水~(在香港)。微湿的样子:接连下了几天雨,【茶炉】chálú名 烧开水的小火炉或锅炉,【潮位】cháowèi名受潮汐影响而涨落的水位。【岔路】chàlù名分岔的道路:~口|过了石桥, 【不时】bùshí①副时时; 【才力】cáilì名才能;③公路运输和城市公共交通企业的一级管理机构。【车前】chēqián名多年生草本植物, 另外的;【茶卤儿】chálǔr名很浓 的茶汁。用于归还原物或辞谢赠品:所借图书,【玻璃钢】bō?【阐扬】chǎnyánɡ动说明并宣传:~真理。 ②比喻激烈地斗争:与暴风雪~|新旧思 想的大~。 构成形容词:~法|~规则。②动指超过前人:~绝后。 种子叫蓖麻子,③(Bó)名姓。醋味醇厚。【僝】chán[僝僽](chánzhòu) 〈书〉①形憔悴;‖也说不是滋味儿。也说拆字。从中牟利。【蚕沙】cánshā名家蚕的屎,②改变脸色(多指发怒):勃然~。 de〈口〉不是儿戏; 【参建】cānjiàn动参与建造;一般为6—8周。 【残局】cánjú名①棋下到快要结束时的局面(多指象棋)。【拨】(撥)bō①动手脚或棍棒等横着用 力,②青绿色:~草|澄~。【不曾】bùcénɡ副没有2?【标书】biāoshū名写有招标或投标的标准、条件、价格等内容的文书。【逋逃薮】 būtáosǒu〈书〉名逃亡的人躲藏的地方。【编程】biānchénɡ动
一次函数的图象(描点)
一次函数的表示方法
01
02
03
点斜式
通过已知的点$(x_1, y_1)$和斜率$k$,可以表 示为$y-y_1=k(x-x_1)$。
两点式
通过已知的两个点$(x_1, y_1)$和$(x_2, y_2)$,可 以表示为$frac{y-y_1}{xx_1}=frac{y_2-y_1}{x_2x_1}$。
一般式
一次函数的标准形式为 $y=kx+b$,其中$k$和 $b$是常数,且$k neq 0$。
02 一次函数的图象
一次函数图象的形状
线性形状
一次函数的图像是一条直线,这是因为一次函数的一般形式为y=kx+b,其中k 和b为常数,k不为0。
斜率与截距
一次函数的图像有确定的斜率和截距,斜率是k,截距是b。斜率决定了图像的 倾斜程度,截距决定了图像与y轴的交点位置。
实际问题举例
一次函数图象在经济学、物理学、工程学等领域都有广泛的应用。例如,在经济学中, 消费和收入之间的关系可以用一次函数来表示,通过分析这种关系可以了解消费者的消
费习惯和预测未来的消费趋势。
应用价值
一次函数图象能够直观地表示两个变量之间的线性关系,帮助人们更好地理解和分析实 际问题。
对未来研究的展望
一次函数图象可以用来描述物体在恒力作用下的匀速直线运 动,如速度与时间的关系。
弹簧问题
弹簧的伸长量与作用力之间的关系也可以用一次函数来表示 ,通过图象可以直观地分析弹簧的弹力与形变量之间的关系 。
一次函数图象在数学问题中的应用
线性规划
一次函数图象可以用来表示线性规划 问题中的约束条件和目标函数,通过 图象可以直观地分析最优解。
一次函数的图象(描点)
初中数学 一次函数在艺术中的应用有哪些
初中数学一次函数在艺术中的应用有哪些一次函数在艺术中有许多应用,它们可以帮助我们分析和解决与艺术相关的问题。
以下是一次函数在艺术中的一些应用:1. 绘画中的透视关系:一次函数可以用来描述绘画中的透视关系。
在绘画中,透视是指将三维物体表现在二维画面上的技巧。
我们可以使用一次函数来计算不同透视点下的绘画比例,并预测未来的透视效果。
这有助于我们理解绘画技巧、构图原理和空间感知。
2. 摄影中的光学畸变:一次函数可以用来描述摄影中的光学畸变。
在摄影中,光学畸变是指由于光路不同而导致的图像失真现象。
我们可以使用一次函数来计算不同光路下的图像畸变,并预测未来的光学补偿。
这有助于我们理解摄影技术、光学原理和图像处理。
3. 音乐中的节奏变化:一次函数可以用来描述音乐中的节奏变化。
在音乐中,节奏是指音符之间的时间关系。
我们可以使用一次函数来计算不同音符之间的时间间隔,并预测未来的节奏变化。
这有助于我们理解音乐理论、编曲技巧和音乐创作。
4. 影视中的镜头运动:一次函数可以用来描述影视中的镜头运动。
