人教版初三数学下册-圆-知识点归纳

合集下载

九年级下数学圆知识点总结

九年级下数学圆知识点总结

九年级下数学圆知识点总结在九年级下学期的数学课程中,圆是一个重要的几何形状。

学习圆的相关知识对于理解几何学和进一步解决问题至关重要。

在本文中,将对九年级下数学课程的圆相关知识点进行总结。

一、圆的定义和基本性质1. 圆的定义:圆是由平面上离定点距离相等的所有点组成的集合。

2. 圆的要素:圆心、半径和直径是圆的基本要素。

- 圆心:圆的中心点,通常用字母O表示。

- 半径:圆心到圆上任意一点的距离,通常用字母r表示。

- 直径:通过圆心的一条线段,它的两个端点在圆上,通常用字母d表示。

3. 圆的性质:- 圆上任意两点的距离等于半径的长度。

- 圆的直径是半径的两倍。

- 圆的周长等于直径乘以π(圆周率),即C = πd。

- 圆的面积等于半径平方乘以π,即A = πr²。

二、圆的位置关系和判定方法1. 圆的位置关系:- 同心圆:具有相同圆心但半径不同的圆。

- 内切圆:两个圆相交,且较小的圆完全位于较大的圆内部,二者只有一个公共点。

- 外切圆:两个圆相交,且较小的圆完全位于较大的圆外部,二者只有一个公共点。

- 相交圆:两个圆有两个不重叠的公共点。

- 相离圆:两个圆没有公共点。

2. 判定圆的方法:- 已知圆心和半径:根据圆的定义,可以通过圆心和半径确定一个圆。

- 已知圆上的三个点:三点确定一个圆,可以根据圆的性质绘制出圆来。

- 已知直径两端的点:通过两点绘制直径,以直径中点为圆心,直径的一半为半径即可确定圆。

三、圆的相关角度1. 弧度制和角度制:- 弧度制:用圆的弧长与半径的比值表示,一周为2π弧度。

- 角度制:以直角为90度,一周为360度。

2. 弧度和角度之间的转换:- 角度制转弧度制公式:弧度= (π/180) × 角度- 弧度制转角度制公式:角度= (180/π) × 弧度3. 圆心角和弧度:- 圆心角:以圆心为顶点的角。

- 弧度的定义:弧度是圆心角所对应的弧长与半径的比值。

四、圆与直线的位置关系1. 相切关系:- 切线:与圆只有一个交点的直线。

九年级数学圆的知识点总结大全

九年级数学圆的知识点总结大全

圆是数学中的一个基本几何概念,九年级数学中关于圆的知识点如下:一、圆的定义和要素:1.圆的定义:由平面上离一个确定点(圆心)的距离相等的点的全体,构成一个平面图形,称为圆。

