(完整)南昌大学线性代数期末考试试卷及答案,推荐文档

合集下载

(完整版)线性代数期末测试题及其答案.doc

(完整版)线性代数期末测试题及其答案.doc

线性代数期末考试题一、填空题(将正确答案填在题中横线上。

每小题 5 分,共 25 分)1 3 1 1.若0 5 x 0,则__________。

1 2 2x1 x2 x3 02.若齐次线性方程组x1 x2 x3 0 只有零解,则应满足。

x1x2x303.已知矩阵A,B,C (c ij )s n,满足 AC CB ,则 A 与 B 分别是阶矩阵。

4.已知矩阵A为 3 3的矩阵,且| A| 3,则| 2A|。

5.n阶方阵A满足A23A E 0 ,则A1。

二、选择题(每小题 5 分,共 25 分)6.已知二次型 f x12 x22 5x32 2tx1x2 2x1 x3 4x2 x3,当t取何值时,该二次型为正定?()A. 40 B.4 4C. 0 t4 4 1t5t D. t2 5 5 5 51 42 1 2 37.已知矩阵A 0 3 4 , B 0 x 6 ,且 A ~ B ,求x的值()0 4 3 0 0 5A.3B.-2C.5D.-58 .设 A 为 n 阶可逆矩阵,则下述说法不正确的是()A. A0B. A 1 0C.r (A) nD.A 的行向量组线性相关9 .过点( 0, 2, 4)且与两平面x 2z 1和 y 3z 2 的交线平行的直线方程为()1xy 2 z 4A.312xy 2 z 4C.31 2x y2 z 4B.32 2x y2 z 4D.322103 1 .已知矩阵 A, 其特征值为()51A. 12, 2 4 B. C.12,24D.三、解答题(每小题 10 分,共 50 分)1 12,2, 22441 1 00 2 1 3 40 2 1 30 1 1 011.设B, C 0 2 1 且 矩 阵满足关系式0 0 1 1 00 10 0 0 2T X(C B)E,求。

a1 12212. 问 a 取何值时,下列向量组线性相关?111, 2a ,3。

2 1 21 a22x 1 x 2x 3 313.为何值时,线性方程组x 1 x 2x 3 2有唯一解,无解和有无穷多解?当方x 1 x 2x 32程组有无穷多解时求其通解。

《线性代数》期末考试题及详细答案(本科试卷二)

《线性代数》期末考试题及详细答案(本科试卷二)

XXX 学年期末考试试卷《线性代数》期末考试题及详细答案(本科试卷二)一、填空题(将正确答案填在题中横线上。

每小题2分,共10分);1. 若02215131=---x ,则=χ__________。

2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足 。

3.已知矩阵n s ij c C B A ⨯=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。

4.矩阵⎪⎪⎪⎭⎫⎝⎛=323122211211a a a a a a A 的行向量组线性 。

5.n 阶方阵A 满足032=--E A A ,则=-1A 。

二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。

每小题2分,共10分);1. 若行列式D 中每个元素都大于零,则0〉D 。

( )2. 零向量一定可以表示成任意一组向量的线性组合。

( )3. 向量组m a a a ,,, 21中,如果1a 与m a 对应的分量成比例,则向量组sa a a ,,, 21课程代码:适用班级:命题教师:任课教师:线性相关。

( )4. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0100100000010010A ,则A A =-1。

( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。

( )三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。

每小题2分,共10分);1. 设A 为n 阶矩阵,且2=A ,则=TA A ( )。

① n2;② 12-n ; ③ 12+n ; ④ 4;2. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( )。

① s ααα,,, 21中任意两个向量都线性无关;② s ααα,,, 21中存在一个向量不能用其余向量线性表示; ③ s ααα,,, 21中任一个向量都不能用其余向量线性表示; ④ s ααα,,, 21中不含零向量;3. 下列命题中正确的是( )。

线性代数期末考试题及答案

线性代数期末考试题及答案

线性代数期末考试题及答案一、选择题1. 下列哪个不是线性代数的基本概念?A. 矩阵B. 向量C. 函数D. 行列式答案:C. 函数2. 矩阵A的转置记作A^T,则(A^T)^T等于A. AB. -AC. A^TD. 2A答案:A. A3. 对于矩阵A和B,满足AB = BA,则称A和B是A. 相似矩阵B. 对角矩阵C. 线性无关D. 对易矩阵答案:D. 对易矩阵4. 行列式的性质中,不能成立的是A. 行列式交换行B. 行列式某一行加上另一行不变C. 行列式等于数乘其中某一行对应的代数余子式的和D. 行列式的某一行的系数乘以另一行不变答案:D. 行列式的某一行的系数乘以另一行不变5. 给定矩阵A = [3, -1; 4, 2],则A的秩为A. 0B. 1C. 2D. 3答案:C. 2二、填空题1. 给定矩阵A = [2, 1; -3, 5],则A的行列式为______答案:132. 设矩阵A的逆矩阵为A^-1,若AA^-1 = I,其中I是单位矩阵,则A的逆矩阵为______答案:I3. 若矩阵的秩为r,且矩阵的阶数为n,若r < n,则该矩阵为______矩阵答案:奇异三、简答题1. 解释什么是线性相关性和线性无关性?答案:若存在不全为零的数k1, k2,...,kn,使得方程组中的向量k1v1 + k2v2 + ... + knvn = 0成立,则称向量组{v1, v2, ..., vn}线性相关;若该方程仅在k1 = k2 = ... = kn = 0时成立,则称向量组{v1, v2, ..., vn}线性无关。

