七年级数学下册不等式练习人教版

合集下载

人教版七年级数学下册 9-2 一元一次不等式(同步练习)

人教版七年级数学下册 9-2 一元一次不等式(同步练习)

第9章不等式与不等式组9.2一元一次不等式班级:姓名:知识点1一元一次不等式的概念1.下列不等式是一元一次不等式的是()A.x2+x>1B.12x+1>2x+33C.x+y>3D.x()1x+2>3x+12.下列不等式中,是一元一次不等式的有()①3x-7>0;②2x+y>3;③2x2-x>2x2-1;④3>2.A.1个B.2个C.3个D.4个3.若3x2a+3-9>6是关于x的一元一次不等式,则a=.4.若(m+1)x|m|+2>0是关于x的一元一次不等式,则m=.知识点2解一元一次不等式5.不等式3x≤2(x-1)的解集为()A.x≤-1B.x≤-1C.x≤-2D.x≥-26.3x-7≥4(x-1)的解集为()A.x≥3B.x≤3C.x≥-3D.x≤-37.不等式3x+22<x的解集是()A.x<-2B.x<-1C.x<0D.x>28.不等式3(x-1)+4≥2x的解集在数轴上表示为()9.不等式x-5>4x-1的最大整数解是()A.-2B.-1C.0D.110.解不等式14(2-x)≥5的过程是:去分母,得;移项,得,系数化为1,得.11.不等式y-26≥y3+1的解集为.12.请你写出一个满足不等式2x-1<6的正整数x的13.解不等式2(x-1)-3<1,并把它的解集在数轴上表示出来.14.解不等式:2(x-1)<x+1,并求它的非负整数解.15.解不等式x-1≤1+x3,并求其正整数解.16.解不等式2x-13≤3x-46,并把它的解集在数轴上表示出来.17.解不等式2x-13-5x+12≤1,并把它的解集在数轴上表示出来.18.x取什么值时,代数式1-5x2的值不小于代数式3-2x3+4的值.19.已知x=3是关于x的不等式3x-ax+22>2x3的解,求a的取值范围.知识点3列一元一次不等式解决实际问题20.CBA篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队预计2017—2018赛季全部38场比赛中最少得到57分,才有希望进入季后赛.假设这个队在将要举行的比赛中胜x场,要达到目标,x应满足的关系式是()A.2x+(38-x)≥57B.2x-(38-x)≥5721.小颖准备用21元钱买笔和笔记本.已知每支笔3元,每本笔记本2元,她买了4本笔记本,则她最多还可以买支笔()A.1B.2C.3D.422.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折23.我国从2011年5月1日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题记10分,答错(或不答)一题记-5分.小明参加本次竞赛得分要超过100分,他至少要答对道题.24.小宏准备用50元钱买甲、乙两种饮料共10瓶.已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买瓶甲饮料.25.现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,现安排10辆车,则甲种运输车至少应安排几辆?26.八年级二班的五名同学参加学校组织的数学抽查测试,其中四名同学的考试分数分别为85, 80,82,86,又知他们五人的平均成绩不低于80分,那么第五名同学至少要考多少分?27.为了举行班级晚会,孔明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品,已知乒乓球每个1.5元,球拍每个22元,如果购买金额不超过200元,且买的球拍尽可能多,那么孔明应该买多少个球拍?综合点1一元一次不等式与一元一次方程(组)的综合28.若关于x,y的二元一次方程组{3x+y=1+a,x+3y=3的解满足x+y<2,则a的取值范围是()A.a>2B.a<2C.a>4D.a<429.当m为何值时,关于x的方程(m+2)x-2=1-m(4-x)有:(1)负数解;(2)不大于2的解.综合点2已知一元一次不等式的解集求字母的值30.不等式mx-2<3x+4的解集为x>6m-3,求m的最大整数值.综合点3列一元一次不等式与方程(组)的综合31.为提高饮水质量,越来越多的居民开始选购家用净水器.一商场抓住商机,从厂家购进了A,B 两种型号家用净水器共160台,A型号家用净水350元/台,购进两种型号的家用净水器共用36 000元.(1)A,B两种型号家用净水器各购进了多少台?(2)为使每台B型号的家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,则每台A型号家用净水器的售价至少是多少元?(毛利润=售价-进价)拓展点1阅读题32.阅读理解:我们把a bcd称作二阶行列式,规定它的运算法则为a bcd=ad-bc.如2345=2×5-3×4=-2.如果有23-x1x>0,求x的解集.拓展点2含字母系数的一元一次不等式33.解关于x的不等式:ax-x-2>0.拓展点3方案设计34.为响应市政府“创建国家森林城市”的号召,某小区计划购进A,B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A,B两种树苗刚好用去1220元,问购进A,B两种树苗各多少棵?(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.第9章不等式与不等式组9.2一元一次不等式答案与点拨1.B(点拨:A 中含未知数项的最高次数是2,C 中含有两个未知数,D 中式子不全是整式,它们都不是一元一次不等式.)2.B(点拨:①③是一元一次不等式,注意③化简后再判断.)3.-1(点拨:2a+3=1,a=-1.)4.1(点拨:|m|=1且m+1≠0,所以m=1.)5.C6.D7.A(点拨:去分母得3x+2<2x,移项得3x-2x<-2,合并同类项得x<-2.)8.A(点拨:不等式3(x-1)+4≥2x 的解集是x ≥-1,大于应向右画,包括-1时,应用实心圆点表示-1这一点,故选A.)9.A(点拨:解不等式得解集为x<-43,所以最大整数解为-2.)10.2-x ≥20-x ≥20-2x ≤-1811.y ≤-812.1,2,3中任何一个都可(点拨:不等式的解集为x<72,其正整数解为1,2,3.)13.去括号得2x-2-3<1,移项、合并同类项得2x<6,系数化为1得x<3.在数轴上把解集表示出来为:14.去括号,得2x-2<x+1,移项、合并同类项,得x<3.因此不等式的非负整数解是0,1,2.15.去分母得3(x-1)≤1+x,去括号得3x-3≤1+x,移项得3x-x ≤1+3,合并同类项得2x ≤4,系数化为1得x ≤2,符合x ≤2的正整数解有1,2.16.去分母,得2(2x-1)≤3x-4.去括号,得4x-2≤3x-4.移项,合并同类项,得x ≤-2.∴不等式的解集为x ≤-2.该解集在数轴上表示如下:17.去分母,得2(2x-1)-3(5x+1)≤6.去括号,得4x-2-15x-3≤6.移项,得4x-15x ≤6+2+3.合并同类项,得-11x ≤11.系数化为1,得x ≥-1.这个不等式的解集在数轴上表示如下:18.由题意得1-5x 2≥3-2x3+4.去分母,得3(1-5x)≥2(3-2x)+24.去括号、移项、合并同类项,-11x ≥27.系数化为1,得x ≤-2711.∴当x ≤-2711时,1-5x 2≥3-2x 3+4.19.因为x=3是关于x 的不等式3x-ax +22>2x 3的解,所以9-3a +22>2,解得a<4.故a 的取值范围是a<4.21.D(点拨:设可买x支笔,则有3x+4×2≤21,即3x+8≤21,3x≤13,x≤133,所以x可取最大的整数为4,她最多可买4支笔.故选D.)22.B(点拨:设可打x折,则有1200x·0.1≥800(1+0.05),解得x≥7.故选B.)23.14(点拨:根据本次竞赛规则可知竞赛得分=10×答对的题数+(-5)×答错(或不答)的题数,得分要超过100分,列出不等式求解即可.设要答对x道题,则10x+(-5)×(20-x)>100,解得x>1313.∵x是整数,∴x=14.)24.3(点拨:设小宏能买x瓶甲饮料,则买乙饮料(10-x)瓶.根据题意,得7x+4(10-x)≤50,解得x≤31 3 .所以小宏最多能买3瓶甲饮料.)25.设甲种运输车安排x辆,则5x+4×(10-x)≥46,解得x≥6.答:甲种运输车至少应安排6辆.26.设第五名同学要考x分,则85+80+82+86+x≥80×5,解得x≥67.答:第五名同学至少要考67分.27.设购买球拍x个,依题意得:1.5×20+22x≤200.解之得:x≤7811.由于x取整数,故x的最大值为7.答:孔明应该买7个球拍.28.D(点拨:将两个方程相加,得4x+4y=4+a,从而有x+y=4+a4,然后解不等式4+a4<2,得a<4.)29.解方程得x=3-4m2.(1)由3-4m2<0得m>34.(2)由3-4m2≤2得m≥-14.30.2(点拨:由题意得m-3<0,即m<3.)31.(1)设A种型号家用净水器购进了x台,则B种型号的净水器购进了(160-x)台.由题意,得150x+350(160-x)=36000.解得x=100.所以160-x=60.所以A种型号家用净水器购进了100台,B种型号家用净水器购进了60台.(2)设每台A型号家用净水器的毛利润为z元,则每台B型号家用净水器的毛利润为2z元.由题意,得100z+60×2z≥11000,解得z≥50.150+50=200(元).所以,每台A型号家用净水器的售价至少为200元.32.由题意得2x-(3-x)>0,去括号得:2x-3+x>0,移项、合并同类项得:3x>3,x的系数化为1得:x>1.33.ax-x-2>0,(a-1)x>2.当a-1=0时,ax-x-2>0无解;当a-1>0时,x>2a-1;当a-1<0时,a<2a-1.34.(1)设购进A种树苗x棵,则购进B种树苗(17-x)棵,根据题意得80x+60(17-x)=1220,解得x=10,∴17-x=7.答:购进A种树苗10棵,B种树苗7棵.(2)设购进A种树苗x棵,则购进B种树苗(17-x)棵,根据题意得17-x<x,解得x>81 2 .购进A,B两种树苗所需费用为80x+60(17-x)=20x+1020.费用最省则需x取最小整数9,此时17-x=8,这时所需费用为20×9+1020=1200(元).答:费用最省方案为购进A种树苗9棵,B种树苗8棵,这时所需费用为1200元.。

七年级数学下册《不等式的性质》练习题及答案(人教版)

七年级数学下册《不等式的性质》练习题及答案(人教版)
=
=
∵不论m为何值, <0
∴A-B<0
即A<B;
(3)(3a+2b)-(2a+3b)
=3a+2b-2a-3b
=a-b
当a>b时,a-b>0,此时3a+2b>2a+3b;
当a=b时,a-b=0,此时3a+2b=2a+3b;
当a<b时,a-b<0,此时3a+2b<2a+3b.
A.第一象限B.第二象限C.第三象限D.第四象限
8.下列命题错误的是()
9.已知 ,下列不等式中,变形正确的是()
A. B. C. D.
10.若 ,且 ,则().
A. 有最小值 B. 有最大值1
C. 有最大值2D. 有最小值
二、填空题
11.比较大小: _____ (填“>”、“ ”、“<”号).
12.如果a<b,那么3-2a_______3-2b.
(1)试比较代数式5 ﹣4m+2与4 ﹣4m﹣7的值之间的大小关系;
(2)已知A=5 ﹣4( m﹣ ),B=7( ﹣m)+3,请你运用前面介绍的方法比较代数式A与B的大小.
(3)比较3a+2b与2a+3b的大小.
参考答案
1.C
2.D
3.D
4.B
5.B
6.B
7.D
8.Bห้องสมุดไป่ตู้
9.C
10.C
11.<
12.>
13.x>2
A. B. C. D.
5.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()
A.a﹣c>b﹣cB.a+c<b+cC.ac>bcD.

人教版七年级数学下册第九章不等式和不等式组练习(含答案)

人教版七年级数学下册第九章不等式和不等式组练习(含答案)

第九章不等式与不等式组一、单项选择题1.假如莱州市2019 年 6 月 1 日最高气温是33o C ,最低气温是24o C ,则当日莱州市气温t o C的变化范围是()A .t33B.t33C.24t 33D.24t33 2.以下说法正确的选项是()A . 5 是不等式x 5 0 的解B. 6 是不等式x 5 10 的解集C.x 3 是不等式x 30 的解集D.x 5 是不等式 x 510 的解集3).若 a b ,则以下不等式不建立的是(A .ac2bc2B. a 4 b 4C. 1 a 1 b D.1 2a1 2b2 24 |a| x 的一元一次不等式,则 a 的值是().若 ( a 1)x 3 0 是对于A .1 B.C.1 D. 05.在数轴上表示不等式1 1 的解集,正确的选项是()1- x≥2 2A .B.C.D.6.某种商品的进价为900元,销售的标价为1650元,后出处于该商品积压,商品准备打折销售,但要保证收益率不低于10% ,则最多可打()A.6折B.7折C.8折D.9折x87.若不等式组有解,那么n 的取值范围是()x nA . n 8B . n 8C . n 8D . n 88.若对于 x 、 y3x y 1 a 的解知足xy 505 ,则 a的二元一次方程组3y 1的取值范围x 是( ).A . a 2018B . a 2018C . a 505D . a 5059.运转程序以下图, 从 “输入实数 x ”到 “结果能否 18 ”为一次程序操作, 若输入后 x 程序操作进行了两次就停止,则x 的取值范围是 ()14 B .14 C .14 x 6D . x 6A . xx 8333a ba b 1 3 10.阅读理解: 我们把d 称作二阶队列式, 规定它的运算法例为=ad ﹣ bc ,比如2 4cc d=1×4﹣ 2× 3=﹣ 22 3 x ,假如1 > 0,则 x 的解集是( )xA . x >1B . x <﹣ 1C .x > 3D . x <﹣ 3二、填空题11.若不等式 (a - 2)x > a - 2 能够变形为 x < 1,则 a 的取值范围为 _____.12.已知不等式 3x - a0 的正整数解正是 1,2,3,4,那么 a 的取值范围是 _________________.x 2⋯1 的解集为 _____.13.不等式组2x 3x9 1614.迪士尼乐园开门前已经有400 名旅客在排队检票.检票开始后,均匀每分钟又有120 名旅客前来排队.已知一个检票口每分钟能检票15 人,若要使排队现象在开始检票10分钟内消逝,则起码开放___个检票口.三、解答题15.阅读以下资料:数学识题:已知x y 2 ,且x1,y0 ,试确立x y 的取值范围.问题解法: Q x y 2 ,x y 2.又 Q x 1 ,y 2 1 , y 1 .又Q y 0 ,1 y 0 .①同理得 1 x 2 .①由①①得 1 1 y x 0 2 ,x y 的取值范围是0 x y 2 .达成任务:(1)在数学识题中的条件下,写出2x 3 y 的取值范围是_____.(2)已知x y 3,且x 2 ,y0,试确立x y 的取值范围;(3)已知 y 1 ,x1,若x y a 建立,试确立x y 的取值范围(结果用含 a 的式子表示).16.解不等式(组)(1)3 x 1 1 x 2x1( 2)22x 12( x 1) 1 x2x y m 3 0, 求 m 的取值范围.17.已知对于 x, y 的方程组y2m 的解 xy x18.跟着 “一带一路 ”国际合作顶峰论坛在北京举行, 中国同 30 多个国家签订经贸合作协议,某厂准备生产甲、 乙两种商品共 8 万件销往 “一带一路 ”沿线国家和地域. 已知甲种商品的销售单价为 900 元,乙种商品的销售单价为600 元.( 1)已知乙种商品的销售量不可以低于甲种商品销售量的三分之一,则最多能销售甲种商品多少万件?(2)在( 1)的条件下,要使甲、乙两种商品的销售总收入不低于5700 万元,恳求甲种商品销售量的范围.19.益马高速通车后, 将桃江马迹塘的农产品运往益阳的运输成本大大降低.马迹塘一田户需要将 A ,B 两种农产品按期运往益阳某加工厂,每次运输A ,B 产品的件数不变,本来每运一次的运费是 1200 元,此刻每运一次的运费比本来减少了300 元, A ,B 两种产品本来的运费和此刻的运费(单位:元∕件)以下表所示:品种A B本来的运费45 25此刻的运费30 20( 1)求每次运输的农产品中 A ,B 产品各有多少件;( 2)因为该田户诚实守信,产质量量好,加工厂决定提升该田户的供货量,每次运送的总件数增添 8 件,但总件数中 B 产品的件数不得超出A 产品件数的 2 倍,问产品件数增添后,每次运费最少需要多少元答案1. D 2. C 3. A 4. A 5. B 6. A 7. A8. B9. B10. A11. a<212.12a1513. 3≤x<514. 1115.( 1) 1 2x 3 y 4 ;(2)x y 的取值范围是 1 x y 3;(3)x y 的取值范围是 2 a x y a 2 .16.( 1)x 2;(2) 3 x 117. 1 m 16 万件18.( 1)最多销售甲种商品 6 万件;( 2)范围为3万件到19.( 1)每次运输的农产品中 A 产品有10 件,每次运输的农产品中 B 产品有30 件,( 2)产品件数增添后,每次运费最少需要1120 元。

