35KV变电站一次系统设计

合集下载

(完整)35kV总降压变电所及高压配电系统初步设计

(完整)35kV总降压变电所及高压配电系统初步设计

目录1 前言 (1)1.1毕业设计背景 (1)1.2毕业设计意义 (1)1.3设计要求 (1)2 35kV变电所一次系统负荷计算 (2)2.1变电所电力负荷分组与计算 (2)2.2 需要系数法的计算 (2)2.2.1设备负荷计算举例 (3)2.2.2总配电所和车间变电所数量的确定 (4)2.2.3各车间变电所负荷计算及无功功率补偿 (5)2.3 低压变压器的选择与损耗计算 (8)2.3.1低压变压器的选择 (8)2.3.2 各低压变压器的损耗计算 (9)2.4 主变压器的选择 (11)2.4.2主变压器损耗计算 (12)3 系统主接线设计 (13)3.1主接线设计的基本要求 (13)3.1.1供电电源的确定 (13)3.2电气主接线方案的确定 (13)3.2.1 确定35kV、10kV电气主接线 (13)3.2.2供电系统简图 (14)4 短路电流的计算 (15)4.1 短路电流 (15)4.1.1短路的原因 (15)4.1.2 短路的危害 (15)4.1.3 短路电流计算的目的 (15)4.1.4 短路电流计算的标幺值法 (15)4.2 计算各元件的电抗标幺值 (16)4.2.1选取基准值 (16)4.2.2供配电系统中各主要元件电抗标么值 (16)4.2.3短路电流具体计算短路电路中各主要元件的电抗标么值.. 174.2.4 在最大运行方式下 (18)4.2.5在最小运行方式下 (19)5 变电所高压电气设备的选择与校验 (21)5.1. 35KV高压开关柜的选择 (21)5.1.1短路校验的原则 (21)5.2高压设备选择及校验 (21)5.2.1 35KV断路器的选择 (22)5.2.2 35KV隔离开关的选择 (23)5.2.3 35KV电流互感器的选择 (23)5.2.4 35KV电压互感器的选择 (24)5.2.5 35KV熔断器的选择 (24)5.2.6 35KV避雷器的选择 (24)5.3 10KV电气设备的选择 (24)5.3.1 10KV开关柜的选择 (24)5.3.2 10KV断路器的选择 (24)5.3.3 隔离开关的选择 (25)5.3.4电流互感器的选择 (26)5.3.5电压互感器的选择 (26)6 高压配电线路的设计 (26)6.1高压配电线路接线方式的选择 (26)6.2高压配电线路截面的选择与校验 (27)6.2.1 35KV高压进线的选择 (27)6.2.2 截面积的校验 (27)6.2.3 10KV高压出线线路的选择与校验 (28)7 防雷与接地设计 (29)7.1防雷保护 (29)7.1.1 电力线路的防雷措施 (29)7.1.2 变配电所的防雷措施 (30)7.1.3雷电侵入波的防护 (30)7.2接地设计 (30)8 继电保护的整定计算 (31)8.1继电保护的基本任务及要求 (31)8.1.1继电保护的基本任务 (31)8.1.2 继电保护的基本要求 (31)8.2 变压器的继电保护设置 (32)8.3变电所主变压器继电保护的计算 (32)8.3.1装设瓦斯保护 (32)8.3.2装设定时限过电流保护 (32)8.3.3 装设电流速断保护 (33)8.3.4 装设过负荷保护 (34)8.3.5 10kV母线断路器的保护 (34)8.3.6 10kV出线各支路的保护 (35)结论 (35)致谢 (36)参考文献 (37)摘要本设计是为某矿山起重机有限公司设计一座35kV变电所及其配电系统。

35kV变电站电气一次部分初步设计分析

35kV变电站电气一次部分初步设计分析

35kV变电站电气一次部分初步设计分析1. 引言1.1 背景介绍35kV变电站是指电压等级为35千伏的变电站,是电力系统中的一个重要环节,用于将输电线路上的高压电能转变为供用户使用的低压电能。

一次部分是变电站中最基础、最重要的组成部分之一,其设计合理与否直接关系到电能传输的安全、稳定和有效。

随着我国电力行业的快速发展,35kV变电站在城市和乡村的建设中得到广泛应用,因此对其一次部分的设计要求也越来越高。

35kV变电站电气一次部分初步设计分析是对变电站的电气一次系统进行的初步设计和分析,旨在确保变电站的电气系统能够稳定、安全地运行。

通过对35kV变电站的电气一次部分进行详细的设计要求分析,可以为后续深入设计提供参考,保障变电站的正常运行和电能传输的可靠性。

对35kV变电站电气一次部分进行初步设计分析具有重要意义。

1.2 研究目的本文的研究目的是为了对35kV变电站电气一次部分的初步设计进行分析和探讨。

通过深入研究和详细分析设计要求、系统框架设计、继电保护原理设计、接地系统设计以及防雷设计,我们旨在探讨如何有效地设计和布置35kV变电站的电气一次部分,以确保其正常运行和安全性。

通过本文的研究,我们希望为后续深入设计提供有力参考,为35kV变电站电气一次部分的设计和施工提供科学指导。

我们也希望通过这篇文章的撰写,能够为相关领域的研究和实践工作提供一定的理论支持和技术参考,促进35kV变电站电气一次部分设计水平的提升,确保电网运行的安全稳定。

1.3 研究意义35kV变电站电气一次部分初步设计分析引言:35kV变电站作为电力系统的重要组成部分,其电气一次部分的设计直接关系到电力系统的安全稳定运行。

对35kV变电站电气一次部分的初步设计进行分析具有重要的理论和实践意义。

通过对35kV变电站电气一次部分的设计要求进行分析,可以帮助设计人员更好地了解对该部分的功能和性能要求,为设计方案的制定提供有力的依据。

通过对系统框架设计、继电保护原理设计、接地系统设计、防雷设计等方面的分析,可以全面评估电气一次部分的设计方案是否符合相关要求,从而为后续深入设计提供参考和指导。

35KV变电站设计

35KV变电站设计

摘要变电站是电力系统的重要组成部分,它直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,起着变换和分配电能的作用。