2. 如何判断一个矩阵是对称矩阵?答案:若矩阵A的转置等于自身,即A^T = A,则称矩阵A是对称矩阵。

四、计算题1. 给定矩阵A = [1, 2; 3, 4],求A的逆矩阵。

答案:A的逆矩阵为1/(-2)[4, -2; -3, 1]2. 求向量v = [1, 2, 3]的模长。

《线性代数、概率统计》期末考试试卷及详细答案

《线性代数、概率统计》期末考试试卷及详细答案
《线性代数、概率论》期末考试试卷答案
一、选择题�每小题后均有代号分别为 A, B, C, D 的被选项, 其中只有一项是正
确的, 将正确一项的代号填在横线上�每小题 2 分�共 40 分��
1�行列式 G 的某一行中所有元素都乘以同一个数 k 得行列式 H�则------------C-------------;
.
(A) �2 ;
(B) �2 ;
(C) �2-�2;
(D) �2+�2;
二、解答题(每小题 8 分�共 48 分)
1�解矩阵方程� X ����11
12����

�� � ��
1 2 1
� 1�� 0� 2 ��
解�
X

�� 1 �2
�� 1
�021���������11
1 2
����
�1

�� 1 �2 �� 1
(4 分) (8 分)
� �1 �1 0 �E � A � 0 � �1 �1 � (� �1)3
0 0 � �1
�3 分�
得 A 的特征值 �1=�2=�3=1。 以�=1�代入 (�E � A)X � 0 �得
�4 分�
�� ���
x2 x3
� �
0 0
�6 分�
4
�1� 其基础解系是 X � ��0�� �
� � ���
是齐次线性方程组
XA=0
的一个基础解系。
�� 3�� �� 2��
∴方程组 XA=B 的通解为
X=k�+�1=
k �� ���
4 5 6
� � ���

� � ���
3 4 5

线性代数期末考试题及答案

线性代数期末考试题及答案

《线性代数》期末考试题及答案一、单项选择题(每小题3分,共24分).1.设行列式1112132122233132331a a a a a a a a a =,则111112132121222331313233234234234a a a a a a a a a a a a --=-( ). A. 6; B. -6; C. 8; D. -8.2.设B A ,都是n 阶矩阵,且0=AB , 则下列一定成立的是( ).A. 0A =或0B =;B. 0A =且0B =;C. 0=A 或0=B ;D. 0=A 且0=B .3.设A ,B 均为n 阶可逆矩阵,则下列各式中不正确...的是( ). A. ()T T T A B A B +=+; B . 111()A B A B ---+=+; C. 111()AB B A ---= ; D. ()T T T AB B A =.4.设12,αα是非齐次线性方程组Ax b =的解,是β对应的齐次方程组0Ax =的解,则Ax b =必有一个解是( ).A .21α+α;B .21α-α;C . 21α+α+β ;D .121122βαα++.5.齐次线性方程组123234 020x x x x x x ++=⎧⎨--=⎩的基础解系所含解向量的个数为( ).A. 1;B. 2;C. 3;D. 4. 6.向量组12,,αα…,s α(2)s ≥线性无关的充分必要条件是( ).A. 12,,αα…,s α都不是零向量;B. 12,,αα…,s α任意两个向量的分量不成比例;C. 12,,αα…,s α每一个向量均不可由其余向量线性表示;D. 12,,αα…,s α至少有一个向量不可由其余向量线性表示. 7.若( ),则A 相似于B .A. A B = ; B . 秩(A )=秩(B );C. A 与B 有相同的特征多项式;D. n 阶矩阵A 与B 有相同的特征值,且n 个特征值各不相同. 8.正定二次型1234(,,,)f x x x x 的矩阵为A ,则( )必成立.A. A 的所有顺序主子式为非负数;B. A 的所有顺序主子式大于零;C. A 的所有特征值为非负数;D. A 的所有特征值互不相同.二、填空题(每小题3分,共18分)1.设3阶矩阵100220333A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,*A 为A 的伴随矩阵,则*A A =_____________.2.1111n⎛⎫⎪⎝⎭=__________________(n 为正整数). 3.设a b A c d ⎛⎫= ⎪⎝⎭,且det()0A ad bc =-≠,则1A -=________________.4.已知4阶方阵A 的秩为2,则秩(*A )=_________________.5.已知向量组123(1,3,1),(0,1,1),(1,4,)a a a k ===线性相关,则k =____________.6.3阶方阵A 的特征值分别为1,-2,3,则1A -的特征值为_________.三、计算题(10分,共44分)1.(7分)计算行列式01231000100001x x a a a a ---2.(7分)设矩阵121348412363A a -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,问a 为何值时,(1) 秩(A )=1; (2) 秩(A )=2.3.(15分)给定向量组12103a -⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭=,21324a ⎛⎫⎪- ⎪ ⎪ ⎪ ⎪⎝⎭=,33021a ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭=,40149a ⎛⎫ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭=,试判断4a 是否为123,,a a a 的线性组合;若是,则求出组合系数4.(15分)λ取何实值时,线性方程组12233414x x x x x x x x λλλλλλλλ-=⎧⎪-=⎪⎨-=⎪⎪-+=⎩有唯一解、无穷多解、无解?在有无穷多解的情况求通解。