9.2 一元一次不等式 人教版数学七年级下册同步练习(含解析)

9.2 一元一次不等式 人教版数学七年级下册同步练习(含解析)

第九章 不等式与不等式组9.2 一元一次不等式基础过关全练知识点1 一元一次不等式1.下列式子中,是一元一次不等式的有( )①3a -2=4a +9;②3x -6>3y +7;③5<32x ;④x 2>1;⑤2x +6>x ;⑥1x +5≤5.A.1个 B.2个 C.3个 D.4个2.【新独家原创】当m = 时,不等式(m -2 023)x |m |-2 022+2 021>0是关于x 的一元一次不等式. 知识点2 一元一次不等式的解法3.(2022辽宁大连中考)不等式4x <3x +2的解集是 ( )A .x >-2B .x <-2C .x >2D .x <24.若关于x 的不等式(a -2)x >2a -5的解集是x <4,则关于y 的不等式2a -5y >1的解集是( )A.y <52 B.y <25 C.y >52 D.y >255.(2021四川自贡中考)请写出不等式x +2>7的一个整数解: .6.若关于x 的不等式2x ―0.53>a 2与5(1-x )<a -20的解集完全相同,则它们的解集为 .7.(2022江苏连云港中考)解不等式2x -1>3x ―12,并把它的解集在数轴上表示出来.8.请根据小明同学解不等式的过程,完成各项任务.解不等式:x+16≥2x―54+1.解:去分母,得2(x+1)≥3(2x-5)+1,①去括号,得2x+2≥6x-5+1,②移项,得2x-6x≥-5+1+2,③合并同类项,得-4x≥-2,④系数化为1,得x≥12,⑤所以不等式的解集为x≥12.任务一:以上解题过程中,从第 步开始出现错误,错误的原因是 ;任务二:请从出现错误的步骤开始,把正确的解答过程写出来;任务三:以上解题过程中,除了开始出现的错误外,还有哪些错误值得注意?知识点3 一元一次不等式的应用9.(2021重庆綦江期末)把一些书分给几名同学,若 ;若每人分11本,则有剩余.依题意,设有x名同学,可列不等式为7(x+9)>11x,则横线上的信息可以是( )A.每人分7本,则剩余9本B.每人分7本,则可多分9个人C.每人分9本,则剩余7本D.其中一个人分7本,则其他同学每人可分9本10.(2022山西中考)某品牌护眼灯的进价为240元,商店以320元的价格出售.“五一节”期间,商店为让利于顾客,计划以利润率不低于20%的价格降价出售,则该护眼灯最多可降价 元.11.【教材变式·P125T2变式】为庆祝伟大的中国共产党成立100周年,发扬红色传统,传承红色精神,某学校举行了主题为“学史明理,学史增信,学史崇德,学史力行”的党史知识竞赛,一共有25道题,满分100分,每一题答对得4分,答错扣1分,不答得0分.(1)若某参赛同学只有一道题没有作答,最后他的总得分为86分,则该参赛同学一共答对了多少道题?(2)若规定参赛者每道题都必须作答且总得分大于或等于90分才可以被评为“学党史小达人”,则参赛者至少需答对多少道题才能被评为“学党史小达人”?12.(2022广西玉林中考)某果蔬加工公司先后两次购买龙眼共21吨,第一次购买龙眼的价格为0.4万元/吨,因为龙眼大量上市,价格下跌,所以第二次购买龙眼的价格为0.3万元/吨,已知两次购买龙眼共用了7万元.(1)求两次购买龙眼各多少吨;(2)公司把两次购买的龙眼加工成桂圆肉和龙眼干,1吨龙眼可加工成桂圆肉0.2吨或龙眼干0.5吨,桂圆肉和龙眼干的销售价格分别是10万元/吨和3万元/吨,若全部的销售额不少于39万元,则至少需要把多少吨龙眼加工成桂圆肉?能力提升全练13.(2022辽宁盘锦中考,5,★☆☆)不等式12x ―1≤7―32x 的解集在数轴上表示为( )A B C D14.(2022山东聊城中考,6,★★☆)关于x ,y 的方程组2x ―y =2k ―3,x ―2y =k 的解中x 与y 的和不小于5,则k 的取值范围为( )A .k ≥8B .k >8C .k ≤8D .k <815.(2022福建福州期末,15,★★☆)在实数范围内规定新运算“△”,其规则是a △b =2a -b ,已知不等式x △k ≥2的解集在数轴上的表示如图所示,则k 的值是 .16.(2021北京东城广渠门中学期中,16,★★☆)已知关于x 的一元一次不等式2x -1>3+mx 的解集是x <42―m ,如图,数轴上的A ,B ,C ,D 四个点中,实数m 对应的点可能是 .17.(2020四川绵阳中考,18,★★★)若不等式x +52>―x ―72的解都能使不等式(m -6)x <2m +1成立,则实数m 的取值范围是 . 18.(2022湖南邵阳中考,23,★☆☆)2022年2月4日至20日第24届冬季奥运会在北京举行.某商店购进冬奥会纪念品“冰墩墩”摆件和挂件共180个进行销售.已知“冰墩墩”摆件的进价为80元/个,挂件的进价为50元/个.(1)若购进“冰墩墩”摆件和挂件共花费了11 400元,请分别求出购进“冰墩墩”摆件和挂件的数量;(2)该商店计划将“冰墩墩”摆件的售价定为100元/个,挂件的售价定为60元/个,若购进的180个“冰墩墩”摆件和挂件全部售完,且至少盈利2 900元,则购进的“冰墩墩”挂件不能超过多少个?19.【学科素养·应用意识】(2022江苏宿迁中考,26,★★☆)某单位准备购买文化用品,现有甲、乙两家超市进行促销活动.该文化用品两家超市的标价均为10元/件,甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;乙超市全部按标价的8折售卖.(1)若该单位需要购买30件这种文化用品,则在甲超市的支付费用为 元,在乙超市的支付费用为 元;(2)假如你是该单位的采购员,你认为选择哪家超市支付的费用较少?素养探究全练20.【应用意识】【跨学科·生物】某营养餐公司为学生提供的300克早餐食品中,蛋白质总含量占8%,该早餐食品包括一份牛奶,一份谷物食品和一个鸡蛋(一个鸡蛋的质量约为60 g,蛋白质含量占15%;谷物食品和牛奶的部分营养成分如表所示).牛奶项目每100克(g)能量261千焦(kJ)蛋白质3.0克(g)脂肪3.6克(g)碳水4.5克(g)化合物钙100毫克(mg)谷物食品项目每100克(g)能量 2 215千焦(kJ)蛋白质9.0克(g)脂肪32.4克(g)碳水50.8克(g)化合物钠280毫克(mg)(1)设该份早餐中谷物食品为x克,牛奶为y克,则谷物食品中所含的蛋白质为 克,牛奶中所含的蛋白质为 克;(用含有x,y的式子表示)(2)x= ,y= ;(3)该公司为学校提供的午餐有A,B两种套餐(每天只提供一种):套餐主食(克)肉类(克)其他(克)A15085165B18060160为了膳食平衡,建议合理控制学生的主食摄入量.如果在一周内,学生午餐主食摄入总量不超过830克,那么该校在一周内可以选择A,B套餐各几天?写出所有的方案.(说明:一周按5天计算)答案全解全析基础过关全练1.A ①3a-2=4a+9是等式;②3x-6>3y+7中含有两个未知数,不是一元一次不等式;③5<3的右边不是整式;2x④x2>1中x的次数不是1,不是一元一次不等式;⑤2x+6>x符合一元一次不等式的定义;≤5的左边不是整式.故选A.⑥1x+52.答案-2 023解析 根据一元一次不等式的定义,得|m|-2 022=1且m-2 023≠0,解得m=-2 023.3.D 移项,得4x-3x<2,合并同类项,得x<2.故选D.4.B ∵关于x的不等式(a-2)x>2a-5的解集是x<4,=4,∴a-2<0,2a―5a―2,可得a=32.∴关于y的不等式2a-5y>1即为3-5y>1,其解集为y<25故选B.5.答案6(答案不唯一)解析 解不等式得x>7-2,∵1<2<2,∴5<7-2<6,因此不等式的整数解是大于或等于6的任何整数.6.答案x>4解析 解不等式2x―0.53>a2,得x>3a+14,解不等式5(1-x)<a-20,得x>25―a5.由两个不等式的解集完全相同,得3a+14=25―a5,解得a=5.所以它们的解集为x>4.7.解析 去分母,得4x-2>3x-1,移项,得4x-3x>-1+2,合并同类项,得x>1,将不等式的解集表示在数轴上如下:8.解析 任务一:从第①步开始出现错误,错误的原因是不等式两边都乘12时右边的1漏乘.任务二:正确的解答过程如下:去分母,得2(x+1)≥3(2x-5)+12,去括号,得2x+2≥6x-15+12,移项,得2x-6x≥-15+12-2,合并同类项,得-4x≥-5,系数化为1,得x≤54,所以不等式的解集为x≤54.任务三:去括号时括号内每项都要乘括号前的常数,移项要变号,系数化为1时,不等式两边都乘或除以负数,不等号的方向要改变.9.B 10.答案32解析 设该护眼灯降价x元,根据“以利润率不低于20%的价格降价出×100%≥20%,解得x≤32,故答案售”列一元一次不等式,得320―x―240240为32.11.解析 (1)设该参赛同学一共答对了x道题,则答错了(25-1-x)道题,依题意得4x-(25-1-x)=86,解得x=22.答:该参赛同学一共答对了22道题.(2)设参赛者答对y道题,则答错(25-y)道题,依题意得4y-(25-y)≥90,解得y≥23.答:参赛者至少需答对23道题才能被评为“学党史小达人”.12.解析 (1)设第一次购买龙眼x吨,则第二次购买龙眼(21-x)吨,由题意得0.4x+0.3(21-x)=7,解得x=7,∴21-x=21-7=14.答:第一次购买龙眼7吨,第二次购买龙眼14吨.(2)设把y吨龙眼加工成桂圆肉,则把(21-y)吨龙眼加工成龙眼干,由题意得10×0.2y+3×0.5(21-y)≥39,解得y≥15,∴至少需要把15吨龙眼加工成桂圆肉.答:至少需要把15吨龙眼加工成桂圆肉.能力提升全练13.C ∵解不等式12x ―1≤7―32x ,移项,得12x +32x ≤7+1,合并同类项,得2x ≤8,系数化为1,得x ≤4,∴解集在数轴上表示如下:故选C .14.A 把两个方程相减,可得x +y =k -3,根据题意得k -3≥5,解得k ≥8.所以k 的取值范围是k ≥8.故选A .15.答案 -4解析 根据题图知,不等式的解集是x ≥-1.∵x △k =2x -k ≥2,解得x ≥2+k 2,∴2+k 2=-1,∴k =-4.故答案是-4.16.答案D解析 2x -1>3+mx ,移项、合并同类项得(2-m )x >4,∵关于x 的一元一次不等式2x -1>3+mx 的解集是x <42―m ,∴2-m <0,∴m >2,∵数轴上的A ,B ,C ,D 四个点中,只有点D 表示的数大于2,∴实数m 对应的点可能是点D.17.答案 236≤m ≤6解析 解不等式x +52>―x ―72得x >-4,根据题意得,当x >-4时,不等式(m -6)x <2m +1恒成立,①当m-6=0,即m=6时,不等式(m-6)x<2m+1可化为0<13,恒成立,符合题意;②当m-6≠0时,要满足题意,需不等式(m-6)x<2m+1的不等号方向与其解集的不等号方向不同,∴m-6<0,即m<6,∴不等式(m-6)x<2m+1的解集为x>2m+1m―6,∵x>-4都能使x>2m+1m―6成立,∴-4≥2m+1m―6,∴-4m+24≤2m+1,∴m≥236,∴236≤m<6.综上所述,m的取值范围是236≤m≤6.18.解析 (1)设购进“冰墩墩”摆件x个,购进“冰墩墩”挂件y个.依题意得x+y=180,80x+50y=11 400,解得x=80,y=100.答:购进“冰墩墩”摆件80个,“冰墩墩”挂件100个.(2)设购进“冰墩墩”挂件m个,则购进“冰墩墩”摆件(180-m)个,依题意得(60-50)m+(100-80)(180-m)≥2 900,解得m≤70.答:购进的“冰墩墩”挂件不能超过70个.19.解析 (1)∵10×30=300(元),300<400,∴在甲超市的支付费用为300元.在乙超市的支付费用为300×0.8=240(元).故答案为300;240.(2)设购买x件这种文化用品.当0<x≤40时,在甲超市的支付费用为10x元,在乙超市的支付费用为0.8×10x=8x(元),10x>8x.当x>40时,在甲超市的支付费用为400+0.6(10x-400)=(6x+160)元,在乙超市的支付费用为0.8×10x=8x(元),若6x+160>8x,则x<80;若6x+160=8x,则x=80;若6x+160<8x,则x>80.综上,当购买数量不足80件时,选择乙超市支付的费用较少;当购买数量为80件时,选择两超市支付的费用相同;当购买数量超过80件时,选择甲超市支付的费用较少.素养探究全练20.解析 (1)谷物食品中所含的蛋白质为9%x克,牛奶中所含的蛋白质为3%y克.故答案为9%x;3%y.(2)依题意,列方程组为9%x+3%y+60×15%=300×8%,x+y+60=300,解得x=130, y=110.故答案为130;110.(3)设该学校一周内共有a天选择A套餐,则有(5-a)天选择B套餐.依题意,得150a+180(5-a)≤830,解得a≥73.方案如表所示.方案A套餐B套餐方案13天2天方案24天1天方案35天0天。

【3套试题】人教版七年级数学下第九章不等式与不等式组复习检测试题(有答案)

【3套试题】人教版七年级数学下第九章不等式与不等式组复习检测试题(有答案)

人教版七年级数学下第九章不等式与不等式组复习检测试题(有答案)人教版七年级数学下册第九章不等式与不等式组单元测试题复习检测试卷(有答案)一、选择题1.下列式子:①-2<0;②2x+3y<0;③x=3;④x+y中,是不等式的个数有A. 1个B. 2个C. 3个 D . 4个2.若m>n,则下列不等式中一定成立的是()A. m+2<n+3B. 2m<3nC. a-m<a-nD. ma2>na23.数a、b在数轴上的位置如图所示,则下列不等式成立的是()A. a>bB. ab>0C. a+b>0D. a+b<04.若关于x的一元一次不等式组的解集是x<5,则m的取值范围是()A. m≥5B. m>5C. m≤5D. m<55.某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n应满足()A. n≤mB. n≤C. n≤D. n≤6.某种记事本零售价每本6元,凡一次性购买两本以上给予优惠,优惠方式有两种,第一种:“两本按原价,其余按七折优惠”;第二种:全部按原价的八折优惠,若想在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少要购买记事本()A. 5本B. 6本C. 7本D. 8本7.不等式组的解集在数轴上表示正确的是()A. B.C. D.8.不等式组的解集是()A. x>4B. x≤3C. 3≤x<4D. 无解9.如果不等式组只有一个整数解,那么a的范围是()A. 3<a≤4B. 3≤a<4C. 4≤a<5D. 4<a≤510. 现有三种不同的物体:“甲、乙、丙”,用天平称了两次,情况如图所示,那么“甲、乙、丙”这三种物体按质量从大到小的顺序排列为A. 丙甲乙B. 丙乙甲C. 乙甲丙D. 乙丙甲二、填空题1.不等式组:的解集是2.某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400m以外的安全区域甲工人在转移过程中,前40m只能步行,之后骑自行车。

