第二章光腔与高斯光束
§2.7+高斯光束及其传输规律
第二章 开放式光腔与高斯光束/§2.7 高斯光束及其传输规律
r2 r2 −1 z −ik z+ −tan − 2 2R( z) f w ( z)
c 自由空间的基 Ψ x, y, z) = e 模 高 斯 光 束 00 ( w( z)
• 情况1:已知w0, w'0, 确定透镜焦距(F)及透镜的距离 l, l'
( l − F ) F2 l′ = F + 2 l − F) + f 2 (
′ w =
2 0
w0 l −F =± F2 − f02 ′ w0 ′ w0 l′ − F = ± F2 − f02 ′ w0
( F −l )
w2 F2 0
1 1 λ = −i 2 定义q 参数 q z R z 高斯光束的复曲率半径) ( ) ( ) πw ( z) (高斯光束的复曲率半径
若已知高斯光束在某一位置的q参数 若已知高斯光束在某一位置的 参数 → w(z), R(z), θ
1 1 = Re , R( z ) q ( z )
3. 光学系统(元件)
r2 A B r 1 球面波 = θ2 C Dθ1
r2 = Ar + Bθ1 1
r2 ≈ R2θ2
r ≈ Rθ1 1 1
θ2 = Cr + D 1 θ 1
R2 =
θ2
r2
=
AR + B 1 CR + D 1
参数通过光学系统的变换与球面波R的变换相同 高斯光束 q参数通过光学系统的变换与球面波 的变换相同 参数通过光学系统的变换与球面波
两式相减
第二章开放式光腔与高斯光束
1 L
T1 T3 0 1
R1
①
② R2
1 0
T2
2 R2
1
1 0
T4
1、往返一周
T
2 L
2g2 1 (g1 g2 2g1g2 )
2Lg2
4g1
g
2
2
g
2
1
R1、R2:两反射镜面曲率半径 L:谐振腔长度
证
①
②
R1
R2
④
③
L
r22 T1r11 r33 T2 r22 T2T1r11 r44 T3r33 T3T2T1r11 r55 T4 r44 T4T3T2T1r11
2、实例
(1)单程传播L距离
证
1 r1
2 r2
L
r2=r1+L1 2= 1
T
1 0
L 1
T
1 0
L 1
(2)球面反射镜
1 0
T
2 R
1
R:球面镜曲率半径(凹为+,凸为-)
证
=i+2 2-=-1
2
ii
2o 1
全反射镜
部分反射镜
光学谐振腔的发展与分类
最早提出的是平行平面腔 随后广泛采用了共轴球面腔
理论上分析这类腔的时候, 认为其侧面对光无约束,因 此也称为开放式光学谐振腔, 简称开腔。
开腔——侧面对光没有约束
稳定腔 非稳定腔 临界腔
激光原理第二章答案解析
第二章 开放式光腔与高斯光束1. 证明如图2.1所示傍轴光线进入平面介质界面的光线变换矩阵为121 00 ηη⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦。
证明:设入射光线坐标参数为11, r θ,出射光线坐标参数为22, r θ,根据几何关系可知211122, sin sin r r ηθηθ== 傍轴光线sin θθ则1122ηθηθ=,写成矩阵形式2121121 00 r r θθηη⎡⎤⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦得证 2. 证明光线通过图2.2所示厚度为d 的平行平面介质的光线变换矩阵为1210 1d ηη⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦。
证明:设入射光线坐标参数为11, r θ,出射光线坐标参数为22, r θ,入射光线首先经界面1折射,然后在介质2中自由传播横向距离d ,最后经界面2折射后出射。
根据1题的结论和自由传播的光线变换矩阵可得212121121 0 1 01 0 0 0 1r r d θθηη⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦ 化简后2121121 0 1d r r θθηη⎡⎤⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦得证。
3.试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。
证:设光线在球面镜腔内的往返情况如下图所示:其往返矩阵为:由于是共焦腔,则有12R R L ==将上式代入计算得往返矩阵()()()121010110101n nnn n n r L r L ⎡⎤⎡⎤⎡⎤===-=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A B C D T T T T T 可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。
于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。
4.试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。
解:共轴球面腔稳定性条件1201g g <<其中121211,1L Lg g R R =--=- 对平凹共轴球面镜腔有12,0R R =∞>。
激光原理教案第二章
激光原理与技术
1,2两种损耗常称为选择损耗,不同模式的 几何损耗与衍射损耗各不相同。3,4两种称为 非选择损耗,通常情况下它们对各个模式大体 一样。
平均单程损耗因子:如果初始光强为 I0 ,在 无源腔内往返一次后,光强衰减为 I1 ,则