线性代数期末考试试题及答案

线性代数期末考试试题及答案

线性代数期末考试试题及答案一、选择题(每题5分,共30分)1. 若矩阵A的秩为r(A),则下列结论正确的是()A. r(A) ≤ n,其中n是矩阵A的列数B. r(A) ≤ m,其中m是矩阵A的行数C. r(A) ≤ min(m, n)D. r(A) = max(m, n)答案:C2. 下列矩阵中,哪一个不是对称矩阵?()A. \(\begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}\)B. \(\begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}\)C. \(\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 &5 \end{pmatrix}\)D. \(\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 &9 \end{pmatrix}\)答案:D3. 若向量组α1, α2, α3线性无关,则向量组()A. α1 + α2, α2 +α3, α3 + α1 线性无关B. α1 - α2, α2 - α3, α3 - α1 线性无关C. α1 + 2α2, 2α2 + 3α3, 3α3 + α1 线性无关D. α1 + α2 + α3, 2α2 + 3α3, 3α3 + α1 线性无关答案:B4. 设矩阵A是n阶可逆矩阵,则下列结论正确的是()A. A的伴随矩阵A也是可逆矩阵B. A的逆矩阵A-1也是可逆矩阵C. A的转置矩阵AT也是可逆矩阵D. A的n次幂An也是可逆矩阵答案:D5. 若行列式D = |A|的值为0,则下列结论正确的是()A. 方程组Ax = b有唯一解B. 方程组Ax = b无解C. 方程组Ax = 0有非零解D. 方程组Ax = b有无穷多解答案:C6. 若矩阵A是正交矩阵,则下列结论正确的是()A. A的行列式值为1B. A的行列式值为-1C. A的转置矩阵AT等于A的逆矩阵A-1D. A的平方等于单位矩阵E答案:CD二、填空题(每题5分,共30分)7. 若矩阵A的行列式值为3,则矩阵A的伴随矩阵A的行列式值为________。

大学线性代数期末考试试卷+答案

大学线性代数期末考试试卷+答案

大学线性代数期末考试题一、填空题(将正确答案填在题中横线上。

每小题2分,共10分)1. 若022150131=---x ,则=χ__________。

2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足 。

3.已知矩阵n s ij c C B A ⨯=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。

4.矩阵⎪⎪⎪⎭⎫⎝⎛=323122211211a a a a a a A 的行向量组线性 。

5.n 阶方阵A 满足032=--E A A ,则=-1A 。

二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。

每小题2分,共10分)1. 若行列式D 中每个元素都大于零,则0〉D 。

( )2. 零向量一定可以表示成任意一组向量的线性组合。

( )3. 向量组m a a a ,,, 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。

( )4. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=010*********0010A ,则A A =-1。

( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。

( )三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。

每小题2分,共10分)1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。

① n2② 12-n③ 12+n ④ 42. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( )。

① s ααα,,, 21中任意两个向量都线性无关 ② s ααα,,, 21中存在一个向量不能用其余向量线性表示 ③ s ααα,,, 21中任一个向量都不能用其余向量线性表示④ s ααα,,, 21中不含零向量 3. 下列命题中正确的是( )。

① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。

线性代数期末考试试题及答案

线性代数期末考试试题及答案

线性代数期末考试试题及答案第一节:选择题1. 下列哪个向量不是矩阵A的特征向量?A. [2, 1, 0]B. [0, 1, 0]C. [1, 1, 1]D. [0, 0, 0]答案:D2. 线性变换T:R^n -> R^m 可逆的充分必要条件是?A. T是一个单射B. T是一个满射C. T是一个双射D. T是一个线性变换答案:C3. 设线性空间V的维数为n,下列哪个陈述是正确的?A. V中的任意n个线性无关的向量都可以作为V的基B. V中的任意n - 1个非零向量都可以扩充为V的基C. V中的任意n个非零向量都可以扩充为V的基D. V中的任意n - 1个非零向量都可以作为V的基答案:A4. 设A和B是n阶方阵,并且AB = 0,则下列哪个陈述是正确的?A. A = 0 或 B = 0B. A = 0 且 B = 0C. A ≠ 0 且 B = 0D. A = 0 且B ≠ 0答案:C第二节:计算题1. 计算矩阵乘法A = [1, 2; 3, 4]B = [5, 6; 7, 8]答案:AB = [19, 22; 43, 50]2. 计算矩阵的逆A = [1, 2; 3, 4]答案:A^(-1) = [-2, 1/2; 3/2, -1/2]3. 计算向量的内积u = [1, 2, 3]v = [4, 5, 6]答案:u ∙ v = 32第三节:证明题证明:对于任意向量x和y,成立下列关系式:(x + y) ∙ (x - y) = x ∙ x - y ∙ y证明:设x = [x1, x2, ..., xn],y = [y1, y2, ..., yn]。

左边:(x + y) ∙ (x - y) = [x1 + y1, x2 + y2, ..., xn + yn] ∙ [x1 - y1, x2 - y2, ..., xn - yn]= (x1 + y1)(x1 - y1) + (x2 + y2)(x2 - y2) + ... + (xn + yn)(xn - yn)= x1^2 - y1^2 + x2^2 - y2^2 + ... + xn^2 - yn^2= (x1^2 + x2^2 + ... + xn^2) - (y1^2 + y2^2 + ... + yn^2)= x ∙ x - y ∙ y右边,由向量的内积定义可得:x ∙ x - y ∙ y = x1^2 + x2^2 + ... + xn^2 - (y1^2 + y2^2 + ... + yn^2)综上,左边等于右边,证毕。

线性代数期末考试试卷+答案.pdf

线性代数期末考试试卷+答案.pdf

一、填空题
1. 5
2.
1
3. s s , n n
4. 相关
5. A 3E
二、判断正误
1. ×
2. √
3. √
4.

5. ×
三、单项选择题
1. ③
2. ③
3. ③ 4.
② 5.

四、计算题
1.
xa b
c
d
a xb c
d
a b xc d
a
b
c xd
1b
1 xb (x a b c d)
1b
1b
xabcd b
求 B。
解 . (A 2E)B A
( A 2E) 1
2 11
2 2 1,
11 1
B (A 2E) 1 A
5 22 4 32 22 3
1 10 0
3.
设B
01 00
1 0, 11
00 0 1
求 。 X (C B)' E,
2134
C
0 0
2 0
1 2
3 1
且矩阵
0002
满足关系式
4. 问 a 取 何 值 时 , 下 列 向 量 组 线 性 相 关 ?
线性代数期末考试试卷 +答案
大学生校园网— 线性代数 综合测试题
×××大学线性代数期末考试题
一、填空题(将正确答案填在题中横线上。每小题
2
分,共 10 分)
1 31
1. 若 0 5 x 0 ,则
12 2
__________。
x1 x 2 x3 0
2.若齐次线性方程组 x1 x2 x3 0 只有零解,则 应
2 11

线性代数期末习题库及答案.docx

线性代数期末习题库及答案.docx

一、计算下列行列式: 1、 3、 5、 7、 《线性代数》补充练习 练习一 行列式2、1 -1 1力- -2 1 0 0 01 -1Z + 1 -1 ?4、-211 Z-1 1 -1 —°10 =二? z + l -11 -10 0 0 -2 11O 10 0-22-1 -1 -1 -12 0-1 -1 A-1 -1 -1 -?6、 0-z A- 1 --1 -1 2-1-1-12-1 -1 -1 2-1k0 1 1 1 1 1 1 =?1 — a a 0 0 00 1 1 … 1 1 -11 — Q a1 0 1 … 1 10 -1 1 — Q a 0 =? 8、D … =11… 1 1-1 1 — Cla1 1 1 … 0 1 0 0 0-1 1 — a111 … 1 0babD 51 0 0 … 0 11 1 0 …0 0 D” =0 1 1 … 0 00 …1 19、 -?10、、若下面的齐次线性方程组有非零解,求2的取值。

