第1章矢量分析
第1章(矢量分析)
![第1章(矢量分析)](https://img.taocdn.com/s3/m/0020c51455270722192ef72c.png)
矢量分析与张量初步第一章矢量分析U STU STU ST标量(数量):有大小,没方向的物理量。
矢量:既具有大小又具有方向的物理量,矢量又称为向量。
矢量与标量的根本区别是:有没有方向性。
如:温度、质量、角度、长度等。
如:力、速度、电场强度、力矩等。
矢量的模:矢量的大小。
矢量的模记为:或。
A K A ||A KU STU STU ST自由矢量:矢量平移后,其作用效果不变。
即自由矢量就是具有平移不变性的矢量。
FK 只考虑刚体的质心运动,作用力可以平移。
能不能平移?下面只讨论自由矢量。
如果要考虑刚体的转动,则作用力不能平移。
U STU STU ST始端在坐标原点的矢量常称为矢径,显然矢径的末端与直角坐标系中的三个坐标分量之间具有一一对应的关系,则矢径可用其末端的空间坐标来表示:①在直角坐标中的表示对矢量,始端平移到坐标原点,表示为:A Kr xi yj zk=++KK K K、、:单位矢量,分别指向三个坐标轴的正向。
i K j K k K x y z A A i A j A k=++K K K KU STU STU ST其中:为矢量的模,为指向矢量方向上的单位矢量。
R A A e A 三个:、和。
R βαcos cos cos A e i j kαβγ=++K K K KAKRxy zO因为222cos cos cos 1αβγ++=的直角坐标表示为A e K有几个独立坐标量?A Kr e =KU STU STU STOxe ρρK zA kK A K cos sin e i j ρϕϕ=+K K K三个:、和。
ρϕz 的直角坐标表示为e ρK在矢量的球坐标及柱坐标表示中,只要分别把单位矢量和的直角坐标表示代入,即得到矢量的直角坐标表示。
e ρKr e K 有几个独立坐标量?A K第一章矢量分析U STU ST U ST U STU STcos xA Aα=cos yA Aβ=cos zA A γ=(cos cos cos )A A i j k αβγ=++K K K K④方向余弦表示:设矢量与直角坐标三个坐标轴正向的夹角分别为、和,则:αγβA K用方向余弦()表示矢量:A Kcos ,cos ,cos αβγcos x A A α=这实际上就是直角坐标表示,因为:cos y A A β=cos z A A γ=U STU STU ST不能按大小排列)。
第1章 矢量分析
![第1章 矢量分析](https://img.taocdn.com/s3/m/35735f34eefdc8d376ee3252.png)
第1章 矢量分析§1.1 标量场与矢量场一、场的概念如果某物理量在空间每一时刻和每一位置都有一个确定的值,则称在此空间中确定了该物理量的场。
二、标量场与矢量场标量场:若所研究的物理量是一个标量,则称该物理量的场为标量场,例如:温度场、密度场、电位场。
),(t r u u =矢量场:若所研究的物理量是一个矢量,则称该物理量的场为矢量场,例如:力场、速度场、电场。
),(t r A A =三、静态场和时变场静态场:若物理量不随时间变化,则称该物理量所确定的场为静态场。
)(r u u =)(r A A = 时变场:若物理量随时间变化,则称该物理量所确定的场称为动态场或时变场。
),(t r u u=),(t r A A =标量场在空间的变化规律由其梯度来描述,矢量场在空间的变化规律由矢量场的散度和旋度来描述。
§1.2 矢量场的通量 散度一、矢量线 矢量场的通量 1、矢量线(1)矢量场的表示在矢量场中,各点的场量是随空间位置变化的矢量。
矢量场可以用一个矢量函数)(r A来表示。
在直角坐标系中表示为:),,()(z y x A r A=(2)矢量线在矢量场中,为了形象直观地描述矢量在空间的分布状况,引入了矢量线的概念。
矢量线:是一条空间曲线,在它上面每一点的场矢量都与其相切,并且用箭头来表示矢量线的正方向。
例如,静电场中的电力线、磁场中的磁力线等。
(3)矢量线方程0)(=⨯r A r d在直角坐标系下为:)()()(r A dzr A dy r A dx z y x == 2、矢量场的通量 通过面积元的通量:S d r A d⋅=Φ)(通过有限面积的通量:⎰⋅=ΦSS d r A)(通过闭合曲面的通量:⎰⋅=ΦS S d r A)(二、矢量场的散度 1、散度的定义在矢量场)(r A中的任意一点M 处作一个包围该点的任意闭合曲面S ,所限定的体积为τ∆。
矢量场)(r A在点M 处的散度记作A div ,其定义为:ττ∆⋅=⎰→∆SS d r A A div)(lim 0 2、散度在坐标系下的表示A A div ⋅∇=定义哈密顿算符:ze y e x e z y x ∂∂+∂∂+∂∂=∇(1)在直角坐标系中的表示zuy u x u A ∂∂+∂∂+∂∂=⋅∇ (2)在圆柱坐标系中的表示()zA A A A z∂∂+∂∂+∂∂=⋅∇φρρρρφρ11 (3)在球坐标系中的表示()()φθθθθφθ∂∂+∂∂+∂∂=⋅∇A r A r A r r r A r sin 1sin sin 1122 3、散度的性质(1) 散度是通量源的密度;0>⋅∇A表示该点有发出通量线的正通量源;0<⋅∇A表示该点有接收通量线的负通量源;0=⋅∇A表示该点无通量源。