人教版七年级下册数学第九章不等式与不等式组精选计算题100道

人教版七年级下册数学第九章不等式与不等式组精选计算题100道

不等式与不等式组(100道)用不等式表示:1、a 与1的和是正数;2、x 的21与y 的31的差是非负数;3、x 的2倍与1的和大于3;4、a 的一半与4的差的绝对值不小于a .5、x 的2倍减去1不小于x 与3的和;6、a 与b 的平方和是非负数;7、y 的2倍加上3的和大于-2且小于4; 8、a 减去5的差的绝对值不大于解不等式(组),并在数轴上表示它们的解集9、213-x (x-1)≥1;10、234-≥--x11、⎩⎨⎧>+>-821213x x x12、⎩⎨⎧<-<-x x x 332312 13、)7(4)54(3)13(2-->+--x x x x ; 14、42713752--≥+-x x x ; 15、⎩⎨⎧<+>-81312x x16、⎩⎨⎧-≥++<-7255223x x x x17、 ⎩⎨⎧->++>+x x x x 421132218、8223-<+x x19、x x 4923+≥-20、)1(5)32(2+<+x x 21、0)7(319≤+-x22、31222+≥+x x 23、223125+<-+x x 24、5223-<+x x 25、234->-x 26、)1(281)2(3--≥-+y y 27、1213<--m m 28、)2(3)]2(2[3-->--x x x x29、215329323+≤---x x x 30、41328)1(3--<++x x 31、 )1(52)]1(21[21-≤+-x x x 32、22416->--x x33、x x x 212416-≤-- 34、7)1(68)2(5+-<+-x x 35、46)3(25->--x x36、1215312≤+--x x 37、31222-≥+x x 38、8223-<+x x 39、x x 4923+≥-40、)1(5)32(2+<+x x41、0)7(319≤+-x 42、31222+≥+x x 43、 223125+<-+x x 44、7)1(68)2(5+-<+-x x45、)2(3)]2(2[3-->--x x x x46、1215312≤+--x x 47、 215329323+≤---x x x 48、11(1)223x x -<- 49、)1(52)]1(21[21-≤+-x x x 50、41328)1(3--<++x x 51、⋅->+-+2503.0.02.003.05.09.04.0x x x 52、⎩⎨⎧≥-≥-.04,012x x53、⎩⎨⎧>+≤-.074,03x x54、⎪⎩⎪⎨⎧+>-<-.3342,121x x x x55、-5<6-2x <3.56、⎪⎩⎪⎨⎧⋅>-<-322,352x x x x57、⎪⎩⎪⎨⎧->---->-.6)2(3)3(2,132x x xx58、⎪⎩⎪⎨⎧+>-≤+).2(28,142x x x59、.234512x x x -≤-≤- 60、532(1)314(2)2x x x -≥⎧⎪⎨-<⎪⎩61、⎪⎩⎪⎨⎧≥--+.052,1372x x x φ62、⎪⎩⎪⎨⎧-<-->+.43)1(4,1321x x x x63、14321<--<-x64、-(x+1)<6+2(x-1)65、()31x 2221x ->- 66、1132x x +-<67、3-x-14≥2+3(x+1)868、361633->---x x 69、9-411x>x +3270、x -3x-24 ≥2(1+x)3-171、⎩⎨⎧-++-148112x <x >x x72、⎪⎩⎪⎨⎧--+≤+x <x x 21352113273、-7≤2(13)7x +≤9 74、4100,54,11213.x x x x x -<⎧⎪+>⎨⎪-≥+⎩75、⎩⎨⎧-≤-+-x x x >x 31421325)(76、⎩⎨⎧-≤-+-xx x >x 31421325)(77、5(x+2)≥1-2(x-1) 78、2731205y y y +>-⎧⎪-⎨≥⎪⎩79、42x --3<522x +80、32242539x x x x x +>⎧⎪->-⎨⎪->-⎩81、x 取什么值时,代数式251x-的值不小于代数式4323+-x的值 82、K 取何值时,方程k x 332-=5(x-k)+1的解是非负数83、k 为何值时,等式|-24+3a|+0232=⎪⎭⎫⎝⎛--b k a 中的b 是负数? 3a-18是多少? 84、若方程组212x y x y m +=⎧⎨-=⎩的解x 、y 的值都不大于1,求m 的取值范围85、若a 同时满足不等式042<-a 和213>-a ,化简 21---a a .86、已知方程组⎩⎨⎧+=---=+a y x ay x 317的解,x 为非正数,y 为负数(1)求a 的取值范围(2)化简|a-3|+|a+2|(3)在a 的取值范围中,当a 为何整数时,不等式2ax+x >2a+1的解为x <1 87、求不等式组⎩⎨⎧-≥--<-15764653x x xx 的自然数解。

人教版七年级数学下册不等式的性质同步测试题(含解析)

人教版七年级数学下册不等式的性质同步测试题(含解析)

人教版七年级数学下册不等式的性质同步测试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列命题是真命题的是( )A .相等的两个角是对顶角B .相等的圆周角所对的弧相等C .若a b <,则22ac bc <D .在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是132.对于任意的11x -,230ax a +->恒成立,则a 的取值范围为( )A .1a >或0a =B .3a >C .3a >或0a =D .13a << 3.关于x 的不等式1ax b x -≥-在条件2(1)0a +=且|1|1b b +=--下的解( ) A .11b x a +≥+ B .11b x a +≤+ C .任一个数 D .无解 4.不等式3x +1<2x 的解在数轴上表示正确的是( )A .B .C .D .5.若关于x 的方程()251x m +=-有两个实数根,则m 的取值范围是( )6.若关于x 的一元二次方程2210ax x -+=有实数根,则a 应满足( )A .1a ≤B .1a ≥C .1a ≥-且0a ≠D .1a ≤且0a ≠ 7.不等式523x -->的非负整数解的个数是A .5个B .4个C .3个D .2个8.已知抛物线2y ax bx c =++(a ,b ,c 是常数,0a c <<)经过点(1,0),有下列结论: ①20a b +<;①当1x >时,y 随x 的增大而增大;①关于x 的方程2()0ax bx b c +++=有两个不相等的实数根.其中,正确结论的个数是( )A .0B .1C .2D .39.已知关于x 的一元二次方程2104x x m -+=有实数根,设此方程得一个实数根为t ,令24454y t t m =--+,则( )A .2y >-B .2y ≥-C .2y ≤-D .2y <-10.下列不是不等式5x -3<6的一个解的是( )A .1B .2C .-1D .-2二、填空题11.如图所示,在①ABC 中,DE ,MN 是边AB 、AC 的垂直平分线,其垂足分别为D 、M ,分别交BC 于E 、N ,若AB =8,AC =9,设①AEN 周长为m ,则m 的取值范围为_____.12.不等式112943x x ->+的正整数解的个数为___________________. 13.已知关于x 的方程2(23)20mx m x m ---+=有两个不相等的实数根,那么实数m 的取值范围是__________.14.二次函数y =ax 2﹣2ax +c (a <0)的图象过A (﹣3,y 1),B (﹣1,y 2),C (2,y 3),D (4,y 4)四个点.(1)y 3=____(用关于a 或c 的代数式表示);(2)若y 4•y 2<0时,则y 3•y 1____0(填“>”、“<”或“=”)15.不等式312x -≥的解集为________. 16.方程()2314x y z x y z ++=<<的正整数解是________.17.关于x 的不等式ax <-b 的解集x <2,则关于y 的不等式by >a 的解集为____18.定义:[]x 表示不大于x 的最大整数,()x 表示不小于x 的最小整数,例如:[]2.32=,()2.33=,[]2.33-=-,()2.32-=-.则[]()1.7 1.7+-=___________.19.用四个不等式①a >b ,①a +b >2b ,①a >0,①a 2>ab 中的两个不等式作为题设,余下的两个不等式中选择一个作为结论,组成一个真命题:_______________________________.20.比大小:﹣17___﹣0.14,|5|--_______(4)--.三、解答题21.定义新运算为:对于任意实数a 、b 都有()1a b a b b ⊕=--,等式右边都是通常的加法、减法、乘法运算,比如()1212213⊕=-⨯-=-.(1)求23⊕的值.(2)若27x ⊕<,求x 的取值范围.(3)若不等式组1223x x a⊕≤⎧⎨⊕>⎩恰有三个整数解,求实数a 的取值范围. 22.关于x 的一元一次方程3132x m -+=,其中m 是正整数. (1)当2m =时,求方程的解;(2)若方程有正整数解,求m 的值.23.在班级元旦联欢会上,主持人邀李强、张华两位向学参加一个游戏.游戏规则是每人每次抽取四张卡片.如果抽到白色卡片,那么加上卡片上的数字;如果抽到黑色卡片,那么减去卡片上的数字,比较两人所抽4张卡片的计算结果,结果较小的为同学们唱歌,李强同学抽到如图(1)所示的四张卡片,张华同学抽到如图(2)所示的四张卡片.李强、张华谁会为同学们唱歌?参考答案:1.D【分析】分别根据对顶角的定义,圆周角定理,不等式的基本性质及概率公式进行判断即可得到答案.【详解】有公共顶点且两条边互为反向延长线的两个角是对顶角,故A 选项错误,不符合题意;在同圆或等圆中,相等的圆周角所对的弧相等,故B 选项错误,不符合题意;若a b <,则22ac bc ≤,故C 选项错误,不符合题意;在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是13,故D 选项正确,符合题意; 故选:D .【点睛】本题考查了命题的真假,涉及对顶角的定义,圆周角定理,不等式的基本性质及概率公式,熟练掌握知识点是解题的关键.2.B【分析】分类讨论求出不等式230ax a +->的解集,再根据对于任意的11x -≤≤,230ax a +->恒成立,即可列出关于a 的不等式,解出a 即可.【详解】解:由230ax a +->,得32ax a >-,当0a >时,不等式的解集为32a x a->, 对于任意的11x -≤≤,230ax a +->恒成立, ∴321a a-<-, 解得,3a >;当0a =时,不等式无解,舍去;当0a <时,不等式的解集为32a x a-<, 对于任意的11x -≤≤,230ax a +->恒成立, ∴321a a->, 解得,1a >(与0a <矛盾,舍去);综上,3a >.故选:B .【点睛】本题考查解不等式和不等式的解集的应用.利用分类讨论的思想是解答本题的关键.3.C【分析】根据题意,先确定a 的值,进而解不等式即可. 【详解】2(1)0a +=,1a ∴=-,1ax b x -≥-,()11a x b ∴+≥+,即10b +≤由已知条件|1|1b b +=--,即10b +≤恒成立.∴不等式的解与x 的值无关,则关于x 的不等式1ax b x -≥-的解为任意一个数故选C .【点睛】本题考查了不等式的解集,非负数的性质,求得1a =-是解题的关键. 4.B【分析】先解不等式,得到不等式的解集,再在数轴上表示即可.【详解】解:3x +1<2x解得:1,x <-在数轴上表示其解集如下:故选B【点睛】本题考查的是一元一次不等式的解法,在数轴上表示不等式的解集,掌握“小于向左拐”是解本题的关键.5.B【分析】令该一元二次方程的判根公式240b ac =-≥,计算求解不等式即可.【详解】解:①()251x m +=-①2102510x x m ++-+=①()2241042510b ac m =-=-⨯-+≥ 解得1m ≥故选B .【点睛】本题考查了一元二次方程的根与解一元一次不等式.解题的关键在于灵活运用判根公式.6.D【分析】方程为一元二次方程,故a ≠0,再结合根的判别式:当24b ac -≥0时,方程有实数根;即可求解.【详解】解:①原方程为一元二次方程,且有实数根,①a ≠0,24b ac -≥0时,方程有实数根;①2(2)40a --≥,解得:a ≤1,①1a ≤且0a ≠,故选:D【点睛】本题主要考查了一元二次方程根的判别式,熟练地掌握根的判别式与根的关系是解题的关键.当24b ac -≥0时,方程有实数根,当24b ac -<0时,方程无实数根. 7.B【分析】根据不等式的性质,解不等式即可,再根据非负整数解确定个数.【详解】解: 523x -->28284x x x ->-<<因此非负整数解有0,1,2,3.故选B【点睛】本题主要考查不等式的性质,注意0也是非负整数.8.C【详解】由题意可知:0a b c ++=,()b a c =-+,b c a +=-,0a c <<,2a c a ∴+>,即()2b a c a =-+<-,得出20b a +<,故①正确;20b a +<,∴对称轴012b x a=->,0a >,01x x ∴<<时,y 随x 的增大而减小,0x x >时,y 随x 的增大而增大,故①不正确; 22224()4()40b a b c b a a b a -+=-⨯-=+>,∴关于x 的方程2()0ax bx b c +++=有两个不相等的实数根,故①正确.故选:C .【点睛】本题考查二次函数的图象与性质及一元二次方程根的判别式,解题的关键是熟练掌握二次函数的性质并能应用求解.9.B【分析】由一元二次方程根的判别式先求解1,m ≤再利用根与系数的关系可得21,4t t m 从而可得64,y m 再利用不等式的性质可得答案. 【详解】解: 关于x 的一元二次方程2104x x m -+=有实数根, 2410,b ac m解得:1,m ≤设方程的两根分别为1,,t t111,14t t t t m 解得:41,m t t21,4t t m ∴ 24454y t t m =--+245464,t t m m1,m642,m 即 2.y故选B【点睛】本题考查的是一元二次方程根的判别式,根与系数的关系,一次函数的性质,不等式的性质,熟练的运用一元二次方程根的判别式与根与系数的关系是解本题的关键. 10.B【解析】略11.1<m <17【分析】根据线段垂直平分线的性质得到EA =EB ,NC =NA ,根据三角形的三边关系解答即可.【详解】解:①DE ,MN 是边AB 、AC 的垂直平分线,①EA =EB ,NC =NA ,①①AEN 周长为m =EA +EN +NA =EB +EN +NC =BC ,在①ABC 中,9-8<BC <9+8,①1<m <17,故答案为:1<m <17.【点睛】本题主要考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.12.2个【分析】先求出一元一次不等式的解,再找出其正整数解即可得. 【详解】112943x x ->+, 112943x x -->-, 152543x ->-, 209x <, 则不等式的正整数解为1,2,共2个,故答案为:2个.【点睛】本题考查了解一元一次不等式,熟练掌握不等式的解法是解题关键.13.m <94且m ≠0##m ≠0且m <94 【分析】根据判别式①>0时一元二次方程有两个不相等的实数根求解不等式即可.【详解】解:①关于x 的方程2(23)20mx m x m ---+=有两个不相等的实数根, ①①=(2m -3)2-4m (-2+m )=-4m +9>0,且m ≠0,解得:m <94且m ≠0, 故答案为:m <94且m ≠0. 【点睛】本题考查一元二次方程根的判别式、解一元一次不等式,熟练掌握一元二次方程根与判别式的关系是解答的关键,注意二次项系数不为0.14.c<【分析】将x=2代入抛物线解析式可得y3=c,根据抛物线解析式可得抛物线开口方向及对称轴,根据各点到对称轴的距离可判断y3>y2>y4>y1,再由y4•y2<0判断出原点位置,进而求解.【详解】解:将x=2代入y=ax2﹣2ax+c得y=c,①y3=c,①y=ax2﹣2ax+c(a<0),①抛物线开口向下,对称轴为直线212axa-==-,①与抛物线对称轴距离越近的点的纵坐标越大,①A点离对称轴距离为4,B点离对称轴距离为2,C点离对称轴距离为1,D点离对称轴距离为3,①y3>y2>y4>y1,若y4•y2<0,则y3>y2>0>y4>y1,①y3•y1<0,故答案为:c,<.【点睛】本题考查二次函数图象的性质,根据二次函数的对称性求出y3>y2>y4>y1再由不等式的性质找出原点位置是解题关键.15.5x≥【分析】根据解一元一次不等式的步骤:去分母、去括号、移项、合并同类项、系数化为1可得答案.【详解】解:31 2x-≥去分母,得x-3≥2,移项,得x≥2+3,合并同类项,系数化1,得,x≥5,故答案为:x≥5.【点睛】本题考查了解一元一次不等式,解题的关键掌握解一元一次不等式的方法步骤.16.123x y z =⎧⎪=⎨⎪=⎩【分析】由()2314x y z x y z ++=<<,可得出73x <,73z >,又由,,x y z 均为正整数,分析即可得到正确答案.【详解】解:①x y z <<, ①2233x y x z <⎧⎨<⎩①62314x x y z <++= ①73x <, 同理可得:73z > 又①,,x y z 均为正整数①满足条件的解有且只有一组,即123x y z =⎧⎪=⎨⎪=⎩故答案为:123x y z =⎧⎪=⎨⎪=⎩【点睛】本题考查三元一次方程的变式,牢记相关的知识点并能够灵活应用是解题关键.17.12y <- 【分析】根据不等式的性质可得b a-2=,0a >,进而可得0b <,据此即可求解. 【详解】解:①关于x 的不等式ax <-b 的解集x <2, ①b x a<-,b a -2=,0a >, 0b ∴<,∴关于y 的不等式by >a 的解集为a y b<, 2b a=-, ①1=2a b -∴关于y 的不等式by >a 的解集为12y <-. 【点睛】本题考查了解一元一次不等式,确定a b ,的符号以及2b a=-是解题的关键. 18.0【分析】根据题意,[1.7]中不大于1.7的最大整数为1,(-1.7)中不小于-1.7的最小整数为-1,则可解答【详解】解:依题意:[1.7]=1,(-1.7)=-1①[]()1.7 1.711=0+-=-故答案为:0【点睛】此题主要考查有理数大小的比较,读懂题意,即可解答.19.题设:①a b >,①0a >,结论:①2a b b +>,①2a ab >【分析】根据题意写出命题,根据不等式的性质1、性质2证明即可.【详解】题设:①a b >,①0a >,结论:①2a b b +>,①2a ab >,是真命题.证明:①a b >,①a b b b +>+,即2a b b +>,①a b >,且0a >,①2a ab >,故答案为:题设:①a b >,①0a >,结论:①2a b b +>,①2a ab >.【点睛】本题考查了命题和定理,掌握真命题的概念、不等式的性质是解题的关键. 20. < <【分析】根据两个负数比较大小,其绝对值大的反而小比较即可;先化简符号,再比较即可. 【详解】解:﹣17=15049,0.147350350-=-=, ①5049350350>, ①﹣17<﹣0.14; ①|5|--=-5<0,(4)--=4,①|5|--<(4)--,故答案为:<,<.【点睛】本题考查了绝对值,有理数的大小比较,能熟记有理数的大小比较法则和绝对值的意义是解此题的关键.21.(1)4-(2)6x <(3)42a -≤<【分析】(1)利用新运算的规则直接进行计算即可;(2)利用新运算的规则对不等式转化,再进行求解;(3)利用新运算的规则对不等式组进行转化,然后解不等式组,再结合该不等式组恰有3个整数解确定a 的取值范围.(1)解:23(23)314⊕=-⨯-=-.(2) 解:27x ⊕<,∴(2)217x -⨯-<,∴6x <.(3)解:由1223x x a ⊕≤⎧⎨⊕>⎩,得(1)112(23)31x x a -⨯-≤⎧⎨-⨯->⎩①②, 解不等式①,得4x ≤;解不等式①,得106a x +>. ∴原不等式组的解集为1046a x +<≤. 又原不等式组恰有3个整数解,∴原不等式的整数解为2,3,4. ∴10126a +≤<, 解得42a -≤<.【点睛】本题考查了对定义新运算理解与运用,解不等式(组),解决本题的关键是将新运算转化为普通四则运算进行求解.22.(1)1x =(2)2m =【分析】(1)把m =2代入方程,求解即可;(2)把m 看做常数,求解方程,然后根据方程解题正整数,m 也是正整数求解即可. (1)解:当2m =时,原方程即为31232x -+=. 去分母,得3146x -+=.移项,合并同类项,得33x =.系数化为1,得1x =.∴当2m =时,方程的解是1x =. (2)解:去分母,得3126x m -+=.移项,合并同类项,得372x m =-.系数化为1,得723m x -=. m 是正整数,方程有正整数解,2m ∴=.【点睛】本题考查解一元一次方程,熟练掌握解一元一次方程是解题的关键.23.张华为同学们唱歌.【分析】首先根据游戏规则,分别求出李强、张华同学抽到的四张卡片的计算结果各是多少;然后比较大小,判断出结果较小的是哪个即可.【详解】解:李强同学抽到的四张卡片的计算结果为:13(5)422⎛⎫-+---+ ⎪⎝⎭ 135422=--++ 7=张华同学抽到的四张卡片的计算结果为:7110563⎛⎫----+ ⎪⎝⎭ 78566=-++ 156= ①1756>,①张华为同学们唱歌.答:张华为同学们唱歌.【点睛】本题以游戏为载体考查了有理数的加减运算以及有理数的比较大小,还是那个知识点但出题的形式变了,题目较为新颖.。

