西门子S7-200自由口通信心得

合集下载

s7200自由口通讯协议详细注解

s7200自由口通讯协议详细注解

自由口通讯协议详细注解西门子PLC的编程风格本人太喜欢了,用了国产仿西门子的都感觉缺这缺那的,很不爽,等吧。

希望国内PLC工程师多多努力。

对于西门子的东西,也有遗憾的地,如PPI协议人家不公开,MODBUS有库,好象要购买。

这篇文是组态王SIMATIC S7-200系列PLC之间的通讯协议的本人读书注解与心得,从中也可学到作者的思路,学习PLC先从通信协议入手,为何不妥呢?与初学者切磋与共享这个协议。

锤子此协议为亚控公司为实现组态王与德国西门子公司SIMATIC S7-200系列PLC之间的通讯而制上位机从PLC中读数据:上位机发送读指令:BYTE1: PLC地址 (1~255)BYTE2: 0x00 (读指令代码)BYTE3: 寄存器类型(0-V, 1-Q, 2-I)BYTE4-5: 起始偏移地址(0-9999)BYTE6: 数据个数(1~32 n)BYTE7: 数据类型(1,2,4 m)BYTE8-11: 保留BYTE12: 校验字节PLC应答:读成功时:BYTE1: PLC地址 (1~255)BYTE2: 0x00 (读指令代码)BYTE3: 寄存器类型(0-V, 1-Q, 2-I)BYTE4-5: 起始偏移地址(0-9999)BYTE6: 数据个数(1~32 n)BYTE7: 数据类型(1,2,4 m)BYTE8-n*m+8: 数据BYTEn*m+9: 校验字节读失败时:BYTE1: PLC地址 (1~255)BYTE2: 0x80 (读指令失败代码)BYTE3: 寄存器类型(0-V, 1-Q, 2-I)BYTE4-5: 起始偏移地址(0-9999)BYTE6: 数据个数(1~32 n)BYTE7: 数据类型(1,2,4 m)BYTE8: 0x01(校验错代码)BYTE9-11: 保留BYTE12: 校验字节上位机向PLC中写入数据:上位机发送写指令:BYTE1: PLC地址 (1~255)BYTE2: 0x01 (写指令代码)BYTE3: 寄存器类型(0-V, 1-Q, 2-I)BYTE4-5: 起始偏移地址(0-9999)BYTE6: 数据个数(1 n)BYTE7: 数据类型(1,2,4 m)BYTE8-11: 写入数据BYTE12: 校验字节PLC应答:写成功时:BYTE1: PLC地址 (1~255)BYTE2: 0x01 (写指令代码)BYTE3: 寄存器类型(0-V, 1-Q, 2-I)BYTE4-5: 起始偏移地址(0-9999)BYTE6: 数据个数(1 n)BYTE7: 数据类型(1,2,4 m)BYTE8-11: 保留BYTE12: 校验字节写失败时:BYTE1: PLC地址 (1~255)BYTE2: 0x81 (写指令代码)BYTE3: 寄存器类型(0-V, 1-Q, 2-I)BYTE4-5: 起始偏移地址(0-9999)BYTE6: 数据个数(1 n)BYTE7: 数据类型(1,2,4 m)BYTE8: 0x01(校验错代码)BYTE9-11: 保留BYTE12: 校验字节***********************************************************S7200自由口通讯程序电台S7200自由口通讯程序亚控公司修改时间:2000.10.2王培哲MAINLD SM0.1CALL SBR_0:SBR0 //初始化子程序LD SM0.7= SM30.0SBR_0:初始化子程序SUBROUTINE COMMENTS Press F1 for help and example programLD SM0.0MOVW +2, VW8 //PLC自由口地址,此处每台机器需设不同的地址LD SM0.0MOVB 9, SMB30 //通讯参数,波特率9600,自由口通讯MOVD &VB100, VD40// VB100:接收缓冲区的首字节MOVW +10, VW54// VW54:存放发送数据按字节异或校验的次数,10次校验完已//接收了11个字节了,最后一个12号字节是校验。

S7-200PLC的自由口通信工程应用

S7-200PLC的自由口通信工程应用

S7-200PLC的自由口通信工程应用笫1章S7-200 PLC的自由口通信工程应用本章由浅到深循序渐进地例举了S7-200 PLC自由口通信的三个工程应用实例。

分别从任务描述、任务剖析、解决方案、实施步骤和常见故障及排故方法这五个方面进行了描述。

第一个实例“智能立体车库系统中IC卡的应用”讲述了S7-200 PLC的自由口通信的只读功能实现方法,第二个实例“RFID在AGV(Automated Guided Vehicle)中的应用”讲述了S7-200 PLC的自由口通信的读写功能实现方法,第三个实例“S7-200 PLC在无线通信上的应用”讲述了S7-200 PLC 的自由口通过自定义通信协议实现一对多的无线通信功能。

1.1智能立体车库系统中IC卡的应用1.1.1 任务描述智能立体车库系统要求采用刷卡方式完成车辆自动出入立体车库。

当司机刷卡并设定密码后,卡信息与车辆进行绑定,车辆将自动进入车库相应的车位,当司机想取出车辆时,司机只需刷卡并通过密码验证,系统将自动从车库中寻找该卡对应的车辆并将车取出到车库。