电气主接线是发电厂变电所的主要环节,电气主接线的拟定直接关系着全厂电气设备的选择、配电装置的布置、继电保护和自动装置的确定,是变电站电气部分投资大小的决定性因素。

变电站是把一些设备组装起来,用来切断、接通、改变或者调整电压的。

在系统中,变电站成了输电和配电的集节点。

本次设计首先根据任务书上所给系统与线路及所有负荷的参数,分析负荷发展趋势。

从负荷增长方面阐明了建站的必要性,然后通过对拟建变电站的概括以及出线方向来考虑,并通过对负荷资料的分析,安全,经济及可靠性方面考虑,确定了35kV,10kV以及站用电的主接线,然后又通过负荷计算及供电范围确定了主变压器台数,容量及型号,同时也确定了站用变压器的容量及型号,并进行了短路电流计算等内容,从而完成了35kV电气一次部分的设计。

关键词:主变压器,电气主接线,短路电流,电气设备AbstractA substation is the electrical power system important constituent, it affects the entire electrical power system directly the security and the economical movement, is relates the power plant and user’s middle link, is playing the transformation and the assignment electrical energy role.The electrical host wiring is the power plant transformer substation key link, the electrical host wiring draws up is relating the entire factory directly the electrical equipment choice, the power distribution equipment arrangement, the relay protection and the automatic device determination, is the transformer substation electricity part investment size determining factor.The transformer substation is assembles some equipment, uses for to shut off, the connection, the change or the regulation voltage.In the system, the transformer substation has become the electric transmission and the power distribution collection node.This design first acts according to in the project description to give the system logical circuit and all load parameter, the analysis load trend of development.Had expounded from the load growth aspect the station construction necessity, then through to plans to construct the transformer substation the summary as well as the going beyond a line direction considered, and through to shoulders the material the analysis, safe, the economy and the reliable aspect considered, had determined 35kV,10kV as well as the station use electricity the main wiring, then calculated through the load and supplies power the scope to determine the main transformer Taiwan number, the capacity and the model, simultaneously also had determined stood with contents and so on transformer capacity and model, thus has completed 35kV electricity partial designs.Keywords: Main transformer,Single bus bar segment wiring,Short out in the-electric current ,Electric equipment绪论变电站是电力网中线路的连接点,作用是变换电压、交换功率和汇集、分配电能,它直接影响整个电力系统的安全与经济运行。

35kV降压变电站继电保护设计

35kV降压变电站继电保护设计

35kV降压变电站继电保护设计摘要:本设计可分为几部分:设计方案的确定;系统负荷计算,短路电流的计算;主变压器继电保护的配置、整定及校验的确定。

10kV出线继电保护的配置、整定及校验的确定。

无功补偿系统继电保护配置、整定及校验。

关键词:负荷计算;无功功率;短路电流;继电保护一、变电站继电保护和自动装置规划1.1系统分析及继电保护要求1.1.1系统一次1、变电站规模及电气主接线:本次设计变电站装设20000kVA双绕组变压器2台(N-1备用),35kV进线两回,单母分段接线;35kV主变出线2回,10kV出线12回,10kV电气主接线为单母线分段。

变电站主变的调压方式及无功补偿配置:变电站主变压器采用有载调压变压器,无功补偿方式采用10kV侧集中补偿方式,无功补偿电容器选用室外成套补偿装置。

补偿容量按照主变容量的15﹪选定,即总补偿容量为6000kVar。

变电站消弧线圈的装设:本站暂不考虑设置消弧线圈。

1.1.2为保证安全供电和电能质量,继电保护应满足四项基本要求,即选择性、速动性、灵敏性和可靠性。

1.2继电保护装置规划⑴35kV母联保护设置备自投及母联相间及零序过流、母联充电保护的功能。

⑵变压器主保护:变压器本体和有载分接开关重瓦斯保护、纵差保护,作用于总出口,跳主变35kV侧进线开关及主变10kV侧进线开关。

⑶35kV后备保护①10kV复合电压闭锁过电流保护:延时作用于总出口,跳主变二侧开关及35kV母联开关。

②35kV过负荷保护:延时发过负荷信号。

⑷10kV后备保护①10kV复合电压闭锁10kV过流保护:第一时限跳10kV分段开关,第二时限跳主变10kV侧进线开关,第三时限跳主变进线35kV侧开关及35kV母联开关。

②10kV过负荷保护:延时发过负荷信号。

主变10kV侧后备保护动作闭锁10kV分段备自投。

⑸非电量保护变压器非电量保护跳闸或发告警信号(包括变压器本体和有载瓦斯、变压器压力释放、变压器本体和有载油位异常等)。

35KV10KV大港变电站一次系统设计

35KV10KV大港变电站一次系统设计

发电厂电气部分课程设计题目:35KV/10KV大港变电站一次系统设计学院:自动化工程学院专业:电气工程及其自动化姓名:指导教师:2011年9 月11日第一章任务书一、设计要求(1)建立工程设计的正确观点,掌握电力系统设计基本原则和方法。

(2)培养独立思考、解决问题的能力。

(3)学习使用工程设计手册和其他参考书的能力,学习撰写工程设计说明书。

二、原始资料(1)35KV进线3回。

分别从系统的35KV的三个分段上引接;10KV出线14回; (2)工程建设规模:主变压器3台,容量均为50MV A,年最大负荷利用小时数均为6000h电压等级35KV/10KV;(3)系统短路容量(根据市局计划处调度所的资料):变电所35KV母线三相最大短路容量为915.18MV A,短路电流15.07KA;10KV母线最大短路容量为261.78MV A,短路电流14.39KA。