人教版七年级下册数学不等式与不等式组应用题训练(word,含答案)

人教版七年级下册数学不等式与不等式组应用题训练(word,含答案)

人教版七年级下册数学不等式与不等式组应用题训练1.列方程组或不等式解决问题:2022年北京冬奥会、冬残奥会已圆满结束,活泼敦厚的“冰墩墩”,喜庆祥和的“雪容融”引起广大民众的喜爱.王老师想要购买两种吉祥物作为本次冬奥会的纪念品,已知购买2件“冰墩墩”和1件“雪容融”共需150元,购买3件“冰墩墩”和2件“雪容融”共需245元.(1)求“冰墩墩”和“雪容融”的单价;(2)学校现需一次性购买上述型号的“冰墩墩”和“雪容融”纪念品共100个,要求购买的总费用不超过5000元,则最多可以购买多少个“冰墩墩”?2.为支援上海抗击新冠肺炎,甲地捐赠多批救援物资并联系了一家快递公司进行运送.快递公司准备安排A、B两种车型把这批物资从甲地快速送到上海.其中,从甲地到上海,A型货车1辆、B型货车1辆,一共需补贴油费1000元;A型货车10辆、B 型货车6辆,一共需补贴油费8400元.(1)从甲地到上海,A、B两种型号的货车,每辆车需补贴的油费分别是多少元?(2)如果需派出20辆车,并且预算油费补贴不超过9600元,那么该快递公司至多能派出几辆A型货车?3.开学前夕,某书店计划购进A、B两种笔记本共350 本.已知A种笔记本的进价为12 元/本,B种笔记本的进价为15 元/本,共计4800 元.(1)请问购进了A种笔记本多少本?(2)在销售过程中,A、B两种笔记本的标价分别为20元/本、25元/本.受疫情影响,两种笔记本按标价各卖出m本以后,该店进行促销活动,剩余的A种笔记本按标价的七折全部售出,剩余的B种笔记本按成本价清货,若两种笔记本的总利润不少于2348元,请求出m的最小值.4.抗击新型冠状肺炎疫情期间,84消毒液和酒精都是重要的防护物资.某药房根据实际需要采购了一批84消毒液和酒精,共花费11000元,84消毒液和酒精的进价和售价如下:(1)该药房销售完这批84消毒液和酒精后共获利5400元,则84消毒液和酒精各销售了多少瓶?(2)随着疫情的发展,结合药房实际,该药房打算用不超过6600元钱再次采购84消毒液和酒精共300瓶,已知84消毒液和酒精价格不变,则第二批最多采购84消毒液多少瓶?5.小玉计划购买A、B两种饮料,若购买8瓶A种饮料和5瓶B种饮料需用220元;若购买4瓶A种饮料和6瓶B种饮料需用152元.(1)求每瓶A种饮料和B种饮料各多少元;(2)小玉决定购买A种饮料和B种饮料共15瓶,总费用不超过260元,那么最多可以购买多少瓶A种饮料?6.小明家新买了一套住房,打算装修一下,春节前住进去.现有甲、乙两家装修公司可供选择,这两家装修公司提供的信息如下表所示:若设需要x天装修完毕,请解答下列问题:(1)请分别用含x的代数式,写出甲、乙两家公司的装修总费用;(2)当装修天数为多少时,两家公司的装修总费用一样多?(3)根据装修天数x讨论选择哪家装修公司更合算(提示:结合(2)中的结论进行分类解决问题).7.每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.(1)求甲、乙两种型号设备的价格;(2)公司决定购买甲、乙两种型号的设备共10台,且该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司甲种型号的设备至多购买几台?8.为庆祝“元旦”,光明学校统一组织合唱比赛,七、八年级共92人(其中七年级的人数多于八年级的人数,且七年级的人数不足90人)准备统一购买服装参加比赛.如表是某服装厂给出服装的价格表:(1)如果两个年级分别单独购买服装一共应付5000元,求七、八年级各有多少学生参加合唱比赛;(2)如果七年级参加合唱比赛的学生中,有10名同学抽调去参加绘画比赛,不能参加合唱比赛,请你为两个年级设计一种最省钱的购买服装方案.9.某电器超市销售每台进价分别为140元、100元的A、B两种型号的电风扇,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入一进货成本)(1)求A、B两种型号的电风扇的销售单价.(2)若超市准备用不多于6500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过2850元的目标?若能,请给出相应的采购方案:若不能,请说明理由.10.某商店欲购进A、B两种商品,若购进A种商品5件和B种商品4件需300元;购进A种商品6件和B种商品8件需440元.(1)A、B两种商品每件的进价分别为多少元?(2)若该商店A种商品每件的售价为48元,B种商品每件的售价为31元,该商店准备购进A、B两种商品共50件,且这两种商品全部售出后总获利不低于344元,则至少购进多少件A种商品?11.学校近期举办了一年一度的经典诵读比赛.某班级因节目需要,须购买A、B两种道具.已知购买1件A道具比购买1件B道具多10元,购买2件A道具和3件B道具共需要45元.(1)购买一件A道具和一件B道具各需要多少元?(2)根据班级情况,需要这两种道具共60件,且购买两种道具的总费用不超过620元.求道具A最多购买多少件?12.对于企业来说:科学技术永远是第一生产力,在长沙市里程最长、站点最多的地铁6号线建设过程中,某知名运输集团承包了地铁6号线多标段的土方运输任务,该集团为了出色完成承接任务,拟派出该集团自主研发的A、B两种新型运输车运输土方.已知4辆A型运输车与3辆B型运输车一次共运输土方64吨,2辆A型运输车与4辆B型运输车一次共运输土方52吨.(1)请问一辆A型运输车和一辆B型运输车一次各运输土方多少吨?(2)该运输集团决定派出A、B两种型号新型运输车共18辆参与运输土方,若每次运输土方总量不小于169吨,且B型运输车至少派出4辆,则有哪几种派车方案?13.某商店欲购进A、B两种商品,若购进A种商品5件和B种商品4件需300元;若购进A种商品6件和B种商品8件需440元.(1)求A、B两种商品每件的进价分别为多少元?(2)商店准备用不超过1615元购进50件这两种商品,求购进A种商品最多是多少件?14.某超市共用24000元同时购进甲、乙两种型号书包各200个,购进甲型号书包40个比购进乙型书包30个少用100元.(1)求甲、乙两种型号书包的进价各为多少元?(2)若超市把甲、乙两种型号书包均按每个90元定价进行零售,同时为扩大销售,拿出一部分书包按零售价的8折进行优惠销售.商场在这批背包全部售完后,若总获利不低于10200元,则超市用于优惠销售的书包数量最多为多少个?15.某工艺品店购进A,B两种工艺品,已知这两种工艺品的单价之和为200元,购进2个A种工艺品和3个B种工艺品需花费520元.(1)求A,B两种工艺品的单价;(2)该店主欲用9600元用于进货,且最多购进A种工艺品36个,B种工艺品的数量不超过A种工艺品的2倍,则共有几种进货方案?16.每年的4月22日是世界地球日.某校为响应“携手为保护地球投资”的号召计划购入,A B两种规格的分类垃圾桶,用于垃圾分类.若购买A种垃圾桶30个和B种垃圾桶20个共需1020元;若购买A种垃圾桶50个和B种垃圾桶40个共需1860元.(1),A B两种垃圾桶的单价分别是多少元?(2)若该校最多有4360元用于购买这两种规格的垃圾桶共200个,则B种垃圾桶最多可以买________个.17.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B 商品共用了880元.(1)A,B两种商品的单价分别是多少元?(2)已知该商店购买A,B两种商品共30件,要求购买B商品的数量不高于A商品数量的2倍,且该商店购买的A,B两种商品的总费用不超过276元,那么该商店有几种购买方案?18.每年一度的中考牵动着数万家长的心,为了给考生一个良好的环境,某市教委规定每个考场安排考生数是固定的人数,该市A 区的9000 名考生安排的考场数比B 区3000人安排的考场数多200个.(1)求每个考场安排固定考生的人数;(2)该市C区共有可作为考场的大小教室共300 间,由于今年疫情影响,该市教委要求大教室按原固定人数的80%安排考生,小教室按原固定人数的50%安排考生,若该市C 区共有考生6300 人,则至少需要有多少间大教室.19.2022年北京冬奥会吉祥物冰墩墩和雪容融在一开售时,就深受大家的喜欢.某供应商今年2月购进一批冰墩墩和雪容融,已知一个冰墩墩的进价比一个雪容融的进价多40元,并且购买20个冰墩墩和30个雪容融的价格相同.(1)问每个冰墩墩和雪容融的进价分别是多少元?(2)根据市场实际,供应商计划用20000元购进这两种吉祥物200个,则他本次采购时最多可以购进多少个冰墩墩?20.某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料.生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克.经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.已知工厂用于购买甲、乙两种材料的资金不能超过10000元,且生产B产品要超过38件,问有哪几种符合条件的生产方案?参考答案:1.(1)“冰墩墩”和“雪容融”的单价分别为55元,40元(2)最多可以购买66个“冰墩墩”2.(1)每辆A型货车补贴油费600元,每辆B型货车补贴油费400元.(2)该快递公司至多能派出8辆A型货车.3.(1)购进了A种笔记本150本;(2)m的最小值128.4.(1)84消毒液销售了200瓶,酒精销售了300瓶;(2)120瓶5.(1)每瓶A种饮料20元,每瓶B种饮料12元(2)10瓶6.(1)甲公司的总费用为(900x+2700)元,乙公司的总费用为(960x+1500)元;(2)当装修天数为20天时,两家公司的装修总费用一样多;(3)当x<20时,乙装修公司更合算;当x=20时,两家装修公司一样;当x>20时,甲装修公司更合算.7.(1)甲、乙两种型号设备每台的价格分别为12万元和10万元(2)至多购买5台8.(1)七年级52人,八年级40人;(2)两个年级一起买91套时最省钱;9.(1)A、B两种型号的电风扇的销售单价分别为200元和150元(2)A种型号的电风扇最多能采购37台(3)能实现利润超过2850元的目标,相应方案有两种:方案一:购买A种型号的电风扇36台,购买B种型号的电风扇14台;方案二:购买A种型号的电风扇37台,购买B种型号的电风扇13台10.(1)A种商品每件的进价为40元,B种商品每件的进价为25元(2)至少购进22件A种商品11.(1)购买1件A道具需要15元,1件B道具需要5元(2)道具A最多购买32件12.(1)一辆A型运输车一次运土10吨,一辆B型运输车一次运土8吨(2)有两种派送方案,方案一:派出A型号的新型运输车13辆,B型号的新型运输车5辆;方案二:派出A型号的新型运输车14辆,B型号的新型运输车4辆.13.(1)A种商品每件进价40元,B种商品每件进价25元(2)24件14.(1)A、B两种型号书包的进货单价各为50元、70元;(2)商场用于优惠销售的书包数量为100个.15.(1)A种工艺品的单价为80元,B种工艺品的单价为120元(2)共有3种进货方案16.(1)A种垃圾桶的单价熟练掌握18元,B种垃圾桶的单价是24元.(2)12617.(1)A种商品的单价为16元、B种商品的单价为4元(2)有四种方案,方案一:购买A商品的件数为10件,购买B商品的件数为20件;方案二:购买A商品的件数为11件,购买B商品的件数为19件;方案三:购买A商品的件数为12件,购买B商品的件数为18件;方案四:购买A商品的件数为13件,购买B商品的件数为17件.18.(1)每个考场安排固定考生的人数为30人;(2)至少需要有200间大教室.19.(1)今年2月第一周每个冰墩墩的进价为120元,每个雪容融的进价为80元(2)最多可以购进100个冰墩墩20.共有如下四种方案:A种21件,B种39件;A种20件,B种40件;A种19件,B种41件;A种18件,B种42件。