第1章 矢量分析与场论基础
![第1章 矢量分析与场论基础](https://img.taocdn.com/s3/m/38f2307001f69e31433294f2.png)
ex e y e y ez ez ex 0 ex ex e y e y ez ez 1
(4)矢量的矢积(叉积) 两矢量的叉积是一个矢量,其大小为两个矢量的大小与它们之
用单位矢量 en 表示。
间夹角 的正弦之积,它的方向垂直于包含两个矢量的平面,
工程电磁场
第1章 矢量分析与场论基础
10
1.2 三种常用的正交曲线坐标系
三维空间任意一点的位置可通过三条相互正交曲线的交点来 确定。 三条正交曲线组成的确定三维空间任意点位置的体系,称为
正交曲线坐标系;三条正交曲线称为坐标轴;描述坐标轴的量称
为坐标变量。 在电磁场与波理论中,三种常用的正交曲线坐标系为:直角 坐标系、圆柱坐标系和球坐标系。
矢量的加减符合交换律和结合律 交换律 A B B A 结合律 A ( B C ) ( A B) C
B B
A B
矢量的减法
A
工程电磁场
第1章 矢量分析与场论基础
6
(2)标量乘矢量
B sA ex sAx e y sAy ez sAz
第1章 矢量分析与场论基础
17
(3)圆柱坐标系与球坐标系的坐标变量之间的转换
r柱 r球 sin r球 r柱 z 2
2
z r cos r柱 z
arctg
工程电磁场
第1章 矢量分析与场论基础
18
1.3场的基本概念和可视化 1场的概念 “场”是指某种物理量在空间的分布。具有标量特征的物理量在空间 的分布是标量场,具有矢量特征的物理量在空间的分布是矢量场。 例如,温度场、能量场、电位场是标量场;电场、磁场、流速场与 重力场都是矢量场。 定义了场量的空间点称为场点。
01 第一章 矢量分析
![01 第一章 矢量分析](https://img.taocdn.com/s3/m/32e78599e53a580217fcfe16.png)
⑴极限:设 F (t ) 在点 t 0 的某个邻域内有定义(但在 t 0 点
则称,当 t t0
⑵连续:若矢性函数 F (t )在点 t 0 的某个邻域内有定义,且 lim F t F t0 t t0 则称F (t ) 在 t t0 处连续。
(x)
ui
2
(
2 y 2 ) ( z ) ui ui
4、拉梅系数的几何意义
u i 线上的弧微分
x 2 y 2 z 2 dli ( ) ( ) ( ) dui hi dui ui ui ui
dli hi dui
表明:拉梅系数hi是M点处曲线坐标ui的微分dui与该坐标线ui 上弧微分的比例系数。
r(M )
hi
根据全微分运算法则
r r r dl d r du1 du 2 du3 u1 u2 u3
y 矢量线元
引入拉梅系数,矢量线元表示为
图1-7
dl h1du1e1 h2 du2 e2 h3 du3e3 dl1e1 dl2 e2 dl3 e3
2、拉梅系数
空间任意一点 M (u1 , u 2 , u 3 ) ,矢径
若M点在 u1 线上,则矢径 于是,单位矢量表示为
r e1 u1 r u1
r r (u1 , u 2 , u3 )
r (u1 , u 2 c2 , u3 c3 )
M
F (t )
说明:矢径函数对其矢端曲线弧长的导数为曲线上的单位矢量。
3、积分
⑴不定积分:若 A(t ) F (t ) ,则称 A(t )为 F (t )的一个原函数, F (t ) 的原函数的集合叫做的F (t ) 不定积分,记作 )d t A(t ) C F (t ⑵定积分:若矢性函数 F (t ) 在区间 [T1 , T2 ]上的极限
第一章 矢量分析
![第一章 矢量分析](https://img.taocdn.com/s3/m/6ff5cf22192e45361066f5d6.png)
立了面积分和线积分的关系。从物理角度可以理解为斯托克 立了面积分和线积分的关系。从物理角度可以理解为斯托克 斯定理建立了区域 S 中的场和包围区域 S 的闭合曲线 l 上的 场之间的关系。因此, 中的场, 场之间的关系。因此,如果已知区域 S 中的场,根据斯托克 上的场,反之亦然。 斯定理即可求出边界 l 上的场,反之亦然。
Ψ = ∫ A ⋅ dS
S
通量可为正、或为负、或为零 当矢量穿出某个闭合面时, 通量可为正、或为负、或为零。当矢量穿出某个闭合面时, 认为该闭合面中存在产生该矢量场的源 认为该闭合面中存在产生该矢量场的源;当矢量进入这个闭合 面时,认为该闭合面中存在汇聚该矢量场的洞 )。闭合 面时,认为该闭合面中存在汇聚该矢量场的洞(或汇)。闭合
惟 一 性 定 理 亥姆霍兹定理 正交曲面 坐标系
10
第一章 矢量分析
标 积 与 矢 积 方向导数与梯度 通 量 与 散 度 环 量 与 旋 度 环 量 与 旋 度 无散场与无旋场 格 林 定 理
2. 旋度:旋度是一个矢量。若以符号 rot A 表示矢量 A 的旋 旋度:旋度是一个矢量。 具有最大环量强度的方向, 度, 则其方向是使矢量 A 具有最大环量强度的方向, 其大小等于对该矢量方向的最大环量强度, 其大小等于对该矢量方向的最大环量强度,即