2.圆的要素:圆心、半径、直径、弧、弦、切线、割线、扇形、弓形等。

二、圆的性质:1.圆的任意两点之间的距离相等。

2.圆的半径是圆上任意一点到圆心的距离。

3.圆的直径是通过圆心的一条线段,直径的长度等于半径的两倍。

4.圆的弧是圆上两点之间的一段曲线,圆的圆心角对应的弧长是圆的周长的一部分。

5.圆的弦是圆上的两点间的线段。

6.圆的切线是与圆只有一个交点的直线。

7.圆的割线是与圆有两个交点的直线。

8.圆的相似圆是指具有相同圆心,半径成比例的圆。

9.圆与其他几何图形的关系,如圆与直线、圆与多边形等。

三、圆的图形和公式:1.圆的标准方程:(x-a)²+(y-b)²=r²,其中(a,b)为圆心坐标,r为半径。

2.圆的一般方程:x²+y²+Dx+Ey+F=0,对应一般方程的圆心坐标为(-D/2,-E/2),半径为√((D²+E²)/4-F)。

3.圆的表示方法:各种符号和字母的含义及表示。

四、圆的计算题:1.圆的周长:C=2πr,其中C为周长,r为半径。

2.圆的面积:A=πr²,其中A为面积,r为半径。

3.圆的弧长公式:L=2πr(θ/360°),其中L为弧长,r为半径,θ为圆心角的度数。

4.扇形的面积公式:A=(θ/360°)πr²,其中A为扇形的面积,r为半径,θ为圆心角的度数。

5. 弓形的面积公式:A=(θ/360°)πr²-hr,其中A为弓形的面积,r为半径,θ为弧对应的圆心角的度数,h为弓形的高。

五、圆的证明题:1.圆上的弦垂直于直径。

2.圆上的垂直于弦的直径。

3.圆的半径与切线垂直。

六、圆的应用:1.圆的模拟应用,如钟表等。

九年级下册数学知识点归纳关于圆

九年级下册数学知识点归纳关于圆

九年级下册数学知识点归纳关于圆在九年级下册数学教材中,圆是一个重要的概念。

本文将对九年级下册数学中关于圆的知识点进行归纳总结。

1. 圆的定义圆是由平面内到一个确定点的距离恒等于一个常数的所有点组成的集合。

其中,距离常数称为圆的半径。

2. 相关概念- 圆心:圆心是圆上所有点到圆周上所有点的连线的中点。

- 圆心角:圆心角是由圆心所张的弧所对应的角度。

圆心角的度数等于所对应的弧所对应的角度。

- 弧长:弧长是弧上的一部分,它是由圆心角所线的弧所相应的圆周的长度。

- 弧度:弧度是用来表示所对应的圆心角的度量单位,它的定义是沿着圆周的一条弧所对应的圆心角的大小等于弧长与半径的比值。

- 弦:弦是圆上的两个点所确定的线段。

3. 圆的性质- 圆的半径相等:圆上任意两点到圆心的距离相等,即圆的半径相等。

- 弦的性质:等弧长的弦与半径所夹的圆心角相等;等圆心角的弦所夹的弧长相等。

- 弦长公式:已知圆的半径和所对应的圆心角的度数,可以用弧度制表示为l = rθ。

- 同弧度的弧长:在同一个圆中,如果两条弧所对应的圆心角相等,则它们所对应的弧长也相等。

- 圆的内角与弧度的关系:一个内角所对应的弧度等于一个外角所对应的弧度的补角。

- 圆的内接四边形:内接四边形的两个对角线相等。

- 正多边形的内角和:一个正n边形的内角和等于(n-2)×180°。

4. 圆与三角形的关系- 角平分线定理:圆上的角平分线上的点到圆心的距离等于圆上与该角相对的弧所对应的角度的一半。

- 弦切角定理:一个切线和被它所划分的弦与圆心的连线所夹的角相等。

- 直角三角形中圆的性质:在一个直角三角形中,三角形的斜边恰好是以三角形其他两边中点为圆心、斜边中点到圆心的距离为半径所描述的一个圆的圆周。

总结:通过九年级下册数学知识点的归纳,我们对于圆的相关概念、性质及其与三角形的关系有了更深入的了解。

这些知识点不仅在数学学科中有重要应用,还在日常生活中有很多实际应用,如建筑设计、测量等。

九年级圆 知识点总结

九年级圆 知识点总结

九年级圆知识点总结在九年级数学学习中,圆作为一个重要的概念和知识点,被广泛涉及和应用。

本文将对九年级圆的相关知识进行总结和归纳,旨在提供一个全面而清晰的概述。

一、圆的基本性质1. 定义:圆是平面上到定点的距离等于定长的点的集合。

2. 要素:圆心、半径、直径、弧、弦、边界等。

3. 关键概念:- 圆心角:以圆心为顶点的两条射线所夹的角。

- 弧度制:用弧长和半径的比值来度量圆心角的单位制。

- 弧长:沿着圆周的一段弧的长度。

- 弦长:圆周上的两个点之间的弦的长度。

- 弦切线定理:若一条弦与一条切线相交,那么切线所对的弦长等于弧切分的弧长。

二、圆的计算公式1. 圆的周长:C = 2πr,其中r为半径。

2. 圆的面积:A = πr²,其中r为半径。

三、圆与其他图形的关系1. 圆与直线的关系:- 点到圆的位置关系:在圆内、在圆上、在圆外。

- 切线与圆的关系:内切线、外切线、相切。

- 弦与圆的关系:一条弦平分圆,当且仅当它垂直于半径。

- 弧与圆的关系:圆周角、弦心角、相交弧、相等弧、截弧等。