在影视制作中,镜头运动是指摄影机在拍摄时的移动方式。
我们可以使用一次函数来计算不同镜头位置下的拍摄比例,并预测未来的运动轨迹。
这有助于我们理解影视制作、镜头运用和视觉效果。
5. 舞蹈中的动作变化:一次函数可以用来描述舞蹈中的动作变化。
在舞蹈中,动作是指身体在特定节奏下的运动方式。
我们可以使用一次函数来计算不同动作之间的时间间隔,并预测未来的舞蹈效果。
这有助于我们理解舞蹈技巧、身体表达和舞蹈创作。
以上是一次函数在艺术中的一些应用。
一次函数的线性关系使得它在艺术分析中具有广泛的应用,帮助我们理解和解决与艺术相关的问题。
希望以上内容能够帮助你了解一次函数在艺术中的应用。
一次函数图像应用-完整版课件
国家(如美国)的天气预报中使用华氏温度(。F).两
种计量单位之间有如下对应关系:
摄氏x(℃) 10.0 20.0 24.0 30.0 50.0 华氏y(。F ) 49.9 67.9 75.2 86.1 121.8
问1:能否用一次函数刻画这两个变量x和y的关系?
s(千米)
多少时间? (4)吴老师家离元通中学4千米,12
那么在来回途中经过元通中
学是几时几分?
0 0.5
t(小时)
10 10.8
思想 方法 知识
反思是进步的阶梯!
布置作业
必做题:作业本
拓展与创新题: 教科书P164 作业题3,4
实际问题
建
实验获取数据
模
画出图象
判断函数类型
的实际问题
决实际 问寻找数据间的规律得出函数的解析式
题
过
程
吴老师上午7:00从家里出发,开车去实验中学 上班,下午5:00从实验中学返回家里.吴老师离家的 路程s(千米)和所经过的时间t(分)之间的函数关系 如图所示,请根据图象回答下列问题:
(1)吴老师去实验中学途中的速度是多少?
(2)回家途中的速度是多少? (3)吴老师一天在实验中学待了
问2 :求出y(。F)关于x(℃)的函数表达式.
问3 :求摄氏温度为100℃时的华氏温度?
求华氏温度为100。F 的摄氏温度.
问4 :华氏温度的值与摄氏温度的值有可能相同吗?请说明理由.
如何确定两个变量是否构成一次函数关系?
一种常用方法就是利用图象去获得经验公式
这种方法步骤是: (1)通过实验,测量获得数量足够多的两个变量
的对应值。 (2)建立合适的直角坐标系,在坐标系内以各对应
一次函数的图像课件
图像是一条直线,其上每一个点 的坐标 $(x, y)$ 都满足该函数的 解析式。
解析式中参数对图像的影响
$k$ 的影响
当 $k > 0$ 时,图像为上升直线;当 $k < 0$ 时,图像为下降直线。
$b$ 的影响
当 $b > 0$ 时,图像与 $y$ 轴交于 正半轴;当 $b < 0$ 时,图像与 $y$ 轴交于负半轴。
如果将一次函数的x替换 为x+h(h>0),则图 像向左移动h个单位。
如果将一次函数的x替换 为x-h(h>0),则图像
向右移动h个单位。
03 一次函数的应用
一次函数在实际生活中的应用
一次函数在经济学中的应用
一次函数可以用来描述经济活动中的关系,例如成本与产量的关 系、价格与需求的关系等。
一次函数在物理学中的应用
截距
一次函数的截距为b,表示函数图像 与y轴的交点。当b>0时,交点在y轴 的正半轴上;当b<0时,交点在y轴的 负半轴上。
一次函数图像的平移
上平移
下平移
左平移
右平移
如果一次函数的b值增加 (即向上平移),则图 像向上移动相应的距离。
如果一次函数的b值减小 (即向下平移),则图 像向下移动相应的距离。
在物理学中,一次函数可以用来描述线性关系,例如速度与时间的 关系、力与位移的关系等。
一次函数在统计学中的应用
在统计学中,一次函数可以用来拟合数据,例如线性回归分析等。
一次函数在数学题目中的应用
一次函数在代数题中的应用
在代数题目中,一次函数可以用来解决方程和不等式问题,例如求解一元一次方 程、一元一次不等式等。
描点,最后将这些点连接成一条直线。
一次函数的图像应用
一次函数的图像一、一次函数图象与坐标轴交点一次函数)0(≠+=k b kx y 的图象与x 轴的交点为⎪⎭⎫⎝⎛-0,k b ,与y 轴的交点为()b ,0。