惟 一 性 定 理 亥姆霍兹定理 正交曲面 坐标系
1
0 A⋅ B = A B
A⊥B
A // B
第一章 矢量分析
标 积 与 矢 积 方向导数与梯度
2.矢量的失积 2.矢量的失积
矢量的失积:代数定义: 矢量的失积:代数定义:
ex A × B = Ax Bx ey Ay By ez Az Bz
矢量分析
![矢量分析](https://img.taocdn.com/s3/m/77ef878ecc22bcd126ff0c03.png)
二、方向导数 在实际应用中,不仅需要宏观上了解场在空间的数值,还要知道在不同 方向上场变化的情况。方向导数表征标量场空间中,某点处场沿各个方向变 化的规律。
取等位面 u 1、定义:
x, y , z
增加的方向,相互垂直且满足右手螺旋法则
v ˆ ˆ ˆ 矢量表示: A = e x Ax + e y Ay + e z Az
v 位置矢量: r = e x x + e y y + e z z ˆ ˆ ˆ
v ˆ ˆ ˆ dr = e x dx + e y dy + e z dz 微分长度元:
(2)球面坐标系下矢量运算
v ˆ ˆ ˆ A = er Ar + eθ Aθ + eϕ Aϕ v ˆ ˆ ˆ B = er Br + eθ Bθ + eϕ Bϕ
v v ˆ ˆ ˆ A ± B = er ( Ar ± Br ) + eθ ( Aθ ± Bθ ) + eϕ ( Aϕ ± Bϕ )
v v A• B = Ar Br + Aθ Bθ + Aϕ Bϕ
e 单位矢量:ˆ ρ
ρ
,φ
ˆ , eφ
,z
ˆ , ez
0 ≤ ρ < ∞ , 0 ≤ φ ≤ 2π , − ∞ < z < ∞
ˆ ˆ ˆ e z = e ρ × eφ ˆ ˆ ˆ e ρ = eφ × e z ˆ ˆ ˆ eφ = e z × e ρ
ˆ ˆ ˆ ↑ e ρ 、eφ 、e z
分别代表ρ、φ、z 增加的方向,相互垂直且满足右手螺旋法则
ˆ 由于 θ、ϕ 不是常矢量,与 er
ˆ ∂er ˆ =eθ ∂θ ˆ ∂ eθ ˆ = −er ∂θ ˆ ∂ eϕ = 0 ∂θ
第1章-矢量分析
![第1章-矢量分析](https://img.taocdn.com/s3/m/616023a84b35eefdc9d3333b.png)
⎝
2⎠
⎝
2⎠
Ay
⎜⎛ x,y+Δy,z ⎟⎞ ⎝ 2⎠
=
Ay
(x,y,z)
+
∂Ay ∂y
(x,y,z)
Δy 2
+
1 2!
∂2 Ay ∂y2
( Δy )2 2
+ ...
得
ΔΨr
=
( Ay
+
∂Ay ∂y
Δy 2
+ .........) ΔxΔz
divA 直角坐标表示式的推导
11
§1.2通量、散度、散度定理
8
§1.2通量、散度、散度定理
作业:1.1-1,1.1-3,1.1-5
S为封闭面时: 若Ψ > 0, 有净通量流出,说明S内有源; 若Ψ < 0, 有净通量流入,说明S内有洞(负源); 若Ψ = 0, 则净通量为零,说明S内无源。
举例:
由《大学物理》知,电通量 Ψe = ∫sD ⋅ ds = Q(高斯定理) 水流的单位时间流量(米3/秒)= v ⋅ d s
A 矢量的模:
γ
β o
Ay
α Ax
y
A = A = Ax2 + Ay 2 + Az 2
x
A 的单位矢量:
Aˆ = A = xˆ Ax + yˆ A y + zˆ Az AA AA
= xˆ cosα + yˆ cos β + zˆ cosγ
2
§1.1矢量代数
二、标量积和矢量积
a) 标量积(点乘)
加减乘除
∂y 4π r 5
∂Dz = q r 2 − 3z 2
∂z 4π r 5
电磁场与电磁波—矢量分析
![电磁场与电磁波—矢量分析](https://img.taocdn.com/s3/m/f968518684868762caaed525.png)
两个矢量的点积:写成
A B
其值为: A B AB cos
A
点积的性质:
θ
交换律 分配律 按乘数比例
A B C A B A C k A B kA B A kB
A B B A
若该物理量为矢量,则称矢量场, 可用矢性函数表示F(x,y,z); F(x,y,z,t) f(x,y,z,t)
若该物理量与时间无关,则该场称为静态场; 若该物理量与时间有关,则该场称为动态场或称为时变场。
第一章
矢量分析
笛卡尔坐标系
我们的标量函数(标量场)通常用笛卡 尔坐标系表示,我们的矢性函数也可以 用笛卡尔坐标系来表示 根据矢量的运算规则,多个矢量可以进 行矢量相加,反过来,一个矢量以可以 分解为多个矢量的和
B
第一章
矢量分析
两个矢量的叉积:写成 r F M 其值为: r F rF sin e n
M
r
F
第一章
矢量分析
叉积的性质:
不服从交换律 但服从分配 按乘数比例
A B C A B A C kA B k A B A kB
0
第一章
矢量分析
△z
z
若函数φ=φ(x, y, z)在点M0(x0, y0, z0)处可 微, cosα 、 cosβ 、 cosγ 为 l 方向的方向余弦, 则函数 φ在点M0处沿l方向的方向导数必定存 在,且为
γ M0 α
△x
ρ
β
M
1第一章 矢量分析