(新人教版)数学七年级下册:《不等式》习题精选(附解析)

(新人教版)数学七年级下册:《不等式》习题精选(附解析)

不等式习题精选一、你能填对吗设x>y,用“>”或“<”号填空.x+2______y+2;x-1____y一1;3x_____3y;-3x______-3y;________________2.不等式>1的解集是_____3.当x________时,代数式2x-5的值不大于0;当x______时,代数式2x-5的值等于0.4.若2x-l<x+2,则x<3,变形的根据是______________.二、选一选5.下列不等式中一定成立的是().A.4a>3aB.3-a<4-aC.-a>-2aD.>6.若a<b,则成立的不等式为().A.d(-c)<b(-c)B.ac>bcC.ac<bcD.a-c<b-c7.如果d,a+1,-a,1-a四个数在数轴上所对应的点是按从左到右顺序排列的,那么满足下列各式的是().A.B.C.a>0D.a<08.a,b在数轴上的位置如图2所示,则,的值().A.>0B.<0C.=0D.≥0三、解答题9.按照下列条件,写出仍能成立的不等式,并说明根据.(1)a>b两边都加上-3;(2)-3a<b两边都除以-3;(3)a≥3b两边都乘以5;(4)d≤2b两边都加上c;(5)a>b两边都乘以c.10.说明下列不等式是怎样变形的,并指出变形的依据.(1)若3x-2y>0,则3x>2y;(2),则a<b+c.11.根据不等式的性质,把下列不等式化为x>a或x<a的形式(a为常数).(1)8x>7x+3;(2);(3)-5x>l0.四、能力提示12.根据不等式的性质,把下列不等式化为x>a或x<a的形式(a为常数).(1)(2)(3)-3x>2(4)一3x+2<2x+3五、拓展创新13.用不等式表示下列各式,并化为x>a或x<a的形式(a为常数).(1)a的是非负数;(2)m的相反数与1的和是正数.14.下列几组数字分别表示三个线段的长,每一组中三个线段能否组成三角形?为什么? (1)3,4,5(2)2,3,13(3)2,6,8(4)4,6,11六、中考热身15.(2005·安徽)根据图3所示,对a,b,c三种物体的重量判断正确的是().A.a<cB.0<bC.a>cD.b<c参考答案:1.> > < > < <2.x<-33.4.不等式的基本性质5.B6.D7.A8.B9.(1)a-3>b-3(不等式性质);(2)(不等式性质3);(3)5a≥15b(不等式性质2);(4)a+c≤2b+c(不等式性质1);(5)∵c表示的数有三种可能∴①当c>0时,ac>bc(不等式性质2),②当c<0时,ac<bc(不等式性质3),③当c=0时,ac=bc(0的特殊性).10.(1)根据不等式性质1,两边加上2y;(2)根据不等式性质3,两边乘以-3,得a-c<b,再根据不等式性质1,两边同时加上c.11.(1)x>3(2)x<27(3)x<-212.(1);x>-2;(2);x≤3;(3)(4)-3x-2x<3-2,-5x<1,.13.(1),a≥0.(2)-m+1>0,m<114.3,4,5查、可以作为三角形的三边,因为3+4>5,5-4<3,符合两边之各大于第三边,两边之差小于第三边的要求。

人教版七年级下册数学不等式与不等式组应用题训练

人教版七年级下册数学不等式与不等式组应用题训练

人教版七年级下册数学不等式与不等式组应用题训练1.随着夏季的到来,某床上用品店准备新进A,B两种不同型号的凉席.在进货时,发现购进10件A种凉席和15件B种凉席的费用是4250元;购进22件A种凉席和30件B种凉席的费用是8900元.(1)求A,B两种凉席每件进价是多少元?(2)已知A种凉席每件的售价是300元,B种凉席每件的售价是220元,现在准备购进A种和B种凉席共60件,若使全部售完后获取的利润不低于5000元,则最少需要购进A种凉席多少件,并说明理由.2.立体书兼具了传统书的内容和形式,也拥有玩具的趣味和功能.某工厂生产了一款立体书,按标价销售此立体书,每本可获利30元;若按标价的八折销售6本此立体书与将标价降低10元销售3本此立体书获得的利润相同.(1)该工厂生产的这款立体书的标价与成本分别为多少元?(2)该工厂原计划按标价销售这款立体书共600本,销售一部分后发现生意火爆,于是将每本立体书提价10元,很快全部销售完,最后发现总利润不低于22000元,求提价前最多销售多少本此款立体书?3.某汽车租赁公司要购买轿车和面包车共10辆,已知轿车每辆7万元,面包车每辆4万元,其中轿车至少要购买3辆,且公司可投入的购车款不超过55万元.(1)符合公司要求的购买方案有哪几种?(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么该租赁公司应选择以上哪种购买方案?4.莆田市校园阅读研究中心开展“教师共读”活动:计划购买甲乙两种书籍共100套,其中甲种书籍每套售价120元,乙种书籍每套售价80元.(1)如果购买甲乙两种书籍一共花费了9600元,求购买甲乙两种书籍各多少套?(2)设购买甲种书籍m套,如果购买乙种书籍的套数不超过甲种书籍的2倍,并且总费用不超过9440元,问购买甲乙两种书籍共有几种方案?哪种方案所需总费用最少?最少总费用是多少?5.某零食店销售牛轧糖、雪花酥2种糖果,如果用800元可购买5千克牛轧糖和4千克雪花酥,用760元可购买7千克牛轧糖和2千克雪花酥.(1)求牛轧糖、雪花酥每千克的价格分别为多少元?(2)已知该零食店在12月共售出牛轧糖50千克、雪花酥30千克.春节将近,1月份超市将牛轧糖每千克的售价提升43m元,雪花酥的价格不变,结果与12月相比,牛轧糖只销售了45千克,雪花酥销量上升1m5千克,销售总额超过了12月份销售总额;求m的取值范围.6.某地面对形势异常严峻的新冠疫情,遵从党和国家部署,最大程度保障人民群众的健康,将所在区域划分为封控区、管控区和防范区. 现要将一批蔬菜运往封控区,已知用3辆A型车和1辆B型车装满蔬菜一次可运26吨;用1辆A型车和2辆B型车装满蔬菜一次可运22吨.(1)求一辆A型车和一辆B型车装满蔬菜分别可运多少吨?(2)若一辆A型车的租金是180元,一辆B型车的租金是220元,该地计划租用A型车和B型车共7辆,且租金不超过1400元,问最多可租用几辆B型车?7.为了减少疫情带来的损失,某市决定加快复工复产.该市一企业需要运输一批物小货车一次可运输650箱物资.(1)1辆大货车与1辆小货车一次分别可运输多少箱物资?(2)该企业计划用这两种货车共12辆一次性运输这批物资,每辆大货车运输一次需5000元运费,每辆小货车运输一次需3000元运费.若运输物资不少于1500箱,且总费用小于53000元.请你列出所有运输方案,并指出哪种方案所需要费用最少,最少费用是多少元?8.用甲、乙两种原料配制成某种饮料,已知两种原料的维生素C 的含量以及购买这两种原料的价格如下表所示:现配制这种饮料10kg ,所需乙种原料的质量为()kg 0x x ≠.(1)当配制成的饮料,维生素C 的含量不少于4200单位,求配制这种饮料需乙种原料的质量范围;(2)在(1)的条件下,为了称量方便,所需甲、乙两种原料的质量均为整数,请你判断配制这种饮料共有几种方案,并计算哪种方案所需费用较少.9.国内某航空公司为提高经济效益,准备一次性购买国内A 品牌飞机和国际B 品牌飞机若干架.若购买2架国内A 品牌飞机和3架国际B 品牌飞机共需36亿元;购买4架国内A 品牌飞机和1架国际B 品牌飞机共需32亿元.(1)求购买一架国内A 品牌飞机与一架国际B 品牌飞机各需多少亿元;(2)根据该航空公司的实际情况,需一次性购买国内A 品牌飞机和国际B 品牌飞机共10架(两种品牌飞机均需购买),要求购买国内A 品牌飞机和国际B 品牌飞机的总费用不超过64亿元,共有哪几种购买方案?10.某水果店主计划采购A、B两种水果100kg进行销售,其中A水果的进货量(取整数)不小于28kg,下表为这两种水果的进货价、销售价及损耗率:经预算,该店主准备采购的总资金不高于950元.(1)请你为店主设计有几种采购方案,请写出具体方案;(2)设采购A水果akg,请用含有a字母的代数式(化简后)表示采购A、B两种水果销售后所获取的利润;在(1)方案中,最多获取利润是多少元?11.“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,并写出各种方案.12.张家口市某校为了普及推广冰雪活动进校园,准备购进速滑冰鞋和花滑冰鞋用于开展冰雪运动,若购进30双速滑冰鞋和20双花滑冰鞋共需8500元;若购进40双速滑冰鞋和10双花滑冰鞋共需8000元.(1)求速滑冰鞋和花滑冰鞋每双购进价格分别为多少元?(2)若该校购进两种冰鞋共50双,其中花滑冰鞋的数量不少于速滑冰鞋的数量,且用于购置两种冰鞋的总经费不超过8900元,则该校本次购买两种冰鞋共有哪几种方案?13.历经7年艰辛努力,北京冬奥会、冬残奥会胜利举办,激发了亿万人民的体育热情,推动了我国体育业发展.某校为了普及推广冰雪活动进校园,准备购买滑雪镜和滑雪手套用于开展冰雪运动,已知购买20副滑雪镜和60副滑雪手套共需7800元,购买40副滑雪镜和50副滑雪手套共需10000元.(1)求滑雪镜和滑雪手套每副购买的价格分别为多少元?(2)学校准备购买滑雪镜和滑雪手套共100副,购买的总费用不能超过12000元,则该校最多购买滑雪镜多少副?14.2022年冬奥会吉祥物“冰墩墩”与冬残奥会吉祥物“雪容融”深受人们的喜爱.某玩具店预购进这两款吉祥物玩具100个进行销售.若购进20个“冰墩墩”和10个“雪容融”共需1000元;若购进10个“冰墩墩”和20个“雪容融”共需950元.(1)求“冰墩墩”和“雪容融”单价;(2)若购买“冰墩墩”不少于60个,所需费用总额不超过3310元,请你求出满足要求的所有进货方案,并直接写出最省钱的进货方案.15.某商场在“双11”前准备从供货商家处新选购一批商品,已知按进价购进1件甲种商品和2件乙种商品共需320元,购进3件甲种商品和2件乙种商品共需520元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)若甲种商品的售价为每件120元,乙种商品的售价为每件140元,该商场准备购进甲、乙两种商品共50件,且这两种商品全部售出后总利润不少于1350元,不高于1375元.若购进甲种商品m件,请问该商场共有哪几种进货方案?(3)根据往年销售情况,商场计划在“双11”当天将现有的甲、乙两种商品共46件按(2)中的售价全部售完.但因受拉尼娜现象形成的冷空气持续影响,当天出现的雨雪天气使得46件商品没有全部售完,两种商品的实际销售利润总和为1220元.那么,“双11”当天商场至少卖出乙种商品多少件?16.篮球赛单循环赛一般按积分确定名次.胜一场得2分,负一场得1分.如果积分相同,再比较相互间胜负记录.某次篮球联赛中,太阳队与蓝天队要争夺一个出线权,太阳队目前的战绩是12胜8负(与蓝天队无比赛),后面还要比赛5场(其中与蓝天队有一场比赛);蓝天队目前的战绩是10胜10负,后面还要比赛5场.探究以下问题:(1)为确保出线,太阳队在后面的比赛中至少要胜多少场?(2)如果太阳队在后面的比赛中3胜2负,未能出线,那么蓝天队后续战果如何?17.河南某校为做好新型冠状病毒感染的预防工作,计划为教职工购买一批洗手液(每人1瓶).学校派王老师去商场购买,他在商场了解到,某个牌子的洗手液,售价为每瓶14元,有两种优惠活动:活动一:一律打9折;活动二:当购买量不超过50瓶时,按原价销售;当购买量超过50瓶时,超过的部分打8折.如果该校共有m名教职工,请你帮王老师设计最省钱的购买方案.18.炎炎夏日,雪糕成为降暑解渴的必需品,小王通过市场调查,准备购进甲乙两种口味的雪糕进行销售.已知购进30支甲种口味雪糕和25支乙种口味雪糕共需215元;购进40支甲种口味雪糕和50支乙种口味雪糕共需370元.(1)求两种雪糕的进价分别为每支多少元?(2)甲种口味雪糕售价为每支4.5元,乙种口味雪糕售价为每支7元,在销售过程中,小王发现甲种口味的雪糕更受人们喜爱,所以打算再次购进两种雪糕共800支,并且乙种口味雪糕的数量不多于甲种口味雪糕数量13,则乙种口味雪糕最多购进多少支?此时的利润是多少元?19.疫情期间为了满足口罩需求,某药店计划购买同一品牌的甲型口罩和乙型口罩.已知购买1个甲型口罩和2个乙型口罩需花费8元,购买2个甲型口罩和3个乙型口罩需花费13元.(1)求购买该品牌一个甲型口罩、一个乙型口罩各需花费多少元?(2)如果药店需要甲型口罩的个数是乙型口罩个数的2倍还多8个,且该药店购买甲型口罩和乙型口罩的总费用不超过5000元,那么该药店最多可购买多少个该品牌乙型口罩?20.随着“一带一路”的进一步推进,我国瓷器更是“一带一路”沿线人民所推崇的,某商户看准这一商机,准备经销瓷器茶具,计划购进青瓷茶具和白瓷茶具共80套.已知青瓷茶具每套280元,白瓷茶具每套250元,设购进x套青瓷茶具,购进青瓷茶具和白瓷茶具的总费用为y.(1)求出y与x之间的函数关系式;(2)该商户想要用不多于20900元的钱购进这两种茶具,且购买白瓷茶具的数量不超过青瓷茶具的两倍,请问有哪几种购进方案.。

人教版数学七年级下册:9.1.1 不等式及其解集 同步练习(附答案)

人教版数学七年级下册:9.1.1 不等式及其解集  同步练习(附答案)