其中控制车辆进出的控制器采用西门子S7 - 200 系列CPU226 型可编程控制器来实现。

1.1.2 任务剖析智能立体车库要求采用刷卡方式作为车辆出入立体车库的凭证,这就要求控制系统能读出卡上的信息,利用卡的信息作为身份识别把卡和车辆绑定起来。

选用在弱电系统中作为门禁或停车场系统使用者身份识别的ID卡就能满足要求。

ID卡全称为身份识别卡(Identification Card),是一种只读的感应卡,每张ID卡有一个全球唯一的芯片编码。

它靠读卡器设备感应供电并读出存储在芯片EEPROM中的唯一卡号,该卡号在封卡前一次写入,封卡后不能更改,该ID卡完全能满足车辆身份识别的要求。

同时S7-200 PLC的自由口通信能实现通过读卡器设备读出卡上信息从而完成车辆身份识别的功能。

1.1.3 解决方案该任务实现的关键是要求S7-200 PLC能读出ID卡的信息,考虑到大多数的ID读卡器设备提供了与电脑直接通信的RS232通信方式,而S7-200 CPU的通信口电气上是标准的RS-485半双工串行通信口,因此硬件上需要通过RS-232到RS485转换器把ID读卡器设备连接到S7-200 CPU的通信口上,由于PC/PPI电缆本质上就是RS-232到RS485的转换,所以也可以通过PC/PPI电缆把ID读卡器设备连接到S7-200 CPU的通信口上。

S7-200CPU通信口的自由口模式实现Modbus通信协议

S7-200CPU通信口的自由口模式实现Modbus通信协议

在组态王里点击“com1”(根据你在前面已经定的com口而定),然后在右边的界面上显示你所建立的文件,然后对你编译的主画面点反键,然后在下拉菜单中点击“测试---”(你的文件名),再随便在选项里输入一个你编写的程序里的标志位,看能不能显示你的PLC内的当前值,如果可以显示,就应该是通信上了。

通过 S7-200 CPU 通信口的自由口模式实现 Modbus 通信协议,可以通过无线数据电台等慢速通信设备传输。

这为组成 S7-200 之间的简单无线通信网络提供了便利。

详细情况请参考《S7-200系统手册》(2002 年 10 月或以后版本)的相应章节。

Modbus 是公开通信协议,其最简单的串行通信部分仅规定了在串行线路的基本数据传输格式,在 OSI 七层协议模型中只到 1,2 层。

Modbus 具有两种串行传输模式,ASCII 和 RTU。

它们定义了数据如何打包、解码的不同方式。

支持 Modbus 协议的设备一般都支持 RTU 格式。

通信双方必须同时支持上述模式中的一种。

Modbus 是一种单主站的主/从通信模式。

Modbus 网络上只能有一个主站存在,主站在 Modbus 网络上没有位置,从站的位置范围为 0 - 247,其中 0 为广播位置,从站的实际位置范围为 1 - 247。

Modbus 通信标准协议可以通过各种传输方式传播,如 RS232C、RS485、光纤、无线电等。

在 S7-200 CPU 通信口上实现的是 RS485 半双工通信,使用的是 S7-200 的自由口功能。

Modbus RTU 主站指令库(测试版)西门子针对 S7-200 最新推出支持 Modbus RTU 主站的协议库(测试版),用户可以将这个库添加到 Micro/WIN 软件中,并通过调用库指令,方便地实现 Modbus RTU 主站的功能。

注意:1. Modbus RTU 主站指令库的功能是通过在用户程序中调用预先编好的程序功能块实现的,该库只对 Port 0 口有效。

S7―200自由口通信的原理及学习建议

S7―200自由口通信的原理及学习建议

S7―200自由口通信的原理及学习建议摘要:本文从S7-200 PLC自由端口通信协议入手,讲述自由端口协议的基本概念、自由端口通信与USS、MODBUS RT的关系;利用自由端口通信数据发送和数据接收的梯形图实例讲述了自由端口的编程方法。

自由端口通信的ASCII码和二进制码协议区别,总结了自由端口协议的功能及用途,文章最后作者根据自身经验,提出了学习自由端口协议的几点建议。

关键词:S7-200 PLC自由端口协议ASCII二进制功能用途学习建议中图分类号:TP336 文献标识码:A 文章编号:1007-9416(2015)04-0037-01强大而灵活的自由口通信能力,是S7-200系统的一个重要特点。