![1第一章 矢量分析](https://img.taocdn.com/s3/m/867fe05e804d2b160b4ec05c.png)
∂u ∂n
∂u 可得 ∂x = grad u ⋅ e x ∂u ∂u = grad u ⋅ e l ⇒ = grad u ⋅ e y ∂l ∂y ∂u = grad u ⋅ e z ∂z
在直角坐标系中梯度的计算#43; ey + ez =∇ ϕ ∂x ∂y ∂z
d iv A = lim
计算公式
∆v→ 0
1 ∆v
∫
s
A ⋅ dS
divA=∇⋅ A=
∂A x ∂x
+
∂A y ∂y
+
∂A z ∂z
三、散度的物理意义 • 矢量的散度是一个标量,是空间坐标点的函数; 矢量的散度是一个标量,是空间坐标点的函数; • 散度代表矢量场的通量源的分布特性
∇• A = 0 (无源) 无源)
v 1 ∂ ( ρ Fρ ) 1 ∂Fϕ ∂Fz ∇⋅F = + + ρ ∂ρ ρ ∂ϕ ∂z
ˆ eρ 1 ∂ ∇× A = ρ ∂ρ Aρ ˆ ρ eϕ ˆ ez
∂ ∂ ∂ϕ ∂z ρ Aϕ Az
3、在球坐标系
ˆ ∇ = er ∂ 1 ∂ 1 ∂ ˆ ˆ + eθ + eϕ r ∂θ r sin θ ∂ϕ ∂r
2)在柱面坐标系中: )
∂u 1 ∂u ∂u ˆ ˆ ˆ gradu = eρ + eϕ + ez ∂ρ ∂z r ∂ϕ
3)在球面坐标系中: )在球面坐标系中:
∂u 1 ∂u 1 ∂u ˆ ˆ ˆ g ra d u = er + eθ + eϕ ∂r r ∂θ r sin θ ∂ ϕ
【例题】 例题】
斯托克斯定理
∫l A⋅dl = ∫
第1章矢量分析
![第1章矢量分析](https://img.taocdn.com/s3/m/521a5263e3bd960590c69ec3d5bbfd0a7856d515.png)
F dS S
S1 F dS1
S2 F dS2
S3 F dS3
S4 F dS4
S5 F dS5
S6 F dS6
aˆx aˆz 0, aˆy aˆy 1,
aˆy aˆz 0 aˆz aˆz 1
A B (Axaˆx Ayaˆy Azaˆz ) (Bxaˆx Byaˆy Bzaˆz )
Ax Bx Ay By Az Bz
•结论: 两矢量点积等于对应分量的乘积之和。
电磁场与电磁波
第1章 矢量分析
其中:dl ,dS 和 dV 称为微分元。
dS
dl
1. 直角坐标系
在直角坐标系中,坐标变量为(x,y,z),如图,做一微分体元。
线元:dlx dxaˆx
dly dyaˆy
面元: dSx dydzaˆx dSy dxdzaˆy
dlz dzaˆz dl dxaˆx dyaˆy dzaˆz
电磁场与电磁波
第1章 矢量分析
3.乘法:
(1)标量与矢量的乘积:
k 0 方向不变,大小为|k|倍
kA k | A | aˆ
k
0
k 0 方向相反,大小为|k|倍
(2)矢量与矢量乘积分两种定义
a. 标量积(点积):
B
A B | A| | B | cos
A
两矢量的点积含义: 一矢量在另一矢量方向上的投影与另一矢量模的乘积,
定义: A BC | A|| B || C | sin cos
含义: 标量三重积结果为三矢量构成
的平行六面体的体积 。
h BC
A C
B
电磁场与电磁波
第1章 矢量分析
V A (BC) C (A B) B (C A)
第一章矢量分析
![第一章矢量分析](https://img.taocdn.com/s3/m/beb23386b0717fd5360cdc71.png)
r u ( x, y , z , t ) 、 F ( x , y , z , t )
r u ( x, y, z )、 F ( x, y, z )
第一章 矢量分析
1.1.1 标量场的等值面
标量场空间中,由所有场值相等的点所构成的面,即为等值面。 即若标量函数为 u u( x, y, z) ,则等值面方程为:
第一章 矢量分析
第一章
主 要
矢量分析
内 容
梯度、散度、旋度、亥姆霍兹定理 1. 标量场的方向导数与梯度
2. 矢量场的通量与散度 3. 矢量场的环量与旋度 4. 无散场和无旋场 5. 格林定理
6. 矢量场的惟一性定理
7. 亥姆霍兹定理 8. 正交曲面坐标系
第一章 矢量分析
1.1 矢量代数
1.1.1 标量和矢量
空间中存在任意曲面S,则定义:
v v S A(r ) dS
为矢量 A(r ) 沿有向曲面 S 的通量。
矢量场的通量
第一章 矢量分析
若S 为闭合曲面
s
v v v Ñ A ( r ) dS
物理意义:表示穿入和穿出闭合面S的通量的代数和。 说明:1) 面元矢量 dS 定义:面积很小的有向曲面。
s
第一章 矢量分析
通过闭合面S的通量的物理意义:
0
0
若 0 ,通过闭合曲面有净的矢量线穿出,闭合面内有发 出矢量线的正源; 若 0 ,有净的矢量线进入,闭合面内有汇集矢量线的负源; 若 0 ,进入与穿出闭合曲面的矢量线相等,闭合面内无 源,或正源负源代数和为0。 局限:只能判断闭合曲面中源的正负特性,不能显示源的特 性。如果令包围某点的闭合面无限收缩,那么该点就可以通量 可以表示源的特性。
第1章 矢量分析