三、设计任务(1)为该变电所设计出电气主接线图;(包括电压互感器和电流互感器的配置,站用变压器的引接也要有所体现)(2)选择主变压器的型号;(3)选择主变压器出口断路器和隔离开关(35KV侧);(4)利用经济电流密度选择变压器出口母线;(5)选择10KV出线的断路器和隔离开关;(6)选择电压互感器和电流互感器的型号。

(各选一个即可)第二章主接线设计方案第一节主接线的设计原则一.主接线的设计依据1、负荷大小的重要性2、系统备用容量大小(1)运行备用容量不宜少于8-10%,以适应负荷突变,机组检修和事故停运等情况的调频需要。

(2)装有两台及以上的变压器的变电所,当其中一台事故断开时,其余主变压器的容量应保证该变电所60%~70%的全部负荷,在计及过负荷能力后的允许时间内,应保证车间的一、二级负荷供电。

二.主接线的基本要求电气主接线应满足可靠性、灵活性、经济性三项基本要求,其具体要求如下:1、可靠性安全可靠是电力生产和分配的首要要求,保证供电的可靠性是电气主接线最基本的要求。

110-35kv降压变电所电气一次部分设计

110-35kv降压变电所电气一次部分设计

从以上校验可知断路器满足使用要求,故确定选用 SW2—35
II/1500 型少油断路器。
(3)断路器配用 CD3—XG II 型弹簧操作机构。
6.2 隔离开关的选择
6.2.1 110kV 侧隔离开关的选择 1)根据配电装置的要求,选择隔离开关带接地刀闸。 2)该隔离开关安装在户外,故选择户外式。 3)该回路额定电压为 110kV,因此所选的隔离开关额定电压
(3)、对于其它发电机侧电源 XΣ*=1/4(Xd+XT2+XL) =0.649
Xca*=XΣ* =0.649×(60/0.8)/100=0.517 查短路电流运算曲线[(一) t=0],得 I”*=2.0
I”G2=I”*
=2.0×(60/0.8)/(1.732×37)=2.341(kA)
短路冲击电流:iM3=2.55 I”G=2.55×2.341=5.970(kA)
Ue≥ 110kV,且隔离开关的额定电流大于流过断路器的最大持续电流 ImaX=1.05×(60/0.8)/(1.732×115)=0.395(kA)
4)初 GW4—110D 型单接地高压隔离开关其主要技术参数如 下:
型号
额定 电压 kV
额定 最大工作 接地
电流 电压 刀闸
kA
kV
A
极限通过电流 kA 有效值 峰值
4S 热稳 定电流
kA
备注
GW4-110D 110 1250 126 2000
32
5)校验所选的隔离开关
55
10 双接地
ห้องสมุดไป่ตู้
(1)动稳定校验
动稳定电流等于极限通过电流峰值即 idw = 55kA
流过该断路器的短路冲击电流 iM = 4.508 kA.s

35kv箱式变电站设计

35kv箱式变电站设计

摘要箱式变电站又称户外成套变电站,也有称做组合式变电站,它是发展于20世纪60年代至70年代欧美等西方发达国家推出的一种户外成套变电所的新式变电设备,由于它拥有组合灵便,便于运输、迁移、安装方便,施工周期短、运行花销低、无污染、免保护等优点,碰到世界各国电力工作者的重视。

进入20世纪90年代中期,国内开始出现简单箱式变电站,并获取了迅速发展。

本课题的主要内容包括箱式变电站的发展应用,箱式变电站的结构分类,以及箱式变电站一次系统设计极其设备选型,二次系统设计,以及箱式变电站的智能监控系统。

35kV箱式变电站的设计高压侧额定电压为35kV,低压侧额定电压为10kV,主变压器容量为3150kVA。

主接线采用单母线分段接线。

目录1 绪论1.1 供配电技术的发展随着市场经济的发展,国家在城乡电网建设和改造中,要求高压直接进入负荷中心,形成高压受电—变压器降压—低压配电的供电格局,所以供配电要向节地、节电、紧凑型、小型化、无人值守的方向发展,箱式变电站(简称箱变)正是拥有这些特点的最正确产品,所以在城乡电网中获取广泛应用。

其次随着社会发展和城市化进度的加快,负荷密度越来越高,城市用地越来越紧张,城市配电网渐渐由架空向电缆过渡,架杆方式安装的配电变压器越来越不适应人们的要求。

所以,预装式变电站成为主要的配电设备之一。

再次人们对供电质量特别是供电的可靠性要求越来越高,而采用高压环网或双电源供电、低压网自动投切等先进技术的预装式变电站成为首选的配电设备。

与此同时,由于信息化、网络化和智能化住处小区发展,所以不但要求箱变安全可靠,同时要求拥有“四遥”(遥测、遥讯、遥调、遥控)的智能化功能。

这种智能箱式变电站(简称智能箱变)环网供电时,在特定自主软件配合下,能完成故障区段自动定位、故障切除、负荷转带、网络重构等功能,进而保证在一分钟左右恢复送电。

1.2 箱式变电站的种类、结构与技术特点1.2.1 箱式变电站的种类箱式变电站有美式箱式变电站和欧式箱式变电站。

35KV变电站一次系统设计

35KV变电站一次系统设计

河南理工大学万方科技学院35KV变电站一次系统设计姓名:田英科学号:05专业班级:电气08-2指导老师:所在学院:电气工程与自动化系摘要变电站是电力系统的重要组成部分,它直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,起着变换和分配电能的作用。