9.1.1 不等式及其解集1.数学表达式:①-5<7;②3y-6>0;③a=6;④x-2x;⑤a≠2;⑥7y-6>5y+2中,是不等式的有( )A.2个 B.3个 C.4个 D.5个2.选择适当的不等号填空:(1)2 3;(2)4;(3)若a为正方形的边长,则a 0;(4)若x≠y,则-x -y.3.如图,左边物体的质量为x g,右边物体的质量为50 g,用不等式表示下列数量关系是.4.用不等式表示:(1)数a小于2;(2)a与5的和是正数;(3)a与2的差是负数;(4)b的10倍大于27.5.下列各数中,是不等式3x-2>1的解的是( )A.1 B.2 C.0 D.-16.不等式的解集x>1在数轴上表示正确的是( )A B C D7.如图,数轴所表示的不等式的解集是 .8.把下列不等式的解集在数轴上表示出来.(1)x >-3; (2)x<-32.9.“满足x<3的每一个数都是不等式x +2<6的解,所以不等式x +2<6的解集是x<3”,这句话是否正确?请你判断,并说明理由.10.语句“x 的18与x 的和不超过5”可以表示为( ) A.x 8+x ≤5 B.x 8+x ≥5 C.8x +5≤5 D.x 8+x =5 11.下列哪个数是不等式2(x -1)+3<0的一个解?( )A .-3B .-12 C.13D .2 12.不等式x<4的非负整数解的个数有( )A .4个B .3个C .2个D .1个13.请写出满足下列条件的一个不等式.(1)0是这个不等式的一个解: ;(2)-2,-1,0,1都是不等式的解: ;(3)0不是这个不等式的解: ;(4)与x<-1的解集相同的不等式: .14.用不等式表示:(1)a 与3的和大于5;(2)x 的2倍与5的差小于1;(3)x 的13与x 的12的和是正数;(4)a 的20%与a 的和大于a 的3倍.15.已知一支圆珠笔1.5元,签字笔与圆珠笔相比每支贵2元.小华想要买x 支圆珠笔和10支签字笔.若付50元仍找回若干元,则如何用含x 的不等式来表示小华所需支付的金额与50元之间的关系?16.阅读下列材料,并回答下面的问题.你能比较2 0202 021和2 0212 020的大小吗?为了解决这个问题,先把问题一般化,比较n n +1和(n +1)n(n >0,且n 为整数)的大小.然后从分析n =1,n =2,n =3,…的简单情形入手,从中发现规律,经过归纳、猜想得出结论.(1)通过计算(可用计算器)比较下列①~⑦组两数的大小:(在横线上填上“>”“=”或“<”) ①12 21;②23 32;③34 43;④45 54;⑤56 65;⑥67 76;⑦78 87;(2)归纳第(1)问的结果,可以猜想出nn +1和(n +1)n 的大小关系; (3)根据以上结论,可以得出2 0202 021和2 0212 020的大小关系.参考答案:1.数学表达式:①-5<7;②3y-6>0;③a=6;④x-2x;⑤a≠2;⑥7y-6>5y+2中,是不等式的有(C)A.2个 B.3个 C.4个 D.5个2.选择适当的不等号填空:(1)2<3;(2)4;(3)若a为正方形的边长,则a>0;(4)若x≠y,则-x≠-y.3.如图,左边物体的质量为x g,右边物体的质量为50 g,用不等式表示下列数量关系是x>50.4.用不等式表示:(1)数a小于2;解:a<2.(2)a与5的和是正数;解:a+5>0.(3)a与2的差是负数;解:a-2<0.(4)b的10倍大于27.解:10b>27.5.下列各数中,是不等式3x-2>1的解的是(B)A.1 B.2 C.0 D.-16.不等式的解集x>1在数轴上表示正确的是(C)A B C D7.如图,数轴所表示的不等式的解集是x<3.8.把下列不等式的解集在数轴上表示出来.(1)x >-3;解:(2)x<-32. 解: 9.“满足x<3的每一个数都是不等式x +2<6的解,所以不等式x +2<6的解集是x<3”,这句话是否正确?请你判断,并说明理由.解:这句话不正确,因为满足x<3的数只是不等式x +2<6的部分解,如:x =3.1,x =3.2等都是不等式x +2<6的解,所以这句话不正确.10.语句“x 的18与x 的和不超过5”可以表示为(A) A.x 8+x ≤5 B.x 8+x ≥5 C.8x +5≤5 D.x 8+x =5 11.下列哪个数是不等式2(x -1)+3<0的一个解?(A)A .-3B .-12 C.13D .2 12.不等式x<4的非负整数解的个数有(A)A .4个B .3个C .2个D .1个13.请写出满足下列条件的一个不等式.(1)0是这个不等式的一个解:x <1;(2)-2,-1,0,1都是不等式的解:x <2;(3)0不是这个不等式的解:x >0;(4)与x<-1的解集相同的不等式:x +2<1.14.用不等式表示:(1)a 与3的和大于5;解:a +3>5.(2)x 的2倍与5的差小于1;解:2x -5<1.(3)x 的13与x 的12的和是正数; 解:13x +12x >0. (4)a 的20%与a 的和大于a 的3倍.解:20%a +a>3a.15.已知一支圆珠笔1.5元,签字笔与圆珠笔相比每支贵2元.小华想要买x 支圆珠笔和10支签字笔.若付50元仍找回若干元,则如何用含x 的不等式来表示小华所需支付的金额与50元之间的关系?解:列不等式为:1.5x +10×(1.5+2)<50.16.阅读下列材料,并回答下面的问题.你能比较2 0202 021和2 0212 020的大小吗?为了解决这个问题,先把问题一般化,比较n n +1和(n +1)n(n >0,且n 为整数)的大小.然后从分析n =1,n =2,n =3,…的简单情形入手,从中发现规律,经过归纳、猜想得出结论.(1)通过计算(可用计算器)比较下列①~⑦组两数的大小:(在横线上填上“>”“=”或“<”) ①12<21;②23<32;③34>43;④45>54;⑤56>65;⑥67>76;⑦78>87;(2)归纳第(1)问的结果,可以猜想出nn +1和(n +1)n 的大小关系; (3)根据以上结论,可以得出2 0202 021和2 0212 020的大小关系. 解:(2)当n =1或2时,nn +1<(n +1)n ; 当n >2时,nn +1>(n +1)n . (3)2 0202 021>2 0212 020.。

人教版初中数学七年级下册第9章《不等式与不等式组》测试题及答案

人教版初中数学七年级下册第9章《不等式与不等式组》测试题及答案

人教版初中数学七年级下册第9章《不等式与不等式组》测试题(一)一、选择题:1,下列各式中,是一元一次不等式的是( ) A.5+4>8 B.2x -1 C.2x ≤5D.1x-3x ≥0 2,已知a<b,则下列不等式中不正确的是( )A. 4a<4bB. a+4<b+4C. -4a<-4bD. a-4<b-4 3,下列数中:76, 73,79, 80, 74.9, 75.1, 90, 60,是不等式23x >50的解的有( ) A.5个 B.6个 C.7个 D.8个 4,若t>0,那么12a+12t 与a 的大小关系是( ) A .2a +t>2a B .12a+t>12a C .12a+t ≥12a D .无法确定5,如图,a 、b 、c 分别表示苹果、梨、桃子的质量.同类水果质量相等 则下列关系正确的是( )A .a >c >bB .b >a >cC .a >b >cD .c >a >b6,若a<0关于x 的不等式ax+1>0的解集是( )A .x>1a B .x<1a C .x>-1a D .x<-1a7,不等式组31027x x +>⎧⎨<⎩的整数解的个数是( )A .1个B .2个C .3个D .4个8,从甲地到乙地有16千米,某人以4千米/时~8千米/时的速度由甲到乙,则他用的时间大约为( )A 1小时~2小时 B2小时~3小时 C3小时~4小时 D2小时~4小时9,某种出租车的收费标准:起步价7元(即行使距离不超过3千米都须付7元车费),超过3千米以后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( )A .5千米 B.7千米 C.8千米 D.15千米 10,在方程组2122x y mx y +=-⎧⎨+=⎩中若未知数x 、y 满足x+y ≥0,则m 的取值范围在数轴上表示应是( )二、填空题11,不等号填空:若a<b<0 ,则5a -5b -;a1 b 1;12-a 12-b .12,满足2n-1>1-3n 的最小整数值是________.13,若不等式ax+b<0的解集是x>-1,则a 、b 应满足的条件有______.14,满足不等式组122113x x x -⎧>-⎪⎪⎨-⎪-≥⎪⎩的整数x 为__________.15,若|12x --5|=5-12x -,则x 的取值范围是________.16,某种品牌的八宝粥,外包装标明:净含量为330g ±10g ,表明了这罐八宝粥的净含量x 的范围是 .17,小芳上午10时开始以每小时4km 的速度从甲地赶往乙地,•到达时已超过下午1时,但不到1时45分,则甲、乙两地距离的范围是_________. 18,代数式x-1与x-2的值符号相同,则x 的取值范围________.三、解答题19,解不等式组,并把它的解集在数轴上表示出来.(1)9-4(x-5)<7x+4; (2)0.10.81120.63x x x ++-<-;(3)523(1),317;22x x x x ->+⎧⎪⎨-≤-⎪⎩ (4)6432,2111.32x x x x +≥+⎧⎪+-⎨>+⎪⎩20,代数式213 1--x的值不大于321x-的值,求x的范围21,方程组3,23x yx y a-=⎧⎨+=-⎩的解为负数,求a的范围.22,已知,x满足3351,11.4x xx+>-⎧⎪⎨+>-⎪⎩化简:52++-xx.23,已知│3a+5│+(a-2b+52)2=0,求关于x的不等式3ax-12(x+1)<-4b(x-2)的最小非负整数解.24,是否存在这样的整数m,使方程组24563x y mx y m+=+⎧⎨-=+⎩的解x、y为非负数,若存在,求m•的取值?若不存在,则说明理由.25,有一群猴子,一天结伴去偷桃子.分桃子时,如果每只猴子分3个,那么还剩下59个;如果每个猴子分5个,就都分得桃子,但有一个猴子分得的桃子不够5个.你能求出有几只猴子,几个桃子吗?参考答案一、1,C;2,C;3,A;4,A.解:不等式t>0利用不等式基本性质1,两边都加上12a得12a+t>12a.5,C.6,D.解:不等式ax+1>0,ax>-1,∵a<0,∴x<-1a因此答案应选D.7,D.解:先求不等式组解集-13<x<72,则整数x=0,1,2,3共4个.8,D;9,C.10,D.解:2122x y m x y+=-⎧⎨+=⎩①+②,得3x+3y=3-m,∴x+y=33m-,∵x+y≥0,∴33m-≥0,∴m≤3在数轴上表示3为实心点.射线向左,因此选D.二、11,>、>、<;12,1.解:先求解集n>25,再利用数轴找到最小整数n=1.13,a<0,a=b 解析:ax+b<0,ax<-b,而不等式解集x>-1不等号改变了方向.因此可以确定运用不等式性质3,所以a<0,而-ab=-1,∴b=a.14,-2,-1,0,1 解析:先求不等式组解集-3<x≤1,故整数x=0,1,-1,-2.15,x≤11 解析:∵│a│=-a时a≤0,∴12x--5≤0,解得x≤11.16,320≤x≤340.17,(12~15)km.解:设甲乙两地距离为xkm,依题意可得4×(13-10)<x<4•×(134560-10),即12<x<15.18,x>2或x<1 解析:由已知可得10102020 x xx x->-<⎧⎧⎨⎨->-<⎩⎩或者.三、19,(1)9-4(x-5)<7x+4.解:去括号9-4x+20<7x+4,移项合并11x>25,化系数为1,x>2511.(2)0.10.81120.63x x x++-<-.解:811263x x x++-<-,去分母 3x-(x+8)<6-2(x+1),去括号 3x-x-8<6-2x-2,移项合并 4x<12,化系数为1,x<3.(3)523(1)31722x xxx->+⎧⎪⎨-≤-⎪⎩解:解不等式①得 x>52,解不等式②得 x≤4,∴不等式组的解集52<x ≤4. (4)6432211132x x x x+≥+⎧⎪+-⎨>+⎪⎩解:解不等式①得x ≥-23,解不等式②得x>1,∴不等式组的解集为x>1. 20,57≥x ;21,a<-3;22,7; 23,解:由已知可得535035520212a a ab b ⎧+==-⎧⎪⎪⎪⎨⎨-+=⎪⎪=⎩⎪⎩解得代入不等式得-5x-12(x+1)<-53(x-2),解之得 x>-1,∴最小非负整数解x=0.24,解:24563x y m x y m +=+⎧⎨-=+⎩得11139529m x m y +⎧=⎪⎪⎨-⎪=⎪⎩∵x ,y 为非负数00x y ≥⎧⎨≥⎩∴1113095209m m +⎧≥⎪⎪⎨-⎪≥⎪⎩解得-1311≤m ≤52,∵m 为整数,∴m=-1,0,1,2.答:存在这样的整数m=-1,0,1,2,可使方程24563x y m x y m +=+⎧⎨-=+⎩的解为非负数.点拨:先求到方程组的解,再根据题意设存在使方程组的解00x y ≥⎧⎨≥⎩的m ,•从而建立关于m 为未知数的一元一次不等式组,求解m 的取值范围,选取整数解.25,设有x 只猴子,则有(3x+59)只桃子,根据题意得:0<(3x+59)-5(x-1)<5,解得29.5<x<32,因为x 为整数,所以x=30或x=31,当x=30时,(3x+59)=149,当x=31时,(3x+59)=152.答:有30只猴子,149只桃子或有31只猴子,152只桃子.1. 将不等式组13x x ⎧⎨⎩≥≤的解集在数轴上表示出来,应是 ( )2. 下面给出的不等式组中①23x x >-⎧⎨<⎩②020x x >⎧⎨+>⎩③22124x x x ⎧>+⎪⎨+>⎪⎩④307x x +>⎧⎨<-⎩⑤101x y x +>⎧⎨-<⎩其中是一元一次不等式组的个数是( ) A.2个B.3个C.4个D.5个3. 不等式组24030x x ->⎧⎨->⎩,的解集为( )A.23x << B. 3x > C. 2x <D. 23x x ><-或4. 下列不等式中哪一个不是一元一次不等式( )A.3x >B.1y y -+>C.12x> D.21x >5. 下列关系式是不等式的是( )A.25x += B.2x + C.25x +>D.235+=6. 若使代数式312x -的值在1-和2之间,x 可以取的整数有( ) A.1个B.2个C.3个D.4个7. 不等式组2030x x -<⎧⎨->⎩的正整数解是( )A.0和1 B.2和3 C.1和3 D.1和2 8. 下列选项中,同时适合不等式57x +<和220x +>的数是( )A.3 B.3- C.1- D.19. 不等式211133x ax +-+>的解集是53x <,则a 应满足( ) A.5a > B.5a = C.5a >- D.5a =-10. a 是一个整数,比较a 与3a 的大小是( )C1DA3BA.3a a >B.3a a <C.3a a =D.无法确定二、填空题(每题3分,共30分) 11. 不等式(3)1a x ->的解集是13x a <-,则a 的取值范围 . 12. 某商品进价是1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降 元出售商品.13. 一个两位数,十位数字与个位数字的和为6,且这个两位数不大于42,则这样的两位数有 ______个. 14. 若a b >,则22____ac bc .15. 关于x 的方程32x k +=的解是非负数,则k 的取值范围是 . 16. 若(1)20mm x++>是关于x 的一元一次不等式,则m 的取值是 .17. 关于x 的方程4132x m x -+=-的解是负数,则m 的取值范围 .18. 若0m n <<,则222x m x n x n >⎧⎪>-⎨⎪<⎩的解集为 .19. 不等式15x +<的正整数解是 .20. 不等式组⎩⎨⎧-<+<632a x a x 的解集是32+<a x ,则a 的取值 .三、解答题(21、22每小题8分,23、24第小题10分,共36分) 21. 解不等式5(1)33x x x +->+22. 解不等式组3(2)41214x x x x --⎧⎪⎨-<-⎪⎩≤23. 关于x ,y 的方程组322441x y k x y k +=+⎧⎨+=-⎩的解x ,y 满足x y >,求k 的取值范围.24.有学生若干人,住若干间宿舍,若每间住4人,则有20人无法安排住宿;若每间住8 人,则有一间宿舍不满也不空,问宿舍间数和学生人数分别是多少?25.喷灌是一种先进的田间灌水技术.雾化指标P是它的技术要素之一.当喷嘴的直径d(mm).喷头的工作压强为h(kPa)时.雾化指标P=100hd.如果树喷灌时要求3000≤P≤4000.若d=4mm.求h的范围.四、解答题(本题共2小题,每题12分,共24分)26.某同学在A,B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包的单价的4倍少8元.(1)求该同学看中的随身听和书包的单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样商品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?27.在“512大地震”灾民安置工作中,某企业接到一批生产甲种板材240002m和乙种板材120002m的任务.(1)已知该企业安排140人生产这两种板材,每人每天能生产甲种板材302m或乙种板材202m .问:应分别安排多少人生产甲种板材和乙种板材,才能确保他们用相同的时间完成各自的生产任务?(2)某灾民安置点计划用该企业生产的这批板材搭建A B ,两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A 型板房和一间B 型板房所需板材问:这400间板房最多能安置多少灾民?参考答案:一、选择题:1. B2. B.3. A4. C.5. C.6. B7. D.8. D.9. B.10. D. 二、填空题:11. 3a <. 12. 450元. 13. 4个. 14. ≥. 15. 2k ≤. 16. 1m =.17. 3m <. 18. 无解. 19. 1,2,3. 20..a ≤ -9 三、解不等式(组):21. 2x >-. 22. 312x <≤ 23. 1k > 24.解:设宿舍间数为x ,学生人数为y. 由题意得⎪⎩⎪⎨⎧>--<--+=0)1(88)1(8204x y x y x y解得: 5 < x < 7∵x 是正整数 ∴ x = 6 故y=44 答:宿舍间数为6,学生人数为44 . 24.解:把d=4代入公式P=100h d 中得P=1004h,即P=25h ,又∵3000≤P≤4000,∴3000≤25h≤4000,120≤h≤160,故h 的范围为120~160(kPa )26. (1)随身听的单价为360元,书包单价为92元.(2)在超市A 购买更省钱. 27.(1)设安排x 人生产甲种板材,应安排80人生产甲种板材,60人生产乙种板材.(2)设建造A 型板房m 间,则建造B 型板房为(400)m -间,由题意有:5478(400)240002641(400)12000m m m m +-⎧⎨+-⎩≤≤,.解得300m ≥.又0400m ≤≤,300400m ∴≤≤.这400间板房可安置灾民58(400)33200w m m m =+-=-+. ∴当300m =时,w 取得最大值2300名.答:这400间板房最多能安置灾民2300名.。