兀1 +加3=0 2x l _无 =0 加1 + x 2 =0 x 3 + 2X 4 = 0 三、用克莱姆法则解线性方程组:兀]+ x2+兀 3 =a+b+cax x+ bx2+ cx3=a2 +b2 +c2其中a、b、c为互不相等的常数。

bcx、+ acx2+ abx3=3abc练习二线性方程组一、选择题:(1)设n阶方阵A的秩r<n,则在A的n个行向量中( )(A)必有r个行向量线性无关;(B)任意r个行向量均可构成极大无关组;(C)任意r个行向量均线性无关;(D)任一个行向量均可由其他r个行向量线性表示(2)若向量组a, p, 丫线性无关;a, p, 6线性相关,贝)(A)a必可由B, y, 6线性表示;(B) B必不可由a, y, 6线性表示;(C) 6必可由a, B, 丫线性表示;(D) 6必不可由a, B, 丫线性表示;(3)设有向量组a ]= (1, -1, 2, 4) ,a2= (0, 3, 1, 2) a 3= (3, 0, 7, 14),a 4= (1, -2, 2, 0) ,a 5= (2, 1, 5, 10)则该向量组的极大线性无关组是( )(A) a a 2, a 3(B) a” a 2, a 4(C) a” a 2, a 5 (D) a 1; a 2, a 4, a 5(4)设A为mXn矩阵,齐次线性方程组AX=0仅有零解的充分必要条件是:( )(A)A的列向量线性无关;(B) A的列向量线性相关;(C) A的行向量线性无关;(D) A的行向量线性相关。

线性代数期末考试试题及答案

线性代数期末考试试题及答案

线性代数期末考试试题及答案一、选择题(每题5分,共25分)1.下列哪一个不是线性空间?A. 实数集RB. 矩阵的集合M(n,R)C. 正实数集R+D. 空集答案:C2.下列关于线性变换的叙述,正确的是()A. 线性变换保持向量的长度不变B. 线性变换保持向量的方向不变C. 线性变换保持向量的数量积不变D. 线性变换保持向量的线性组合关系不变答案:D3.若向量组α1,α2,α3线性无关,则向量组()A. 2α1,3α2,4α3 线性相关B. 2α1+3α2,4α3 线性无关C. α1+α2,α2+α3,α3+α1 线性无关D. α1,α1+α2,α1+α2+α3 线性相关答案:C4.设A是3阶矩阵,且|A|=5,则|2A|=()A. 10B. 25C. 50D. 125答案:D5.下列关于线性方程组的叙述,正确的是()A. 如果系数矩阵的秩小于未知数的个数,则方程组一定有解B. 如果系数矩阵的秩等于未知数的个数,则方程组一定有唯一解C. 如果系数矩阵的秩等于增广矩阵的秩,则方程组一定有解D. 如果系数矩阵的秩小于增广矩阵的秩,则方程组一定无解答案:C二、填空题(每题5分,共25分)6.若向量组α1,α2,α3线性无关,则其极大线性无关组所含向量的个数为______。

答案:37.设A是3阶矩阵,且|A|=4,则|A的逆矩阵|=______。

答案:1/48.若线性方程组Ax=b有解,则系数矩阵A的秩r(A)与增广矩阵B的秩r(B)满足关系______。

答案:r(A)=r(B)9.设A是n阶对称矩阵,则A的转置矩阵A^T______。

答案:等于A10.线性空间V的维数等于______。

答案:V中极大线性无关组所含向量的个数三、计算题(每题10分,共30分)11.已知向量组α1=(1,2,3),α2=(4,5,6),α3=(7,8,9),判断向量组是否线性相关,并说明理由。

答案:线性相关。

因为α3=α1+α2,所以向量组线性相关。

线性代数期末试题及答案

线性代数期末试题及答案

线性代数期末试题及答案线性代数一、填空题(每小题2分,共20分)1.如果行列式,则。

2.设,则。

3.设= 。

4.设齐次线性方程组的基础解系含有2个解向量,则。

5.A、B均为5阶矩阵,,则。

6.设,设,则。

7.设为阶可逆矩阵,为的伴随矩阵,若是矩阵的一个特征值,则的一个特征值可表示为。

8.若为正定二次型,则的范围是。

9.设向量,则与的夹角。

10. 若3阶矩阵的特征值分别为1,2,3,则。

二、单项选择(每小题2分,共10分)1.若齐次线性方程组有非零解,则().1或2 . -1或-2 .1或-2 .-1或2.2.已知4阶矩阵的第三列的元素依次为,它们的余子式的值分别为,则().5 .-5 .-3 .33.设A、B均为n阶矩阵,满足,则必有(). ..或 .或4.设是非齐次线性方程组的两个解向量,则下列向量中仍为该方程组解的是()A. B. C. D.5. 若二次型的秩为2,则(). 1 .2 . 3 . 4三、计算题 (每题9分,共63分)1.计算阶行列式2. 设均为3阶矩阵,且满足,若矩阵,求矩阵。

3.已知向量组和;已知可以由线性表示, 且与具有相同的秩,求a ,b 的值。

4. 已知向量组(1)求向量组的秩以及它的一个极大线性无关组;(2)将其余的向量用所求的极大线性无关组线性表示。

5. 已知线性方程组(1)a为何值时方程组有解?(2)当方程组有解时求出它的全部解(用解的结构表示).6. 设矩阵,矩阵由关系式确定,试求7.将二次型化为标准形,并写出相应的可逆线性变换。