S7-200 PLC的通信端口按照串行485通信总线规范设计,并具备自由通信功能。

在自由通信模式下,通信数据的发送、接受协议由编程人员自行规定,但一般都是按照受控设备的支持的通信协议编写自由通信协议。

在自由通信协议的平台上,S7-200PLC可以方便的与上位机的第三方软件(组态王、MSG等)、扫描设备、编码器、单片机进行数据交换。

USS协议库和MODBUS RTU从站协议库是S7-200的编程软件固有的通信协议库,这些协议库都使用了自由口通信功能。

正确理解S7-200的自由口通讯对于自控人员具有极其重要的意义。

1 自由口通信基本概念西门子S7-200系列PLC的通讯端口都具备自由口通信功能。

所谓自由口协议是指通过用户程序控制CPU主机的通信端口的操作模式来进行通信。

只有在PLC处于运行模式时,其通信端口才能工作在自由端口模式。

当PLC从RUN 模式切换到STOP模式时,其自由通信协议模式自动关闭,并将通信端口切换到PPI通信模式。

与自由端口通信相关的指令有数据发送指令XMT和数据接收指令RCV。

自由端口的数据发送梯形图程序如图1。

在图1中,当EN端为高电平时,PLC的通信端口PROT1就会将VB100及其后的若干字节按一定的比特率发送出去。

西门子S7-200自由口通讯知识

西门子S7-200自由口通讯知识

S7-200系列自由口通讯的实现及应用比较有用的资料,有S7-200 PLC的话,可以试试。

1 引言为了达到和通讯协议已知的控制设备进行数据交换,以提高自动化控制系统的灵活性,很多plc制造商都相继的开发出了方便、灵活的自由口通讯方式,例如三菱公司的fx2系列plc,omron公司的cjm1系列的plc,西门子公司的s7-200系列plc等都提供了自由口通讯模式。

自由口通讯是指plc提供了串行的通讯硬件,和用于定制通讯协议的相关指令,在控制系统中,当要和plc连接的控制设备的通讯协议已知时,可以在plc中进行编程定制通讯协议,和控制设备进行数据通讯。

本文主要介绍西门子s7-200的自由口和计算机的串口进行的通讯,计算机中采用visual basic进行编程,从而实现计算机与可编程控制器的直接控制。

该通讯方式具有效率高、容易实现、通讯硬件简单、容易配置等特点在工业控制领域中被广泛应用。

2 s7-200通讯指令及特殊字节采用自由口通讯方式时,s7-200上的rs485口完全由用户控制,可以与任何协议已知的设备进行通讯,在这种情况下通讯协议完全由用户制定,为此,s7-200提供了用于进行通讯协议定制的特殊标志位以及相关的通讯指令。

2.1 特殊标志字节s7-200用于自由口通讯模式定义的特殊标志字节有smb30和smb130,smb30用于s7 -200的端口0的通讯,smb130用于s7-200的端口1的通讯,两者的格式一样,下面我们以smb130为例,介绍其组成。

smb130各位的含义如下:pp:两位用于选择通讯的校验方式当这两位的组合是:00无校验01 偶校验10 无校验11 奇校验d:这一位用于选择通讯的数据位数d=1时7个数据位,d=0时8个数据位bbb:用于选择自由口通讯是的波特率,这三位的组合和通讯波特率的关系如下:000 ——38400bps001 ——19200bps010 ——9600bps011 ——4800bps100 ——2400bps101 ——1200bps110 ——600 bps111 ——300 bpsmm: 用于通讯协议的选择,当这两位的组合是:00 ppi从站模式01 自由口通讯模式10 ppi主站模式2.2 接收信息的状态字节s7-200在自由口通讯时用于接受信息的状态有smb86和smb186,smb86用于s7-200的端口0的通讯,smb186用于s7-200的端口1的通讯,两者的格式一样,下面我们以s mb186为例,介绍其组成。

s7-200自由口通信

s7-200自由口通信

S7-200自由口通信简介S7-200是一款广泛应用于低端自动化控制领域的PLC,可以满足各种控制要求。

在控制系统中,一个PLC通常需要与其他设备进行通信,以实现更加复杂的控制功能。

而S7-200具有自由口通信功能,可以方便地与其他设备进行通信,为控制系统的设计提供了更多的选择。

自由口通信的概念S7-200的自由口通信,是指使用自由口功能实现与其他设备(如触摸屏、人机界面、变频器等)之间的通信。

在PLC控制系统中,S7-200自由口通信的应用非常广泛。

通过配置相应的参数和指令,S7-200可以方便地实现与其他设备之间的数据交换和控制指令传输。

自由口通信的优势相比其他通信方式,S7-200的自由口通信具有许多优势:方便易用S7-200自由口的设置非常简单,用户只需要根据实际需要设置相应的参数即可。

并且S7-200具备很好的兼容性,能够与其他设备快速实现数据交换。

实时性强S7-200的自由口通信实时性非常好,数据传输速度快,通讯延时很低。

这一优势使得S7-200在高速控制和监控场合得到广泛应用。

带宽宽敞S7-200自由口的带宽非常宽敞,可以同时实现多个任务和数据的传输。

这一优势使得S7-200具有非常好的扩展性和适应性,可以满足各种不同应用场合的需求。

自由口通信的应用示例通讯协议S7-200可以通过自由口通信与其他设备进行通讯,常用的通讯协议包括Modbus、Profibu、Devicenet等。

在S7-200的通讯模块中,可以通过配置相应的参数和指令,非常方便地实现与这些通讯协议之间的通信。

数据交换在PLC控制系统中,数据交换是一个非常重要的环节。

通过S7-200的自由口通信,用户可以快速实现控制器之间的数据交换,提高控制系统的性能和稳定性。

例如,在变频器控制系统中,S7-200可以通过自由口和变频器进行数据交换,以实现更加复杂的控制功能。

远程监控S7-200的自由口通信可以实现远程监控和数据采集。

西门子S7-200 自由口通信实用文档

西门子S7-200 自由口通信实用文档

主题:应用探讨—S7-200 自由口通信—发帖整理强大而灵活的自由口通信能力,是S7-200系统的一个重要特点。

S7-200 CPU的RS485通信口提供了建立在串行通信基础上的“自由”通信能力,数据传输协议完全由用户程序决定。

通过自由口方式,S7-200可以与串行打印机、条码阅读器等通信。

而S7-200的编程软件也提供了一些通信协议库,如USS协议库和MODBUS RTU从站协议库,它们实际上也使用了自由口通信功能。

开设本话题的目的,在于澄清自由口通信的基本概念,强调使用中的要点,讨论应用的常见问题。

经过此次集中交流,解决了如下一些问题:1. 自由口通信基本概念2. 自由口通信编程指令的使用和技巧3. 自由口通信常见问题4. 产品功能建议更多信息请参考下面文档。