1. 在坐标轴中,画出直线y =-2x +4的图像,求直线与坐标轴围成的三角形的面积。
2. 关于x 的一次函数y =k x +k2+1的图像可能是( )3. 已知一次函数y =m x +n -2的图像如图所示,则m 、n 的取值范围是( )A 、.m >0,n <2B 、m >0,n >2C 、m <0,n <2D 、m <0,n >24. 如果一次函数y =4x +b 的图像经过第一、三、四象限,那么b 的取值范围是__。
5. 如果点()b a P ,关于x 轴的对称点,P 在第三象限,那么直线y =a x +b 的图像不经过( )A .第一象限B .第二象限C .第三象限D .第四象限6. 若一次函数3)12(+-=x m y 的图像经过 一、二、四象限,则m的取值范围是 。
7. 若一次函数m x m y 23)12(-+-=的图像经过 一、二、四象限,则m的取值范围是 。
8. 已知关于x 的一次函数y mx n =+的图象如图所示,则2||n m m --可化简为 。
二、一次函数的增减性一次函数)0(≠+=k b kx y ,当0>k 时,y 随x 的增大而增大,或者y 随x 的减小而减小。
(同增同减) 当0<k 时,y 随x 的增大而减小,或者y 随x 的减小而增大。
(一增一减) 特别地,当经过原点时,0=b9. 一次函数y =2x +3中,y 的值随x 值增大而_______。
(填“增大”或“减小”)10. 一次函数y =-2x +3中,y 的值随x 值增大而_______。
(填“增大”或“减小”)11. 已知点),(11y x A ,点()22,y x B 在直线b kx y +=上 (1) 若2121,y y x x >>时,则k 0 (2) 若2121,y y x x ><时,则k 0 12. 点()15y A ,-和点()2,2y B -都在直线n x y +-=21上,则1y 与2y 的关系是( )A 、21y y >B 、21y y <C 、21y y =D 、21y y ≤13. 已知一次函数y = k x + k ,若y 随x 的增大而增大,则它的图像不经过( )A .第一象限B .第二象限C .第三象限D .第四象限14. 已知一次函数y =3x +1,当x 增加1时,y 增加 。
一次函数的图像的应用课件
解二元不等式
将二元不等式转化为解一次不 等式的形式来求解。
一次函数的一些重要公式
1
两点式公式
根据两点坐标来表示一次函数的解析式。
2
点斜式公式
根据过某一点的斜率来表示一次函数的解析式。
3
截距式公式
根据截距和斜率的值来表示一次函数的解析式。
一次函数图像的变换
1 平移
通过改变截距或斜率来实现图像在平面上平移。
一次函数图像的性质
1 单调性
斜率大于0时,函数单调 递增;小于0时,函数单 调递减。
2 交点坐标
两个一次函数的交点坐标 可以通过联立两个函数得 到。
3 平移
可以通过变换截距和斜率 来使得函数图像水平或垂 直地平移。
一次函数在坐标系中的位置
1
左右方向
斜率大于0时向右倾斜;小于0时向左倾斜。
2
上下方向
预算线
表示消费者在一个给定预算内 所能购买的各种物品数量的函 数。
生产函数
将劳动和资本的投入变量与产 出的数量变量联系起来。
营销中的一次函数应用
1 价格弹性
价格弹性表示价格微小变化时需求量的变化。可以用一次函数的斜率来描述。
2 广告效果
广告效果与广告费用之间可能存在一次函数关系,以确定最佳广告费用。
一次函数的特征
斜率
斜率描述了直线的倾斜程度。公式为 Δy/Δx。
截距
截距表示了直线在y轴上的截距值。当x = 0时的纵坐 标。
如何画出一次函数图像
1
找到斜率
2
从截距处开始,沿着x轴移动单位长度,
再移动相应的单位斜率,得到直线上的
第二个点。
3
找到截距
先将x设为0,求出y轴截距。
一次函数的应用及图像
一次函数y=2x-5和y=-x+1
1、先在平面直角坐标系中画出y=2x-5和y=x+1的图象。
这两条直线相交于 一 点,交点坐标是 (2。,-1)
2、解方程组
2x-y=5
x=2
这个方程组的解为:
x+y=1
y=-1
你能得到什么结论?你能说明这一结论的正 确性吗?