四、证明题(7分)已知3阶矩阵,且矩阵的列向量都是下列齐次线性方程组的解,(1)求的值;(2)证明:。

参考答案与评分标准1. 填空题1.-16; 2. 0;3.; 4. 1; 5.-4; 6. ; 7.;8.; 9. ; 10. 24。

二. 单项选择:1.C;2. A;3. D; 4.B; 5. C.三.计算题:1. 4分9分2.3分因为显然可逆 6分则 9分3. 3分即,且 5分那么,则 6分,即 9分4. 4分5分其极大线性无关组可以取为 7分且:, 9分5.当时,线性方程组有解 4分即,特解为, 6分其导出组的一般解为,基础解系为 8分原线性方程组的通解为为任意常数) 9分6. 由,得 2分4分7分9分7.= 2分= 4分令 6分即作线性变换 8分可将二次型化成标准形 9分四.证明题:因为,所以齐次线性方程组有非零解,故其方程组的系数行列式,所以 3分(2),,因此齐次线性方程组的基础解系所含解的个数为3-2=1,故,因而。

(完整版),大一线性代数期末试题及答案,推荐文档

(完整版),大一线性代数期末试题及答案,推荐文档

【 】
A. a1 a2 0 b2 b3
B. a1 a2 0 b1 b2
C. a1 a2 a3 b1 b2 b3
9.方程组
2x1 x2 x3 1 x1 2x2 x3 1
3 x1 3x2 2x3 a 1
有解的充分必要的条件是
D. a1 a3 0 b1 b2
【 】
A. a=-3
25. -2 4
0
4 0 1
19. 16 23. 1、2、3
20. 2
三、计算题(每小题 6 分,共 30 分)
0345
345
3 4 1 0
26. D
3 2 2 - 2 …………4 分 96. …………8 分
0 2 2 2
69 2
0 692
27. 解:由于 A2 AB E ,因此 AB A2 E ,又 A 1 0 ,故 A 可逆, ……2 分
101
101 002
a1 (1, 0,1), a2 (1,1, 0), a3 (0,1,1) 为 R3 的一组基,…………4 分
又设
x
x11
x2 2
x3 3
,得线性方程组
x1
x2
x2 x3
2 2
《线性代数》试卷第 6页x1共7x3页 2
解之得向量 x (2, 2, 2) 在该组基下的坐标为 x (1,1,1) 。…………8 分
6 -2 7 2
1 1 1
26.设 A
0
1
1 ,且 A2 AB E ,其中 E 是三阶单位矩阵,求矩阵 B。
0 0 1
27.a
取何值时,方程组 4x1
x1 2x2 7x2 x3
3 10 有解?在有解时求出方程组的通解。

线性代数期末考试题及答案

线性代数期末考试题及答案

线性代数期末考试题及答案一、选择题(每题4分,共20分)1. 设矩阵A为3阶方阵,且|A|=2,则矩阵A的逆矩阵的行列式为:A. 1/2B. 1/4C. 2D. 4答案:B2. 向量α=(1,2,3)和向量β=(4,5,6),则向量α和向量β的点积为:A. 32B. 22C. 14D. 0答案:A3. 设A为3×3矩阵,且A的秩为2,则A的行向量线性相关,下列说法正确的是:A. 正确B. 错误答案:A4. 若A为n阶方阵,且A^2=0,则A的秩为:A. nB. n-1C. 0D. 不确定答案:C5. 设A为3阶方阵,且A的特征值为1,2,3,则矩阵A的迹为:A. 6B. 1C. 2D. 3答案:A二、填空题(每题5分,共30分)1. 设矩阵A=\[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\],则矩阵A的转置为\[\begin{bmatrix}1 & 3 \\ 2 & 4\end{bmatrix}\]。

答案:\[\begin{bmatrix}1 & 3 \\ 2 & 4\end{bmatrix}\]2. 设向量α=(2,3),向量β=(4,6),则向量α和向量β共线,其比例系数为2。

答案:23. 若矩阵A=\[\begin{bmatrix}1 & 1 \\ 2 & 2\end{bmatrix}\],则矩阵A的行列式为2。

答案:24. 设矩阵B=\[\begin{bmatrix}0 & 1 \\ -1 & 0\end{bmatrix}\],则矩阵B的逆矩阵为\[\begin{bmatrix}0 & -1 \\ 1 &0\end{bmatrix}\]。

答案:\[\begin{bmatrix}0 & -1 \\ 1 & 0\end{bmatrix}\]5. 设矩阵C=\[\begin{bmatrix}1 & 0 \\ 0 & 2\end{bmatrix}\],则矩阵C的特征值为1和2。