“下载中心”参考文档:文档编号“1109582”——S7-200《可编程控制器系统手册》文档编号“A0136”——《西门子 S7-200•LOGO!•SITOP参考》以下为本次探讨的发帖整理,查看原始交流内容请点击此处。

1.自由口通信基本概念(1楼——5楼)2.自由口通信编程指令的使用和技巧(6楼——15楼)3.自由口通信容易犯的错误(16楼——24楼)4.产品功能建议(25楼——27楼)quote:以下是引用BABU在2011-01-20 15:17:08的发言:我回来了,项目终于做完了,可以回家过年了,:)。

自由口通信真是折腾的我好惨啊,简单回顾一下,希望对像我这样的菜鸟有些借鉴作用。

先感谢一下西门子论坛和热线,没少骚扰他们。

在完全没有准备的情况下甲方又加进一个仪表,做什么自有口通信,晕阿!没办法,迎着上吧!网上搜资料,看手册,越看越糊涂!时间紧迫,还是直接上手做吧。

首先是把PLC和仪表连接起来,可仪表的口是rs232的,热线工程师告诉我得做rs232/485的转换,打车到市场上买个转换器(打车钱比设备钱还多,可见现场多么偏僻阿),听卖转换器的老板给我分析了一下每种的区别——不光是价格的区别,说实在的,当时非常惭愧,老板懂的比我多多了。

实验9:两台S7-200自由口通讯实验报告

实验9:两台S7-200自由口通讯实验报告

实验9:两台S7-200自由口通讯实验一.实验目的实现两台S7-200控制器的自由口通讯,并在此基础上实现由一台S7-200经由另一台S7-200对分拣系统模型的控制。

二.实验设备两台S7-200 PLC,RS485通讯电缆一条,PPI编程电缆两条。

三.实验步骤思路:自由口通讯的关键是对两台200 PLC的port口进行设置,通过相应的寄存器设置,使两个port口工作在自由口模式,然后利用相应的传送和接受指令,即可实现数据的通讯。

整个过程都通过编程来完成,硬件接线只需连接两台PLC的port口即可。

1.与port口有关的寄存器这里为了编程方便,两台200 PLC均选择其port0口进行编程,与port0口的相关寄存器及其作用如下SMB30:port0控制寄存器,其设置可以选择端口模式和通讯速率以及是否进行校验与port0口有关的接收、发送寄存器有SMB86,87,88,89,90,92,94等。

他们的具体含义见下图2.编程思路两台200 PLC本身并没有主从关系,但为了区分方便,规定传送控制指令的200 PLC为主PLC,而接收控制指令并连接分拣系统设备的200 PLC为从PLC。

在两台PLC的程序中,分别建立两个子程序,将与通讯口寄存器操作有关的部分全部写入这个子程序中,完成对通讯口的初始化。

在主PLC的程序中,连接两个中断程序,实现50MS发送一次数据的功能。

发送的数据结构为:起始+所要发送数据+结束字符。

所以在程序里对要传送的数据提供头尾字符,以使接收程序能够识别信息发送是否结束。

分拣系统的控制命令只有启动、停止复位,所以在新建的一个子程序中提供两个控制指令的值即可。

从PLC的控制程序中,为了与发送同步,加入了50MS的通断效果,使接收同步,同时在从PLC中编写分拣系统的控制程序。

3.程序详解1主站PLC程序主程序通讯初始化子程序控制字子程序定时中断子程序.发送结束中断子程序主程序通信初始化子程序复位子程序3.数据传送验证在两个PLC的状态表中插入首发数据的VB区,进行在线观察。

S7-200的个人学习体会

S7-200的个人学习体会
限制I/O的因素:1,各CPU主机I/O和可链接的最大扩展模块数 2.印象寄存器的数量 3.CPU为扩展模块提供的电流
18.组态时不仅要考虑点的个数,还要考虑模块总的需要电流不能超过CPU能提供的电流
19.
1.下载时,程序被下载到Ram,同时拷贝到EEPROM RAM掉电丢失,不过CPU有超级电容器,可保持几天,也可以用电池,
2.上载时,从RAM中上传系统块,从EPROM中上传程序块和系统块
3.M的前14字节缺省是非掉电保持,若设置为掉电保持,则当CPU检测到电压降低到一个特定值时,会从RAM中把这14个字节复制到EEPROM中
4.开机后,从EEPROM中回复程序块和数据块,数据块会检查
5.PLC是大端模式,即地位地址是高位数据,高位地址是地位数据
6.SM0.0常通,SM0.1首次的扫描时开,
7.cpu有字处理器(主)和位处理器(从)
8.存储器:1,系统程序存储器固化到ROM中,2,用户程序存储器
A.ROM,可以用来存储系统程序,也可以用来代替固化用户程序和一些重要参数,非易失,但不可更改
15.改写输出,一起输出,并锁存
16.输入输出滞后时间1.输入电路模块滤波时间,2.输出模块的滞后时间:继电器型10ms,精匝管1MS,晶体管《1MS
17.CPU221无扩展,222可带2个扩展,224和226可以扩展7个模块,虽然224和226灰可以扩展7块,但其带负债能力不同,故带I/0点数不同
B.RAM,一般存放用户程序和系统参数,易失,但可更改
C.EPPROM,存放用户程序和需要长期保存的数据,非易失性和可更改性
9,输入输出电路和PLC模块有光电耦合器链接,不会破坏内部的电路