电气主接线是发电厂变电所的主要环节,电气主接线的拟定直接关系着全厂(所)电气设备的选择、配电装置的布置、继电保护和自动装置的确定,是变电站电气部分投资大小的决定性因素。

本次设计建设一座35KV降压变电站,首先,根据主接线的经济可靠、运行灵活的要求选择各个电压等级的接线方式,在技术方面和经济方面进行比较,选取灵活的最优接线方式。

其次进行短路电流计算,根据各短路点计算出各点短路稳态电流和短路冲击电流,从三相短路计算中得到当短路发生在各电压等级的工作母线时,其短路稳态电流和冲击电流的值。

最后,根据各电压等级的额定电压和最大持续工作电流进行设备选择,然后进行校验并对二次改造部分进行概预算编制。

关键词:35KV变电所:设计:变压器:短路电流计算目录1 概述 (4)2变电所的负荷计算 (5)3变电站的选取 (8)4电气主接线设计 (10)5短路电流计算 (14)6电气设备选择和校验 (16)7变电所的平面布置 (25)8防雷接地 (27)9心得体会 (29)1 概述我国的城市电力网和农村电力网正在进行大规模的改造,与此相应,城乡变电所也须进行更新换代,我国电力网的现实情况是常规变电所依然存在,小型变电所、微机监测变电所、综合自动化变电所相继出现,并取得了迅猛的发展。

供电电源:由区域变电所二路35kV架空线(1#、2#线)至变电站后转为电缆线供给本站,线长 3 Km。

变电站35kV母线最大运行三相短路容量Sm axk =800MVA,Sm ink=600MVA。

操作电源:直流220V电能计量:采用高供高计,两路35kV进线各设置计量专用的电流、电压互感器及计量屏。

探究35kV变电站电气一次系统改造设计

探究35kV变电站电气一次系统改造设计
2.1.3桥形接线
①优点:高压断器数量少,四个回路只需三台断路器。
②缺点:变压器的切除和投入较复杂,需动作两台断路器,影响一回线路的暂时停运;桥连断路器检修时,两个回路需解列运行;出线断路器检修时,线路需较长时期停运。
③适用范围:适用于较小容量的发电厂,变电所并且变压器不经常切换或线路较长,故障率较高的情况。
1.2 35kV变电站电气一次部分设计的基本要求
在35kV变电站电气一次部分设计中,要符合以下几点基本要求,具体包括:①主接线要兼顾方便和灵活的特点。在35kV变电站电气一次部分设计中,在实现主接线运行正常、供电安全的同时,还需要做好兼顾方便和灵活,能够根据电力系统调度的要求,高效、准确地完成运行模式转换,以减少故障停电的时间,控制故障停电的影响范围。②保障供电可靠,确保电能质量达标。35kV变电站电气一次部分设计是电力系统运行的重要影响因素,如果设计不到位,就会导致运行故障,引发停电,造成经济损失,影响人们生活秩序。所以,35kV变电站电气一次部分设计首要保障供电的可靠,并满足电能质量的要求,维持变电站的良好运行。③考虑经济性和变电站的扩建需求。在主线接线设计中,在实现保障系统运行正常的根本目标基础上,还应具备经济性,能够为供电企业提供经济效益,才是可以被采用的设计方案。同时,由于电力需求量的不断增加,许多变电站都需要进行扩建,因此,在主接线设计中,既要完成变电站的最终接线,还要留有足够的施工余地以满足扩建需求。
③适用范围:6-10KV配电装置的出线回路数不超过5回;35-63KV配电装置出线回路数不超过3回;110-220KV配电装置的出线回路数不超过2回。
2.1.2单母线分段接线
①优点:用断路器把母线分段后,对重要用户可以从不同段引出两个回路,有两个电源供电。当一段母线发生故障,分段断路器自动将故障切除,保证正常段母线不间断供电和不致使重要用户停电。

35KV变电站设计

35KV变电站设计

35KV变电站设计35kV变电站设计1.总的部分本设计对应35kV配电装置采用户外软导线改进中型布置,架空出线;10kV配电装置采用户外软导线中型双列布置,架空出线;主变压器采用2台5MV A三相双绕组自冷式有载调压变压器,户外布置;配置2台容量为0.9Mvar无功补偿并联电容器组,户外布置组合成的方案。

1.1本设计的适用场合(1)规划为末端负荷站。

(2)35kV和10kV均采用架空出线。

(3)偏远地区。

1.2 对设计方案组合的说明35kV变电站设计户外站方案技术组合表1.3 主要技术指标主要技术指标2.电力系统部分2.1 电力系统本设计按照给定的主变压器及线路规模进行设计,在实际工程中,需要根据变电站所处系统情况具体设计。

各电压等级的设备短路电流按如下水平选择:(1)35kV母线的短路电流为:25kA。

(2)10kV母线的短路电流为:16kA。

2.2 系统继电保护及安全自动装置本设计不涉及系统继电保护具体配置,只根据工程规模,推荐组屏方案,配合土建专业进行二次设备的布置。

在实际工程设计阶段,需要根据变电站所处地区电力系统实际情况具体设计。

本设计35kV侧电气主接线为内桥接线,变电站按负荷变电站考虑,不设线路保护。

当考虑变电站有转供电的运行方式时,应增加35kV线路保护。

2.3 系统通信及站内通信本设计不涉及系统通信专业的具体内容,只根据工程规模配合土建专业进行二次设备室的布置。

在实际工程设计阶段,需要根据实际情况确定调度关系、通信方式,并进行通道安排。

(1)变电站监控系统应具有通信监控功能,不再另设通信监控系统。

(2)站内应设程控电话及市话各一部,不设站内总机。

(3)不单独设置通信电源。

2.4 系统调度自动化本设计不涉及调度自动化专业的具体内容,在实际工程中,只根据工程规模配合土建专业进行二次设备室的布置。

在实际工程设计阶段,需要根据实际情况确定调度关系、远动信息内容和通道要求,进行远动设备选型。

电气一次系统设计作业(110 35 10kv变电站)