线性代数期末试卷及详细答案

线性代数期末试卷及详细答案

(A )A=E
(B ) A 相似于 E ( C) A2 E
( D) A 合同于 E
8、若 1, 2, 3 , 4 是线性方程组 AX O 的基础解系,则 1 + 2 + 3 + 4 是 AX O 的
(A )解向量
( B)基础解系
( C )通解;
( D) A 的行向量;
9、 1 , 2 都是 n 阶矩阵 A 的特征值, 1 2 ,且 X 1 和 X 2 分别是对应于 1 和 2 的特征
准型,并求出正交变换。 四、证明题( 7 分)
设 A 为 m× n 矩阵, B 为 n 阶矩阵,已知 R(A) n
证明:若 AB=O ,则 B=O
《线性代数》期末考试题 A 题参考答案与评分标准
填空题
1、 -10;
2、 81;
3、
4,
6,
12;
1
4、
A
3E ;
2
5、 5;
二、单项选择题 ( 每小题 2 分,共 20 分)
填空题 (将正确答案填在题中横线上。每小题 2 分,共 10 分)
345
1、设 D1 = 3 1
5 , D2= 5
2
2
1 0
0 ,则 D = D1 O
0
O
= _____________。
D2
2、四阶方阵
A、B ,已知
1 A=
,且 B= 2A -1
16
1
2A ,则 B =_____________ 。
1b1
002
求 a,b 6、齐次线性方程组
2 x1 x2 3x3 0 x1 3x2 4 x3 0
x1 2 x2 ax 0

2020-2021学年第一学期线性代数期末考试卷(含答案)

2020-2021学年第一学期线性代数期末考试卷(含答案)

《线性代数》期末考试卷(2020—2021学年第一学期)一、 单项选择题(每题3分,共18分)1.设A 、B 为n 阶方阵,当( )时,22()()A B A B A B +-=-不成立。

A . A E = B. ,AB 为任意矩阵C . AB BA =D .A B = 2.下列命题正确的是 ( )。

A .如果有全为零的数12,,,n k k k 使得11220n n k k k ααα+++=,则12,,,n ααα线性无关 B. 向量组12,,,n ααα,若其中有一个向量可由该向量组线性表示,则12,,,n ααα线性相关C .向量组12,,,n ααα的一个部分组线性相关,则原向量组线性相关D .向量组12,,,n ααα线性相关,则每一个向量都可由其余向量线性表示3.若方程13213602214x x xx -+-=---,则x =( )。

A. 2-或3B.3-或2C.2-或3-D.2或3 4.设A 是n 阶可逆矩阵,则()**A =( )。

A.n A EB. AC. nA A D. 2n AA -5.设A 为m n ⨯矩阵,则n 元齐次方程组0Ax =有非零解的充分必要条件是( )。

A. A 的行向量组线性相关 B. A 的列向量组线性相关 C. A 的行向量组线性无关 D. A 的列向量组线性无关6.下列( )是初等矩阵。

A.100002⎛⎫ ⎪⎝⎭B. 100010011⎛⎫ ⎪ ⎪ ⎪⎝⎭C. 011101001-⎛⎫ ⎪- ⎪ ⎪⎝⎭D. 010002100⎛⎫⎪- ⎪ ⎪⎝⎭二、 填空题(每题3分,共24分)1. 排列975824361的逆序数为__________。

2. 行列式222111ab c a b c =__________。

3. 设()33ijA a ⨯=,且2A =-,则22112112221323212122222323()()a A a A a A a A a A a A ++++++ 2312132223323()a A a A a A ++=__________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南昌大学2007~2008学年第二学期期末考试试卷
南昌大学07~08学年第二学期线性代数期末考试(A 卷)评分标准
一、1_________
3-;
2 1234
___________________________
0a a
a a +++=;
3
______
;4 ______1-;5
____________________
22
t -<<。

二、1(B ); 2(C ); 3(D ); 4(A ); 5(A )。


()1 203042302A B ⎡⎤⎢⎥+=⎢⎥⎢⎥⎣⎦; 003000300A B ⎡⎤
⎢⎥-=⎢⎥
⎢⎥-⎣⎦
--------2分 ()()906600609A B A B -⎡⎤
⎢⎥+-=-⎢⎥
⎢⎥-⎣⎦
------------------4分 2106043001A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦; 2100343601B ⎡⎤
⎢⎥=⎢⎥
⎢⎥⎣⎦ --------8分 22006300600A B ⎡⎤
⎢⎥-=-⎢⎥
⎢⎥-⎣⎦
------------------9分 四、()1令()1
2
3
4
,,,A αααα''''=并对矩阵A 作初等行变换
1151115
111230
2743181027413970
4148A ----⎡⎤⎡⎤
⎢⎥⎢⎥--⎢
⎥⎢⎥=→→⎢⎥⎢⎥
--⎢⎥⎢⎥
--⎣⎦⎣⎦ --------3分 31
0111512
027470122
0000000000000000⎡⎤⎢⎥
--⎡⎤⎢
⎥⎢⎥-⎢⎥⎢
⎥-→→⎢⎥⎢⎥⎢⎥⎢⎥⎢
⎥⎣⎦⎢⎥⎣⎦
--------6分
则1α,2α为该向量组的一个最大无关组。