S7-200自由口通信的原理及学习建议

S7-200自由口通信的原理及学习建议

S7-200自由口通信的原理及学习建议S7-200自由口通信是一种基于西门子PLC控制器的通信技术。

该技术允许通过在PLC控制器的自由口接口上配置通信参数和协议,实现不同设备之间的数据交换和信息传输。

这种通信方式极大地扩展了PLC控制器的应用场景和功能性,在工业自动化领域具有广泛的应用价值。

S7-200自由口通信的原理是基于串行通信技术,通过自由口接口以特定的通信协议进行数据传输。

通信过程分为发送端和接收端两个部分。

发送端将要传输的数据按照指定的协议进行打包,然后通过串口发送到接收端。

接收端通过串口接收到数据后,根据协议把数据解析出来,并进行处理。

最终,接收端将处理后的数据返回给发送端确认收到,完成了数据的传输。

整个通信过程主要依赖于自由口通信模块和软件的支持和配合实现。

要学习和掌握S7-200自由口通信技术,需要从以下几个方面入手:首先,需要具备一定的PLC控制器编程基础。

熟练掌握与掌握西门子PLC控制器相关的编程语言和软件工具,并了解基本的电气知识和控制系统原理等。

只有了解这些基础知识,才能更深入地理解和运用自由口通信技术。

其次,需要了解不同的通信协议和方式。

S7-200自由口通信技术支持多种协议,如Modbus、Profibus等,还可以通过自由口通信模块配置自定义协议。

因此,需要根据不同的应用场景来学习和了解相应的协议和方式,才能更好地实现数据交换和信息传输。

第三,需要学习和掌握自由口通信模块的使用和配置。

了解自由口通信模块的工作原理,能够选择合适的模块和配置通信参数,以及处理通信异常和错误,是掌握自由口通信技术的重要内容。

最后,需要进行实际操作和实践。

通过实际的案例和应用场景,练习和实践自由口通信技术,掌握实现通信工程的方法和技巧,不断提升技能水平。

总之,S7-200自由口通信技术是一个重要的控制系统通信技术,对于提高工业自动化系统的效率和控制精度具有重要的作用。

学习和掌握S7-200自由口通信技术需要有较强的编程基础、通信协议和模块的配置技能、以及实践操作和应用实例的支撑。

S7-200(SMART)的自由口通信运用的经历

S7-200(SMART)的自由口通信运用的经历

S7-200(SMART)的自由口通信运用的经历初次试探自由口通信,从PLC读仪表数据开始,当时有一套比较老的设备,仪表是国外的,自定义的协议,国内集成商可能是仪表和接口板卡开发比较熟悉,或许是为了满足客户不同的PLC品牌需求,没有采用PLC和仪表直接通信,而是做了一块接口板,接口板和PLC之间采用数字量模式(对于PLC一侧DI 1 / DO 8+3+1+1),接口板和仪表之间采用RS232C通信。

PLC8个输出点相当于并口,3个输出点相当于读写参数编号,1个读写指令点,1个高低位指令点。

一同事有点高级语言的底子,用VB作了一个简单的读参数测试,可以接收到消息串。

于是本人饶有兴趣想试试PLC直接和仪表进行通信,翻看仪表的自定义协议,信息帧均是有指定的起始符和结束符,后面没有校验字符,现在回忆当时情况感觉还是有点幸运,如果校验复杂一点,可能就失去了继续深入的耐性了。

对照S7-200的系统手册,看XMT和RCV的指令介绍,当时对于通信指令和中断指令都不甚明了,需要一点点尝试,终于有点眉目,能够成功的读取一个参数,后来在慢慢的加入逻辑,读取多个参数,对于RCV接收机制和指令使用太过生疏,加上对中断也没有深入的概念,容易出现断线且无法恢复,后来逐渐加了一些重发之类的逻辑,形成了一个逻辑繁琐可读性极差的初级版本。

后来有一个需求,有用户使用了多套年岁较高的纺织机械,之前用的是西门子变频器和S7-200,西门子变频器老型号停产,需要更换新的型号,因为是基于通信给定频率,即使是更换西门子的新型号,也需要变动PLC频率给定部分的程序,用户干脆在一台机器上换了富士的变频器,找厂家改动了程序,后来有某国产变频器经销商想说服用户更换他家的变频器,用户答应给试机的机会,不过需要经销商来适配PLC程序,经过辗转,一同学找我给点建议,本人对通信的经验实在是可怜,不敢乱说,只能说程序是可以适配,但水平有限,经验不够,还是另找高手实施。