I1 I0e2
1 ln I1 ,
2 I0
为腔中各损耗因子的和
1.22
2a
W1 W1 W0
S1 S1 S0
a L 2 a2 a L 2
激光原理与技术
2L
a
2L
0.61
a2
1.22 a2
1 a2
1 N
L L
D
D
'
1 N
N:菲涅耳数,N愈大,损耗愈小。
激光原理与技术
§2.2共轴球面腔的稳定性条件 一、腔内光线往返传播的矩阵表示
激光原理与技术
0q 称为腔的谐振波长
q
q
c 2L,
q称为腔的谐振频率
当光腔内充满折射率为 的均匀物质时
L, L
q
q
c
2 L,
L q q
2
式中 q 为物质中的谐振波长
本征模式在腔的横截面
内场分布是均匀的,而 沿腔的轴线方向(纵向)形 成驻波,驻波的波节数 由q决定,q单值地决定 模的谐振频率。
激光原理与技术
激光原理与技术
腔与模的关系: 腔内电磁场的本征态应由麦 克斯韦方程组及腔的边界条件决定。不同类型 和结构的谐振腔的模式各不相同。
对闭腔,一般可以通过直接求解微分形式的 麦克斯韦方程组来决定其模式
寻求开腔模式的问题通常归结为求解一定类 型的积分方程。
模的基本特征:模在腔的横截面内的场分 布,模的谐振频率,模在腔内往返的相对功率 损耗;模的光束发散角。
激光原理周炳坤-第2章习题答案
第二章 开放式光腔与高斯光束习题(缺2.18 2.19 2.20)1. 题略证明:设入射光()11,r θ,出射光()22,r θ,由折射定理1122sin sin ηθηθ=,根据近轴传输条件,则1122sin ,sin θθθθ≈≈1122ηθηθ∴=,联立21r r =,则所以变换矩阵为 2. 题略证明:由题目1知,光线进入平面介质时的变换矩阵为:经过距离d的传播矩阵为: 光线出射平面介质时: 故3. 试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。
证:设光线在球面镜腔内的往返情况如下图所示:其往返矩阵为:122212111210101122110101212(1) 222222[(1)][(1)(1)]A B L L T C D R R L L L R R L L L L R R R R R R ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎪ ⎪⎝⎭⎝⎭⎛⎫-- ⎪⎪= ⎪-+----- ⎪⎝⎭212211100r r θηηθ⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭21100T ηη⎛⎫= ⎪⎝⎭121100T ηη⎛⎫= ⎪⎝⎭2100d T ⎛⎫=⎪⎝⎭312100T ηη⎛⎫= ⎪⎝⎭3113213112211101010000r r r d T T T θθηηηηθ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭123211221101011000000d d T T T T ηηηηηη⎛⎫⎛⎫⎛⎫⎛⎫∴=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭由于是共焦腔,有 12R R L == 往返矩阵变为若光线在腔内往返两次,有可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。
于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。
4. 试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。
第二章 开放式光腔和高斯光束
r: 光线离轴线的距离; ζ :光线与轴线的夹角,规定
光线出射方向, 在腔轴线的上 方时,θ为正,反之θ为负。
傍轴光线、 自由空间的光线矩阵 2.2 共 轴 球 面 腔 的 稳 定 性 条 件 光线传输路径:
M 1 r1 ,1 M 2 r2 , 2
由几何关系: r2 r1 L sin 1 r1 L1 2 1
1 1 t dN t N0 0 N0
N0 t e R
t
R
dt R
这就证明了腔内光子的平均寿命为τR,腔的损耗 愈小,τR就愈大,腔内光子的平均寿命就愈长。
2.无源谐振腔的Q值
谐振腔Q值的普遍定义为:
δ ——储存在腔内的总能量;P——单位时间内损耗的能量, v—— 腔内电感场的振荡频率;W=2л v——场的角频率。
E0 ET
E3
E1=E0e-j
当||1的情况下(往返 传播次数无限多),当 = q2时,ET幅度可 以达到
E4 E3=E2e-j
E2=E1e-j
——腔内纵模需要满足的谐振条件
相长干涉条件:腔中某一点出发的波,经往返一 周回到原来位置时,应与初始出发的波同相位。
开放式光腔
稳定腔——共焦腔模式理论
(损耗小,模体积小)
非稳腔(高损,大功率激光器)
方形镜共焦腔 圆形镜共焦腔 一般稳定球面腔 与共焦腔的等价性 产生激光光束的传输问题 ——高斯光束
2.1光腔理论的一般问题
ቤተ መጻሕፍቲ ባይዱ一.光学谐振腔的构成和分类
平行平面腔:最早的光腔法布里-珀罗干涉仪,F-P腔。
共轴球面腔:两块具有公共轴线球面镜构成的谐振腔。
周版激光原理课件第二章
数为:
P
nVd
8 2
c3
Vd
由此关系知,只能压缩V,但是不现实。从而提出开式腔
(无侧壁的封闭腔)。从发散角来看,封闭时为2 ,而
开式时为
a
2
L
压缩倍数为
2
/
a L
2
• 但是,我们知道开式腔是无侧壁的封闭 腔,那么内部会不会有稳定的电磁波存 在?如何求出该电磁波?