电气一次系统设计作业(110 35 10kv变电站)

电子信息工程学院发电厂变电所电气部分设计班级:学号:姓名:指导教师评语:_______________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ ______________________《发电厂电气部分》作业题目5:试设计一110KV变电所电气主接线该变电所电压等级为110/35/10KV,其中110KV侧4回线;35KV 侧4回,负荷为4-6MW;10KV侧8回线,负荷为1.5-4MW之间。

组员:一、分析原始资料该变电所向荆门市民供电,且是一座110/110/35kV终端变电所。

设计的重点是对变电所电气主接线的拟订及配电装置的选择。

荆门地区的全年平均气温为18℃,年最高气温45℃,年最低气温﹣5.℃,年日照时间1997-2100h,年平均降水量804-1067mm;每年7、8月为雷雨集中期。

110kv的变电所应该考虑防雷等措施。

待建110KV变电所从相距40km的荆门热电厂受电(系统为无限大功率电源)并采用架空线作为电能的传输及配送;型号为LGJ-300电抗值为0.395Ω/km,其他线路阻抗忽略不计。

从负荷特点及电压等级可知110/35/10kv为降压变电所且满足三绕组变压器的特点:高压侧为中压侧的近似3倍,中压侧为低压侧的近似3倍;110KV应该考虑其供电可靠性、扩建等问题;从经济远性选择三绕组变压器。

35及10kv 属于一、二级负荷可靠性也有一定要求;35kv侧每回线负荷为4-6MW;10kv侧负荷1.5-4MW。

关于35kV变电站电气一次部分设计技术的研究

关于35kV变电站电气一次部分设计技术的研究

关于35kV变电站电气一次部分设计技术的研究摘要35kV变电站电气一次部分设计应用非常关键,对于变电站电气生产和运输均有重要影响。

因此,保证电气一次部分设计科学合理是35kV变电站设计的关键。

本文就针对35kV变电站电气一次部分设计技术进行分析研究,探讨变电站电气一次部分设计内容、设计技术原则、具体设计思路要点。

同时也结合实践案例探讨35kV变电站电气一次部分设计技术注意事项,规避问题。

旨在推广35kV变电站电气一次部分设计新思路。

关键词:35kV;变电站;电气一次部分35kV变电站是我国电力系统的重要组成部分,是为地区提供电力的重要系统。

当前,我国基层地区对电力资源的需求不断扩大,对35kV变电站的建设要求也逐渐提高。

因此,35kV变电站电气设计也正在逐步优化。

以一次部分设计为例,现代电气一次部分设计更要求遵循安全、先进、兼容拓展等多项原则,继而确保35kV变电站电气一次部分设计符合现代电气系统需求,与电气总体系统形成兼容,继而确保电气设计能够为地区提供稳定电力输出。

1.35kV变电站电气一次部分设计技术内容分析35kV变电站电气一次部分是变电站运行的核心,一次部分主要是指一次设备、线路以及系统组成的变电部分。

一次部分的核心就是一次设备,主要包括输电线路、GIS设备、开关、主变压器、继电保护、自动化部等内容。

而在具体设计的过程中,主要设计内容包括一次部分布置、一次设备选型、运行控制思路设计等,设计的主要内容以保证35kV变电站电气一次部分良好运行为关键。

第一,35kV变电站电气一次部分设计技术内容为总体布置设计。

变电站一次设备选择、变电站设备布局方案、变电站总体布置要求等内容。

第二,一次设备设计的关键环节为设备选型选择各环节、一次设备是完成一次部分工作的关键内容。

因此,选择符合一次部分需求、符合变电站需求的设备极为关键,也是设计的核心。

第三,35kV一次部分设计需要考虑一次部分运行方面的设计。

35kV变电站电气一次部分设计技术分析

35kV变电站电气一次部分设计技术分析
6 排水 管道噪 声
当前 ,住户对住宅建筑 中排水管道噪声问题的反映时有发 生 ,尤其是硬聚氯 乙烯塑料管排水管道 。可是排水管的水流呈 不充盈和重力流状态 ,噪声难免 ,且受管道材质影响 。那么作
为设计者 就要尽量让 噪音降 到最低 ,降噪 的方式有两种 :一种 是采 用低 噪声管材 ,如 芯层发泡管 、空壁管 、螺旋管 、芯层发 泡螺旋管和空壁螺旋管 ;另一种是将管道暗装在管井 、管槽 内。 如条 件限制达不 到时 ,明装管道应避免靠近卧室 。卫生器具布 置时要尽量考虑使排水立管远离卧室和客厅 ,管材考虑新型降 噪产 品。总之 ,建筑排水管 的降噪除 了与排水管材管件的构造 形式 、管材材质直接相关外 ,还与排水管道系统的布设 、卫生 洁具 的性能有关 。在工程 中如何选用管材 ,选用哪种管材能降 低建筑排水管道系统的噪声 ,还有待 同行的共同努力 与探索 。
7 结束语
随着建筑设计标准的不断提高 ,给排水设计 方案有 待进一 步探讨 ,进一步优化 ,本文谈 的仅是笔者在实际工作 中遇到 的 若干问题和认识 ,敬请广大专业技术人员指正。
参 考 文 献 1 《建筑给水排水设计规范》(GB50015—2003) 2 《高层 民用建筑设计防火规 范》(GB500045—95) 3 《建筑设计 防火规范》(GB50016—2006)
w ith colleagues raised. Key words: balcony rain;toilet dr ain;same floor drainage;PP—R pipe;com mercial services;noise