![第1章 矢量分析](https://img.taocdn.com/s3/m/1d77b9dbed630b1c58eeb596.png)
体积元
dV dxdydz
z
z
z0
( 平面) ez
P
ey
ex
o
点P(x0,y0,z0)
y
y y0(平面) x x x0 (平面)
直角坐标系
z dSz ezdxdy
dz
dSy eydxdz
o
dy
dx dSx exdydz
y
x
直角坐标系的长度元、面积元、体积元
第一章 矢量分析
A Axex Ayey Azez
sin cos
0
0 ex
0
e y
1 ez
ex cos
ey
sin
ez 0
sin cos
0
0 e
0
e
1 ez
第一章 矢量分析
2、直角坐标系与球坐标系的关系
er ex sin cos ey sin sin ez cos e cos cos ex cos sin ey sin ez e ex sin ey cos
坐标变量 坐标单位矢量 位置矢量 线元矢量 面元矢量
x, y, z,( x, y, z )
ex , ey , ez
r ex x ey y ez z
dl
exdx
ey
dy
ezdz
dSx exdlydlz exdydz
dSy eydlxdlz eydxdz
dSz ezdlxdly ezdxdy
A B AxBx Ay By Az Bz
ex ey ez
A B Ax Ay Az Bx By Bz
ex
Ay By
Az Bz
ey
Ax Bx
第一章 矢量分析
![第一章 矢量分析](https://img.taocdn.com/s3/m/7307d31c6bd97f192279e913.png)
第一章 矢量分析§1 场的概念 一. 矢量与标量1.概念标量 实数域内只有大小的量。
如:电压、温度、时间、电荷等。
矢量 实数域内既有大小又有方向的量,且加法运算遵循平行四边形法则。
如:力F 、电场强度E 、磁场强度H、速度等。
常矢:矢量的模和方向都不变。
如:x e 、y e 、z e。
变矢:模和方向或两者之一变化的矢量(在实际问题中遇到的更多)。
如:r e 、θe 、ϕe 、ρe。
物理量 标量或矢量被赋予物理单位,成为有物理意义的量。
2.矢量的表示印刷 黑体 A ;A(白体)表示A的模。
手写 模和方向均表示出。
表示A 的方向(模为1)。
A 表示矢量A 的模。
▪ 零矢(空矢):模为零的矢量。
0▪单位矢量:模为1的矢量。
如直角坐标系坐标轴方向x e 、y e 、z e (参考书)。
也有用x a、y a 、z a或i 、j 、k 或 x ˆ、y ˆ、z ˆ 等表示。
若三个相互垂直的坐标轴上的分量已知,一个矢量就确定了。
如直角坐标系中,矢量A的三个分量模值分别是A x , A y , A z ,则直角坐标系: A的模为 A的单位矢量为判断以下手写表示是否正确:(矢量≠标量) (标量≠矢量) ☹ 常见手写表示错误: Aa A 0=A A a=0zz y y x x A e A e A e A ++=222z y x A A A A ++=γβcos cos cos ˆ0z y x zz y y x x A e e a e A A e A A e A A e A A a A++=++===5=E 5x e E=5x e E =765zy x e e e E ++= 765z y x e e e E++=二. 矢量的代数运算1.矢量的加减法2.矢量的乘法a.标量积(点乘) 结果为标量!b.矢量积(叉乘) 结果为矢量!直角坐标系:∙ 点乘 垂直 平行点乘符合交换律: ∙ 叉乘平行 垂直注意:z x y e e e-=⨯ 叉乘不符合交换律: 三.矢量场与标量场1.场在某一空间区域内的每一点,都对应着某个物理量的一个确定的值,则称在此区域内确定了该物理量的一个场。
第一章 矢量分析
![第一章 矢量分析](https://img.taocdn.com/s3/m/3b635f280722192e4536f681.png)
1
第1章 矢量分析
2
本章内容
1.1 三种常用的坐标系
1.2
1.3 1.4 1.5
矢量函数的微积分
标量函数的梯度 矢量函数的散度 矢量函数的旋度
第1章 矢量分析
3
1.1 三种常用的坐标系
三维空间任意一点的位置可通过三条相互正交曲线的交点来 确定。 在电磁场与波理论中,三种常用的正交曲线坐标系为:直角
第1章 矢量分析 2. 矢量场的通量 问题:如何定量描述矢量场的大小? 引入通量的概念。 通量的概念
20
F ( x, y , z )
n
S
0
d F dS F n 0dS
S
dS
面积元矢量
其中: dS n 0dS ——面积元矢量; 0 ——面积元的法向单位矢量;
sin
ey
sin cos
ez
0
sin cos 0
ex sin cos
sin
0
e
ez 0 0 1 ez cos sin 0
e
ey
e
ex
圆柱坐标与 球坐标系
e
er
e
e
o
单位圆
x
直角坐标系与柱坐标系之间 坐标单位矢量的关系
d S y e y d l x d l z e y d xd z
d d xd yd z
z
dz
dS z ez dxdy
dS y ey dxdz
d S z e z d l x d l y e z d xd y
体积元
