高三数学第二轮专题讲座复习:等差数列、等比数列性质的灵活运用
2020版高三数学二轮复习(全国理)讲义:专题四 第一讲等差数列、等比数列
(2)求Sn.并求Sn的最小值.
[解析](1)设等差数列{an}的公差为d.由题意得3a1+3d=-15.
由a1=-7得d=2.
所以{an}的通项公式为an=2n-9.
(2)由(1)得Sn=n2-8n=(n-4)2-16.
所以当n=4时.Sn取得最小值.最小值为-16.
例1 (1)已知等比数列{an}的前n项和为Sn.a1+a3=30.S4=120.设bn=1+log3an.那么数列{bn}的前15项和为( B )
6.(20xx·全国卷Ⅰ.14)记Sn为数列 的前n项和.若Sn=2an+1.则S6=-63..
[解析]依题意. 作差得an+1=2an.
所以数列{an}是公比为2的等比数列.
又因为a1=S1=2a1+1.
所以a1=-1.所以an=-2n-1.
所以S6= =-63.
7.(20xx·全国卷Ⅱ.16)记Sn为等差数列{an}的前n项和.已知a1=-7.S3=-15.
A.1B.2
C.4D.8
[解析]设{an}的公差为d.则由
得
解得d=4.
故选C.
4.(20xx·全国卷Ⅲ.9)等差数列{an}的首项为1.公差不为0.若a2.a3.a6成等比数列.则{an}的前6项和为( A )
A.-24B.-3
C.3D.8
[解析]由已知条件可得a1=1.d≠0.
由a =a2a6可得(1+2d)2=(1+d)(1+5d).
(3)注意整体思想.如在与等比数列前n项和有关的计算中.两式相除就是常用的计算方法.整体运算可以有效简化运算.
G
1.(20xx·邵阳模拟)等比数列{an}的前n项和为Sn.已知a2a3=2a1.且a4与2a7的等差中项为 .则S5=( B )
2023年高考数学二轮复习第一部分专题攻略专题三数列第一讲等差数列与等比数列
专题三 数列第一讲 等差数列与等比数列——小题备考常考常用结论 1.等差数列(1)通项公式:a n =a 1+(n -1)d ; (2)求和公式:S n =n (a 1+a n )2=na 1+n (n−1)2d ;(3)性质:①若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m +a n =a p +a q ; ②a n =a m +(n -m)d ;③S m ,S 2m -S m ,S 3m -S 2m ,…成等差数列. 2.等比数列(1)通项公式:a n =a 1q n -1(q ≠0); (2)求和公式:q =1,S n =na 1;q ≠1,S n =a 1(1−q n )1−q=a 1−a n q 1−q;(3)性质:①若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m ·a n =a p ·a q ;②a n =a m ·q n -m ;③S m ,S 2m -S m ,S 3m -S 2m ,…(S m ≠0)成等比数列.微专题1 等差数列与等比数列的基本量计算保分题1.[2022·河北石家庄二模]等差数列{a n }的前n 项和记为S n ,若a 2+a 2 021=6,则S 2 022=( )A .3 033B .4 044C .6 066D .8 0882.[2022·辽宁沈阳三模]在等比数列{a n }中,a 2,a 8为方程x 2-4x +π=0的两根,则a 3a 5a 7的值为( )A .π√πB .-π√πC .±π√πD .π33.[2022·全国乙卷]已知等比数列{a n }的前3项和为168,a 2-a 5=42,则a 6=( ) A .14 B .12 C .6D .3提分题例1 (1)[2022·江苏盐城三模]已知数列{a n},{b n}均为等差数列,且a1=25,b1=75,a2+b2=120,则a37+b37的值为()A.760 B.820C.780 D.860(2)[2022·广东佛山三模]已知公比为q的等比数列{a n}的前n项和S n=c+2·q n,n∈N*,且S3=14,则a4=()A.48B.32 C.16D.8听课笔记:技法领悟1.等差、等比数列基本运算的关注点(1)基本量:在等差或等比数列中,首项a1和公差d(公比q)是两个基本元素;(2)解题思路:①设基本量a1和d(q);②列、解方程(组);把条件转化为关于a1和d(q)的方程(组),然后求解,注意整体计算,减少计算量.2.等差、等比数列性质问题的求解策略(1)解决此类问题的关键是抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解.(2)应牢固掌握等差、等比数列的性质,特别是等差数列中“若m+n=p+q,则a m+a n =a p+a q”这一性质与求和公式S n=n(a1+a n)2的综合应用.巩固训练11.[2022·河北邯郸二模]在我国古代著作《九章算术》中,有这样一个问题:“今有五人分五钱,令上二人与下三人等,问各得几何?”意思是有五个人分五钱,且得钱最多的两个人的钱数之和与另外三个人的钱数之和相等,问每个人分别分得多少钱?若已知这五人分得的钱数从多到少成等差数列,则这个等差数列的公差d=()A.-16B.-15C.-14D.-132.[2022·山东淄博一模]已知等比数列{a n },其前n 项和为S n .若a 2=4,S 3=14,则a 3=________.微专题2 等差数列与等比数列的综合保分题1.[2022·辽宁沈阳一模]已知等差数列{a n }的公差为2,且a 2,a 3,a 5成等比数列,则{a n }的前n 项和S n =( )A .n(n -2)B .n(n -1)C .n(n +1)D .n(n +2) 2.各项均为正数的等比数列{a n }的前4项和为15,4a 1,2a 3,a 5成等差数列,则a 1=( ) A .5√2-5 B .5√2+5 C .5√2 D .53.已知正项等比数列{a n }的前n 项和为S n ,若S 3=4,S 9=19,则S 6,S 9的等差中项为________.提分题例2 (1)[2022·山东日照三模]在公差不为0的等差数列{a n }中,a 1,a 2,a k 1,a k 2,a k 3成公比为3的等比数列,则k 3=( )A .14B .34C .41D .86(2)[2022·山东潍坊三模](多选)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,则下列结论正确的是( )A .数列{Snn }为等差数列B .对任意正整数n ,b +n 2b n+22 ≥2b n +12 C .数列{S 2n +2-S 2n }一定是等差数列 D .数列{T 2n +2-T 2n }一定是等比数列 听课笔记:技法领悟等差、等比数列综合问题的求解策略对于等差数列与等比数列交汇的问题,要从两个数列的特征入手,理清它们的关系,常用“基本量法”求解,但有时灵活地运用等差中项、等比中项等性质,可使运算简便.巩固训练21.已知等比数列{a n }的前n 项和为S n ,且a 2,2a 5,3a 8成等差数列,则S6S 3=( )A .1或43B .1或13C .2或43D .13或432.[2022·湖北荆州三模](多选)等差数列{a n }的前项n 和为S n ,数列{b n }为等比数列,则下列说法正确的选项有 ( )A .数列{2a n }一定是等比数列B .数列{b a n }一定是等比数列C .数列{Snn }一定是等差数列D .数列{b n +b n +1}一定是等比数列微专题3 数列的递推保分题1.[2022·广东汕头三模]已知数列{a n }中,a 1=-14,当n>1时,a n =1-1a n−1,则a 2 022=( )A .-14 B .45 C .5 D .-45 2.数列{a n }中,若a 1=2,a n +1=2a n a n +2,则a 7=( )A .18 B .17 C .27 D .143.[2022·山东泰安三模]已知数列{a n }满足:对任意的m ,n ∈N *,都有a m a n =a m +n ,且a 2=3,则a 20=( )A .320B .315C .310D .35提分题 例3 (1)[2022·湖南雅礼中学二模](多选)著名的“河内塔”问题中,地面直立着三根柱子,在1号柱上从上至下、从小到大套着n 个中心带孔的圆盘.将一个柱子最上方的一个圆盘移动到另一个柱子,且保持每个柱子上较大的圆盘总在较小的圆盘下面,视为一次操作.设将n 个圆盘全部从1号柱子移动到3号柱子的最少操作数为a n ,则( )A .a 2=3B .a 3=8C .a n +1=2a n +nD .a n =2n -1(2)设{a n }是首项为1的正项数列,且(n +1)a n+12-na n 2+a n +1a n =0(n =1,2,3,…),则它的通项公式是a 100=( )A .100B .1100C .101D .1101听课笔记:技法领悟1.通过验证或者推理得出数列的周期性后求解.2.根据已知递推关系式,变形后构造出等差数列或等比数列,再根据等差数列或等比数列的知识求解.3.三种简单的递推数列:a n +1-a n =f(n),a n+1a n=f(n),a n +1=pa n +q(p ≠0,1,q ≠0),第一个使用累加的方法,第二个使用累乘的方法,第三个可以使用待定系数法化为等比数列(设a n +1+λ=p(a n +λ),展开比较系数得出λ).巩固训练3 1.南宋数学家杨辉所著的《详解九章算法·商功》中出现了如图所示的形状,后人称为“三角垛”.“三角垛”的最上层(即第一层)有1个球,第二层有3个球,第三层有6个球,…,设“三角垛”从第一层到第n层的各层的球数构成一个数列{a n},则() A.a5-a4=4 B.a100=5 000C.2a n+1=a n+a n+2D.a n+1-a n=n+12.[2022·福建漳州二模]已知S n是数列{a n}的前n项和,a1=1,a2=2,a3=3,记b n=a n+a n+1+a n+2且b n+1-b n=2,则S31=()A.171 B.278 C.351 D.395第一讲等差数列与等比数列微专题1等差数列与等比数列的基本量计算保分题=1 011×6 1.解析:由等差数列{a n}知,a2+a2 021=a1+a2 022=6,所以S2 022=2 022(a1+a2 022)2=6 066.答案:C2.解析:在等比数列{a n}中,因为a2,a8为方程x2-4x+π=0的两根,所以a2a8=π=a52,所以a5=±√π,所以a3a5a7=a53=±π√π.