§ 2.1光腔理论的一般问题
(t
z
)
A2
A0
cos 2
(t
z
)
总波为二者叠加:
A
A1
A2
2 A0
cos
2
z
cost
稳定波存在必须满足驻波条件:
一维: L q
2
与谐振条件等价
从波动理论知:驻波是稳定存在的波。满足驻波条件的 那些光波称之为光腔的纵模,q为波节数,一般很大。一般 把由整数q所表征的腔内的纵向场分布称为腔的纵模。其特 点是:在腔的横截面内场分布是均匀的,而沿腔的轴线方向 形成驻波,驻波的波节数由q来决定。
共轴
球面 R1
共轴 R2
2. 开放式: 除二镜外其余部分开放 共轴: 二镜共轴 球面腔: 二镜都是球面反射镜(球面镜)
三.光腔按几何损耗(几何反射逸出)的分类:
稳定腔 (光腔中存在着伴轴模,它可在腔内多次传播而不逸出腔外) 光腔 临界腔 (几何光学损耗介乎上二者之间)
非稳腔 (伴轴模在腔内经有限数往返必定由侧面逸出腔外,有很高的
a
在这种条件下,可认为均匀平面波是F-P谐振腔内的最低损 耗模,从而为F-P谐振腔的模式提供一种粗略的,也是有用 的形象。
所以考虑均匀平面波在F-P谐振腔内沿轴线方向往返传播的 情形
第二章开放式光腔与高斯光束1
腔的菲涅耳数为 N a L
2
所以:
1 1 d 2 a N L
' d
几何光学分析方法和衍射理论分析方法
几何光学分析方法:
用矩阵方法处理光腔中光线的传播、腔的 稳定性 、谐振腔的分类等。
衍射理论分析方法: 在菲涅耳--基尔霍夫衍射积分以及模式 重现概念的基础上,讨论谐振腔模式的形式、 解的存在、模式花样、衍射损耗等。
共焦谐振腔示意图
长半径球面腔
长半径球面谐振腔的性能介于共焦腔与球面腔之间,它的特点 如下: 1) 中等的衍射损耗;2)较易安装调整; 3)模体积很大; 4)腔内没有很高的光辐射聚焦现象;
长半径球面谐振腔适于连续工作的激光器
长半径球面腔示意图
半球型谐振腔 半球型谐振腔的特点: 易于安装调整、衍射损耗低、成本低 半球型谐振腔主要应用于低功率氦氖激光器
(3)腔镜不完全反射引起的损耗 包括反射镜的吸收、散射以及镜的透射损耗。 镜的透射损耗与输出镜的透射率T有关。 (4)材料中非激活吸收、散射,腔内插入物引起的损耗。 激光通过腔内光学元件和反射镜发生非激活吸收、散 射引起的损耗 平均单程损耗因子
I I 0e
2
1 I0 ln 2 I
I1 I 0 r1r2 I 0e 2 r 1 r ln(r1r2 ) 2 r1 1, r2 1 时有
当
1 r [(1 r1 ) (1 r2 )] 2 (2)腔镜倾斜时的几何损耗
设倾角为 ,往返m次后才逸出腔 外,D为腔的横向尺寸。
L 2 L 6 L(2m 1)2 D
§2.1 光腔理论的一般问题
一、光学谐振腔的构成、分类和作用 光学谐振腔的构成 最简单的光学谐振腔是在激活介质两端恰当地 放置两个镀有高反射率的反射镜构成。
激光原理(第2章)
三、光腔的损耗 损耗的大小是评价谐振腔的一个重要指标,也是腔模理论的重要研究 课题。光学的损耗大致包括如下几个方面: (1)几何偏折损耗。光线在腔内往返传播时,可能从腔的侧面偏折出 去,这种损耗为几何偏折损耗。其大小首先取决于腔的类型和几何尺寸。 例如,稳定腔内傍抽光线的几何损托应为各零,非稳腔则有较高的几何 损耗。以非稳腔而论,不同几何尺寸的非稳腔,其损耗大小亦各不相同。 其次,几何损耗的高低依模式的不同而异。比如同一平行平面腔内的高 阶横模由于其传播方向与轴的夹角较大,因而其几何损耗也比低阶横模 为大。 (2)衍射损耗。由于腔的反射镜片通常具有有限大小的孔径,因而当 光在镜面上发生衍射时,必将造成一部分能量损失。本节以及本书后面 几章的分析表明,衍射损耗的大小与腔的菲涅耳数 N=a2/Ll有关,与 腔的几何参数g有关,而且不同横模的衍射损耗也将各不相同。