详细介绍S7-200SMART的自由口通信

详细介绍S7-200SMART的自由口通信

详细介绍S7-200SMART的自由口通信
学习S7-200 SMART时了解到,基于RS485接口可实现一下几种通信:
1)modbus RTU通信
2)PPI协议通信
3)USS协议通信
4)自由口通信
何为自由口通信呢?
前三种通信必须要PLC和与其通信的设备支持相同的通信协议,如果两者之间没有共同的通信协议则需要用到自由口通信。

自由口通信也称无协议通信,需要根据对方设备的通信数据格式编写一个临时协议,不仅需要编程人员学会如何编写程序,还需要了解对方的通信数据格式,所以对编程人员要求较高,随着标准协议(modbus,USS等)普及,自由口应用越来越少,但是对于一下小的设备如扫码枪等,并没有集成标准通信协议,所以只能选用自由口通信,Moubus和USS其实是自由口的一个特例。

很多人碰到自由口通信就手足无措了,其实只要掌握规律,自由口通信不一定很难。

为此我总结了自由口通信的基本步骤:
1)读懂对方的数据格式。

串行通信中,数据是一位一位的进行发送,也就是0和1。

为了能够准确的将数据发送过去,往往会加上1个起始位,1个校验位,1个停止位(无校验是为2个停止位)如图1-1所示。

图1-1
我们就以Modbus RTU为例详细看一下串口通信中数据是如何发送和就收的。

ModbusRTU代码系统如下:
·1个起始位。

·7或8个数据位,最小的有效位先发送。

S7200 SMART 自由口通信实例解读分析

S7200  SMART 自由口通信实例解读分析

S7200 Smart自由口通信:
(2)自由口通讯 S7-200 smart CPU的通信口可以设置为自由口模
式。选择自由口模式后,用户程序就可以完全控制 通信端口的控制,通信协议也完全受用户程序控制。 所谓的自由口通讯,就是通讯协议是由用户自由定 义的。 对于S7-200 smart PLC而言,基于本体自带的485 端口的网络所应用的协议,除了PPI协议以外,其 他都是自由口协议。例如USS协议、Modbus协议 等等都是特定的自由口通讯协议。
S7-200 Smart ——自由口通信解读
2020/6/14
S7200 Smart自由口通信:
S7-200 Smart串口通讯主要包括: 1)Modbus—PLC与支持Modbபைடு நூலகம்s RTU协议的 第三方设备通讯 •RTU Master-Protocol(RTU主站协议) •RTU Slave-Protocol(RTU从站协议) 2)USS—S7-200PLC与SIEMENS驱动设备的通讯 (如MM440等) 3)自由口通讯—S7-200PLC与自由协议的第三 方设备间的通讯
1.判断信息接收结束是否为字符间超 时结束(SM86.2 = 1),若是,则认 为接收成功,接收成功计算器 VB200 自加一; 2.消息接收成功时接收的信息拷贝到 VB300 为起始地址的存储区; 3.开始下一次 RCV 指令地执行
CPU 中断程序
S7-200 SMART CPU集成的RS485 端口(端口 0 )实现与条码扫描枪通信
2台S7-200 SMART CPU采用自由口通信方式实现相互通信。
两台PLC之间也可以使用自由口通信完成PLC之间的数据交换,我们以下面一个 例子说明两台PLC之间的自由口通信。 通信任务:CPU1 每秒触发一次 XMT 指令将 CPU 的实时时钟发送到 CPU2; CPU2 接收到 CPU1 发送的信息后立即将 CPU2 的实时时钟回复到 CPU1。

西门子S 自由口通信心得

西门子S 自由口通信心得

西门子S7-200 PLC自由口通信学习摘要本文以s7-200 PLC与智能电表通信为范例(电表波特率为1200bps,偶校验,8位数据位)一、PLC自由口协议初始化1、根据智能设备通信时使用的波特率、校验方式、起始位等参数配置PLC自由口,即将上述参数用MOVB指令写入SMB30,SMB30格式如下图所示:初始化子程序如下:二、声明中断发送数据和接收完数据都能链接到中断程序,发送完中断与接收完中断的中断号分别为9和23,中断可在初始化子程序中声明三、编写自由口要发送的报文子程序严格按智能设备报文格式,将相应命令,将指令长度(字节)MOV到任意的字节单元,例如vb10。

再用MOV_B或MOV_W等指令传送到vb11开始后连续的字节中。

报文子程序上图为读取电表标识编码为9010(即正向有功总电能)的指令四、用XMT指令发送报文XMT指令需指定两个参数,第一个为要发送的报文的起始地址(本例为VB10),第二个为使用的通信口(本例为0口)。

可以用定时器控制某一CPU内部触点来控制报文发送的周期。

要注意的是,XMT指令必须用上升沿“—|P|—”触发,否则CPU将会报错,CPU将认为有多个XMT/RCV指令同时执行,这是不允许的!发送报文子程序五、利用发送完中断启动接收数据指令当报文用XMT发送完毕,会产生9号中断。