故选C.答案:C3.解析:设等比数列{a n }的公比为q.由题意知,{a 2q+a 2+a 2q =168,a 2−a 2q 3=42.两式相除,得1+q+q 2q (1−q 3)=4,解得q =12.代入a 2-a 2q 3=42,得a 2=48,所以a 6=a 2q 4=3.故选D .答案:D提分题[例1] 解析:(1)∵数列{a n },{b n }均为等差数列,设公差分别为d 1,d 2 (a n +1+b n +1)-(a n +b n )=(a n +1-a n )+(b n +1-b n )=d 1+d 2, 则数列{a n +b n }也为等差数列, a 1+b 1=100,a 2+b 2=120,数列{a n +b n }的首项为100,公差为20, ∴a 37+b 37=100+20×36=820,故选B .(2)因为公比为q 的等比数列{a n }的前n 项和S n =c +2·q n ①, 当n =1时a 1=S 1=c +2·q , 当n ≥2时S n -1=c +2·q n -1 ②, ①-②得a n =2·q n -2·q n -1=(2q -2)·q n -1,所以2q -2=c +2q ,则c =-2,又S 3=14,所以S 3=-2+2·q 3=14,解得q =2, 所以a n =2n ,则a 4=24=16. 答案:(1)B (2)C [巩固训练1]1.解析:若分得的钱从多到少分别为a 1,a 2,a 3,a 4,a 5, 所以{a 1+a 2=a 3+a 4+a 5a 1+a 2+a 3+a 4+a 5=5,所以{a 1=−8d5a 1+10d =5,可得{a 1=43d =−16.答案:A2.解析:设等比数列的公比为q ,因为a 2=4,S 3=14,所以a 1+a 3=10,即a2q +a 2q =10,所以2q2-5q+2=0,解得q=2或q=12,所以当q=2时,a3=8;当q=12时,a3=2所以,a3=2或a3=8.答案:2或8微专题2等差数列与等比数列的综合保分题1.解析:设等差数列{a n}公差d=2,由a2,a3,a5成等比数列得,a32=a2·a5,即(a1+2d)2=(a1+d)(a1+4d),解得a1=0,∴S n=n×0+n(n−1)2×2=n(n-1).答案:B2.解析:设等比数列{a n}的公比为q,(q>0),a1≠0,故由题意可得:{a1(1+q+q2+q3)=154a3=4a1+a5,{a1(1+q+q2+q3)=154q2=4+q4,解得q2=2,q=√2,a1=5√2-5.答案:A3.解析:设S6=x,因为{a n}为等比数列,所以S3,S6-S3,S9-S6成等比数列.因为S3=4,S9=19,所以4(19-x)=(x-4)2,解得x=10或x=-6(舍去).所以S6,S9的等差中项为292.答案:292提分题[例2]解析:(1)因为a1,a2,a k1,a k2,a k3成公比为3的等比数列,可得a2=3a1,所以a k3=a1·34=81a1,又因为数列{a n}为等差数列,所以公差d=a2-a1=2a1,所以a k 3=a 1+(k 3-1)d =a 1+2(k 3-1)a 1=(2k 3-1)a 1, 所以(2k 3-1)a 1=81a 1,解得k 3=41. 故选C .(2)设等差数列{a n }的公差为d ,则S n =na 1+n (n−1)2d ,所以,S n n =a 1+(n−1)d 2.对于A 选项,S n+1n+1−S n n=a 1+nd 2-a 1-(n−1)d 2=d 2,所以,{S n n}为等差数列,A 对;对于B 选项,对任意的n ∈N *,b n ≠0,由等比中项的性质可得b n+12=b n b n +2,由基本不等式可得b n 2 +b n +22≥2b n b n +2=2b n+12,B 对;对于C 选项,令c n =S 2n +2-S 2n =a 2n +2+a 2n +1, 所以,c n +1-c n =(a 2n +4+a 2n +3)-(a 2n +2+a 2n +1)=4d , 故数列{S 2n +2-S 2n }一定是等差数列,C 对; 对于D 选项,设等比数列{b n }的公比为q ,当q =-1时,T 2n +2-T 2n =b 2n +2+b 2n +1=b 2n +1(q +1)=0, 此时,数列{T 2n +2-T 2n }不是等比数列,D 错. 答案:(1)C (2)ABC [巩固训练2]1.解析:设等比数列公比为q ,由a 2,2a 5,3a 8成等差数列可得,2×2a 1·q 4=a 1·q +3a 1·q 7,化简得3q 6-4q 3+1=0,解得q 3=13或q 3=1,当q 3=1时,S6S 3=2;当q 3=13时,S 6S 3=a 1(1−q 6)1−q a 1(1−q 3)1−q=1+q 3=43.答案:C2.解析:若{a n }公差为d ,{b n }公比为q , A :由2a n+12a n=2a n+1−a n =2d 为定值,故{2a n }为等比数列,正确; B :由b a n+1b a n=b a n +d b a n=b a n q d b a n=q d 为定值,故{b a n }为等比数列,正确;C :由Sn+1n+1−S nn=a 1+a n+12−a 1+a n 2=a n+12−a n2=d 2为定值,故{Snn}为等差数列,正确; D :当q =-1时b n +b n +1=0,显然不是等比数列,错误. 答案:ABC微专题3 数列的递推保分题1.解析:由题意得:a 2=1-1a 1=5,a 3=1-1a 2=45,a 4=1-1a 3=-14,则数列{a n }的周期为3,则a 2 022=a 674×3=a 3=45.答案:B2.解析:因为a n +1=2a n a n +2,所以1a n+1=12+1a n,即1a n+1−1a n=12,又1a 1=12,则{1a n}是以12为首项,12为公差的等差数列,即1a n=12+12(n -1)=n2,则a n =2n ,所以a 7=27. 答案:C3.解析:因为对任意的m ,n ∈N *,都有a m a n =a m +n , 所以a 1a 1=a 2,a 1a n =a 1+n , 又a 2=3,所以a 1=±√3,所以a n+1a n=a 1,所以数列{a n }是首项为a 1,公比为a 1的等比数列, 所以a n =a 1·(a 1)n -1=(a 1)n , 所以a 20=(a 1)20=310. 答案:C提分题[例3] 解析:(1)将圆盘从小到大编为1,2,3,…号圆盘,则将第n +1号圆盘移动到3号柱时,需先将第1~n 号圆盘移动到2号柱,需a n 次操作;将第n +1号圆盘移动到3号柱需1次操作;再将1~n 号圆需移动到3号柱需a n 次操作,故a n +1=2a n +1,a n +1+1=2(a n +1),又a 1=1,∴{a n +1}是以2为首项,2为公比的等比数列,∴a n +1=2×2n -1=2n ,即a n =2n -1,∴a 2=3,a 3=7.(2)∵(n +1)a n+12−na n 2+a n +1a n =0,∴(n +1)a n+12+anan +1-na n 2=0,[(n +1)a n +1-na n ](a n +1+a n )=0,又∵a n >0,∴a n +1=n n+1·a n ,即a n+1a n =n n+1, ∴a 2a 1·a 3a 2·…·a n a n−1=12·23·…·n−1n ,即a n a 1=1n , 又∵a 1=1,∴a n =1n ,∴a 100=1100.答案:(1)AD (2)B[巩固训练3]1.解析:由相邻层球的个数差,归纳可知a n +1-a n =n +1,a 1=1, 对a n +1-a n =n +1累加得a n =n (n+1)2. 所以,a 5-a 4=5,a 100=100(100+1)2=5 050,2a n +1≠a n +a n +2,所以ABC 错误,故选D.答案:D2.解析:由b n +1-b n =2,b n +1-b n =a n +1+a n +2+a n +3-(a n +a n +1+a n +2)=a n +3-a n =2, ∴a 1,a 4,a 7,…是首项为1,公差为2的等差数列,a 2,a 5,a 8,…是首项为2,公差为2的等差数列,a 3,a 6,a 9,…是首项为3,公差为2的等差数列,S 31=(a 1+a 4+…+a 31)+(a 2+a 5+…+a 29)+(a 3+a 6+…+a 30)=1×11+11×10×22+2×10+10×9×22+3×10+10×9×22=351.故选C.答案:C。
高三数学二轮复习专题三第一讲等差数列、等比数列课件人教版
依题意,得a-d+a+a+d=15,解得a=5.
所以{bn}中的b3,b4,b5依次为7-d,10,18+d. 依题意,有(7-d)(18+d)=100,
解得d=2或d=-13(舍去),
故{bn}的第3项为5,公比为2.
由b3=b1·22,即5=b1·22,解得b1=54.
所以{bn}是以
5 4
为首项,2为公比的等比数列,其通项公式为bn=
π 6
处取得最大
值,且最大值为a3,求函数f(x)的解析式.
[解] (1)由q=3,S3=133, 得a111--333=133,解得a1=13. 所以an=13×3n-1=3n-2. (2)由(1)可知an=3n-2,所以a3=3. 因为函数f(x)的最大值为3,所以A=3; 因为当x=π6时f(x)取得最大值, 所以sin(2×π6+φ)=1. 又0<φ<π,故φ=π6. 所以函数f(x)的解析式为f(x)=3sin(2x+π6).
[点评] 本题考查等比数列与三角函数的基本知识和 基本量的计算,属在知识交汇处命题的典型.
已知等差数列{an}中,a1,a99是函数f(x)=x2-10x+16的两 个零点,则12a50+a20+a80=__________.
解析:由已知得a1,a99是方程x2-10x+16=0的两个实根,则a1+ a99=10, 则12a50+a20+a80=54(a1+a99)=225. 答案:225
54·2n-1=5·2n-3.
(2)证明:数列{bn}的前n项和Sn=5411--22n=5·2n-2-54,即Sn+54=5·2n-2, 所以S1+54=52,SSn+n+1+5454=55··22nn--12=2. 因此{Sn+54}是以52为首项,公比为2的等比数列.