(3)腔镜反射不完全引起的损耗。它包括镜中的吸收、散射以及镜的 透射损耗,通常的光腔至少有一个反射镜是部分透射的,有时透射率还 可以很高(例如,某些固体激光器的轴输出透射率可以> 50%),另一个 反射镜即使通常称为“全反射”镜,其反射率也不可能做到100%。 (4) 材料中的非激活吸收、散射,腔内插入物 ( 如布儒斯特窗、调 Q 元件、调制器等)所引起的损耗,等等。 上述 (1)(2) 两种损耗常常又称为选择损耗,因为不同模式的几何损 耗与衍射损耗各不相同。 (3)(4)两种损耗称为非选择损耗,在一般情况 下它们对各个模式都一样。 不论损耗的起源如何,我们都可以引进一个“平均单程损耗因子” d 来定量地加以描述。该因子的定义如下:如果初始出发时的光强为 I0, 在无源腔内往返一次后,光强衰减为I1,则
2.1 光腔理论的一般问题
一、光腔的构成和分类
在激活物质的两端恰当地放置两个反射镜片,就构成一个最简单的 光学谐振腔。
第二章 高斯光束
– 在实验上和理论上都证实了工作物质的折射率随温度发生变化:
(x,
y)
0(T 0)
n T
D 4K
(x2
y2)
– 可见工作状态下的Nd:YAG工作物质是一种二次折射率介质。
21
2.1光线的传播
• 3. 光线在均匀和非均匀各向同性介质中的传播
–
程函(eikonal)方程:
x
2
y
2
x y
0 0
d 2r dz 2
k k
2 0
r
0
23
2.1光线的传播
–
(1)k2>0
微分方程的解为 r(z) c1cos
k k
2 0
z
c
2
sin
k k
2 0
z
若考虑光线入射初始条件
为
r0
r
0
'
,则可以求出
c1
r 0; c2
k,因此微分方程的解可以写成:
r
z
r
0
cos
– 1. 薄透镜的聚焦机理
– 一单色平面波,经过薄透镜后,产生一个与离轴距离r2成正比的相位超 前量,补偿了到达焦点几何路径的不同所引起的相位不同滞后量。到达
焦点时间、相位相同,实现聚焦,此时的薄透镜相当于一个平面的相位
变换器。
AB AO BO
f 2 x2 y2 f f 1 x2 y2 f
k k
2 0
z
k k
0 2
r
'
0
sin
k k
2 0
z
r ' z
k k
2 0
r
第二章 开放式光腔与高斯光束2
谐振腔模式理论的基础
模式自再现概念
菲涅耳-基尔霍夫衍射积分
基本步骤:
光的衍射理论
自再现模所满足的积分方程
求解积分方程
在决定开腔中激光振荡能量的空间分布方面,衍射起主要作用。 理想的开腔模型:两块反射镜片沉浸在均匀的、无限的、各向 同性的介质中。无侧壁的不连续性,决定衍射效应的孔径由镜 的边缘所构成。
可以得到:
xx yy i vmn x, y mn exp ikL vmn x, yexp ik dxdy L L a a
a a
方形镜对称共焦腔自再现模积分方程
按照博伊德和戈登的方法 进行无量纲变换:
a2 C C a 2k X x, Y y, C 2 2N a a L L
4、自再现模的形成过程将伴随着光的受激放大 。 结果光谱不断变窄,空间相干性不断增强,光强 不断增大,最终形成高强度的激光输出。