第一章 矢量分析
![第一章 矢量分析](https://img.taocdn.com/s3/m/d971ceee0975f46527d3e1e2.png)
(
)
( )
( )
(
)
(
)
16
导矢的物理意义 M0
z
s
M
dr dr ds 导矢: 导矢: = ⋅ l dt ds dt o y dr : 点M 处的单位切向矢量τ x ds ds 处质点的速度大小, : 点M 处质点的速度大小,用v 表示 dt dr 质点M 质点M 的速度矢量 = vτ = v dt dv d 2 r w= = 2 质点M 质点M 的加速度矢量 dt dt
d dA dB d A± B = ± C = 0, C为常矢 dt dt dt dt d dA d du dA kA = k , k为常数 uA = A+u dt dt dt dt dt d dB dA d 2 dA A⋅ B = A⋅ + ⋅B 特例: A = 2 A ⋅ dt dt dt dt dt d dB dA A× B = A× + ×B dt dt dt dA dA du = ⋅ 若有复合函数 A=A ( u ) dt du dt
7
第一章
第二节 矢性函数的导数与微分
1. 矢性函数的导数 定义 设矢性函数 A ( t )在点 t的某一邻 的某一邻 域内有定义, 域内有定义,并设 t +△t 也在这邻域内。 △ 也在这邻域内。 若
M
A (t ) A′ ( t )
∆A
N l
其极限存在, 在 ∆t → 0 时,其极限存在,则称此极限 ∆A=A ( t +∆t ) -A ( t ) 为矢性函数 A ( t ) 在点 处的导数(简称 导数( 在点t 处的导数 导矢), ),记作 导矢),记作 dA/dt 或 A′ ( t ) 。
13
第一章 矢量分析习题解答
![第一章 矢量分析习题解答](https://img.taocdn.com/s3/m/b1246c484b7302768e9951e79b89680202d86b48.png)
第一章 矢量分析一、基本概念与公式1.标量与矢量矢量:一个既有大小又有方向的量。
标量:一个仅用大小就能够完整描述的物理量。
2.矢量运算1.加法矢量的加法符合交换律和结合律A B B A +=+ ()A B C A B A C ⋅+=⋅+⋅2.矢量的乘法 1) 数乘一个标量k 与一个矢量A 的乘积kA 仍为一个矢量,即x y z x y z k A kA e kA e kA e =++ 若0k >,则kA 与A 同方向;若0k <,则kA 与A 与反方向。
2) 标量积AB cos A B AB θ⋅=x x y y z z A B A B A B =++3)矢量积||||sin n AB A B A B e θ⨯=xy zxy z xyzxe e e A A A B B B = ()()()x y z y z z y z x x z x y y x e A B A B e A B A B e A B A B =-+-+-4)三个矢量的乘积标量三重积:()A B C ⋅⨯ 的结果为一标量。
有如下循环互换规律:()()()A B C B C A C A B ⋅⨯=⋅⨯=⋅⨯ 矢量三重积:)(C B A⨯⨯的结果为一矢量。
可展成下述两矢量之差:()()()A B C B A C C A B ⨯⨯=⋅-⋅3.三种常用的正交坐标系 1)直角坐标系在直角坐标系内的任一矢量A 可以表示为(,,)(,,)(,,)(,,)x y z x y z A x y z A x y z e A x y z e A x y z e =++式中,,,x y z A A A 分别为矢量A 在,,x y z e e e 方向上的分量。
位置矢量: x y z r xe ye ze =++ ( 位置矢量的微分为 x yzd r d x ed ye d z e =++ 与三个坐标面单位矢量相垂直的三个面积元分别为 x d S d y d z =,y dS dxdz =,z dS dxdy =体积元为 dV dxdydz =2)柱坐标系任一矢量场A 在圆柱坐标系中可表示为z z A A e A e A e ρρϕϕ=++ 式中,,z A A A ρϕ称为圆柱坐标分量,是矢量A 在三个垂直坐标轴上的投影。
第1章 矢量分析
![第1章 矢量分析](https://img.taocdn.com/s3/m/e2189def172ded630b1cb6e6.png)
在直角坐标系中称之为哈米尔顿算子 哈米尔顿算子,是一个微分 哈米尔顿算子 符号,同时又要当作矢量看待。算子与矢性函数A 的点积 点积为一标量 标量函数。 点积 标量 散度的表达式可以写为: 散度 直角坐标系
∂ ∇ ⋅ A = ax + ay ∂x ∂Ax = ax + ay ∂x ∂ ∂ + a z ⋅ (a x Ax + a y Ay + a z Az ) ∂y ∂z ∂Ay ∂Az + az ∂y ∂z
Φ = ∫ A ⋅ dS = ∫ A cos θ dS
S S
1.2.2. 矢量场的散度 (1) 散度的定义 设有矢量场A,在其中任一点P处作一个包含P点在内 的闭合曲面S,设S所限定的体积为∆V,当体积∆V以任 意方式缩向P点时,取下列极限:
∆V ndS ∆V