高考数学二轮专题突破课堂讲义 第10讲 等差数列与等比数列
专题三 数 列 第10讲 等差数列与等比数列1. 理解等差、等比数列的概念,掌握等差、等比数列的通项公式及前n 项和公式.2. 数列是高中数学中的重要内容,在考试说明中,等差、等比数列都是C 级要求,因而考试题多为中等及以上难度,试题综合考查了函数与方程,分类讨论等数学思想.填空题常常考查等差、等比数列的通项公式、前n 项和公式及等差、等比数列的性质,考查运算求解能力;解答题综合性很强,不仅考查数列本身的知识而且还涉及到函数、不等式、解析几何等方面的知识,基本上都是压轴题.1. 在等比数列{a n }中,已知a 1=1,a 4=8.设S 3n 为该数列的前3n 项和,T n 为数列{a 3n }的前n 项和.若S 3n =tT n ,则实数t 的值为________.答案:7解析:∵ a 4=a 1q 3=q 3=8,∴ q =2,S 3n =1-23n1-2=8n -1.由题意数列{a 3n }是首项为1,公比为8的等比数列,∴ T n =1-8n1-8=17(8n-1),由S 3n =tT n ,得t =7.2. 已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,则使得S n 达到最大值时的n 值是________.答案:20解析:∵ a n =41-2n ,∴ a 20>0,a 21<0.3. 已知等比数列{a n }为递增数列,且a 25=a 10,2(a n +a n +2)=5a n +1,则数列的通项公式a n=________.答案:2n解析:∵ a 25=a 10,∴ (a 1q 4)2=a 1q 9,∴ a 1=q ,∴ a n =q n .∵ 2(a n +a n +2)=5a n +1,∴ 2a n (1+q 2)=5a n q ,∴ 2(1+q 2)=5q ,解得q =2或q =12(舍去),∴ a n =2n.4. 设x 、y 、z 是实数,若9x 、12y 、15z 成等比数列,且1x 、1y 、1z 成等差数列,则x z +zx=________.答案:3415解析:由题知⎩⎪⎨⎪⎧(12y )2=9x·15z,2y =1x +1z,解得xz =1229×15y 2=1615y 2,x +z =3215y ,从而x z +zx =x 2+z 2xz =(x +z )2-2xz xz =(x +z )2xz -2=⎝ ⎛⎭⎪⎫32152y 21615y 2-2=3415.题型一 等差、等比数列基本量的计算例1 等差数列{a n }的各项均为正数,且a 1=1,前n 项和为S n ;{b n }为等比数列,b 1=1,前n 项和为T n ,且b 2S 2=12,b 3S 3=81.(1) 求a n 与b n; (2) 求S n 与T n ;(3) 设c n =a n b n ,{c n }的前n 项和为M n ,求M n .解:(1) 设{a n }的公差为d ,{b n }的公比为q ,则d 为正数,a n =1+(n -1)d ,b n =q n -1.依题意有⎩⎪⎨⎪⎧S 3b 3=(3+3d )q 2=81,S 2b 2=(2+d )q =12,解得⎩⎪⎨⎪⎧d =2,q =3或⎩⎪⎨⎪⎧d =-23,q =9(舍去). 故a n =1+2(n -1),即a n =2n -1,b n =3n -1.(2) S n =1+3+5+…+(2n -1)=n 2,T n =1-3n 1-3=3n-12.(3) c n =(2n -1)×3n -1,M n =1+3×3+5×32+…+(2n -1)×3n -1,①3M n =1×3+3×32+5×33+…+(2n -1)×3n,②①-②得-2M n =1+2×3+2×32+…+2×3n -1-(2n -1)×3n ,即M n =(n -1)×3n+1.已知等差数列{a n }的公差d 不为0,且a 3=a 27,a 2=a 4+a 6. (1) 求数列{a n }的通项公式;(2) 设数列{a n }的前n 项和为S n ,求满足S n -2a n -20>0的所有正整数n 的集合.解:(1) 由a 3=a 27,得a 1+2d =(a 1+6d)2. ①由a 2=a 4+a 6,得a 1+d =2a 1+8d ,即a 1=-7d. ②②代入①,得-5d =d 2.∴ d =-5,或d =0(不符合题意,舍去). 则a 1=35.∴ a n =35+(n -1)(-5)=-5n +40.(2) S n =(35-5n +40)n 2=n (75-5n )2.不等式S n -2a n -20>0, 即n (75-5n )2-2(-5n +40)-20>0.整理得n 2-19n +40<0. ∴ 19-2012<n <19+2012.则19-152<n <19+152,即2<n <17.∵ n ∈N *,∴ 所求n 的值的集合为{3,4,…,16}. 题型二 等差、等比数列的证明与判定例2 数列{a n }满足a 1=1,na n +1=(n +1)a n +n(n +1),n ∈N *.(1) 证明:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列;(2) 设b n =3n·a n ,求数列{b n }的前n 项和S n .(1) 证明:由已知可得a n +1n +1=a n n +1,即a n +1n +1-a n n =1,所以⎩⎨⎧⎭⎬⎫a n n 是以a 11=1为首项,1为公差的等差数列.(2) 解: 由(1)得a n n =1+(n -1)·1=n ,所以a n =n 2,从而可得b n =n·3n.S n =1×31+2×32+…+(n -1)×3n -1+n×3n,①3S n =1×32+2×33+…+(n -1)3n +n×3n +1.②①-②得-2S n =31+32+…+3n -n·3n +1=3·(1-3n )1-3-n·3n +1=(1-2n )·3n +1-32,所以S n =(2n -1)·3n +1+34.已知等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2.(1) 求数列{a n }的通项a n 与前n 项和S n ;(2) 设b n =S n n(n∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.(1) 解:由已知得⎩⎨⎧a 1=2+1,3a 1+3d =9+32,∴ d =2,故a n =2n -1+2,S n =n(n +2).(2) 证明:由(1)得b n =S nn =n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r 互不相等)成等比数列,则b 2q =b p b r ,即(q +2)2=(p +2)(r +2),∴ (q 2-pr)+(2q -p -r)2=0. ∵ p、q 、r∈N *,∴ ⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0,∴ ⎝ ⎛⎭⎪⎫p +r 22=pr ,即(p -r)2=0, ∴ p =r.这与p≠r 矛盾,故数列{b n }中任意不同的三项都不可能成为等比数列.题型三 可转化为等差、等比数列的问题例3 已知数列{a n }中,a 1=1,a n +a n +1=2n (n∈N *),b n =3a n .(1) 试证明数列⎩⎨⎧⎭⎬⎫a n-13×2n 是等比数列,并求数列{b n }的通项公式; (2) 在数列{b n }中,是否存在连续三项成等差数列?若存在,求出所有符合条件的项;若不存在,说明理由;(3) 试证在数列{b n }中,一定存在满足条件1<r <s 的正整数r 、s ,使得b 1,b r ,b s 成等差数列;并求出正整数r 、s 之间的关系.(1) 证明:由a n +a n +1=2n ,得a n +1=2n-a n ,所以a n +1-13×2n +1a n -13×2n =2n -a n -13×2n +1a n -13×2n=-(a n -13×2n)a n -13×2n=-1.因为a 1-23=13,所以数列{a n -13×2n }是首项为13,公比为-1的等比数列,所以a n -13×2n =13×(-1)n -1,即a n =13[2n -(-1)n ],所以b n =2n -(-1)n.(2) 解:假设在数列{b n }中,存在连续三项b k -1,b k ,b k +1(k∈N *,k ≥2)成等差数列,则b k-1+b k +1=2b k ,即[2k -1-(-1)k -1]+[2k +1-(-1)k +1]=2[2k -(-1)k ],即2k -1=4(-1)k -1. ① 若k 为偶数,则2k -1>0,4(-1)k -1=-4<0,所以不存在偶数k ,使得b k -1,b k ,b k +1成等差数列;② 若k 为奇数,则当k≥3时,2k -1≥4,而4(-1)k -1=4,所以,当且仅当k =3时,b k-1,b k ,b k +1成等差数列.综上所述,在数列{b n }中,有且仅有连续三项b 2,b 3,b 4成等差数列. (3) 证明:要使b 1,b r ,b s 成等差数列,只需b 1+b s =2b r ,即3+2s -(-1)s =2[2r -(-1)r],即2s -2r +1=(-1)s -2(-1)r-3.(*)① 若s =r +1,在(*)式中,左端2s -2r +1=0,右端(-1)s -2(-1)r -3=(-1)s+2(-1)s -3=3(-1)s-3,要使(*)式成立,当且仅当s 为偶数时.又s >r >1,且s 、r 为正整数,所以当s 为不小于4的正偶数,且s =r +1时,b 1,b r ,b s 成等差数列;② 若s≥r+2,在(*)式中,左端2s -2r +1≥2r +2-2r +1=2r +1,由(2)可知,r ≥3,所以r+1≥4,所以左端2s -2r +1≥16(当且仅当s 为偶数、r 为奇数时取“=”),右端(-1)s-2(-1)s-3≤0,所以当s≥r+2时,b 1,b r ,b s 不成等差数列.综上所述,存在不小于4的正偶数s ,且s =r +1,使得b 1,b r ,b s 成等差数列. 题型四 数列的综合应用例4 已知数列{a n }满足a 1+a 2λ+a 3λ2+…+a n λn -1=n 2+2n(其中常数λ>0,n ∈N *).(1) 求数列{a n }的通项公式;(2) 当λ=4时,是否存在互不相同的正整数r ,s ,t ,使得a r ,a s ,a t 成等比数列?若存在,给出r 、s 、t 满足的条件;若不存在,说明理由;(3) 设S n 为数列{a n }的前n 项和,若对任意n∈N *,都有(1-λ)S n +λa n ≥2λn恒成立,求实数λ的取值范围.解:(1) a 1=3,当n≥2时,由a 1+a 2λ+a 3λ2+…+a n λn -1=n 2+2n, ①得a 1+a 2λ+a 3λ2+…+a n -1λn -2=(n -1)2+2(n -1),②①-②,得a n λn -1=2n +1,所以a n =(2n +1)·λn -1(n≥2),因为a 1=3,所以a n =(2n +1)·λn -1(n∈N *).(2) 当λ=4时,a n =(2n +1)·4n -1.若存在a r ,a s ,a t 成等比数列,则[(2r +1)·4r -1][(2t+1)·4t -1]=(2s +1)2·42s -2,整理得(2r +1)(2t +1)4r +t -2s =(2s +1)2.由奇偶性知r +t -2s=0,所以(2r +1)(2t +1)=(r +t +1)2,即(r -t)2=0.这与r≠t 矛盾,故不存在这样的正整数r ,s ,t ,使得a r ,a s ,a t 成等比数列.(3) S n =3+5λ+7λ2+…+(2n +1)λn -1.