三、菲涅耳-基尔霍夫衍射积分
1、惠更斯-菲涅耳原理
惠更斯:球面子波
菲涅耳:子波相干叠加
2、衍射积分公式
基尔霍夫:用数学公式描述出惠更斯-菲涅耳原理 如果知道光波场在其所达到的任意空间曲面上的振 幅和相位分布,可求出该光波场在空间其他任意位 置处的振幅和相位分布。
自再现模在开腔中的单程总相移一般不等于由腔长L所 决定的几何相移kL。通常有这么一个关系:
kL
表示腔内单程渡越时相对于几何相移的单程附加相移
2 L q c
mn
qc c mn 2 L 2L
也就是说,本征值 决定了不同横模的谐振频率
根据分离变量: vmn ( x, y) Fm X Gn Y 令 mn m n 则积分方程转化为:
ch2开放式光腔与高斯光束
实函数 镜面上各点场的相位相同,共焦腔反射镜本身构成场的一 个等相位面。共焦腔的这一性质也与平行平面腔不同。
三、单程损耗
2-5方形镜共焦腔的自再现模
2-5方形镜共焦腔的自再现模
1
mn
(1) (1) 4 N exp{ i{kL (m n 1) ]}Rom (c,1) Ron (c,1) 2
选择损耗:不同模式的损耗各不相同的损耗 非选择损耗:不同模式的损耗都相同的损耗
2-1光腔理论的—般问题 (1)几何偏折损耗 (2)衍射损耗 非选择损耗 选择损耗
(3)腔镜反射不完全引起的损耗
(4)材料中的非激活吸收、散射,腔内插入物(如布儒斯特 窗.调Q元件、 调制器等)所引起的损耗,等等。 平均单程损耗因子δ
2-2共轴球面腔的稳定性条件 三、 共轴球面腔的分类 1. 稳定腔
满足 条件的共轴球面腔都是稳定腔。其特点是任 意近轴光线在腔内能往返无限多次而不横向逃逸出腔外。 换句话说,这种腔的几何损耗为零。 腔内的光束可分为两种:称简并光束;经有限次往返后可形成闭合 非简并光束:虽可往返多次,但始终不能自行闭合。
I1 I 0e
2
用单程渡越时光强的平均衰减百分数来定义单程损耗因子
2-1光腔理论的—般问题 δ′与指数损耗因子 δ 是一致的
1.光子在腔内的平均寿命
2-1光腔理论的—般问题
2.无源谐振腔的 Q 值 无论是 LC 振荡回路、微彼谐振腔、还是光频谐振腔, 都采用品值因数Q标志腔的特性。谐振腔Q值的普遍定义为:
2-2共轴球面腔的稳定性条件 球 面 镜 反 射
球面镜的反射矩阵
球面镜对近轴光线的反射变换与焦距相同的薄透镜对同 一傍轴光线的透射变换是等效的,只是光线传播方向不折转。 在此基础上,可以将球面镜腔等效为周期透镜波导。
第二章开放式光腔与高斯光束kp
腔的时间常数
腔内光子平均寿命
•谐振腔损耗越小,腔内光子寿命越长 •腔内有增益介质,使谐振腔净损耗减小,光子寿命变长
17
2.1 光腔理论的一般问题 5.光子寿命与无源谐振腔的Q值的联系
谐振腔品质因子的定义:
储存在腔内的总能量(E) 单位时间内损耗的能量(P)
Q的普 遍定义
可以证明:
因此有:
谐振腔的损耗越小,Q值越高
18
2.2 共轴球面腔的稳定条件 2.2 共轴球面腔的稳定条件
一、几何光学中的光线传输矩阵(ABCD矩阵)
r z
正,负号规定:
2. 自由空间区的光线矩阵
B A
L
自由空间光线矩阵
19
2.2 共轴球面腔的稳定条件
4. 薄透镜传输矩阵
f
20
2.1 光腔理论的一般问题
‹#›
2.2 共轴球面腔的稳定条件 薄透镜与球面反射镜等效
—开腔的自再现模 或 横模 幅度、相位
的衍化 空间相干性
孔阑传输线