我们可以利用中断子程序捕捉相应的中断,并在中断程序中编写相应事件!在步骤1中已经声明了9号中断连接到中断子程序“发送完中断”。

因为此我们在“发送完中断”中断子程序中使用RCV指令即可接收到由通信口返回的数据。

即将数据送到VB100.“发送完中断”中断子程序总结一下编程原则:这里我们总结以下自由口编程的一般原则:1. SM0.1 触发端口初始化,连接发送完成和接收完成中断(中断事件9 和23)2. SM0.0 触发RCV 指令3. XMT 指令用上升沿触发,并在指令运行前先保证端口 0 的停止接收4. 根据将要接收信息的不同,合理设置SMB87~SMB945. 必须满足发送结束条件(如字节个数,结束字符等)才能产生9号中断。

S7-200自由口通信

S7-200自由口通信

S7-200自由口通信S7-200 CPU的通信口可以设置为自由口模式。

选择自由口模式后,用户程序就可以完全控制通信端口的操作,通信协议也完全受用户程序控制。

S7-200 CPU上的通信口在电气上是标准的RS-485半双工串行通信口。

此串行字符通信的格式可以包括:∙一个起始位∙7或8位字符(数据字节)∙一个奇/偶校验位,或者没有校验位∙一个停止位自由口通信速波特率可以设置为1200、2400、4800、9600、19200、38400、57600或112500。

凡是符合这些格式的串行通信设备,理论上都可以和S7-200 CPU通信。

自由口模式可以灵活应用。

Micro/WIN的两个指令库(USS和Modbus RTU)就是使用自由口模式编程实现的。

在进行自由口通信程序调试时,可以使用PC/PPI电缆(设置到自由口通信模式)连接PC和CPU,在PC上运行串口调试软件(或者Windows的Hyper Terminal-超级终端)调试自由口程序。

USB/PPI电缆和CP卡不支持自由口调试。

自由口通信要点应用自由口通信首先要把通信口定义为自由口模式,同时设置相应的通信波特率和上述通信格式。

用户程序通过特殊存储器SMB30(对端口0)、SMB130(对端口1)控制通信口的工作模式。

CPU通信口工作在自由口模式时,通信口就不支持其他通信协议(比如PPI),此通信口不能再与编程软件Micro/WIN通信。

CPU停止时,自由口不能工作,Micro/WIN就可以与CPU通信。

通信口的工作模式,是可以在运行过程中由用户程序重复定义的。

如果调试时需要在自由口模式与PPI模式之间切换,可以使用SM0.7的状态决定通信口的模式;而SM0.7的状态反映的是CPU运行状态开关的位置(在RUN时SM0.7="1",在STOP时SM0.7="0")自由口通信的核心指令是发送(XMT)和接收(RCV)指令。

S7-200系列PLC自由口通信知识分享(3)

S7-200系列PLC自由口通信知识分享(3)

S7-200系列PLC自由口通信知识分享(3)在前面的文章中与大家分享了自由口通信中的发送功能,那么进行就跟大家聊聊自由口通信中的接收功能,自由口通信中的难点就是在于接收功能的使用,当PLC通过通信端口把数据发送给下位设备后,下位设备会根据PLC发送过去的信息内容回传相应的数据给PLC,这时候PLC就需要使用接收功能进行数据的接收,S7-200系列PLC提供了一条接收指令(RCV)用于接收下位设备返回来的信息。

指令格式如下所示:当PLC接收完下位设备回传回来的数据后,PLC会产生相应的中断事件来告知编程人员信息接收完成,此时可以编写相应的程序提取有效数据,并对这些有效数据进行转换,转换成可读性的数据。

S7-200系列PLC提供了中断事件23和中断事件24分别作为端口0和端口1的接收完成中断事件号。

在PLC的信息发送过程中,PLC是主动方,会根据需要发送的数据个数进行数据的发送,当发送完成后,PLC会自动产生相应发送完成中断,而对于接收来讲,PLC是被动方,只负责数据的接收,当PLC的端口使能了接收功能后,PLC处于等待信息的接收状态,有数据过来就接收,但是接收的数据是否是有效的数据,什么时候接收完了PLC并不知道,此时就要求我们编程人员需要设置好消息的起始和接收条件,当起始条满足了,PLC 把接收到的数据放入到接收缓冲区中,当满足了结束条件,PLC关断接收功能,并产生接收完成中断。

用于判断消息的的起始和结束条件有很多种方式,但用的比较多可能就以下几种方式:今天我们先聊一聊通过起始符作为信息的起始和通过结束符作为信息的结束判断的过程及程序的设置,S7-200系列的PLC提供了两个系统存储区用于存储起始符(SMB88)和结束符(SMB89)(这里以端口0为例说明),因此若需要使用起始符和结束符做为消息的起始和结束的的判断,则需要把起始符和结束符分别放到SMB88和SMB89中。

当PLC在接收数据的过程中,会对接收的数据与起始符进行对比,如果与起始符不相等,这说明不是有效性的数据,不放入接收缓冲器中,会把接收到的数据丢弃,重新接收,若接收到的数据与起始符相等,则PLC会把接收到的数据放到接收缓冲区中,同时记录接收字符个数的存储器的值加1。