1、如图,根据写出方程组
x y 2 0 3x 2 y 1 0
就是解方程组
y x3 y 3x 1
的解。
一次函数y=3x-4和 y 3 x 1的图象之间有何关系? 相交 4
一次函数y=–2x+2,y=–2x+5的图象之间有何关系? 平行
那么,方程组
y 3x 4
y
3 4
x
1
有 1 个解。
y 2x 2
方程组 y 2x 5 有 无 解。
你能从中“悟”出些什么吗?
l2 销售成本
● ●
3000
2000
1000
O 1 23 4 5 6
x/ 吨
你会做吗?试试看
(6)你能得出每吨产品的销价吗? (每吨1000元) (7)销售收入为5000元时,该公司卖出了多少吨产品? (5吨)
共花费了多少成本? (4500元)
y/元
6000
5000
● l1 销售收入
●
l2 销售成本
乙
4
3
甲
2
1
t(秒)
0 1 234
(1)一次函数与二元一次方程组可以相互 转化,从图像到关系式都是完美的统一。
(2)将二元一次方程组转化为两个一次函 数,如果两个一次函数的图象有一个交点,
一次函数的图像的应用
一次函数图象的应用一、教材分析《一次函数图象的应用》是义务教育课程标准冀教2011课标版教科书八年级下册第21章第4节《一次函数应用》的第三课时。
我在函数的应用的教学中发现学生对图像的理解运用极为困难,因此安排了这节课,目的是让学生注重从函数图象中准确获取信息,提高学生识图能力,培养数形结合的意识,从而利用一次函数的图象解决实际问题,发展形象思维能力,提高数学的应用能力。
为后面学习其它函数图像解决问题奠定良好的基础.二、教学目标1. 进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题;2. 在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维;3.在解决实际问题过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识。
4.在现实问题的解决中,使学生初步认识数学与人类生活的密切联系,从而培养学生学习数学的兴趣.教学重点:一次函数图象的应用教学难点:根据图象获取准确的信息,即良好的审题能力和读图能力以及处理和转化条件的能力。
三、教法学法在实际教学中我通过情境教学,使学生主动参与到教学过程当中,经历观察、分析、类比联想、自主探索、合作交流、启发引导、总结概括、拓展运用的教学过程,使学生在具体的情境中辨认、区分和应用,提高了学生运用所学知识解决实际问题的能力和创新能力,从而形成了探索性的教学过程。
四、教学过程:第一环节:联系实际,自然导入请同学们观察生活中函数图像的图片,让学生思考身边函数图像应用的实例,发现函数图像和我们的生活息息相关,从而引入课题.设计意图: 从学生熟悉的生活实例入手,可激起学生的学习热情,加强数学与生活的联系,让学生体会生活离不开数学,函数图像和生活息息相关.从而使学生利用自己的生活经验主动建构知识。
第二环节:回顾反思加深理解1,知识回顾1)若实数a,b满足ab<0,且a<b,则函数y=ax+b的图像可能是()2)已知一次函数y=kx-1,若y随x的增大而增大,则它的图像经过()A 第一、二、三象限B 第一、二、四象限C 第一、三、四象限D 第二、三、四象限2.归纳概括一次函数的图像和性质设计意图:通过简单问题的解决和一次函数知识的概括,加深学生对一次函数图像和性质的理解, 从而形成知识网络,使学生系统掌握一次函数的图象和性质,为后面灵活运用图像奠定基础.第三环节: 实践探索 合作交流1. 某学生早上起床太晚,为避免迟到,不得不跑步到学校,但由于平时不注意锻炼身体,结果跑了一段就累了,不得不走完余下的路程。
一次函数的图像与应用
一次函数的图像与应用一、引言一次函数是数学中常见且重要的一类函数类型。
它的图像呈现出一条直线的特点,具有简洁的数学表达形式和广泛的应用。
本文将分析一次函数的图像特征,并探讨其在实际问题中的应用。
二、一次函数的定义与表达形式一次函数又称为线性函数,其定义域和值域通常为实数集。