当λ=1时,S n =3+5+7+…+(2n +1)=n2+2n ;当λ≠1时,S n =3+5λ+7λ2+…+(2n +1)λn -1,λS n =3λ+5λ2+…+(2n -1)λn-1+(2n +1)λn ,则(1-λ)S n =3+2(λ+λ2+λ3+…+λn -1)-(2n +1)λn=3+2×λ(1-λn -1)1-λ-(2n +1)λn .要对任意n∈N *,都有(1-λ)S n +λa n ≥2λn 恒成立,① 当λ=1时,左=(1-λ)S n +λa n =a n =2n +1≥2,结论成立;② 当λ≠1时,左=(1-λ)S n +λa n =3+2×λ(1-λn -1)1-λ-(2n +1)λn+λa n =3+2×λ(1-λn -1)1-λ=3-λ1-λ-2λn1-λ,因此,对任意n∈N *,都有3-λ1-λ≥4-2λ1-λ·λn恒成立.当0<λ<1时,只要3-λ4-2λ≥λn 对任意n∈N *恒成立,即只要有3-λ4-2λ≥λ即可,解得λ≤1或λ≥32,因此当0<λ<1时,结论成立;当λ≥2时,3-λ1-λ≥4-2λ1-λ·λn 对任意n∈N *恒成立不可能;当1<λ<2时,只要3-λ4-2λ≤λn 对任意n∈N *恒成立,即只要3-λ4-2λ≤λ,解得1≤λ≤32,因此当1<λ≤32时,结论成立.综上,实数λ的取值范围为⎝ ⎛⎦⎥⎤0,32.1. (2014·江苏卷)在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6=________.答案:4解析:设公比为q ,因为a 2=1,则由a 8=a 6+2a 4得q 6=q 4+2q 2,q 4-q 2-2=0,解得q2=2,所以a 6=a 2q 4=4.本题主要考查等比数列的通项公式.2. (2014·广东卷)等比数列{a n }的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=________.答案:5解析:由等比数列性质知a 1a 5=a 2a 4=a 23=4.∵ a n >0,∴ a 3=2,∴ a 1a 2a 3a 4a 5=(a 1a 5)·(a 2a 4)·a 3=25,∴ log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=log 2(a 1a 2a 3a 4a 5)=log 225=5.3. (2014·天津卷)设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1、S 2、S 4成等比数列,则a 1=________.答案:-12解析:∵ {a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和,∴ S 1=a 1,S 2=2a 1-1,S 3=4a 1-6,由S 1、S 2、S 3成等比数列,得S 22=S 1·S 4,即(2a 1-1)2=a 1(4a 1-6),解得a 1=-12.4. (2014·江西卷)在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时S n 取得最大值,则d 的取值范围为________.答案:⎝⎛⎭⎪⎫-1,-78 解析:因为a 1=7>0,当且仅当n =8时S n 取最大值,可知d<0且同时满足a 8>0,a 9<0, ∴ ⎩⎪⎨⎪⎧a 8=7+7d>0,a 9=7+8d<0,解得-1<d<-78,∴ -1<d<-78.5. (2014·江西卷)已知数列{a n }的前n 项和S n =3n 2-n 2,n ∈N *.(1) 求数列{a n }的通项公式;(2) 证明:对任意的n>1,都存在m∈N *,使得a 1、a n 、a m 成等比数列.(1) 解:由S n =3n 2-n2,得a 1=S 1=1.当n≥2时,a n =S n -S n -1=3n -2,a 1也符合上式,所以数列{a n }的通项公式为a n =3n -2.(2) 证明:要使得a 1、a n 、a m 成等比数列,只需要a 2n =a 1·a m ,即(3n -2)2=1·(3m-2),即m =3n 2-4n +2.而此时m∈N *,且m >n ,所以对任意的n >1,都存在m∈N *,使得a 1、a n 、a m 成等比数列.6. (2014·湖北卷)已知等差数列{a n }满足:a 1=2,且a 1、a 2、a 5成等比数列. (1) 求数列{a n }的通项公式.(2) 记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.解:(1) 设数列{a n }的公差为d ,依题意知,2、2+d 、2+4d 成等比数列,故有(2+d)2=2(2+4d),化简得d 2-4d =0,解得d =0或d =4, 当d =0时,a n =2;当d =4时,a n =2+(n -1)·4=4n -2,从而得数列{a n }的通项公式为a n =2或a n =4n -2. (2) 当a n =2时,S n =2n ,显然2n<60n +800, 此时不存在正整数n ,使得S n >60n +800成立.当a n =4n -2时,S n =n[2+(4n -2)]2=2n 2.令2n 2>60n +800,即n 2-30n -400>0, 解得n>40或n<-10(舍去),此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的正整数n ;当a n =4n -2时,存在满足题意的正整数n ,其最小值为41.(本题模拟高考评分标准,满分16分)(2014·苏州期末)设数列{a n }满足a n +1=2a n +n 2-4n +1.(1) 若a 1=3,求证:存在f(n)=an 2+bn +c(a 、b 、c 为常数),使数列{a n +f(n)}是等比数列,并求出数列{a n }的通项公式;(2) 若a n 是一个等差数列{b n }的前n 项和,求首项a 1的值与数列{b n }的通项公式.(1) 证明:∵ a n +1=2a n +n 2-4n +1,设a n +1+a(n +1)2+b(n +1)+c =2(a n +an 2+bn +c),(2分)即a n +1=2a n +an 2+(b -2a)n +c -a -b.(4分) ∴ ⎩⎪⎨⎪⎧a =1,b -2a =-4,c -a -b =1.∴ a =1,b =-2,c =0.(6分) ∵ a 1+1-2=2,∴ 存在f(n)=n 2-2n ,使数列{a n +n 2-2n}是公比为2的等比数列.(8分)∴ a n +n 2-2n =2×2n -1=2n.则a n =2n-n 2+2n.(10分)(2) 解:∵ a n +1=2a n +n 2-4n +1,即a n +1+(n +1)2-2(n +1)=2(a n +n 2-2n),∴ a n +n 2-2n =(a 1-1)2n -1,即a n =(a 1-1)2n -1-n 2+2n.(12分)∴ b n =⎩⎪⎨⎪⎧a 1(n =1),(a 1-1)2n -2-2n +3(n≥2).(14分) ∵ {b n }是等差数列,∴ a 1=1,b n =-2n +3.(16分)1. 若数列{a n },{b n }的通项公式分别是a n =(-1)n +2 011·a ,b n =2+(-1)n +2 012n,且a n<b n 对任意n∈N *恒成立,则常数a 的取值范围是____________.答案:[-2,1]解析: a >0时,a n 的最大值为a(n 取奇数),b n 的最小值为1,若a n <b n 对任意n∈N *恒成立,则a<1;a =0时,b n >0,a n <b n 恒成立;a <0时,a n 的最大值为-a(n 取偶数),b n >2,则-a≤2.综上,a ∈[-2,1).2. 已知无穷数列{a n }中,a 1,a 2,…,a m 是首项为10,公差为-2的等差数列;a m +1,a m +2,…,a 2m 是首项为12,公比为12的等比数列(其中 m≥3,m ∈N *),并对任意的n∈N *,均有a n +2m =a n 成立.(1) 当m =12时,求a 2 010;(2) 若a 52=1128,试求m 的值;(3) 判断是否存在m(m≥3,m ∈N *),使得S 128m +3≥2 010成立?若存在,试求出m 的值;若不存在,请说明理由.解: (1) 当m =12时,数列的周期为24.∵ 2 010=24×83+18,而a 18是等比数列中的项,∴ a 2 010=a 18=a 12+6=⎝ ⎛⎭⎪⎫126=164. (2) 设a m +k 是第一个周期中等比数列中的第k 项,则a m +k =⎝ ⎛⎭⎪⎫12k .∵ 1128=⎝ ⎛⎭⎪⎫127,∴ 等比数列中至少有7项,即m≥7,则一个周期中至少有14项,∴ a 52最多是第三个周期中的项.若a 52是第一个周期中的项,则a 52=a m +7=1128,∴ m =52-7=45;若a 52是第二个周期中的项,则a 52=a 3m +7=1128,∴ 3m =45,即m =15;若a 52是第三个周期中的项,则a 52=a 5m +7=1128,∴5m =45,即m =9.综上,m =45、15或9.(3) ∵ 2m 是此数列的周期,∴ S 128m +3表示64个周期及等差数列的前3项之和,∴ S 2m最大时,S 128m +3最大.∵ S 2m =10m +m (m -1)2×(-2)+12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12m 1-12=-m 2+11m +1-12m =-⎝⎛⎭⎪⎫m -1122+1254-12m ,当m =6时,S 2m =31-164=306364;当m≤5时,S 2m <306364;当m≥7时,S 2m <-⎝⎛⎭⎪⎫7-1122+1254=29<306364,∴ 当m =6时,S 2m 取得最大值,则S 128m +3取得最大值为64×306364+24=2 007.由此可知不存在m(m≥3,m ∈N *),使得S 128m +3≥2 010成立.3. 设等比数列{a n }的前n 项和为S n ,已知S 1,S 3,S 2成等差数列. (1) 求{a n }的公比q ; (2) 若a 1-a 3=3,求S n .解: (1) 依题意有a 1+(a 1+a 1q)=2(a 1+a 1q +a 1q 2),由于a 1≠0,故2q 2+q =0.又q≠0,从而q =-12.(2) 由已知可得a 1-a 1⎝ ⎛⎭⎪⎫-122=3,故a 1=4, 从而S n =4⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n 1-⎝ ⎛⎭⎪⎫-12=83⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n .4. 设S n 为数列{a n }的前n 项和,且S n =kn 2+n ,n ∈N *,其中k 是常数. (1) 求a 1及a n ;(2) 若对于任意的m∈N *,a m ,a 2m ,a 4m 成等比数列,求k 的值.解: (1) 当n =1时,a 1=S 1=k +1,当n≥2时,a n =S n -S n -1=kn 2+n -[k(n -1)2+(n -1)]=2kn -k +1,(*)经检验,n =1时(*)式成立,∴ a n =2kn -k +1(n∈N *).(2) ∵ a m ,a 2m ,a 4m 成等比数列, ∴ a 22m =a m ·a 4m ,即(4km -k +1)2=(2km -k +1)(8km -k +1),整理得mk(k -1)=0,又对任意的m∈N *成立,∴ k =0或k =1.。
高考数学二轮复习第7讲等差数列等比数列课件理
考点二 等差、等比数列的判定与证明
1.证明数列{an}是等差数列的两种基本方法 (1)利用定义证明an+1-an(n∈N*)为一常数; (2)利用等差中项,即证明2an=an-1+an+1(n≥2).
2.证明数列{an}是等比数列的两种基本方法
(1)利用定义证明
a
a
n
则S6=
.