如果上式的极限存在,则称此极限为矢量场A在点P处 的散度,记作
∫
l
∫
S
•斯托克斯定理的几何意义 矢量场A的旋度沿曲面S法向分量的面积分等于该矢 量沿围绕此面积曲线边界的线积分。
1.4 标量的方向导数和梯度 1.4.1标量的方向导数和梯度 等值面 一个标量场u可以用标量函数来表示。在直角坐标系中, 可将u表示为 u = u ( x, y , z ) u = u ( x, y , z ) = C 令 C为任意常数。该式在几何上一般表示一个曲面,在 这个曲面上的各点,虽然坐标(x, y, z)不同,但函数值 相等,称此曲面为标量场u的等值面 等值面。 等值面 等值线 对于由二维函数v=v(x,y)所给定 的平面标量场,可按v(x, y)=C得 到一系列不同值的等值线。
第一章 矢量分析
本章重点及知识点 标量场的方向导数和梯度 矢量场的通量和散度 矢量场的环量和旋度 亥姆霍兹定理
矢量分析-PPT
![矢量分析-PPT](https://img.taocdn.com/s3/m/5ba34841fd4ffe4733687e21af45b307e971f976.png)
0
2 2 2 2
x2 y2 z2
1 .4 .2 格林定理
将散度定理中矢量A表示为某标量函数的梯度 ψ与另一标 量函数 φ的乘积, 则有
A ( ) 2
取上式在体积V内的积分, 并应用散度定理, 得
(2 )dv
V
s( ) nˆds
s
n
ds
(1 -49)
式中S是包围体积V的封闭面, nˆ 是封闭面S的外法线方向单位矢
量。此式对于在体积V内具有连续二阶偏导数的标量函数φ和ψ都 成立, 称为格林( G .Green)第一定理。
divA A
A
xˆ
x
yˆ
y
zˆ
z
(xˆAx
yˆAy
zˆAz
)
Ax Ay Az x y z
利用哈密顿算子, 读者可以证明, 散度运算符合下列规则:
(A B) A B
(A) A A
1 .2 .3 散度定理
既然矢量的散度代表的是其通量的体密度, 因此直观地可知, 矢量场散度的体积分等于该矢量穿过包围该体积的封闭面的总 通量, 即
ds nˆds
nˆ 是面元的法线方向单位矢量。nˆ 的取法(指向)有两种情形: 对
开曲面上的面元, 设这个开曲面是由封闭曲线l所围成的, 则当选
定绕行l的方向后, 沿绕行方向按右手螺旋的姆指方向就是 nˆ 的方 向, 如图1 -4所示; 对封闭曲面上的面元, nˆ 取为封闭面的外法线方
向。
图 1 -4 开曲面上的面元
为A , B崐所在平面的右手法向 n:ˆ
A B nˆAB sin aAB
它不符合交换律。 由定义知,
A B (B A)
并有
xˆ xˆ yˆ yˆ zˆ zˆ 0 xˆ yˆ zˆ, yˆ zˆ xˆ, zˆ xˆ yˆ
第1章 矢量分析
![第1章 矢量分析](https://img.taocdn.com/s3/m/f55f549d51e79b896802262b.png)
P P0 u
图 1-19 u沿不同方向的变化率 沿不同方向的变化率
grad u
l u +∆u
方向的方向导数, 方向的方向导数,记为
第一章 矢量分析
o x
θ
dl
l
y
图 1-14矢量场的环量
Γ = ∫ A ⋅ d l = ∫ A cos θdl
c c
(1 − 3 − 19)
环量是一标量,反映了闭合曲线内旋涡场的分布情况。 环量是一标量,反映了闭合曲线内旋涡场的分布情况。 旋涡场的分布情况 要分析每个点附近旋涡源的分布情况,引入旋度。 要分析每个点附近旋涡源的分布情况,引入旋度。
∫ A⋅dS
S
(1 − 3 − 18 )
即矢量场 A 散度的体积分等于该矢量穿过包围该体积的 封闭曲面的总通量。 封闭曲面的总通量。 散度定理应用: 散度定理应用:将一个封闭的面积分变成等价的体积分 或反之。 或反之。
第一章 矢量分析
2 【例1-3】在矢量场 A = a x x + a y xy + a z yz 中,有一个边 】
长为1的立方体,它的一个顶点在坐标原点上,如图示。试 长为 的立方体,它的一个顶点在坐标原点上,如图示。 的立方体 求: (1) 矢量场 A 的散度; 的散度;
z (2) 从六面体内穿出的通量,并验证高斯散度定理。 从六面体内穿出的通量,并验证高斯散度定理。
解:(1) 根据散度计算公式得, 根据散度计算公式得,
2 0 3 2 2 2
π
= −9(1 + ) 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矢量场(vector field):如果空间中每一个点 所赋予的“量”为矢量,此空间就为矢量场。
1.1 标量场和矢量场 1.2 坐标系的转换 1.3 矢量运算 1.4 标量场的梯度 1.5 亥姆霍兹定理
d
a
a
y
1.2.3 球坐标系
P(r,, ) r球心到P距离
[0 r与+z轴的夹角 r在xoy面上的投 影()与+x轴的夹角
1)叉乘关系:(ar×)→(a ×)→(a ×)
1.2.3 球坐标系
2)点乘关系:ai•aj = 3)换算关系:
1 i=j 0 i≠j
x rsin cos cos y rsin sin sin z rcos
ax arsincosacoscosasin ay arsinsinacossinacos az arcosasin