2.3 开腔理论的物理概念和衍射理论分析方法 三、几点理解
1.只有不受衍射影响的场分布才能形成稳定的场分布,成为自再现模。 2.衍射起“筛子”作用,将腔中允许存在的自再现模从各种自发辐射模中筛选出来。
3.自再现模是多次衍射的结果,与初始波形无关,但不同的初始波形最终形成的场 分布不同,而自发辐射可提供不同的初始波形,因此决定了自再现模的多样性。
1
第二章 开放式光谐振腔与高斯光束
2.1 光腔理论的一般问题 2.2 共轴球面腔的稳定性条件 2.3 开腔模式的物理概念和衍射理论分析方法 2.4 平行平面腔模的迭代解法 2.5 方形镜共焦腔的自再现模 2.6 方形镜共焦腔的行波场 2.7 圆形镜共焦腔 2.8 一般稳定球面腔的模式特征 2.9 高斯光束的基本性质及q参数 2.10 高斯光束q参数的变换规律 2.11 高斯光束的聚焦与准直 2.12 高斯光束的自再现变换与稳定球面腔 2.13 光束衍射倍率因子
第二章开放式光腔与高斯光束讲课用
镜腔处理。
普通的两镜腔 等价 共焦腔
(等价共焦腔)
依据等价原则,利用等价共焦腔,共焦腔的模式解析 理论可推广使用于一般稳定腔。
实际应用中:(1)大多数中、小激光器几何偏折损耗低, 属稳定腔; (2)稳定腔的模式理论比较成熟。
三.纵模和驻波条件
1、腔内要形成的稳定的驻波 模式,必须满足驻波条件
假设:n为腔内介质的折射率,L 为腔长,λ0q 为光在真空中的波长。 L′ 为腔的光学长度。
2a
2(a+Lθ)
2I0
S1
L
∴
δd
=
S2 − S1 S2
≈
2Lθ a
S2
∴
δd
≈
a2
1 / Lλ
=
1 N
定义: N = a2 / Lλ
腔的菲涅尔数
对于方形镜、圆形镜: N = a2 / Lλ 对于条形镜: N = a1a2 / Lλ
理解菲涅尔数:①衍射光在腔内的最大往返次数
中心光束,偏离镜中心的偏移量为x = θL = λL/2a
=
C 2μL
=
3 × 108 2 ×1
= 1.5 ×108 Hz
在 Δvq 范围内所包含的最多纵模个
数:
m = [ ΔvF ] +1 Δvq
m = [ ΔvF ] +1 = 1500 ×106 +1 = 11
Δvq
1.5 ×108
谐振腔最多可能包含 的纵模个数为11
四、横向电场分布与横模(Transverse Electromagnetic mode)
圆形镜: r(n)
ϕ (m) 直径数
TEM 03 TEM 00 TEM 10
第二章光腔与高斯光束
镜面的横向尺寸时,光不逸出,即为稳定。 我们讨论φ的取值情况: 1)φ为实数
a. Tn为有限值的条件为Sinφ不为0
φ不等于Kπ
即
1 =arc cos (A+D) K 2 1 1 < (A+D)< 1 稳定条件 2
§2.2 共轴球面腔的稳定性条件
1 2L 2L 2L2 A D 1 2 R1 R2 R1R2
§2.2 共轴球面腔的稳定性条件
(2)平行平面腔 此时有R1=R2=∝,
g1=g2=1
g1g2=1
1.腔中沿轴线方向行进的光线能往返无限多次而不 致逸出腔外,且一次往返即实现简并(形成闭合光 路 ). 2.沿非轴向行进的光线在经有限次往返后,必然从 侧面逸出腔外,这又与非稳腔相像。
§2.2 共轴球面腔的稳定性条件
Finesse
gm
1 gm
1 P cav Pmax 1 (2F )2 sin 2 ( )
§2.1 光腔理论的一般问题
三 光腔的损耗 1 分类