答案 -63
解析 本题主要考查由an与Sn的关系求数列的通项公式.
解法一:由Sn=2an+1,得a1=2a1+1,所以a1n≥2时,由an=Sn-Sn-1=2 an+1-(2an-1+1),得an=2an-1.∴{an
以S6= a 1 (1= q 6 )=-63(1. 2 6 )
1 q
1 2
第7讲 等差数列、等比数列
12/11/2021
12/11/2021
总纲目录
考点一 等差、等比数列的基本运算 考点二 等差、等比数列的判定与证明 考点三 等差、等比数列的性质
12/11/2021
考点一 等差、等比数列的基本运算
(1)通项公式:
等差数列:an=a1+(n-1)d;
等比数列:an=a1qn-1(q≠0).
答案 A ∵an+1=an-an-1,a1=1,a2=2,∴a3=1,a4=-1,a5=-2,a6=-1,a7=1, a8=2,….∴数列{an}是周期为6的周期数列,且每连续6项的和为0. ∴S2 018=336×0+a2 +a 017 2 018=a1+a2=3.故选A.
12/11/2021
1 a4 a8
1
a
2 6
数学二轮复习教案: 第一部分 专题三 数列 第一讲 等差数列、等比数列
专题三数列第一讲等差数列、等比数列[考情分析]等差数列、等比数列的判定及其通项公式在考查基本运算、基本概念的同时,也注重对函数与方程、等价转化、分类讨论等数学思想的考查;对等差数列、等比数列的性质考查主要是求解数列的等差中项、等比中项、通项公式和前n项和的最大、最小值等问题,主要是中低档题;等差数列、等比数列的前n项和是高考考查的重点。
年份卷别考查角度及命题位置201 7Ⅰ卷等差、等比数列的综合应用·T17201 5Ⅰ卷等差数列的通项公式及前n项和公式·T7等比数列的概念及前n项和公式·T13Ⅱ卷等差数列的通项公式、性质及前n项和公式·T5[真题自检]1.(2015·高考全国卷Ⅱ)设S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=( )A.5 B.7C.9 D.11解析:法一:∵a1+a5=2a3,∴a1+a3+a5=3a3=3,∴a3=1,∴S5=错误!=5a3=5.法二:∵a1+a3+a5=a1+(a1+2d)+(a1+4d)=3a1+6d=3,∴a1+2d =1,∴S5=5a1+错误!d=5(a1+2d)=5.解析:A2.(2015·高考全国卷Ⅰ)已知{a n}是公差为1的等差数列,S n为{a n}的前n项和,若S8=4S4,则a10=( )A。
错误!B。
错误!C.10 D.12解析:∵公差为1,∴S8=8a1+错误!×1=8a1+28,S4=4a1+6.∵S8=4S4,∴8a1+28=4(4a1+6),解得a1=错误!,∴a10=a1+9d=错误!+9=错误!。
答案:B3.(2015·高考全国卷Ⅰ改编)在数列{a n}中,a1=2,a n+1=2a n,S n 为{a n}的前n项和.若S n=126,求n的值.解析:∵a1=2,a n+1=2a n,∴数列{a n}是首项为2,公比为2的等比数列.又∵S n=126,∴错误!=126,∴n=6.等差数列、等比数列的基本运算[方法结论]1.两组求和公式(1)等差数列:S n=错误!=na1+错误!d;(2)等比数列:S n=错误!=错误!(q≠1).2.在进行等差(比)数列项与和的运算时,若条件和结论间的联系不明显,则均可化成关于a1和d(q)的方程组求解,但要注意消元法及整体计算,以减少计算量.[题组突破]1.(2017·贵阳模拟)等差数列{a n}的前n项和为S n,且a3+a9=16,则S 11=( )A .88B .48C .96D .176解析:依题意得S 11=11a 1+a 112=错误!=错误!=88,选A 。
(新人教)2012届高三数学第二轮复习等差数列、等比数列的性质运用
12 等差数列、等比数列的性质运用等差、等比数列的性质是等差、等比数列的概念,通项公式,前n 项和公式的引申.应用等差等比数列的性质解题,往往可以回避求其首项和公差或公比,使问题得到整体地解决,能够在运算时达到运算灵活,方便快捷的目的,故一直受到重视.高考中也一直重点考查这部分内容.●难点磁场(★★★★★)等差数列{a n }的前n 项的和为30,前2m 项的和为100,求它的前3m 项的和为_________.●案例探究[例1]已知函数f (x )=412-x (x <-2).(1)求f (x )的反函数f --1(x );(2)设a 1=1,11+n a =-f--1(a n )(n ∈N *),求a n ;(3)设S n =a 12+a 22+…+a n 2,b n =S n +1-S n 是否存在最小正整数m ,使得对任意n ∈N *,有b n <25m 成立?若存在,求出m 的值;若不存在,说明理由.命题意图:本题是一道与函数、数列有关的综合性题目,着重考查学生的逻辑分析能力,属★★★★★级题目.知识依托:本题融合了反函数,数列递推公式,等差数列基本问题、数列的和、函数单调性等知识于一炉,结构巧妙,形式新颖,是一道精致的综合题.错解分析:本题首问考查反函数,反函数的定义域是原函数的值域,这是一个易错点,(2)问以数列{21na }为桥梁求a n ,不易突破.技巧与方法:(2)问由式子41121+=+nn a a 得22111nn a a -+=4,构造等差数列{21na },从而求得a n ,即“借鸡生蛋”是求数列通项的常用技巧;(3)问运用了函数的思想.解:(1)设y =412-x ,∵x <-2,∴x =-214y+, 即y =f--1(x )=-214y +(x >0) (2)∵411,14122121=-∴+=++nn nn a a a a ,∴{21na }是公差为4的等差数列,∵a 1=1,21na =211a +4(n -1)=4n -3,∵a n >0,∴a n =341-n .(3)b n =S n +1-S n =a n +12=141+n ,由b n <25m ,得m >1425+n , 设g (n )= 1425+n ,∵g (n )= 1425+n 在n ∈N *上是减函数,∴g (n )的最大值是g (1)=5,∴m >5,存在最小正整数m =6,使对任意n ∈N *有b n <25m成立. [例2]设等比数列{a n }的各项均为正数,项数是偶数,它的所有项的和等于偶数项和的4倍,且第二项与第四项的积是第3项与第4项和的9倍,问数列{lg a n }的前多少项和最大?(lg2=0.3,lg3=0.4)命题意图:本题主要考查等比数列的基本性质与对数运算法则,等差数列与等比数列之间的联系以及运算、分析能力.属★★★★★级题目.知识依托:本题须利用等比数列通项公式、前n 项和公式合理转化条件,求出a n ;进而利用对数的运算性质明确数列{lg a n }为等差数列,分析该数列项的分布规律从而得解.错解分析:题设条件中既有和的关系,又有项的关系,条件的正确转化是关键,计算易出错;而对数的运算性质也是易混淆的地方.技巧与方法:突破本题的关键在于明确等比数列各项的对数构成等差数列,而等差数列中前n 项和有最大值,一定是该数列中前面是正数,后面是负数,当然各正数之和最大;另外,等差数列S n 是n 的二次函数,也可由函数解析式求最值.解法一:设公比为q ,项数为2m ,m ∈N *,依题意有⎪⎩⎪⎨⎧+=⋅--⋅=--⋅)(9)()(1)1(1)1(312131122121q a q a q a q a q q q a q q a m m 化简得⎪⎩⎪⎨⎧==⎪⎩⎪⎨⎧+==+10831 ),1(9114121a q q q a q q 解得.设数列{lg a n }前n 项和为S n ,则S n =lg a 1+lg a 1q 2+…+lg a 1q n -1=lg a 1n ·q 1+2+…+(n -1)=n lg a 1+21n (n -1)·lg q =n (2lg2+lg3)-21n (n -1)lg3 =(-23lg )·n 2+(2lg2+27lg3)·n可见,当n =3lg 3lg 272lg 2+时,S n 最大. 而4.024.073.043lg 3lg 272lg 2⨯⨯+⨯=+=5,故{lg a n }的前5项和最大.解法二:接前,⎪⎩⎪⎨⎧==311081q a ,于是lg a n =lg [108(31)n -1]=lg108+(n -1)lg 31,∴数列{lg a n }是以lg108为首项,以lg 31为公差的等差数列,令lg a n ≥0,得2lg2-(n -4)lg3≥0,∴n ≤4.04.043.023lg 3lg 42lg 2⨯+⨯=+=5.5. 由于n ∈N *,可见数列{lg a n }的前5项和最大. ●锦囊妙计1.等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题的既快捷又方便的工具,应有意识去应用.2.在应用性质时要注意性质的前提条件,有时需要进行适当变形.3.“巧用性质、减少运算量”在等差、等比数列的计算中非常重要,但用“基本量法”并树立“目标意识”,“需要什么,就求什么”,既要充分合理地运用条件,又要时刻注意题的目标,往往能取得与“巧用性质”解题相同的效果.●歼灭难点训练 一、选择题1.(★★★★)等比数列{a n }的首项a 1=-1,前n 项和为S n ,若3231510=S S ,则l i m ∞→n S n 等于( )32B. 32A.-C.2D.-2 二、填空题2.(★★★★)已知a ,b ,a +b 成等差数列,a ,b ,ab 成等比数列,且0<log m (ab )<1,则m 的取值范围是_________.3.(★★★★)等差数列{a n }共有2n +1项,其中奇数项之和为319,偶数项之和为290,则其中间项为_________.4.(★★★★)已知a 、b 、c 成等比数列,如果a 、x 、b 和b 、y 、c 都成等差数列,则ycx a +=_________. 三、解答题5.(★★★★★)设等差数列{a n }的前n 项和为S n ,已知a 3=12,S 12>0,S 13<0. (1)求公差d 的取值范围;(2)指出S 1、S 2、…、S 12中哪一个值最大,并说明理由.6.(★★★★★)已知数列{a n }为等差数列,公差d ≠0,由{a n }中的部分项组成的数列a 1b ,a 2b ,…,a n b ,…为等比数列,其中b 1=1,b 2=5,b 3=17.(1)求数列{b n }的通项公式;(2)记T n =C 1n b 1+C 2n b 2+C 3n b 3+…+C nn b n ,求nn nn bT +∞→4lim. 7.(★★★★)设{a n }为等差数列,{b n }为等比数列,a 1=b 1=1,a 2+a 4=b 3,b 2·b 4=a 3,分别求出{a n }及{b n }的前n 项和S 10及T 10.8.