(完整版)人教版七年级数学不等式练习题及答案

(完整版)人教版七年级数学不等式练习题及答案

人教版七年级数学不等式练习题姓名___________班级__________学号__________分数___________一、选择题1.(6396-点津)下列按要求列出的不等式中,不正确的是( )A .m 是非负数:m >0B .m 是正数:m >0C .m 不是零:m ≠0D .m 不小于零:m ≥02.(1809)当0<a 时,下列不等式中正确的是( )A .02<a ;B .a a 3445<; C .a a 32<; D .a a 14.3>π; 3.(2577)若b a >,则下列不等式一定成立的是( )A .1<ab B .1>b a C .b a ->- D .0>-b a 4.(1785)若m >n ,则下列不等式中成立的是( )A .m + a <n + b ;B .ma <nb ;C .ma 2>na 2;D .a -m <a -n ;5.(1762)无论x 取什么数,下列不等式总成立的是( )A .x +5>0;B .x +5<0;C .-(x +5)2<0;D .(x -5)2≥0;6.(3051)a 是任意有理数,下列各式正确的是( )A .a a 43>;B .43a a <;C .a a ->;D .a a ->-211; 7.(1757)下列不等式一定成立的是( )A .5a >4a ;B .x +2<x +3;C .-a >-2a ;D .aa 24>; 8.(3054)无论x 取什么数,下列不等式总成立的是( )A .x +5>0;B .x +5<0;C .-(x +5)2<0;D .(x -5)2≥09.(1744)如果b a >,且c 为实数,那么下列不等式一定成立的是( )A .bc ac >;B .bc ac <;C . 22bc ac >;D . 22ac bc ≥;10.(3049)设01x <<,则x ,2x ,x 2的大小是( )A .x x x >>22;B .x x x >>22;C .22x x x >>;D ..22x x x >>二、填空题11.(1727)不等式451>+x 的两边都加上 ,得35>x .12.(1771)若x ≠y ,则x 2+|y |_________0.13.(1728)不等式4125x -≤的两边都除以 ,得15x -≥. 14.(1686)当b <0时a ,a -b ,a +b 的大小顺序是____________. 15.(3045)设a <b ,则c _____0时,.bc ac <16.(1806)当0<<a x 时,2x 与ax 的大小关系是 _______________.17.(1444)当m >0时,关于x 的不等式 -mx > m 的解集是____________.18.(1691)如果12<x <1,则(2x -1)(x -1)________0.( 填“>”“<”或“=”) 19.(3177)在关于1x 、2x 、3x 的方程组⎪⎩⎪⎨⎧=+=+=+313232121a x x a x x a x x 中,已知321a a a >>,那么将1x 、2x 、3x 从大到小排列起来应该是_____.20.(1445)关于x 的方程2x +3k =1的解是负数,则k 的取值范围是_______.三、解答题21.(6406-点津)小明将不等式3x <2x 的两边都除以x ,得到3<2,显然不正确,请说明其中的道理,并将原不等是正确变形为“x >a ”或“x <a ”的形式.22.(3061)如果不等式组⎩⎨⎧>>nx m x 的解集是m x >,则m 与n 的关系是?人教版七年级数学第九章不等式的性质答案一、选择题1.(6396)A ;2.(1809)A .;3.(2577)D .;4.(1785)D .;5.(1762)C .;6.(3051)B .;7.(1757)B .;8.(3054)D .;9.(1744)C .;10.(3049)A ;二、填空题11.(1727)-1;12.(1771)≥;13.(1728)-45; 14.(1686)a +b <a <a -b ;15.(3045)>; 16.(1806)2x ax ;17.(1444)x <-1; 18.(1691)<;19.(3177)x 3<x 1<x 2;20.(1445)k >13; 三、解答题21.(6406)因为根据不等式的性质,要先判断x 的符号才能在不等式的两边同时除以x ,如果x 为正数,结果不改变符号,如果x 为负数,结果要改变符号.x <0.22.(3061)m >n ;人教版七年级数学第九章练习题2姓名___________班级__________学号__________分数___________一、选择题1.(1703)已知α,β都是钝角,甲、乙、丙、丁四位同学在计算16(α+β)时的结果一次为50°,26°,72°,90°其中,计算可能正确的是( )A .甲;B .乙;C .丙;D .丁;2.(1810)已知三角形的两边长分别是3、5,则第三边a 的取值范围是( )A .82<<aB .2≤ a ≤ 8C .2>aD .8<a3.(1754)现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排( )A .4辆;B .5辆;C .6辆;D .7辆 ;4.(3134)学校总务处与教务处各领了同样数量的信封和信笺,总务处每发出一封信都只用1张信笺,教务处每发出一封信都用3 张信笺.结果总务处用掉了所有的信封,但余下50 张信笺,而教务处用掉了所有的信笺,但余下50 个信封.则两处所领的信笺张数、信封个数分别为( )A .150、100B . 125、75C .120、70D .100、1505.(2327)小芳和爸爸、妈妈三人玩跷跷板,三人的体重一共为150千克,爸爸坐在跷跷板的一端,体重只有妈妈一半的小芳和妈妈一同坐在跷跷板的另一端,这时,爸爸的那一端仍然着地.请你猜一猜小芳的体重应小于( )A .49千克B .50千克C .24千克D .25千克6.(3036)三个连续自然数的和小于15,这样的自然数组共有( )A .6组B .5组C .4组D .3组二、填空题7.(3562-08宁夏)学校为七年级学生订做校服,校服型号有小号、中号、大号、特大号四种.随机抽取了100名学生调查他们的身高,得到身高频数分布表如下:已知该校七年级学生有800名,那么中号校服应订制 套.8.(1776)已知三角形的两边为3和4,则第三边a 的取值范围是________.9.(1794)阳阳从家到学校的路程为2400米,他早晨8点离开家,要在8点30分到8点40分之间到学校,如果用x 表示他的速度(单位:米/分),则x 的取值范围为_____________________.10.(3081)某公司去年的总收入比总支出多50 万元,今年比去年的总收人增加10% ,总支出节约20 % .如果今年的总收人比总支出多100 万元,那么去年的总收入是_______万元,总支出是_______万元.11.(3140)王大伯承包了25 亩王地,今年春季改种茄子和西红柿两种大棚蔬莱,共用去了 44 000 元,其中种茄子每亩用了 1700 元,获纯利 2400 元;种西红柿每亩用了 1800 元,获纯利 2600 元,则王大伯共获纯利______元.12.(3165)有大、小两种货车,2 辆大车与3 辆小车一次可运货15.5吨;5 辆大车与6 辆小车一次可运货35 吨,则3 辆大车与5 辆小车一次可运货____吨.13.(4414-点津)小明用100元钱购买笔记本和钢笔共30件,已知每本笔记本2元,每支钢笔5元,那么小明最多买______支钢笔.14.(4417-点津)某商品的金价是1000元,售价为1500元,由于销售情况不好,商店决定降价出售,但又要保证利润率不低于5%,那么,商店最多降_________元出售此商品.15.(7399)以三条线段3、4、x-5为这组成三角形,则x的取值为____________.三、解答题16.(3206)某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000 元,经粗加工后销售,每吨利润可达4500 元;经精加工后销售,每吨利润涨至7500 元,当地一家农工商公司收获这种蔬菜140 t,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16 t;如果进行精加工,每天可加工6 t,但两种加工方式不能同时进行,受季节条件限制,公司必须在15天内将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能多地对蔬菜进行精加工,没有来得及进行加工的蔬菜,在市场上销售;方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15 天完成.你认为哪种方案获利最多?17.(6993-08新疆)某社区计划购买甲、乙两种树苗共600棵,甲、乙两种树苗单价及成活率见下表:(1)若购买树苗资金不超过44000元,则最多可购买乙树苗多少棵?(2)若希望这批树苗成活率不低于90%,并使购买树苗的费用最低,应如何选购树苗?购买树苗的最低费用为多少?18.(7071-08鹤岗)某工厂计划为震区生产A、B两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A型桌椅(一桌两椅)需木料0.5m3,一套B型桌椅(一桌三椅)需木料0.7m3,工厂现有库存木料302m3.(1)有多少种生产方案?(2)现要把生产的全部桌椅运往震区,已知每套A型桌椅的生产成本为100元,运费2元;每套B型桌椅的生产成本为120元,运费4元,求总费用y(元)与生产A型桌椅x(套)之间的关系式,并确定总费用最少的方案和最少的总费用。

人教版七年级下册数学第九章 不等式与不等式组含答案

人教版七年级下册数学第九章 不等式与不等式组含答案

人教版七年级下册数学第九章不等式与不等式组含答案一、单选题(共15题,共计45分)1、已知三个非负数a、b、c满足若,则的最小值为()A. B. C. D.-12、已知a、b、c均为实数,a<b,那么下列不等式一定成立的是()A. B. C. D.3、不等式组的解是()A.﹣3<x≤5B.x≥﹣3C.﹣3≤x<5D.x<54、如果a>b,c<0,那么下列不等式成立的是()A. a+c>b+c;B. c-a>c-b;C. ac>bc;D..5、下列式子是一元一次不等式的是()A.x+y≤0B.x 2≥0C. >3+xD. <06、已知实数a,b满足a+1>b+1,则下列不符合题意的为()A.a>bB.a+2>b+2C.﹣a<﹣bD.2a>3b7、解集在数轴上表示为如图所示的不等式组是()A. B. C. D.8、若a>b,且c为任意有理数,则下列不等式正确的是()A.ac>bcB.ac<bcC.ac 2>bc 2D.a+c>b+c9、如果不等式组有解,那么m的取值范围是()A.m>1B.m≤2C.1<m≤2D.m>﹣210、不等式2x﹣3≤1的解集在数轴上表示正确的是()A. B. C.D.11、不等式3x+2<2x+3的解集在数轴上表示正确的是( )A. B. C. D.12、不等式组的解集在数轴上表示正确的是()A. B. C.D.13、一元一次不等式组的解集是()A. B. C. D.14、不等式2x﹣4≤0的解集在数轴上表示为()A. B. C.D.15、若,则下列式子错误的是()A. B. C. D.二、填空题(共10题,共计30分)16、若,则2-3m________2-3n(填“”或“”).17、不等式-2x+1>-5的最大整数解是________。

18、已知关于x的方程(a+1)x=2ax﹣a2的解是负数,那么a的取值范围是________.19、不等式3+2x>5的解集是________.20、若不等式(4-k)x>-1的解集为x,则k的取值范围是________ .21、不等式10﹣2x≥2的正整数解为________.22、解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得________(Ⅱ)解不等式②,得________(Ⅲ)把不等式①和②的解集在数轴上表示出来:________(Ⅳ)原不等式组的解集为________23、若关于x的不等式x﹣m≥﹣1的解集如图所示,则m等于________.24、在东安县举办了永州市首届中学生足球比赛,比赛规则是:胜一场积3分,平一场积1分;负一场积0分.某校足球队共比赛11场,以负1场的成绩夺得了冠军,已知该校足球队最后的积分不少于25分,则该校足球队获胜的场次最少是________场.25、不等式组的解集是________.三、解答题(共6题,共计25分)26、求不等式组的整数解.27、定义新运算:对于任意实数a,b都有:a⊕b=a(a﹣b)+1,如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,求不等式3⊕x<25的解集.28、求不等式-x+1>0的解集和它的非负整数解,并把解集在数轴上表示出来.29、解不等式组:.30、解不等式组:,并把解集在数轴上表示出来。