S7-200modbus通讯个人总结

S7-200modbus通讯个人总结
功能码
含义
01
读线圈状态
02
读取输入状态
03
读取保持寄存器
04
读取输入寄存器
05
写单个线圈
06
写单个寄存器
15
写多个线圈
16
写多个寄存器
5、读取从站的modbus数据,功能码04对应的modubs数据地址为30001--39999,功能码03对应的modbus数据地址为40001--49999
6、S7-200PLC 的modbus库指令支持的功能
1、S7-200PLC作为主站读写从站数据时,同一时刻只能接通一个MSG指令
2、PLC最多一次读取120个数据,如果读取的是寄存器则最多读取120个字,如果读取的是线圈的状态那么最多读取1920个位?
3、对于寄存器,一个地址对应一个字;对于离散量,一个地址对应一个位?
4、modbus协议的功能码如下:
功能码16:写多寄存器
modbus地址
读/写
modbus从站需支持的功能
00001--09999
数字量输出

功能码01

功能码05:写单输出点
功能码15:写多输出点
10001--19999
数字量输入

功能码02


300Hale Waihona Puke 1--39999输入寄存器

功能码04


40001--49999
保持寄存器

功能码03

功能码06:写单寄存器

如何实现S7-200SMART自由口通讯之欧阳育创编

如何实现S7-200SMART自由口通讯之欧阳育创编

如何实现S7-200SMART自由口通自由口通讯协议的关键条件定义开始接收消息和停止接收消息的条件。

1、空闲线检测:设置il=1,sc=0,bk=0,smw90/smw190>0空闲线条件定义为传输线路上的安静或者空闲的时间。

SMW90/SMW190中是以ms为单位的空闲时间。

在该方式下,从执行接收指令开始起动空闲时间检测。

在传输线空闲的时间大于等于SMW90/SMW190中设定的时间之后接收的第一个字符作为新信息的起始字符。

接收消息功能将会忽略在空闲时间到达之前接收到的任何字符,并会在每个字符后面重新启动空闲线定时器。

空闲线时间应大于以指定波特率传送一个字符所需要的时间。

空闲线时间的典型为以指定的波特率传送3个字符所需要的时间。

传输速率为19200bit/s时候,可设置空闲时间为2ms。

对于二进制协议,没有特定起始字符的协议或指定了消息之间最小时间间隔的协议,可以将空闲线检测用作开始条件。

2、起始字符检测:设置il=0,sc=1,bk=0,忽略smw90/smw190起始字符是消息的第一个字符,以SMB88/SMB188中的起始字符作为接收到的消息开始的标志。

接收消息功能忽略起始字符之前收到的字符,起始字符和起始字符之后收到的所有字符都存储在消息缓冲区中。

起始字符检测一般用于ASCII协议。

3、空闲线和起始字符:设置il=1,sc=1,bk=0,SMW90/SMW190大于0满足空闲线条件之后,接收消息功能查找指定的起始字符。

如果接收到的字符不是smB88/smb188指定的起始字符,将开始重新检测空闲线条件。

在满足空闲线条件之前接收到的以及起始字符之前接收到的字符都将会被忽略。

这种方式尤其适合用于通讯链路上有多台设备的情况。

4 、break检测:设置il=0,sc=0,bk=1,检测smw90/smw190和smb88/smb188以接收到的break(断开)作为接收消息的开始。

当接收到的数据保持为0的时间大于完整字符(包含起始位,数据位,奇偶校验位和停止位)传输的时间,表示检测到break。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西门子S7-200 PLC自由口通信学习摘要
本文以s7-200 PLC与智能电表通信为范例(电表波特率为1200bps,偶校验,8位数据位)
一、PLC自由口协议初始化
1、根据智能设备通信时使用的波特率、校验方式、起始位等参数配置PLC自由口,即将上述参数用MOVB指令写入SMB30,SMB30格式如下图所示:
初始化子程序如下:
二、声明中断
发送数据和接收完数据都能链接到中断程序,发送完中断与接收完中断的中断号分别为9和23,中断可在初始化子程序中声明
三、编写自由口要发送的报文子程序
严格按智能设备报文格式,将相应命令,将指令长度(字节)MOV到任意的字节单元,例如vb10。

再用MOV_B或MOV_W等指令传送到vb11开始后连续的字节中。

报文子程序
上图为读取电表标识编码为9010(即正向有功总电能)的指令
四、用XMT指令发送报文
XMT指令需指定两个参数,第一个为要发送的报文的起始地址(本例为VB10),第二个为使用的通信口(本例为0口)。

可以用定时器控制某一CPU内部触点来控制报文发送的周期。

要注意的是,XMT指令必须用上升沿“—|P|—”触发,否则CPU将会报错,CPU将认为有多个XMT/RCV指令同时执行,这是不允许的!
发送报文子程序
五、利用发送完中断启动接收数据指令
当报文用XMT发送完毕,会产生9号中断。

我们可以利用中断子程序捕捉相应的中断,并在中断程序中编写相应事件!在步骤1中已经声明了9号中断连接到中断子程序“发送完中断”。

因为此我们在“发送完中断”中断子程序中使用RCV指令即可接收到由通信口返回的数据。

即将数据送到VB100.
“发送完中断”中断子程序
总结一下编程原则:
这里我们总结以下自由口编程的一般原则:
1. SM0.1 触发端口初始化,连接发送完成和接收完成中断(中断事件9 和23)
2. SM0.0 触发RCV 指令
3. XMT 指令用上升沿触发,并在指令运行前先保证端口 0 的停止接收
4. 根据将要接收信息的不同,合理设置SMB87~SMB94
5. 必须满足发送结束条件(如字节个数,结束字符等)才能产生9号中断。

相关文档
最新文档