一次函数的一般表达形式为:f(x) = ax + b其中,a和b为常数,且a≠0。
函数图像为一条直线,斜率为a,截距为b。
三、一次函数的图像特征1. 斜率的意义一次函数的斜率代表了图像上每单位水平位移对应的垂直位移,即函数的变化率。
当斜率为正值时,图像呈现上升趋势;当斜率为负值时,图像呈现下降趋势;当斜率为零时,图像为水平线。
2. 截距的意义一次函数的截距代表了函数图像与y轴的交点,即当x=0时的函数值。
它反映了一次函数图像在垂直方向上的位置。
3. 变量对函数图像的影响一次函数的图像特征由斜率a和截距b决定。
增大a的绝对值会使图像更陡峭或更平缓,而改变b的值则会上下平移整个图像。
四、一次函数的应用1. 直线运动模型一次函数在直线运动模型中有着广泛的应用。
假设一个物体以固定速度运动,则其位移与时间的关系可以用一次函数表示。
斜率代表了物体的运动速度,截距则代表了物体在起点的位置。
2. 成本与收益分析在商业领域中,一次函数可以用来分析成本与收益之间的关系。
设某产品的生产成本与销售量之间呈现线性变化关系,则一次函数可以描述成本与销售量之间的关系。
商家可以通过分析这个函数来确定最大利润的销售量。
3. 折旧与资产价值在会计领域中,一次函数被用于计算资产的折旧和价值变化。
资产价值随着时间的推移而减少,这种变化可以用一次函数来描述。
斜率表示每年的折旧额,截距代表了初始价值。
4. 温度变化模型一次函数在气象学中也有重要的应用。
温度随着时间的变化通常呈现线性关系。
通过查找一次函数的斜率和截距,我们可以预测未来一段时间内的温度变化趋势。
五、总结一次函数作为一种常见的数学模型,具有简洁的形式和广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识序号:6
一、知识清单全练
1、根据一次函数图象获取信息,主要是图像与两坐标轴的交点,图像上标明的一些点的坐标及函数图像的增减性。
2、一次函数y=kx+b(k≠0)与x轴交于点(__,__),与y轴交于点(__,__)。
3、两个函数图像在一起时,哪个图像在上方,哪个图像对应的函数值就___,图像的_______对应的函数值相等。
4、一次函数图像上的点(x,y)的坐标就是对应的二元一次方程的一个___,反之也成立。
5、两个一次函数的交点(x,y),就是对应二元一次方程组的____,反之也成立。
二、基础闯关全练
3x-y=5
1、若一次函数y=3x-5与y=2x+7的交点P的坐标为(15,38),则方程组的解为___. 2x-y=7
2、在同一直角坐标系内分别作出一次函数y=2x+3与y=2x-3的图像这两个图像______交点 2x-y+3=0
(填”有”或”没有”),由此可知的解的情况是__________.
2x-y-3=0
x=a
3、如果一次函数y=3x+6与y=2x-4的交点坐标为(a,b),则是方程组( )的解
y=b
y-3x=6 B. 3x+6+y=0
A.
2x+y=-4 2x-4-y=0
3x-y=-6 D. 3x-y=6
C.
2x-y-4=0 2x-y=4
5、作出函数y=4x-1的图像,并回答下列问题:
(1) y的值随x值的增大怎样变化?
(2) 图像与x轴的交点坐标是什么?与y轴的交点坐标呢?
(3) 若函数y=-x+m2与y=4x-1的图像交于x轴上同一点,你能求出m的值吗?
(4) 若一个正比例函数的图像与y=4x-1的图像互相平行,请写出此正比例函数解析式,并说明理由.
6、甲骑自行车从A地出发去距A地s千米的B地,每小时行15千米,甲出发两小时后,乙从A地骑摩托车出发去追甲,每小时行45千米,设甲用的时间为t小时.
(1) 分别写出甲,乙所行路程y
甲和y
乙
与甲用的时间t的函数关系式,并在同一直角坐标系
画出它们的图像.
(2) 根据函数图像回答乙在甲到达B地前能否追上甲?
7、图7.6-1中,l
1,l
2
分别是某个一次函数的图像,相交于P点.你认为P点坐标可看作是怎
样的二元一次方程组的解呢?并请求出P点坐标.。