14 —
科 学 之友
Friend of Science Amateurs
综上可以看出 :① 商业 服务 网点仅指住宅底部设 的小 型商 业服务用 房 ,而不包括 商住楼 、办公楼 、综合楼等建筑 ;②该 用房层数不超过二层 ,超过 的不在此列 ;③该用房指地上部分 , 地下 部分不在此列 ;④防火间隔建筑 面积不小于 300 m ,而 总 面积未予 限定 ;⑤该小 型商业服务 网点 与住宅 和其他用房完全 分 隔 ,并且与住宅 的疏散楼梯和安全 出口也分别独立设置 ,以 防火灾蔓延危及住宅中居民的安全 。

35kV变电站电气一次部分的设计

35kV变电站电气一次部分的设计

目录摘要.................................................................... - 1 - ABSTRACT ................................................................ - 2 - 引言.................................................................. - 3 - 原始资料分析............................................................ - 4 - 第一章主接线的选择.................................................... - 5 - 1.1主接线的设计原则和要求.. (5)1.2主接线的拟定 (5)1.3所用电的设计 (9)第二章主变压器的选择.................................................. - 7 - 2.1变电站变压器台数的选择原则. (8)2.2变电站主变压器台数的确定............................. 错误!未定义书签。

2.3变电所主变压器容量的确定原则 (8)2.4待设计变电所主变压器容量的计算和确定 ................. 错误!未定义书签。

2.5主变压器绕组数的确定 (8)2.6主变压器相数的确定................................... 错误!未定义书签。

2.7主变压器调压方式的确定 (9)2.8主变压器绕组连接组别的确定 (9)2.9主变压器冷却方式的选择............................... 错误!未定义书签。

第三章所用电设计 (13)第四章短路电流的计算.................................................. - 9 - 4.1短路的基本知识 (12)4.2计算短路电流的目的 (12)4.3短路电流的计算步骤 (13)第五章设备的选择与校验............................................... - 16 - 5.1进线与出线的选择与校验. (17)5.2互感器的选择与配置 (23)5.2.1 电流互感器的选择............................................ - 23 -5.2.2 电压互感器的选择............................................ - 24 - 第六章无功补偿....................................................... - 26 - 6.1补偿装置的种类和作用................................. 错误!未定义书签。

某煤矿35kv变电站一次系统设计

某煤矿35kv变电站一次系统设计

某煤矿35kv变电站一次系统设计
一、概述
该煤矿35kV变电站坐落在XX县XX镇XX村,主要供应XX煤矿的用电,总装机容量3.2MW,包括35kV变电站、6kV、10kV、0.4kV配电系统。

变电站由35kV主变、35/10kV二次变、6kV主变、6/0.4kV二次变和控制
室等构成。

二、35kV主变
主变采用油浸变压器,主要技术参数如下:
1、额定容量3.2MVA;
2、额定电压35/10kV;
3、短路阻抗6%;
4、故障等级75kA;
5、冷却方式ONAN;
6、变压器类型油浸变压器;
配电室:室外,长度7.5米,宽2.5米,可划分为3个间隔,配有漏
电保护装置。

三、35/10kV二次变
采用油浸二次变压器,主要技术参数如下:
1、额定容量3.2MVA;
2、额定电压35/10kV;
3、短路阻抗6%;
4、故障等级50kA;
5、冷却方式ONAN;
6、变压器类型油浸变压器;
配电室:室外,长度7.5米,宽2.5米,可划分为3个间隔,配有漏电保护装置。

四、6kV主变
采用油浸变压器,主要技术参数如下:
1、额定容量6MVA;
2、额定电压6/0.4kV;
3、短路阻抗6.5%;
4、故障等级50kA;
5、冷却方式ONAN;
6、变压器类型油浸变压器;
配电室:室外,长度7.5米,宽3米,可划分为3个间隔,配有漏电保护装置。

五、6/0.4kV二次变。

35kV变电站电气一次系统的设计

35kV变电站电气一次系统的设计

35kV变电站电气一次系统的设计
简介
本篇文档主要介绍35kV变电站电气一次系统的设计,主要包括以下几个方面。

规划与设备选型
35kV变电站电气一次系统包括:110kV变压器、高压侧隔离开关、电、高压侧隔离开关、隔离变压器、欠压保护装置等设备,在设计时应根据实际情况进行规划与设备选型。