--------7分
()2 31237
22
ααα=- ------------------9分
4122ααα=+ ------------------11分
五、方法(一)
1A =-Q ------------------3分 1121
31112223213233311A A A A A A
A A A A
A A A -⎡⎤
⎢⎥∴=
*=⎢⎥⎢⎥⎣⎦
--------------5分 1
431
431
531531
6
4164---⎡⎤⎡⎤⎢⎥⎢⎥=--=--⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦
--------------11分 方法(二)
223
100110010110
010*********
001223100-⎡⎤⎡⎤
⎢⎥⎢⎥-→-⎢⎥⎢⎥
⎢⎥⎢⎥-⎣⎦⎣⎦
Q --------2分 110010011011043120-⎡⎤⎢⎥→⎢⎥⎢⎥-⎣⎦ 110010011011001164-⎡⎤
⎢⎥→⎢⎥
⎢⎥---⎣⎦ --------6分 110010100143010153010153001164001164---⎡⎤⎡⎤
⎢⎥⎢⎥→--→--⎢⎥⎢⎥
⎢⎥⎢⎥--⎣⎦⎣⎦ --------10分 1143153164A ---⎡⎤
⎢⎥∴=--⎢⎥
⎢⎥-⎣⎦
-------------------11分 六、对方程组的增广矩阵作初等行变换,得:
[]1
212012120,2
11110515131210515A b λλ----⎡⎤⎡⎤
⎢⎥⎢⎥=--→-⎢⎥⎢⎥
⎢⎥⎢⎥---⎣⎦⎣⎦ --------2分 1
21200
51510
001λ--⎡⎤⎢⎥→-⎢⎥⎢⎥-⎣⎦
-------------------4分 由此可见:
()1当1λ≠时, ()2R A =,[](),3R A b =
此时原方程组无解。

-------------------5分 ()2当1λ=时,()[](),24R A R A b ==<(未知量的个数) 此时原方程组有无穷多个解。

-------------------6分
当1λ=时,阶梯形矩阵为:1212
0130310515
1051510000
000000---⎡⎤⎡⎤
⎢⎥⎢⎥-→-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦
----7分
1010η*⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭; 13150ξ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭, 230
51ξ-⎛⎫ ⎪ ⎪= ⎪- ⎪ ⎪⎝⎭
-------------------10分
一般解是:1122x k k ηξξ*=++(12,k k 为任意实数) ---------11分
七、1
2112
1
1
5
3
E A λλλλ----=
-+--=()()()2110λλλ-+-= ------2分
解得特征值为:12λ=,21λ=,31λ=- ---------3分 对应于12,λ=根据()0E A X λ-=,有
123123123204050x x x x x x x x x --=⎧⎪-++=⎨⎪--=⎩,即1323
30x x x x x
=⎧⎪
=⎨⎪=⎩ 取31x =,则易求得121,0x x ==。

得基础解系为()1,0,1',
∴A 的属于特征值12λ=的全部特征向量为()11,0,1k ',
(其中1k 为任意非零常数) ---------6分 对应于21,λ=根据()0E A X λ-=,有
23123
1232030520x x x x x x x x --=⎧⎪-++=⎨⎪--=⎩,即12
223
22x x x x x x
=⎧⎪=⎨⎪=-⎩ 取21x =,则易求得131,2x x ==-。

得基础解系为()1,1,2'-
∴A 的属于特征值21λ=的全部特征向量为()21,1,2k '-
(其中2k 为任意非零常数) ---------9分 对应于31,λ=-根据()0E A X λ-=,有
1231231
232200540x x x x x x x x x ---=⎧⎪-++=⎨⎪--=⎩,即13
23331434x x x x x x ⎧
=⎪⎪

=-⎨⎪
=⎪⎪⎩
取34x =,则易求得131,3x x ==-。

得基础解系为()1,3,4'-
∴A 的属于特征值31λ=-的全部特征向量为()31,3,4k '-
(其中3k 为任意非零常数) ---------12分
八、 λλλλλλ
λ
第 11 页 共 11页 Q A 与B 相似,∴E A E B λλ-=- ---------4分 当10λ=时,有()20E A λαβ-=-=, 即0αβ-= ---------()1 ---------5分 当21λ=时,有20E A λαβ-=-=, 即0αβ= ---------()2 ---------6分 当32λ=时,有()20E A λαβ-=-+=, 即0αβ+= ---------()3 ---------7分 由()1、()2、()3知:0αβ== ---------9分 九、由B E AB =+知()E A B E -= ---------2分
从而E A -可逆,()1B E A -=- ---------3分 由C A CA =+知()C E A A -=,()1
C A E A -=- ---------5分 从而()()11B C E A A E A ---=--- ()()1E A E A E -=--= ---------7分。

相关文档
最新文档