光学开腔的损耗包括: • 几何偏折损耗 • 衍射损耗 • 腔镜反射不完全所引起的损耗 • 材料中的非激活吸收、散射、腔内插入 的光学元件或其它物体所引起的损耗
I1 I 0r1r2 I 0e
2 r
1 1 r ln( r1r2 ) (ln r1 ln r2 ) 2 2
1 r [(1 r1 ) (1 r2 )] 2
当r1≈1,r2≈1时,
§2.1 光腔理论的一般问题
损耗举例2:(腔镜倾斜时的几何损耗)
m
§2.1 光腔理论的一般问题
二 F-P腔TEMmnq模之纵模
驻波条件: 波从某一点出发,经腔内往返一周再 回到原来位置时,应与初始出发波同相
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)共心腔
满足条件 R1十R2=L的谐振腔称为共心腔, 因这时腔的两个镜
面的曲率中心互相重合。
g1=1
L R1
R2 R1
g2=1
L R2
R1 R2
g1g2 1
通过公共中心的光线能
在腔内往返无限多次,且
一次往返即自行闭合。
所有不通过公共中心的
光线在腔内往返有限多次 后,必然横向逸出腔外。
平行平面腔、共心腔可称为介稳腔。
即
1(A+D)= 2
1
=acr cos 12(A+D)=K
g1g2=1或者g1g2=0
临界腔
§2.2 共轴球面腔的稳定性条件
常见的几种临界腔 (1) 对称共焦腔 满这足时条腔件的R中l=心R即2=g为1=L两g的2= 个谐0镜振面g腔1g的2称=公0为共对焦称点共。焦对腔称,
共焦腔满足
任意徬轴光线均可在腔内往返无限多次而不致 横向逸出,而且经两次往返即自行闭合。共焦 腔应属于稳定腔。
§2.2 共轴球面腔的稳定性条件
(2)平行平面腔
此时有R1=R2=∝, g1=g2=1 g1g2=1
1.腔中沿轴线方向行进的光线能往返无限多次而不 致逸出腔外,且一次往返即实现简并(形成闭合光 路). 2.沿非轴向行进的光线在经有限次往返后,必然从 侧面逸出腔外,这又与非稳腔相像。
§2.2 共轴球面腔的稳定性条件
说明:光传输中,r ,θ可能发生变化,而变化后
的r 、θ可用一个ABCD传输矩阵与初始光线的矩
阵相乘得到。
2、自由空间的平移矩阵
A处:r0,0 B处:r’,’
r0 ,0
B
A
r,
L
r r0 Lθ0 θ θ0
则自由空间的平移矩阵为:
r A
பைடு நூலகம்
θ
C
B
D
r0 θ0
TL
r0 θ0
线),谐振腔是何种腔(稳定腔、临界腔、非稳腔)?
思路:写出传输一周的ABCD矩阵
判断
1 < A D < 1 2
?
0 < g 1 g2 < 1 g 1 g2 > 1
非稳腔
§2.2 共轴球面腔的稳定性条件
解: 设凸面镜与凹面镜的曲率半径分别为 R1和R2 ,
当腔内未插入其他透明介质时
(1 L )(1 L ) (1 1 )(1 1) 1
§2.1 光腔理论的一般问题
腔精细度F及线宽
自由光谱区(FSR)
q c
c :腔线宽
E0 t1Ein
Ecav
E0 1 g
g
R1R2e p ei
1
2
FSR Finesse
Finesse
gm
1 gm
1
P cav Pmax 1 (2F )2 sin2 ( )
§2.1 光腔理论的一般问题
三 光腔的损耗
I0 (e2
)m
I
e2
0
m
m t 2L / c
t时刻的光强为
t c
I (t) I0e L
t
I0e R
R
L
c
物理意义:
当 t R
时,
Im
I0 e
可见, 越大, R 越短,腔内光子数衰减越快!