接线与配电方案
针对不同设备的特点,应采取不同的接线方案,同时为了保证安全可靠,应合理设置配电系统,确保电气一次系统运行稳定。

电缆敷设
电缆敷设是电气一次系统设计的重要环节,应遵循国家标准和电力行业标准要求,尽可能减少缆头接头的数量,保证电缆连接的可靠性,并对电缆进行防腐蚀处理。

维护与管理
在电气一次系统正常运行后,应实施有效的维护与管理措施,及时发现并排除隐患,延长设备寿命,保证系统运行的可靠性。

结论
35kV变电站电气一次系统的设计是一项复杂的工作,需要有专业的知识和经验,同时应严格按照相关标准和规范进行设计与实施,以确保系统运行的安全可靠。

某煤矿35kv变电站一次系统设计

某煤矿35kv变电站一次系统设计

某煤矿35kv变电站一次系统设计一、设计目标煤矿35kv变电站一次系统的设计目标有:1.提供稳定的电力供应,满足煤矿生产和生活用电的需求。

2.保证系统的可靠性和安全性,提高煤矿生产的连续性和稳定性。

3.实现节能减排,提高能源利用效率,降低能耗成本。

4.提高系统的自动化程度,减少人工操作,提高操作效率和安全性。

二、设计内容1.主变电装置:根据煤矿用电负荷的需求确定主变电容量,并考虑未来的扩容需求。

主变电装置应采用可靠稳定的产品,具备过载、短路保护功能。

同时,考虑到煤矿特殊环境,防雷、防护等措施也需要考虑在内。

2.高压安全配电装置:为了保证变电站的安全运行,设计中应包括高压开关柜、负荷开关柜、过压保护装置、过流保护装置等设备,确保高压设备的正常工作和保护。

同时应解决高压接地、避雷器等问题。

3. 中压配电装置:35kv变电站一次系统设计应包括中压开关柜、馈线柜、电压和电流互感器等设备。

中压配电装置可根据用电设备的功率分布和电气负荷特点进行合理配置,保证供电的稳定和可靠。

4.低压配电装置:变电站低压配电装置设计应包括低压开关柜、母线柜、配电盘、电表以及照明、动力用电系统等。

低压配电装置的设计应满足用电设备的功率需求,保证电能的分配和供应稳定。

5.自动化控制系统:为了提高操作的自动化程度和安全性,设计中应包括PLC系统、监控系统和远程通信系统等设备和软件。

通过自动化控制系统,可以实现远程监控、故障诊断和智能化操作。

6.环境监测系统:为了保证变电站的安全运行,设计中应考虑环境监测系统。

该系统可监测变电站的温度、湿度、气体浓度等指标,及时发现可能存在的安全隐患,保证人员和设备的安全。

7.接地系统:设计中应考虑变电站的接地系统,确保设备和人员的安全。

接地系统应满足国家相关标准,包括接地电阻的测试、接地极的选择和布置等。

三、设计原则1.安全第一:在设计过程中,安全应是首要的原则。

包括设备的选配、设备的布置、接地系统的设计等都要充分考虑安全因素。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

35K V变电站一次系统设计公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]河南理工大学万方科技学院35KV变电站一次系统设计姓名:田英科学号: 05专业班级:电气08-2指导老师:所在学院:电气工程与自动化系摘要变电站是电力系统的重要组成部分,它直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,起着变换和分配电能的作用。

电气主接线是发电厂变电所的主要环节,电气主接线的拟定直接关系着全厂(所)电气设备的选择、配电装置的布置、继电保护和自动装置的确定,是变电站电气部分投资大小的决定性因素。

本次设计建设一座35KV降压变电站,首先,根据主接线的经济可靠、运行灵活的要求选择各个电压等级的接线方式,在技术方面和经济方面进行比较,选取灵活的最优接线方式。

其次进行短路电流计算,根据各短路点计算出各点短路稳态电流和短路冲击电流,从三相短路计算中得到当短路发生在各电压等级的工作母线时,其短路稳态电流和冲击电流的值。

最后,根据各电压等级的额定电压和最大持续工作电流进行设备选择,然后进行校验并对二次改造部分进行概预算编制。

关键词:35KV变电所:设计:变压器:短路电流计算目录1 概述 (4)2变电所的负荷计算 (5)3变电站的选取 (8)4电气主接线设计 (10)5短路电流计算 (14)6电气设备选择和校验 (16)7变电所的平面布置 (25)8防雷接地 (27)9心得体会 (29)1 概述我国的城市电力网和农村电力网正在进行大规模的改造,与此相应,城乡变电所也须进行更新换代,我国电力网的现实情况是常规变电所依然存在,小型变电所、微机监测变电所、综合自动化变电所相继出现,并取得了迅猛的发展。

供电电源:由区域变电所二路35kV架空线(1#、2#线)至变电站后转为电缆线供给本站,线长3 Km。

变电站35kV母线最大运行三相短路容量Sm axk =800MVA,Sm ink=600MVA。

操作电源:直流220V电能计量:采用高供高计,两路35kV进线各设置计量专用的电流、电压互感器及计量屏。

两台所用变设计量用电度表。

随着改革的不断深化,经济的迅速发展。

各电力部门对变电所设计水平的要求将越来越高。

现在所设计的常规变电所最突出的问题是设备落后,结构不合理,占地多,投资大,损耗高,效率低,尤其是在一次开关和二次设备造型问题上,基本停留在50—60年代的水平上,从发展的观点来看,将越来越不适应我国城市和农村发展的要求。

国民经济不断发展,对电力能源需求也不断增大,致使变电所数量增加,电压等级提高,供电范围扩大及输配电容量增大,采用传统的变电站一次及二次设备已越来越难以满足变电站安全及经济运行,少人值班或者无人值班的要求。

现在已经大多采用了微机保护。

分级保护和常规保护相比,增加了人机对话功能,自控功能,通信功能和实时时钟等功能,因此如果通过电力监控综合自动化系统,可以使变电站内值班人员或调度中心的人员及时掌握变电站的运行情况,直接对设备进行操作,及时了解故障情况,并迅速进行处理,达到供电系统的管理科学化、规范化、并且还可以做到与其他自动化系统互换数据,充分发挥整体优势,进行全系统的信息综合管理。

2变电所的负荷计算负荷计算的意义计算负荷是根据已知的工厂的用电设备安装容量确定的、预期不变的最大假想负荷。

它是设计时作为选择工厂电力系统供电线路的导线截面、变压器容量、开关电器及互感器等的额定参数的重要依据。

负荷计算的目的是为了掌握用电情况,合理选择配电系统的设备和元件,如导线、电缆、变压器、开关等。

负荷计算过小,则依此选用的设备和载流部分有过热危险,轻者使线路和配电设备寿命降低,重者影响供电系统的安全运行.负荷计算偏大,则造成设备的浪费和投资的增大。

为此,正确进行负荷计算是供电设计的前提,也是实现供电系统安全、经济运行的必要手段负荷计算方法目前负荷计算常用需要系数法、二项式法、和利用系数法,前二种方法在国内设计单位的使用最为普遍。

此外还有一些尚未推广的方法如单位产品耗电法、单位面积功率法、变值系数法和ABC法等. 常采用需用系数法计算用电设备组的负荷时,应将性质相同的用电设备划作一组,并根据该组用电设备的类别,查出相应的需用系数K,然后按照上述公式求出该组用电设备的计算负x荷。