1.2.3 球坐标系
4)位置矢量:r = ar r
5)线元矢量:
dlardrardars id n
z
ar
a
r•
O
y
a
x
1.2.3 球坐标系
6)矢量面元:
z
ar
dS = ardSr+adS+adS
A
B
矢量运算
矢量的加法 矢量的乘法 矢量的积分 矢量的散度 矢量的旋度
为了能对矢量进行运算,首先必须确定坐标系
z az
P •
r
O
a
a y
圆柱:r = a + azz
x
1.2.2 圆柱坐标系
5)线元矢量:(位移矢量)
直角坐标系中: dl = ax dx + aydy + azdz
圆柱坐标系中:
d l a d a d a zd z
z az
d
dz z • P
O
d
a
a
y
x
1.2.2 圆柱坐标系
6)面元矢量:
Oy
y
x
•
a
ay sin
a x ax cos
1.2.2 圆柱坐标系
注意:ax 、ay 、az是常矢量,模值为1,方向不变。而 a、a 模值为1,但方向随 变化,是 的函数,是变矢量。
a
ax sinay cos a
a
ax cosay sin a
4)位置矢量r :(从原点指
向某点)
直角:r = ax x + ay y + azz
z [
1.2.2 圆柱坐标系
1)坐标单位矢量叉乘关系: (a×)→( a ×)→(az×)
1 i=j
2)坐标单位矢量点乘关系: ai • aj = 0 i ≠ j
3)与直角坐标的换算关系:
x cos
y
sin
x2 y2
tan y x
a axcosaysin a axsinaycos
变量增加方向的三个单位矢量,用a1、a2、a3表示
• 坐标变量:三个独立的自由度,用e1、e2、e3表示
• 位矢:坐标原点到空间任一点的矢量。 e3
• e1、e2、e3呈右手螺旋关系——右手系
e2
e1
1.2.2 圆柱坐标系
P(,,z)
z az
•
P
O
a
a y
x
:P到z轴垂直距离 :在xoy面内的投影与+x轴的夹角
矢量(vector):指需要大小和方向才能完整表 示的物理量。如位移、速度、加速度、力、力 矩、动量等物理量。矢量也常称为向量。这些 量之间的运算并不遵循一般的代数法则,而遵 循特殊的运算法则。如矢量加法一般用平行四 边形法则。
1.1.1 相关定义
场(field):假设有一个n维空间,如果空间 的每一个点都具有某一特性的“量”,就可认 为这个空间包含有某种性质的“场”。 如温度 场、电场、磁场、电磁场。
dS 方向的定义:
•开表面:与面积外沿的绕向 呈右手螺旋关系
•闭合面:外法线方向
开表面面元方向
dS dS
闭合面面元方向
直角系中: dS = axdSx + aydSy + azdSz 其中 dSx =dydz,dSy =dxdz,dSz =dxdy 分别是dS在yoz面,xoz面和xoy面上的投影
1.2.2 圆柱坐标系
2R2(cos)
R
O
y
0
2R2(1cos)
x
1.1 标量场和矢量场 1.2 坐标系的转换 1.3 矢量运算 1.4 标量场的梯度 1.5 亥姆霍兹定理
矢量就是有方向的量,矢量包含了两种信息:幅 度和方向
矢量的表示:
用黑体符号来表示(如 A)或用上面带箭头的符号(如 )A
来表示
用有向线段(带箭头的线段)来表示:
1.2.1 正交曲线坐标系简介
常用的正交曲线坐标系有13种: 直角、圆柱、球、 椭圆柱、抛物柱、抛物面、旋转抛物面、 长旋转椭球、扁旋转椭球、椭球、双球、 圆锥、环
1.2.1 正交曲线坐标系简介
• 坐标线(轴):三张曲面两两正交相交而成的曲线 • 坐标原点(基准点):三条坐标线的交点
• 坐标单位矢量:空间任一点与坐标线相切且指向
a
dSr = r2sindd
r•
dS = rsinddr
O
y
dS = rddr
a
7)体积元:
x
d = dl1dl2dl3 = r2sindrdd
总结
1.2.3 球坐标系
例:计算面积分 S ar •dS ,其中S是半锥角为 的
圆锥面在半径为R的球面上割出的面积。
解: Sar•dSSdSr
z
2 R2sindd 00
圆柱系中: dS = a dS+ adS + azdSz
dS= d dz, dS =ddz,dSz=dd z
az
dS、dS 、dSz分别是dS 在圆柱侧面( 面)、过轴线
的半平面(面)和xOy面(z
d
dz z
面)上的投影。
7)体积元:
• P r
直角系中 dv = dx dy dz
O
圆柱系中dv = d d 2
tan
x2 y2
z
z
tan
y x
x
z
P•
r
O
ar a
y
a
1.2.3 球坐标系
ar a
axsincosaysinsinazcos axcoscosaycossinazsin
a axsinaycos
x
z
P•
r
O
ar a
y
a
注意:ar(,)、a(,)、a()均不是常矢量
第一部分 电磁场
第1章 矢量分析
1.1 标量场和矢量场 1.2 坐标系的转换 1.3 矢量运算 1.4 标量场的梯度 1.5 亥姆霍兹定理
1.1.1 相关定义
标量(scalar):只具有数值大小,而没有方向的 物理量。如质量、密度、温度、功、能量、速 率、时间、热量、电阻等物理量。这些量之间 的运算遵循一般的代数法则。