(★★★★★){a n }为等差数列,公差d ≠0,a n ≠0,(n ∈N *),且a k x 2+2a k +1x +a k +2=0(k ∈N *)(1)求证:当k 取不同自然数时,此方程有公共根; (2)若方程不同的根依次为x 1,x 2,…,x n ,…,求证:数列11,,11,1121+++n x x x 为等差数列. 参考答案难点磁场解法一:将S m =30,S 2m =100代入S n =na 1+2)1(-n n d ,得: ⎪⎪⎩⎪⎪⎨⎧=-+=-+1002)12(22302)1(11d m m ma d m m ma 2102)13(33,2010,4013212=-+=∴+==d m m ma S m m a md m 解得解法二:由]2)13([32)13(33113dm a m d m m ma S m -+=-+=知,要求S 3m 只需求m[a 1+2)13(d m -],将②-①得ma 1+ 2)13(-m m d =70,∴S 3m =210.解法三:由等差数列{a n }的前n 项和公式知,S n 是关于n 的二次函数,即S n =An 2+Bn (A 、B 是常数).将S m =30,S 2m =100代入,得⎪⎪⎩⎪⎪⎨⎧==⇒⎪⎩⎪⎨⎧=⋅+=+m B m A m B m A Bm Am 1020 1002)2(30222,∴S 3m =A ·(3m )2+B ·3m =210 解法四:S 3m =S 2m +a 2m +1+a 2m +2+…+a 3m =S 2m +(a 1+2md )+…+(a m +2md )=S 2m +(a 1+…+a m )+m ·2md =S 2m +S m +2m 2d .由解法一知d =240m,代入得S 3m =210.解法五:根据等差数列性质知:S m ,S 2m -S m ,S 3m -S 2m 也成等差数列,从而有:2(S 2m -S m )=S m +(S 3m -S 2m )∴S 3m =3(S 2m -S m )=210解法六:∵S n =na 1+2)1(-n n d ,∴n S n =a 1+2)1(-n n d∴点(n , n S n )是直线y =2)1(dx -+a 1上的一串点,由三点(m ,m S m ),(2m , mS m 22),(3m , m S m 33)共线,易得S 3m =3(S 2m -S m )=210.解法七:令m =1得S 1=30,S 2=100,得a 1=30,a 1+a 2=100,∴a 1=30,a 2=70 ∴a 3=70+(70-30)=110 ∴S 3=a 1+a 2+a 3=210 答案:210 歼灭难点训练① ②一、1.解析:利用等比数列和的性质.依题意,3231510=S S ,而a 1=-1,故q ≠1, ∴3213232315510-=-=-S S S ,根据等比数列性质知S 5,S 10-S 5,S 15-S 10,…,也成等比数列,且它的公比为q 5,∴q 5=-321,即q =-21.∴.321lim 1-=-=∞→q a S n n 答案:B二、2.解析:解出a 、b ,解对数不等式即可. 答案:(-∞,8)3.解析:利用S 奇/S 偶=nn 1+得解.答案:第11项a 11=29 4.解法一:赋值法. 解法二:b =aq ,c =aq 2,x =21(a +b )=21a (1+q ),y =21(b +c )=21aq (1+q ),y c x a + =)1(41)1(21)1(2122222q q a q q a q q a xy cx ay ++++=+=2.答案:2三、5.(1)解:依题意有:⎪⎪⎪⎩⎪⎪⎪⎨⎧<⨯+=>⨯+==+=0212131302111212,12211311213d a S d a S d a a 解之得公差d 的取值范围为-724<d <-3. (2)解法一:由d <0可知a 1>a 2>a 3>…>a 12>a 13,因此,在S 1,S 2,…,S 12中S k 为最大值的条件为:a k ≥0且a k +1<0,即⎩⎨⎧<-+≥-+0)2(0)3(33d k a d k a∵a 3=12,∴⎩⎨⎧-<-≥122123d kd d kd ,∵d <0,∴2-d 12<k ≤3-d 12∵-724<d <-3,∴27<-d12<4,得5.5<k <7.因为k 是正整数,所以k =6,即在S 1,S 2,…,S 12中,S 6最大.解法二:由d <0得a 1>a 2>…>a 12>a 13,因此,若在1≤k ≤12中有自然数k ,使得a k ≥0,且a k +1<0,则S k 是S 1,S 2,…,S 12中的最大值.由等差数列性质得,当m 、n 、p 、q ∈N *,且m +n =p +q 时,a m +a n =a p +a q .所以有:2a 7=a 1+a 13=132S 13<0,∴a 7<0,a 7+a 6=a 1+a 12=61S 12>0,∴a 6≥-a 7>0,故在S 1,S 2,…,S 12中S 6最大.解法三:依题意得:)(2)212()1(221n n dd n d n n na S n -+-=-+= 222)]245(21[,0,)245(8)]245(21[2dn d d d d n d --∴<----= 最小时,S n 最大; ∵-724<d <-3,∴6<21(5-d 24)<6.5.从而,在正整数中,当n =6时,[n -21 (5-d24)]2最小,所以S 6最大.点评:该题的第(1)问通过建立不等式组求解属基本要求,难度不高,入手容易.第(2)问难度较高,为求{S n }中的最大值S k ,1≤k ≤12,思路之一是知道S k 为最大值的充要条件是a k ≥0且a k +1<0,思路之三是可视S n 为n 的二次函数,借助配方法可求解.它考查了等价转化的数学思想、逻辑思维能力和计算能力,较好地体现了高考试题注重能力考查的特点.而思路之二则是通过等差数列的性质等和性探寻数列的分布规律,找出“分水岭”,从而得解.6.解:(1)由题意知a 52=a 1·a 17,即(a 1+4d )2=a 1(a 1+16d )⇒a 1d =2d 2,∵d ≠0,∴a 1=2d ,数列{n b a }的公比q =11154a da a a +==3, ∴n b a =a 1·3n -1① 又n b a =a 1+(b n -1)d =121a b n +②由①②得a 1·3n -1=21+n b ·a 1.∵a 1=2d ≠0,∴b n =2·3n -1-1.(2)T n =C 1n b 1+C 2nb 2+…+Cn n b n =C 1n (2·30-1)+C 2n ·(2·31-1)+…+C nn (2·3n -1-1)=32(C 1n +C 2n ·32+…+C n n ·3n )-(C 1n +C 2n +…+C nn )=32[(1+3)n -1]-(2n -1)= 32·4n -2n +31, .32)41()43(211)41(31)21(32lim 1324312432lim 4lim 11=-⋅++-=-⋅++-⋅=+∴-∞→-∞→∞→n n nn n n n n n n n n n n b T 7.解:∵{a n }为等差数列,{b n }为等比数列,∴a 2+a 4=2a 3,b 2·b 4=b 32,已知a 2+a 4=b 3,b 2·b 4=a 3,∴b 3=2a 3,a 3=b 32, 得b 3=2b 32,∵b 3≠0,∴b 3=21,a 3=41. 由a 1=1,a 3=41,知{a n }的公差d =-83, ∴S 10=10a 1+2910⨯d =-855.由b 1=1,b 3=21,知{b n }的公比q =22或q =-22,).22(32311)1(,22);22(32311)1(,221011010110-=--=-=+=--==q q b T q q q b T q 时当时当8.证明:(1)∵{a n }是等差数列,∴2a k +1=a k +a k +2,故方程a k x 2+2a k +1x +a k +2=0可变为(a k x +a k +2)(x +1)=0,∴当k 取不同自然数时,原方程有一个公共根-1.(2)原方程不同的根为x k =kk k k k a da d a a a 2122--=+-=-+ .21}11{)(2122)2(21111,211111为公差的等差数列是以常数-+∴-=-=-=---=+-+-=+∴+++k k k k k k k k k x d d d a a d a d a x x d a x高。
(浙江专版)高考数学二轮专题复习 第一部分 专题三 第二讲 等差数列、等比数列课件.pptx
二、经典例题领悟好 [例 2] (2018 届高三·浙江联考)已知数列{an}的前 n 项和为
Sn,且 Sn=2-n2+1 an(n≥1).
(1)求证:数列ann是等比数列; (2)设数列{2nan}的前 n 项和为 Tn,An=T11+T12+T13+…+T1n, 试比较 An 与n2an的大小.
比较n2n2与n+n 1的大小.
10
设 f(n)=n2n2,g(n)=n+n 1, 因为 f(n+1)-f(n)=2n[[nnnn-+21-]2 1], 当 n≥3 时,f(n+1)-f(n)>0, 所以当 n≥3 时,f(n)单调递增, 所以当 n≥4 时,f(n)≥f(4)=1,而 g(n)<1, 所以当 n≥4 时,f(n)>g(n). 经检验当 n=1,2,3 时,仍有 f(n)>g(n). 综上可得,An<n2an.
11
1判断一个数列是等差等比数列,还有通项公式法及前 n 项和公式法,但不可作为证明方法. 2若要判断一个数列不是等差等比数列,只需判断存在 连续三项不成等差等比数列即可. 3 a2n=an-1an+1n≥2,n∈N*是{an}为等比数列的必要不 充分条件,也就是要注意判断一个数列是等比数列时,各项不 能为 0.
6
考点二 等差、等比数列的判定与证明 一、基础知识要记牢 1.证明数列{an}是等差数列的两种基本方法 (1)利用定义,证明 an+1-an(n∈N*)为一常数; (2)利用等差中项,即证明 2an=an-1+an+1(n≥2). 2.证明{an}是等比数列的两种基本方法 (1)利用定义,证明aan+n 1(n∈N*)为一常数; (2)利用等比中项,即证明 an2=an-1an+1(n≥2,an≠0).
高考数学二轮复习 专题3 数列 第一讲 等差数列与等比数列 理PPT课件
(2)由(1)得,a4=7,S4=16. 因为 q2-(a4+1)q+S4=0,即 q2-8q+16=0, 所以(q-4)2=0,从而 q=4. 又因 b1=2,{bn}是公比 q=4 的等比数列,所以 bn=b1qn -1=2·4n-1=22n-1.
3.等差、等比数列的综合问题,多以解答题的形 式考查,主要考查考生综合数学知识解决问题的能力, 为中挡题.