R 也可看成腔内光子的平均寿命。
§2.1 光腔理论的一般问题
t
I(t) I0e R 设t时刻光子数密度为N I(t)=Nh v
r
1 2
[(1
r1
)
(1
r2
)]
当r1≈1,r2≈1时,
§2.1 光腔理论的一般问题 损耗举例2:(腔镜倾斜时的几何损耗)
m D
2L
c
2DL
L
c
L
2D
以D=1cm,L=1m计算,如果要求损耗低于0.01
2106 rad 0.4
§2.1 光腔理论的一般问题
损耗举例3:(衍射损耗)
1.22
1
TL
0
L
1
§2.2 共轴球面腔的稳定性条件
3、界面的折射矩阵
入射 r0,0
r r0
出射 r,
θ
n1 n2
θ0
n1
n10 n2
1 0
TS
0
n1
n2
4、球面镜的反射矩阵Tr
0
1
Tr
-
2 R
01
对于薄透镜有 类似的关系
n2
r2 r1
10
TR
f11
§2.2 共轴球面腔的稳定性条件
R1
R2
2 3
即 g 1 g2 1
该腔为临界腔
当腔内插入其他介质时,设该介质的长度为l,
该介质卓有两边剩余的腔内长度分别为l1和l2,
则 l1 l l2 L 。设此时的等效腔长为 L ,则
1 0
L 1
1
0
l2 1
1
0
0 1
0
l 1 1 0
0 1
1
/
0
l1 1
1
0
l2
l
l1
折叠腔、环形腔 复合腔-腔内加入其它光学元件,如透镜,F-P标准具等
§2.1 光腔理论的一般问题
折叠腔
l3
l2
l1
环形腔
染料调Q装置示意图
M3
KTP
M4
Pump
808nm M1
Nd:YVO4 TGG /2
Output M2 671nm
Fig.1 The schematic design of all-solid-state green laser of single-frequency operation
衍射损耗及输出损耗分别引起的δ、 c、Q、 (c设n=1)
解: 衍射损耗:
L
a2
10.6 106 1 (0.75 102 )2
0.188
c
L
c
1 0.188 3108
1.75108 s
Q
2 c
3 108 2 3.14 10.6106
1.75 108
3.11 106
c
1
2 c
1 2 3.14 1.75 108
第二章 开放式光腔与高斯光束
1 利用ABCD矩阵分析光腔稳定性 2 腔与模的关系分析 3 高斯光束的基本性质 4 q参数应用
§2.1 光腔理论的一般问题
一 光腔的构成和分类
1、开腔: 稳定腔、非稳腔、临界
腔
F-P腔:最早提出来的平行平面光腔 共轴球面腔(b) 2、闭腔:介质腔(a) 3、气体波导激光谐振腔 4、光腔的其它分类
§2.2 共轴球面腔的稳定性条件
2)φ为虚数
1 2
(A
D)
>
1即g1 g2
>
1
或者1 2
(A
D)
<
1即g1 g2
<
0
当φ值为复数时,由于有虚部,必然导致sinφ与sin(n-1)φ的值
随n的增大按指数规律增大。从而使rn 、θn 的值也随n增 大按指数规律增大。傍轴光线在腔内往返有限次后必将横
向逸出腔外。
6、共轴球面腔中光线往返n次的变换矩阵 T n 由Sylvester定理有:
rnn
T
T
r00
Tn
r00
An Cn
Bn Dn
r00
Tn
1
sin
Asin
n
C
sin n
sin n
1
Dsin
Bsin n
n sin n
1
其中:
arccos
1 2
A
D
§2.2 共轴球面腔的稳定性条件
变换矩阵 T n 的特点 ①往返矩阵与初始坐标无关,可用来描述任意 傍轴光线在腔中的传播行为。
倾斜因子
u
x, y
ik
4
u
S
x', y' eik
1
cos ds'
§2.3 开腔模的衍射理论分析方法
3、稳态场的形成——模的“自再现”
镜1上的场分布,到达镜2时,由于衍射,要经历一次能量的 损耗和场分布的变化,中间能量损失小,镜边缘损失大。每 单程渡越一次,都会发生类似的能量损耗和场分布变化。多 次往返后,从而逐渐形成中间强、边缘弱的基本不受衍射影 响的稳态场分布。该稳态场分布一个往返后可“自再现”出 发时的场分布,唯一变化是镜面上各点的场振幅按同样的比 例衰减,各点相位滞后2 的整数倍。
1
3 / 4 3 / 4 33
L 0.5 0.5 / 2 3 / 4(m)
g 1 g2 (1 2 )(1
) >1 3 32
§2.3 开腔模的衍射理论分析方法
一、开腔模的一般物理概念 1、理想开腔模型
两块反射镜面放在无限大的均匀的各向同性介质中。
在开腔中是否存在电磁场的本征态或不随时间变 化的稳态场分布?如何求场分布?
定义二 :
Q R
2 L' c
定义三 :
Q
c
激光的单模线宽
小结:损耗越大, Q值越小。
§2.1 光腔理论的一般问题
损耗举例1:(由镜反射不完全引起的损耗)
初始强度为I0的光,在腔内经两个镜面反 射往返一周后,其强度应为
I1 I0r1r2 I0e2r
r
1 2
ln(
r1r2
)
1 2
(ln
r1
ln r2 )
t
N(t) N0e R
在t~ t+dt内减少的光子数密度为
dN