人教版初中数学七年级下册 第九章 不等式与不等式组 同步练习【含答案】

人教版初中数学七年级下册 第九章 不等式与不等式组 同步练习【含答案】

人教版初中数学七年级下第九章同步练习__________一、单选题1.若关于x 的不等式组 有四个整数解,则a 的取值范围是( ){2x <3(x -3)+1,3x +24>x +a A. - < a≤ - B. - ≤a < - C. - ≤a≤ - D. - < a < - 114521145211452114522.数轴上点A ,B ,C 分别对应数2021,-1,x ,且C 与A 的距离大于C 与B 的距离,则( )A. B. C. D. x <-1x >2021x <1010x <10113. 解不等式 时,下列去分母正确的是( )1-x -26<2x -13A. B. 6-x -2<2(2x -1)1-x +2<2(2x -1)C. D. 6-x +2<2(2x -1)6-x +2<2x -14.“新冠肺炎”知识竞赛共20道题,每答对一题得10分,答错或不答都扣5分,小颖得分不低于 90 分.设她答对了 x 道题,根据题意可列出的不等式为( )A. 10x﹣5(20﹣x )≥90B. 10x﹣5(20﹣x )>90C. 10x﹣(20﹣x )≥90D. 10x﹣(20﹣x )>905.下列各式中,是一元一次不等式的是( )A. B. C. D. 5+4>82x -12x =5-3x ≥06.在平面直角坐标系中,若点 在第二象限,则 的取值范围为( )B(m -3,m +1)m A. B. C. D. -1<m <3m >3m <-1m >-17.若 ,则下列结论中错误的是( )m <n <0A. B. C. D. m -9<n -9-m >-n 1n >1m m n >18.在满足不等式 的x 取值中,x 可取的最大整数为( )7-2(x +1)>0A. 4 B. 3 C. 2 D. 无法确定9.已知锐角α,钝角β,赵,钱,孙,李四位同学分别计算 的结果,分别为68.5°,22°,14(α+β)51.5°,72°,其中只有一个答案是正确的,那么这个正确的答案是( ) A. 68.5° B. 22° C. 51.5° D. 72°10.若a >b ,则下列各式中一定成立的是( )A. a +2<b +2B. a -2<b -2C. >D. -2a >-2ba 2b 2二、填空题11.若不等式-2x <2m +4 与不等式 2x +1>5 有相同的解集,则 m 的值________.12.不等式组的解集是________. {6-3x ⩾02x <x +413.对于整数a ,b ,c ,d ,符号 表示运算ad﹣bc ,已知1< <3,则bd 的值是________.|a b c d ||1b d 4|14.若不等式组的解集是 ,则m 的取值范围是________. {x +4>2x +1-x >-m x <315.绝对值不大于4的所有整数的积等于________.16.不等式组 的整数解是________.{3x ≤2x -4x -12-1<x +1三、计算题17.解不等式组:{3-x ≥03(1-x)>(1-x)四、解答题18.解不等式: ,并把它的解集在数轴上表示出来.3(x +1)≤5x +7五、综合题19.阅读材料:如果x 是一个有理数,我们把不超过x 的最大整数记作[x] .例如,[3.2]=3,[5]=5,[-2.1]=-3.那么,x=[x]+a ,其中0≤a <1.例如,3.2=[3.2]+0.2,5=[5]+0,-2.1=[-2.1]+0.9.请你解决下列问题:(1)[4.8]= ________,[-6.5]= ________;(2)如果[x]=3,那么x 的取值范围是________;(3)如果[5x -2]=3x+1,那么x 的值是________;(4)如果x=[x]+a ,其中0≤a <1,且4a= [x]+1,求x 的值.20.列方程解应用题:七年级1班计划购买一批书包和词典作为“迎新知识竞赛”活动奖品,了解到每个书包价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.(1)求每个书包和每本词典的价格;(2)若该班计划用900元购买40份(即书包、词典的总数量)奖品,设其中购买了 个书包,请写出m 余下的钱的代数式,当余下的钱为最小值时,问该班购买书包和词典的数量各是多少?21.例:解不等式(x﹣2)(x+3)>0解:由实数的运算法则:“两数相乘,同号得正”得① ,或② ,{x -2>0x +3>0{x -2<0x +3<0解不等式组①得,x >2,解不等式组②得,x <﹣3,所以原不等式的解集为x >2或x <﹣3.阅读例题,尝试解决下列问题:(1)平行运用:解不等式x 2﹣9>0;(2)类比运用:若分式 的值为负数,求x 的取值范围.x +1x -222.沅陵一中有360张旧课桌需维修,经过甲、乙两个维修小组的竞标得知,甲组工作效率是乙组的1.5倍,且甲组单独维修完这批旧课桌比乙组单独维修完这批旧课桌少用5天;已知甲组每天需要付工资800元,乙组每天需要付工资400元;(1)求甲、乙两个小组每天各维修多少张旧课桌?(2)学校维修这批旧课桌预算资金不超过7000元,时间不超过12天,请你帮学校算一算有几种维修方案(天数不足1天的按1天算);每种方案需要多少钱?23.生活垃圾处理是关系民生的基础性公益事业,加强生活垃圾分类处理,维护公共环境和节约资源是全社会共同的责任,某小区购进A 型和B 型两种分类垃圾桶,购买A 型垃圾桶花费了2500元,购买B 型垃圾桶花费了2000元,且购买A 型垃圾桶数量是购买B 型垃圾桶数量的2倍,已知购买一个B 型垃圾桶比购买一个A 型垃圾桶多花30元.(1)求购买一个A 型垃圾桶、一个B 型垃圾桶各需多少元?(2)若小区一次性购买A 型,B 型垃圾桶共60个,要使总费用不超过4000元,最少要购买多少个A 型垃圾桶?24.(1)解不等式: ,并把它的解表示在数轴上. 2x -12>1(2)解不等式组: {3-x 2≤1,3x +2≥ 4.答案解析部分一、单选题1. B解:解不等式2x<3(x-3)+1可得x>8,解不等式可得x<2-4a.3x +24>x +a ∵不等式组有解集,∴8<x<2-4a.∵不等式组有4个整数解,∴整数解为9、10、11、12.∵x<2-4a ,∴12<2-4a≤13,∴.-114≤a <-52 故B.【分析】首先根据一元一次不等式的解法求出不等式组中两个不等式的解集,然后确定出不等式组的解集为8<x<2-4a ,根据不等式组有4个整数解可推出12<2-4a≤13,最后求解关于a 的不等式组即可.2. C数轴上点A ,B ,C 分别对应数2021, ,x ,-1由题意AC>BC ,分三种情况考虑,当点C 在点A 右侧,即x>2021时,由2021>-1则x-2021<x+1即AC<BC 不符合题意,当点C 在点A ,B 之间,则-1≤x≤2021,2021-x>x+1,解得x<1010,当点C 在点B 左侧时,则x<-1,2021>-1,2021-x>-1-x ,综合得出:x<1010.故选择:C .【分析】,分三种情况讨论:当点C 在点A 右侧x>2021 ,当点C 在点A, B 之间-1≤x≤2021 ,当点C 在点B 左侧时, x<-1,利用AC> BC 即可求出结果.3. C解:在不等式中,去分母为1-x -26<2x -136-x +2<2(2x +1).故C .【分析】根据不等式的性质2,在不等式两边乘以6去分母得到结果.4. A设她答对了x 道题,根据题意,得10x−5(20−x )≥90.故A .【分析】小颖答对题的得分: 10x ;小颖答错或不答题的-5( 20-x) ,根据不等关系:小颖得分不低于90分,故可得到不等式.5. D、 中不含有未知数,不是一元一次不等式,故此选项不符合题意;A 5+4>8 、 是代数式,不是一元一次不等式,故此选项不符合题意;B 2x -1 、 是一元一次方程,不是一元一次不等式,故此选项不符合题意;C 2x =5 、 是一元一次不等式,故此选项符合题意.D -3x ≥0故 .D【分析】末知数的次数是1的不等式,叫做一元-次不等式,根据其定义分别判断即可.6. A解:∵点 在第二象限,B(m -3,m +1)∴可得到 ,{m-3<0m +1>0解得 的取值范围为 .m -1<m <3故 .-1<m <3 【分析】由于第二象限内点的坐标符号为负、正,据此列出不等式组,解之即可.7. C解:A 、由m <n ,根据不等式的两边都加上(或减去)同一个数,所得到的不等式仍成立,故两边减去9,得到:m-9<n-9正确,故此选项不符合题意;B 、不等式的两边都乘(或都除以)同一个负数,必须把不等号的方向改变,所得到的不等式成立,故两边同时乘以-1得到-m >-n 正确,故此选项不符合题意;C 、在m <n <0,若设m=-2, n=-1则 , 故该选项错误,符合题意;1n <1m D 、由m <n <0,根据不等式的两边都乘(或都除以)同一个负数,必须把不等号的方向改变,所以不等式的两边同时除以负数n 得到,故该选项正确,不符合题意.m n >1 故C.【分析】不等式的基本性质:①在不等式两边同加(或减)同一个数(或式子),不等号的方向不变;②在不等式两边同乘(或除以)同一个正数,不等号的方向不变;③在不等式两边同乘(或除以)同一个负数,不等号的方向改变,从而即可一一判断得出答案.8. C解:7-2(x +1)>0∴7-2x -2>0∴-2x >-5< ∴x 52为整数,∵x 可取的最大整数为 ∴x 2.故 C.【分析】解不等式可得x 的范围,并在范围内找出x 的最大整数解即可.9. C解:∵锐角是大于0°小于90°的角,大于直角(90°)小于平角(180°)的角叫做钝角,∴0<α<90°,90°<β<180°,∴22.5°< <67.5°,14(α+β)∴满足题意的角只有51.5°,故C .【分析】根据锐角和钝角的概念进行解答,求出范围,然后做出正确判断。

七年级数学不等式练习题及参考答案【人教版】

七年级数学不等式练习题及参考答案【人教版】

七年级数学《不等式与不等式(组)》练习题班级_______姓名________成绩_________A 卷 ·基础知识(一)一、选择题(4×8=32)1、下列数中是不等式x 32>50的解的有( ) 76, 73, 79, 80, 74.9, 75.1, 90, 60A、5个 B、6个 C、7个 D、8个2、下列各式中,是一元一次不等式的是( )A、5+4>8 B、12-x C、x 2≤5 D、x x 31-≥0 3、若b a ,则下列不等式中正确的是( )A、b a +-+-33 B、0 b a - C、b a 3131D、b a 22-- 4、用不等式表示与的差不大于2-,正确的是( )A、2-- e d B、2-- e d C、e d -≥2- D、e d -≤2-5、不等式组⎩⎨⎧22 x x 的解集为( ) A 、x >2- B 、2-<x <2 C 、x <2 D 、 空集6、不等式86+x >83+x 的解集为( )A 、x >21 B 、x <0 C 、x >0 D 、x <21 7、不等式2+x <6的正整数解有( ) A 、1个 B 、2个 C 、3 个 D 、4个8、下图所表示的不等式组的解集为( )-234210-1A 、x 3B 、32 x -C 、 2- xD 、32 x -二、填空题(3×6=18)9、“x 的一半与2的差不大于1-”所对应的不等式是10、不等号填空:若a<b<0 ,则5a - 5b -;a1 b 1;12-a 12-b 11、当a 时,1+a 大于212、直接写出下列不等式(组)的解集①42 -x ②105 x -③ ⎩⎨⎧-21 x x 13、不等式03 +-x 的最大整数解是14、某种品牌的八宝粥,外包装标明:净含量为330g ±10g ,表明了这罐八宝粥的净含量x 的范围是三、解下列不等式,并把它们的解集在数轴上表示出来。

人教版七年级数学下册《第九章不等式与不等式组》测试卷-有答案

人教版七年级数学下册《第九章不等式与不等式组》测试卷-有答案

人教版七年级数学下册《第九章不等式与不等式组》测试卷-有答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.若,则下列式子正确的是()A.B.C.D.2.某超市花费元购进苹果千克,销售中有的正常损耗,为避免亏本其它费用不考虑,售价至少定为多少元千克?设售价为元千克,根据题意所列不等式正确的是()A.B.C.D.3.不等式的解集为()A.B.C.D.4.不等式组的解集在数轴上表示为()A.B.C.D.5.已知的解满足,则的取值范围是()A.B.C.D.6.某次知识竞赛共有20道题,答对一题得10分,答错或不答均扣5分,小玉得分超过95分,他至多可以答错或不答的试题道数为()A.5 B.6 C.7 D.87.某种家用电器的进价为800元,出售的价格为1 200元,后来由于该电器积压,为了促销,商店准备打折销售,但要保证利润率不低于5%,则至多可以打()A.6折B.7折C.8折D.9折8.如图点A表示的数是-2,点B表示的数是3,点C是(与点A、B不重合)线段AB上的一点,且点C表示的数是,则x的取值范围是()A.B.C.D.二、填空题9.不等式组的整数解是.10.已知不等式组无解,则的取值范围是.11.某超市以每个50元的进价购入100个玩具,并以每个75元的价格销售,两个月后玩具的销售款已超过这批玩具的进货款,这时至少已售出玩具.12.有10名菜农,每人可种茄子3亩或辣椒2亩,已知茄子每亩可收入0.5万元,辣椒每亩可收入0.8万元,要使总收入不低于15.6万元,则最多只能安排人种茄子.13.世纪公园的门票是每人5元,一次购门票满40张,每张门票可少1元.若少于40人时,一个团队至少要有人进公园,买40张门票反而合算.三、计算题14.解不等式组,并把解集在数轴上表示出来.15.若关于x的不等式组恰有三个整数解,求实数a的取值范围.16.某市电力部门]实行两种电费计价方法.方法一是使用“峰谷电”:每天8:00至22:00,用电每千瓦时收费0.56元(“峰电”价);22 :00到次日8:00,每千瓦时收费0.28元(“谷电”价).方法二是不使用“峰谷电”:每千瓦时均收费0.53元如果小林家上月总用电量为140千瓦时,那么当“峰电”用量为多少时,使用“峰谷电”比较合算?17.我区某中学体育组因高中教学需要本学期购进篮球和排球共80个,共花费5800元,已知篮球的单价是80元/个,排球的单价是50元/个.(1)篮球和排球各购进了多少个(列方程组解答)?(2)因该中学秋季开学准备为初中也购买篮球和排球,教学资源实现共享,体育组提出还需购进同样的篮球和排球共40个,但学校要求花费不能超过2810元,那么篮球最多能购进多少个(列不等式解答)?18.某社区原来每天需要处理生活垃圾920吨,刚好被12个A型转运站和10个B型转运站处理.已知一个A型转运站比一个B型转运站每天多处理7吨生活垃圾.(1)每个A型或B型转运站每天处理生活垃圾各多少吨?(2)由于垃圾分类要求的提高,每个转运站每天将少处理8吨生活垃圾,同时由于市民环保意识增强,该社区每天需要处理的生活垃圾比原来少10吨.若该区域计划增设A型、B型转运站共5个,试问至少需要增设几个A型转运站才能当日处理完所有生活垃圾?参考答案:1.C2.A3.D4.A5.C6.B7.B8.A9.-2 , -1 ,0,1,210.m≥-311.6712.413.3314.解:解不等式①,得:解不等式②,得:则不等式组的解集为:将不等式组的解集表示在数轴上如图:15.解:解不等式①,得解不等式②,得 .∵不等式组恰有三个整数解, .16.解:设小林家每月“峰电”用电量为x千瓦时则0.56x+0.28(140-x) <0.53×140解得x<125.即当“峰电”用电量小于125千瓦时使用“峰谷电”比较合算17.(1)解:设购进篮球x个,购进排球y个根据题意得:解得: .答:购进篮球60个,购进排球20个.(2)解:设购进篮球m个,则购进排球(40-m)个根据题意得:80m+50(40-m)≤2810解得:m≤27.答:篮球最多能购进27个.18.(1)解:设每个B型转运站每天处理生活垃圾x吨,则每个A型转运站每天处理生活垃圾吨.根据题意可得解得:.答:每个B型点位每天处理生活垃圾38吨;(2)解:设需要增设y个A型转运站才能当日处理完所有生活垃圾由(1)得每个A型转运站每天处理生活垃圾45吨分类要求提高后,每个A型点位每天处理生活垃圾(吨)每个B型转运站每天处理生活垃圾(吨)根据题意可得:解得∵y是正整数,∴符合条件的y的最小值为3答:至少需要增设3个A型转运站才能当日处理完所有生活垃圾.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式练习
1.如果a >b ,那么下列不等式中不成立的是 ( )
A 、 a ―3>b ―3
B 、 ―3a >―3b
C 、
3a >3
b
D 、 ―a <―b 2.已知两个不等式的解集在数轴上如图表示,那么这个解集为 ( )
A 、x ≥-1
B 、x >1
C 、-3<x ≤-1
D 、x >-3 3.“x 的2倍与3的差不大于8”列出的不等式是 ( )
A 、2x -3≤8
B 、2x -3≥8
C 、2x -3<8
D 、2x -3>8
4.在数轴上表示不等式x ≥-2的解集,正确的是 ( )
A B C D
A 、m m <-
B 、1x y -≤
C 、2
30x x --≥ D 、a b c +> 5.如果0,c ≠则下列各式中一定正确的是 ( ) A 、23c <++c B 、23c c -<- C 、2c c > D 、
21c c
> 6.由m n >得到2
2
ma na >,则a 应该满足的条件是 ( ) A 、0a > B 、0a < C 、0a ≠ D 、a 为任意实数 7.已知125y x =-,223y x =-+,如果12y y <,则x 的取值范围是 ( ) A 、2x > B 、2x < C 、2x >- D 、2x <- 8.不等式475x a x ->+的解集是1x <-,则a 为 ( ) A 、-2 B 、2 C 、8 D 、5
9.若不等式(a―5)x<1的解集是x>
5
1
-a ,则a的取值范围是( ) A、a>5 B、a<5 C、a≠5 D、以上都不对
10.不等式组⎩

⎧>+≤0312x x 的解集在数轴上可表示为 ( )
11.如果不等式组⎩⎨
⎧>-<+n x x x 737的解集是x >7,则n 的取值范围是 ( )
A 、n ≥7
B 、n ≤7
C 、n=7
D 、n <7
12.有理数a 、b 、c 在数轴上的对应点的位置如图所示,下列式子中正确的是( )
A 、b+c >0
B 、a-b >a-c
C 、ac >bc
D 、ab >ac 13.若abcd >0,a+b+c+d >0,则a 、b 、c 、d 中负数的个数至多有( )个
A 、1
B 、2 C、3 D、4
14.若x <y ,则x -2 y -2;若9
3b
a -<-
,则b 3a 。

(填“<、>或=”号) 15.已知三角形的两边为3和4,则第三边a 的取值范围是________。

16.恩格尔系数表示家庭日常饮食开支占家庭经济总收入的比例,它反映了居民家庭的实际
则用含n 的不等式表示小康家庭的恩格尔系数为
17.从小明家到学校的路程是2400米,如果小明早上7点离家,要在7点30分到40分之间到达学校,设步行速度为x 米/分,则可列不等式组为__________________,小明步行的 速度范围是_________
2x -a <1
18.若不等式组 的解集为—1<x <1,那么(a —1)(b —1)的值等于 。

x -2b >3
19.若关于x 的方程组⎩⎨⎧-=++=+1
34123p y x p y x 的解满足x >y ,则P 的取值范围是_________
20.解下列不等式(组),并把解集在数轴上表示出来:
(1))1(2)3(410-≤--x x (2)⎪⎩⎪⎨⎧->+≥--13
214
)2(3x x
x x
21.若方程组⎩⎨
⎧-=-=+323a y x y x 的解x 、y 都是正数,求a 的取值范围。

22.某次知识竞赛共有25道题,每一题答对得5分,答错或不答都扣3分,小明得分要超
过90分,他至少要答对多少道题?
23.登山前,登山者要将矿泉水分装在旅行包内带上山。

若每人2瓶,则剩余3瓶,若每人
带3瓶,则有一人所带矿泉水不足2瓶。

求登山人数及矿泉水的瓶数。

24.将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放; 若
每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。

问有笼多少个?有鸡多少只?
25.某工厂现有甲种原料36千克,乙种原料20千克,计划用这两种原料生产A、B两种产品共12件。

已知生产一件A种产品需甲种原料3千克,乙种原料1千克;生产一件B 种产品需甲种原料2千克,乙种原料5千克
(1)设生产x件A种产品,写出x应满足的不等式组;
(2)请你设计出符合题意的几种生产方案。

26.某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:
(1)该公司对这两种户型住房有哪几种建房方案?
(2)该公司如何建房获得利润最大?
(3)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?
注:利润=售价-成本。

相关文档
最新文档