负荷计算过程= 表2-1按照原始负荷资料如下:负荷(35KV):同时系数Km计算过程如下:1#出线:tan 0.750.8φ===,300.9860774d N P K P KW ==⨯=,3030tan 7740.75580.5Q P KW φ==⨯=2#出线:tan 0.6980.82φ===,300.9400360d N P K P KW ==⨯=3030tan 3600.698251.28Q P KW φ==⨯=3#出线:tan 0.8820.75φ===,300.9760684d N P K P KW ==⨯=3030tan 6840.882603.288Q P KW φ==⨯=4#出线:tan 0.75φ===,300.916001440d N P K P KW ==⨯=3030tan 14400.751080Q P KW φ==⨯=水源变电所:tan 0.62φ===,300.912001080d N P K P KW ==⨯=3030tan 10800.62669.6Q P KW φ==⨯=生活区变电所: tan 0.750.8φ===,300.920001800d N P K P KW ==⨯=3030tan 18000.751350Q P KW φ==⨯=锅炉变电所:tan 0.750.8φ===,300.91100990d N P K P KW ==⨯=3030tan 9900.75742.5Q P KW φ==⨯=污水处理电源:tan 0.750.8φ===,300.912001080d N P K P KW ==⨯=3030tan 10800.75810Q P KW φ==⨯=备用线路1#:tan 0.750.8φ===,300.920001800d N P K P KW ==⨯=3030tan 18000.751350Q P KW φ==⨯=备用线路2#:tan 0.75φ===,300.920001800d N P K P KW ==⨯=3030tan 18000.751350Q P KW φ==⨯=负荷计算结果如下表2-2:3变电站的选取主变压器台数的确定为保证供电的可靠性,避免一台主变故障或检修时影响供电,变电所一般装设两台主变压器,但一般不超过两台变压器。

当只有一个电源或变电所的一级负荷另有备用电源保证供电时,可装设一台主变压器。

对于大型超高压枢纽变电所,装设两台大型变压器,当一台发生故障时,要切断大量负荷是很困难的,因此,对大型枢纽变电所,根具工程具体情况,应安装24台主变压器。

这种装设方法可以提高变电所的供电可靠性,变压器的单台容量以及安装的总容量皆可有所节约,且可根据负荷的实际增长的进程,分别逐台装设变压器,而不致积压资金。

当变电所装设两台以及以上的主变时,每台容量的选择应按照其中任一台停运时,其余变压器容量至少能保证所供的一级负荷或为变电所全部负荷的60%~75%。

通常一次变电所采用75%,二次变电所采用60%。

主变压器容量的确定本次设计的是线变阻,选择暗备用,每台按变压器的最大负荷选择。

正常情况下两台变压器都参加工作,这时,每台变压器均承受50%最大负荷,这种备用及能满足正常工作时经济运行的要求,又能在故障情况下承担全部负荷,是比较合理的备用方式。

所以 .30100%11775.043N T S S KVA == 根据数据选SFL7-12500/35型变压器。

2...()c T OT Cu N T N TS P P P S ∆=∆+∆ (3-1)而1600016OT P W KW ∆==,.6300063Cu NT P W KW ∆==211775.0431663()71.912500TP KW ∆=+= 2..()c T OT N T N TS Q Q Q S ∆=∆+∆ 而5.87125001007.0100%..=⨯=⨯=∆T N T O OT S I Q..%8125001000100100K N T N T U Q S ∆∆=⨯=⨯= 211775.04387.51000()974.87var12500T Q K ∆=+⨯=30S == 11048.612500=<因此校验合格。

实际功率因数:'cos av avPQ φ===7138.7250.9067877.53==补偿电容器的选择变电所对功率因数有这样高的要求,仅仅依靠提高自然功率因数的办法,一般不能满足要求。

因此,变电所需装设无功补偿装置,对功率因数进行人工补偿。

计算过程如下:300.8118089446.4t N P K P ==⨯=∑ 300.88787.1687029.7344t N Q K Q ==⨯=∑并联前:1cos 0.78φ===1tan 0.802φ=并联后:2cos 0.9φ=,2tan 0.484φ= 所以:3012(tan tan )0.759446.4(0.8020.484)2252.966var c Q P k αφφ=-=⨯⨯-=因此选补偿电容器的型号为:22116()80()72.56var 6.3N c c N cN U Q Q k U ==⨯= 2252.96631.0472.56n ==所以电容器的个数选33只。

4电气主接线设计电气主接线的概述变电所电气主接线是根据电力系统和变电站的具体条件确定的,一电源和出现为主体。

是构成电力系统的重要内环节。

主接线的确定对电力系统整体及变电站本身运行的可靠性、灵活性和经济性密切相关,并对电气设备选择、配电装置的布置、继电保护和控制方式的拟定有很大影响。

因此,必须通过技术经济比较,合理确定主接线方案。

电气主接线的设计原则和要求 4.2.1 电气主接线的设计原则(1) 考虑变电所在电力系统的地位和作用。

变电所在电力系统的地位和作用是决定主接线的主要因素。

变电所不管是枢纽变电所、地区变电所、终端变电所、企业变电所还是分支变电所,由于它们在电力系统中的地位和作用不同,对主接线的可靠性、灵活性、经济性的要求也不同。

(2) 考虑近期和远期的发展规模。

变电所主接线设计应根据五到十年电力系统发展规划进行。

应根据负荷的大小及分布负荷增长速度和潮流分布,并分析各种可能的运行方式,来确定主接线的形式以及所连接电源数和出线回数。

(3) 考虑用电负荷的重要性分级和出线回数多少对主接线的影响。

相关文档
最新文档