例 1 已知数列{an}是一个等差数列,且 a2=1, a5=-5.
(1)求{an}的通项 an. (2)设 cn=5-2an,bn=2cn,求 T=log2b1+log2b2+ log2b3+…+log2bn 的值.
Thinking In Other People‘S Speeches,Growing Up In Your Own Story
讲师:XXXXXX XX年XX月XX日
从而{bn}的前 n 项和 Tn=b1(11--qqn)=32(4n-1).
已知等差数列中的某几项成等比数列(或已知等比数列 中的某几项成等差数列),往往是先设公差为 d(或公比为 q), 用待定系数法求出 d(或 q)与首项之间的关系,进而再解决 问题.
3.在等比数列{an}中,a2=3,a5=81. (1)求 an; (2)设 bn=log3an,求数列{bn}的前 n 项和 Sn.
=ban-b2·-2bn
=ban-2-1 b2n. ∴an-2-1 b·2n=a1-2-2 b·bn-1=2(21--bb)bn-1.
∴an=2-1 b[2n+(2-2b)bn-1]. ∵a1=2 适合上式, ∴an=2-1 b[2n+(2-2b)bn-1].
高三数学第二轮专题讲座复习:等差数列、等比数列性质的灵活运用
高三数学第二轮专题讲座复习:等差数列、等比数列性质的灵活运用高考要求等差、等比数列的性质是等差、等比数列的概念,通项公式,前n 项和公式的引申 应用等差、等比数列的性质解题,往往可以回避求其首项和公差或公比,使问题得到整体地解决,能够在运算时达到运算灵活,方便快捷的目的,故一直受到重视 高考中也一直重点考查这部分内容 重难点归纳1 等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题的既快捷又方便的工具,应有意识去应用2 在应用性质时要注意性质的前提条件,有时需要进行适当变形3 “巧用性质、减少运算量”在等差、等比数列的计算中非常重要,但用“基本量法”并树立“目标意识”,“需要什么,就求什么”,既要充分合理地运用条件,又要时刻注意题的目标,往往能取得与“巧用性质”解题相同的效果 典型题例示范讲解例1已知函数f (x )=412-x (x <-2) (1)求f (x )的反函数f --1(x );(2)设a 1=1,11+n a =-f--1(a n )(n ∈N *),求a n ;(3)设S n =a 12+a 22+…+a n 2,b n =S n +1-S n 是否存在最小正整数m ,使得对任意n ∈N *,有b n <25m 成立?若存在,求出m 的值;若不存在,说明理由命题意图 本题是一道与函数、数列有关的综合性题目,考查学生的逻辑分析能力 知识依托 本题融合了反函数,数列递推公式,等差数列基本问题、数列的和、函数单调性等知识于一炉,结构巧妙,形式新颖,是一道精致的综合题错解分析 本题首问考查反函数,反函数的定义域是原函数的值域,这是一个易错点,(2)问以数列{21na }为桥梁求a n ,不易突破技巧与方法 (2)问由式子41121+=+nn a a 得22111nn a a -+=4,构造等差数列{21na },从而求得a n ,即“借鸡生蛋”是求数列通项的常用技巧;(3)问运用了函数的思想解 (1)设y =412-x ,∵x <-2,∴x =-214y +,即y =f --1(x )=-214y + (x >0)(2)∵411,14122121=-∴+=++nn nn a a a a ,∴{21na }是公差为4的等差数列,∵a 1=1,21na =211a +4(n -1)=4n -3,∵a n >0,∴a n(3)b n =S n +1-S n =a n +12=141+n ,由b n <25m ,得m >1425+n , 设g (n )= 1425+n ,∵g (n )= 1425+n 在n ∈N *上是减函数,∴g (n )的最大值是g (1)=5,∴m >5,存在最小正整数m =6,使对任意n ∈N *有b n <25m成立例2设等比数列{a n }的各项均为正数,项数是偶数,它的所有项的和等于偶数项和的4倍,且第二项与第四项的积是第3项与第4项和的9倍,问数列{lg a n }的前多少项和最大?(lg2=0 3,lg3=0 4)命题意图 本题主要考查等比数列的基本性质与对数运算法则,等差数列与等比数列之间的联系以及运算、分析能力知识依托 本题须利用等比数列通项公式、前n 项和公式合理转化条件,求出a n ;进而利用对数的运算性质明确数列{lg a n }为等差数列,分析该数列项的分布规律从而得解错解分析 题设条件中既有和的关系,又有项的关系,条件的正确转化是关键,计算易出错;而对数的运算性质也是易混淆的地方技巧与方法 突破本题的关键在于明确等比数列各项的对数构成等差数列,而等差数列中前n 项和有最大值,一定是该数列中前面是正数,后面是负数,当然各正数之和最大;另外,等差数列S n 是n 的二次函数,也可由函数解析式求最值解法一 设公比为q ,项数为2m ,m ∈N *,依题意有⎪⎩⎪⎨⎧+=⋅--⋅=--⋅)(9)()(1)1(1)1(312131122121q a q a q a q a q q q a q q a m m 化简得⎪⎩⎪⎨⎧==⎪⎩⎪⎨⎧+==+10831 ),1(9114121a q q q a q q 解得 设数列{lg a n }前n 项和为S n ,则S n =lg a 1+lg a 1q 2+…+lg a 1q n -1=lg a 1n ·q 1+2+…+(n -1)=n lg a 1+21n (n -1)·lg q =n (2lg2+lg3)-21n (n -1)lg3=(-23lg )·n 2+(2lg2+27lg3)·n 可见,当n =3lg 3lg 272lg 2+时,S n 最大 而4.024.073.043lg 3lg 272lg 2⨯⨯+⨯=+=5,故{lg a n }的前5项和最大解法二 接前,⎪⎩⎪⎨⎧==311081q a ,于是lg a n =lg [108(31)n -1]=lg108+(n -1)lg 31, ∴数列{lg a n }是以lg108为首项,以lg31为公差的等差数列, 令lg a n ≥0,得2lg2-(n -4)lg3≥0,∴n ≤4.04.043.023lg 3lg 42lg 2⨯+⨯=+=5 5 由于n ∈N *,可见数列{lg a n }的前5项和最大例3 等差数列{a n }的前n 项的和为30,前2m 项的和为100,求它的前3m 项的和为_________解法一由等差数列{a n }的前n 项和公式知,S n 是关于n 的二次函数,即S n =An 2+Bn (A 、B 是常数)将S m =30,S 2m =100代入,得⎪⎪⎩⎪⎪⎨⎧==⇒⎪⎩⎪⎨⎧=⋅+=+m B m A m B m A Bm Am 1020 1002)2(30222,∴S 3m =A ·(3m )2+B ·3m =210 解法二根据等差数列性质知 S m ,S 2m -S m ,S 3m -S 2m 也成等差数列, 从而有 2(S 2m -S m )=S m +(S 3m -S 2m )∴S 3m =3(S 2m -S m )=210解法三 令m =1得S 1=30,S 2=100,得a 1=30,a 1+a 2=100,∴a 1=30,a 2=70∴a 3=70+(70-30)=110∴S 3=a 1+a 2+a 3=210 学生巩固练习1 等比数列{a n }的首项a 1=-1,前n 项和为S n ,若3231510=S S ,则lim ∞→n S n 等于( ) 32B. 32A.-C 2D -2 2 已知a ,b ,a +b 成等差数列,a ,b ,ab 成等比数列,且0<log m (ab )<1,则m 的取值范围是_________3 等差数列{a n }共有2n +1项,其中奇数项之和为319,偶数项之和为290,则其中间项为_________4 已知a 、b 、c 成等比数列,如果a 、x 、b 和b 、y 、c 都成等差数列,则ycx a +=_________5 设等差数列{a n }的前n 项和为S n ,已知a 3=12,S 12>0,S 13<0 (1)求公差d 的取值范围;(2)指出S 1、S 2、…、S 12中哪一个值最大,并说明理由6 已知数列{a n }为等差数列,公差d ≠0,由{a n }中的部分项组成的数列a 1b ,a 2b ,…,a n b ,…为等比数列,其中b 1=1,b 2=5,b 3=17(1)求数列{b n }的通项公式; (2)记T n =C 1n b 1+C 2n b 2+C 3n b 3+…+C nn b n ,求nn nn T ∞→lim参考答案:1 解析 利用等比数列和的性质 依题意,3231510=S S ,而a 1=-1,故q ≠1, ∴3213232315510-=-=-S S S ,根据等比数列性质知S 5,S 10-S 5,S 15-S 10,…,也成等比数列, 且它的公比为q 5,∴q 5=-321,即q =21∴.321lim 1-=-=∞→q a S n n 答案 B2 解析 解出a 、b ,解对数不等式即可 答案 (-∞,8)3 解析 利用S 奇/S 偶=nn 1+得解答案 第11项a 11=294 解法一 赋值法 解法二 b =aq ,c =aq 2,x =21(a +b )=21a (1+q ),y =21(b +c )=21aq (1+q ),y c x a + =)1(41)1(21)1(2122222q q a q q a q q a xy cx ay ++++=+=2答案 2 5 (1)解 依题意有 ⎪⎪⎪⎩⎪⎪⎪⎨⎧<⨯+=>⨯+==+=0212131302111212,12211311213d a S d a S d a a 得公差d 的取值范围为-724<d <-3 (2)解法一 由d <0可知a 1>a 2>a 3>…>a 12>a 13,因此,在S 1,S 2,…,S 12中S k 为最大值的条件为 a k ≥0且a k +1<0,即⎩⎨⎧<-+≥-+0)2(0)3(33d k a d k a ∵a 3=12,∴⎩⎨⎧-<-≥122123d kd d kd ,∵d <0,∴2-d 12<k ≤3-d 12∵-724<d <-3,∴27<-d12<4,得5 5<k <7因为k 是正整数,所以k =6,即在S 1,S 2,…,S 12中,S 6最大 6 解 (1)由题意知a 52=a 1·a 17,即(a 1+4d )2=a 1(a 1+16d )⇒a 1d =2d 2,∵d ≠0,∴a 1=2d ,数列{n b a }的公比q =11154a da a a +==3, ∴n b a =a 1·3n -1①又n b a =a 1+(b n -1)d =121a b n +② 由①②得a 1·3n -1=21+n b ·a 1 ∵a 1=2d ≠0,∴b n =2·3n -1-1(2)T n =C 1n b 1+C 2n b 2+…+C nn b n=C 1n (2·30-1)+C 2n ·(2·31-1)+…+C n n (2·3n -1-1) =32(C 1n +C 2n ·32+…+C n n ·3n )-(C 1n +C 2n +…+C nn ) =32[(1+3)n -1]-(2n -1)= 32·4n -2n +31, .32)41()43(211)41(31)21(32lim 1324312432lim 4lim 11=-⋅++-=-⋅++-⋅=+∴-∞→-∞→∞→n n nn n n n n n n n n n n b T。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
张喜林制[选取日期]高三数学第二轮专题讲座复习:等差数列、等比数列性质的灵活运用高考要求等差、等比数列的性质是等差、等比数列的概念,通项公式,前n 项和公式的引申 应用等差、等比数列的性质解题,往往可以回避求其首项和公差或公比,使问题得到整体地解决,能够在运算时达到运算灵活,方便快捷的目的,故一直受到重视 高考中也一直重点考查这部分内容 重难点归纳1 等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题的既快捷又方便的工具,应有意识去应用2 在应用性质时要注意性质的前提条件,有时需要进行适当变形3 “巧用性质、减少运算量”在等差、等比数列的计算中非常重要,但用“基本量法”并树立“目标意识”,“需要什么,就求什么”,既要充分合理地运用条件,又要时刻注意题的目标,往往能取得与“巧用性质”解题相同的效果典型题例示范讲解例1已知函数f (x )=412-x (x <-2) (1)求f (x )的反函数f --1(x );(2)设a 1=1,11+n a =-f --1(a n )(n ∈N *),求a n ;(3)设S n =a 12+a 22+…+a n 2,b n =S n +1-S n 是否存在最小正整数m ,使得对任意n ∈N *,有b n <25m 成立?若存在,求出m 的值;若不存在,说明理由命题意图 本题是一道与函数、数列有关的综合性题目,考查学生的逻辑分析能力 知识依托 本题融合了反函数,数列递推公式,等差数列基本问题、数列的和、函数单调性等知识于一炉,结构巧妙,形式新颖,是一道精致的综合题错解分析 本题首问考查反函数,反函数的定义域是原函数的值域,这是一个易错点,(2)问以数列{21na }为桥梁求a n ,不易突破技巧与方法 (2)问由式子41121+=+nn a a 得22111nn a a -+=4,构造等差数列{21na },从而求得a n ,即“借鸡生蛋”是求数列通项的常用技巧;(3)问运用了函数的思想解 (1)设y =412-x ,∵x <-2,∴x =-214y +,即y =f --1(x )=-214y + (x >0) (2)∵411,14122121=-∴+=++nn nn a a a a ,∴{21na }是公差为4的等差数列,∵a 1=1,21na =211a +4(n -1)=4n -3,∵a n >0,∴a n(3)b n =S n +1-S n =a n +12=141+n ,由b n <25m ,得m >1425+n , 设g (n )= 1425+n ,∵g (n )= 1425+n 在n ∈N *上是减函数,∴g (n )的最大值是g (1)=5,∴m >5,存在最小正整数m =6,使对任意n ∈N *有b n <25m 成立例2设等比数列{a n }的各项均为正数,项数是偶数,它的所有项的和等于偶数项和的4倍,且第二项与第四项的积是第3项与第4项和的9倍,问数列{lg a n }的前多少项和最大?(lg2=0 3,lg3=0 4)命题意图 本题主要考查等比数列的基本性质与对数运算法则,等差数列与等比数列之间的联系以及运算、分析能力知识依托 本题须利用等比数列通项公式、前n 项和公式合理转化条件,求出a n ;进而利用对数的运算性质明确数列{lg a n }为等差数列,分析该数列项的分布规律从而得解错解分析 题设条件中既有和的关系,又有项的关系,条件的正确转化是关键,计算易出错;而对数的运算性质也是易混淆的地方技巧与方法 突破本题的关键在于明确等比数列各项的对数构成等差数列,而等差数列中前n 项和有最大值,一定是该数列中前面是正数,后面是负数,当然各正数之和最大;另外,等差数列S n 是n 的二次函数,也可由函数解析式求最值解法一 设公比为q ,项数为2m ,m ∈N *,依题意有⎪⎩⎪⎨⎧+=⋅--⋅=--⋅)(9)()(1)1(1)1(312131122121q a q a q a q a q q q a q q a m m 化简得⎪⎩⎪⎨⎧==⎪⎩⎪⎨⎧+==+10831 ),1(9114121a q q q a q q 解得 设数列{lg a n }前n 项和为S n ,则S n =lg a 1+lg a 1q 2+…+lg a 1q n -1=lg a 1n ·q 1+2+…+(n -1)=n lg a 1+21n (n -1)·lg q =n (2lg2+lg3)-21n (n -1)lg3=(-23lg )·n 2+(2lg2+27lg3)·n 可见,当n =3lg 3lg 272lg 2+时,S n 最大 而4.024.073.043lg 3lg 272lg 2⨯⨯+⨯=+=5,故{lg a n }的前5项和最大解法二 接前,⎪⎩⎪⎨⎧==311081q a ,于是lg a n =lg [108(31)n -1]=lg108+(n -1)lg 31,∴数列{lg a n }是以lg108为首项,以lg31为公差的等差数列, 令lg a n ≥0,得2lg2-(n -4)lg3≥0,∴n ≤4.04.043.023lg 3lg 42lg 2⨯+⨯=+=5 5由于n ∈N *,可见数列{lg a n }的前5项和最大例3 等差数列{a n }的前n 项的和为30,前2m 项的和为100,求它的前3m 项的和为_________解法一由等差数列{a n }的前n 项和公式知,S n 是关于n 的二次函数,即S n =An 2+Bn (A 、B 是常数)将S m =30,S 2m =100代入,得⎪⎪⎩⎪⎪⎨⎧==⇒⎪⎩⎪⎨⎧=⋅+=+m B m A m B m A Bm Am 1020 1002)2(30222,∴S 3m =A ·(3m )2+B ·3m =210 解法二根据等差数列性质知 S m ,S 2m -S m ,S 3m -S 2m 也成等差数列, 从而有 2(S 2m -S m )=S m +(S 3m -S 2m )∴S 3m =3(S 2m -S m )=210解法三 令m =1得S 1=30,S 2=100,得a 1=30,a 1+a 2=100,∴a 1=30,a 2=70∴a 3=70+(70-30)=110∴S 3=a 1+a 2+a 3=210 学生巩固练习1 等比数列{a n }的首项a 1=-1,前n 项和为S n ,若3231510=S S ,则lim ∞→n S n 等于( ) 32 B. 32A.- C 2D -22 已知a ,b ,a +b 成等差数列,a ,b ,ab 成等比数列,且0<log m (ab )<1,则m 的取值范围是_________3 等差数列{a n }共有2n +1项,其中奇数项之和为319,偶数项之和为290,则其中间项为_________4 已知a 、b 、c 成等比数列,如果a 、x 、b 和b 、y 、c 都成等差数列,则ycx a +=_________ 5 设等差数列{a n }的前n 项和为S n ,已知a 3=12,S 12>0,S 13<0 (1)求公差d 的取值范围;(2)指出S 1、S 2、…、S 12中哪一个值最大,并说明理由6 已知数列{a n }为等差数列,公差d ≠0,由{a n }中的部分项组成的数列a 1b ,a 2b ,…,a n b ,…为等比数列,其中b 1=1,b 2=5,b 3=17(1)求数列{b n }的通项公式; (2)记T n =C 1n b 1+C 2n b 2+C 3n b 3+…+C nn b n ,求nn nn bT +∞→4lim参考答案:1 解析 利用等比数列和的性质 依题意,3231510=S S ,而a 1=-1,故q ≠1, ∴3213232315510-=-=-S S S ,根据等比数列性质知S 5,S 10-S 5,S 15-S 10,…,也成等比数列, 且它的公比为q 5,∴q 5=-321,即q =1 ∴.321lim 1-=-=∞→q a S n n 答案 B2 解析 解出a 、b ,解对数不等式即可 答案 (-∞,8)3 解析 利用S 奇/S 偶=nn 1+得解答案 第11项a 11=29 4 解法一 赋值法 解法二 b =aq ,c =aq 2,x =21(a +b )=21a (1+q ),y =21(b +c )=21aq (1+q ),y c x a + =)1(41)1(21)1(2122222q q a q q a q q a xy cx ay ++++=+=2答案 25 (1)解 依题意有 ⎪⎪⎪⎩⎪⎪⎪⎨⎧<⨯+=>⨯+==+=0212131302111212,12211311213d a S d a S d a a 得公差d 的取值范围为-724<d <-3(2)解法一 由d <0可知a 1>a 2>a 3>…>a 12>a 13,因此,在S 1,S 2,…,S 12中S k 为最大值的条件为 a k ≥0且a k +1<0,即⎩⎨⎧<-+≥-+0)2(0)3(33d k a d k a ∵a 3=12,∴⎩⎨⎧-<-≥122123d kd d kd ,∵d <0,∴2-d 12<k ≤3-d 12∵-724<d <-3,∴27<-d12<4,得5 5<k <7因为k 是正整数,所以k =6,即在S 1,S 2,…,S 12中,S 6最大 6 解 (1)由题意知a 52=a 1·a 17,即(a 1+4d )2=a 1(a 1+16d )⇒a 1d =2d 2,∵d ≠0,∴a 1=2d ,数列{n b a }的公比q =11154a da a a +==3, ∴n b a =a 1·3n -1①又n b a =a 1+(b n -1)d =121a b n +② 由①②得a 1·3n -1=21+n b ·a 1 ∵a 1=2d ≠0,∴b n =2·3n -1-1(2)T n =C 1n b 1+C 2n b 2+…+C nn b n=C 1n (2·30-1)+C 2n ·(2·31-1)+…+C n n (2·3n -1-1) =32(C 1n +C 2n ·32+…+C n n ·3n )-(C 1n +C 2n +…+C nn ) =32[(1+3)n -1]-(2n -1)= 32·4n -2n +31, .32)41()43(211)41(31)21(32lim 1324312432lim 4lim 11=-⋅++-=-⋅++-⋅=+∴-∞→-∞→∞→n n nn n n n n n n n n n n b T。