2. 圆与三角形的关系:- 角平分线与圆的关系:三角形内接圆的圆心是角平分线的交点。

- 三角形内切圆的性质:内切圆与三角形的切点构成的线段相等、角度相等等。

- 外接圆与三角形的关系:外接圆的圆心是三角形外角的角平分线的交点。

三、实际问题中的圆1. 圆的应用:在现实生活中,圆的概念和性质常被用于解决与圆相关的问题,如圆的轨迹、钟表等。

2. 圆的建模:圆的模型可以应用于建筑、设计等领域,例如环形结构的承重分析、圆形花坛的设计等。

3. 圆的测量:利用测量工具可以测量圆的直径、半径、弧长等。

结语:通过对九年级圆的知识点总结,我们可以更好地理解圆的基本概念、性质与计算公式,并应用于实际问题中。

深入掌握圆的知识对于进一步学习几何学和解决实际问题都具有重要的意义。

注:文章中的内容不完全围绕九年级圆的知识点展开,因为题目描述没有提供具体的要求,请知悉。

人教版九年级数学复习:第二十四章 圆的知识点总结及典型例题

人教版九年级数学复习:第二十四章 圆的知识点总结及典型例题

圆的知识点总结(一)圆的有关性质[知识归纳]1. 圆的有关概念:圆、圆心、半径、圆的内部、圆的外部、同心圆、等圆;弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧、弓形、弓形的高;圆的内接三角形、三角形的外接圆、三角形的外心、圆内接多边形、多边形的外接圆;圆心角、圆周角、圆内接四边形的外角。

2. 圆的对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴,圆有无数条对称轴;圆是以圆心为对称中心的中心对称图形;圆具有旋转不变性。

3. 圆的确定不在同一条直线上的三点确定一个圆。

4. 垂直于弦的直径垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧;推论1(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。

垂径定理及推论1 可理解为一个圆和一条直线具备下面五个条件中的任意两个,就可推出另外三个:①过圆心;②垂直于弦;③平分弦(不是直径);④平分弦所对的优弧;⑤平分弦所对的劣弧。

推论2 圆的两条平行弦所夹的弧相等。

5. 圆心角、弧、弦、弦心距之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;所对的弦的弦心距相等。

推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。

此定理和推论可以理解成:在同圆或等圆中,满足下面四个条件中的任何一个就能推出另外三个:①两个圆心角相等;②两个圆心角所对的弧相等;③两个圆心角或两条弧所对的弦相等;④两条弦的弦心距相等。

圆心角的度数等于它所对的弧的度数。

6. 圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半;推论1 同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等;推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径;推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

初三《圆》知识点及定理

初三《圆》知识点及定理

高图教育数学教研组卢老师专用《圆》知识点及定理一、圆的概念集合形式的概念: 1 、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充) 2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);四、圆与圆的位置关系外离(图 1)无交点d R r ;外切(图 2)有一个交点d R r ;相交(图 3)有两个交点R r d R r ;内切(图 4)有一个交点d R r ;内含(图 5)无交点d R r ;d dR r R r图 1图 23、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

dR r图3d rRdR图4r二、点与圆的位置关系1、点在圆内d r点 C 在圆内;2、点在圆上d r点 B 在圆上;A d3、点在圆外d r点 A 在圆外;r OBd三、直线与圆的位置关系C1、直线与圆相离d r无交点;2、直线与圆相切d r有一个交点;3、直线与圆相交d r有两个交点;rd d=r r d图 5五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论 1:( 1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共 4 个定理,简称 2 推 3 定理:此定理中共 5 个结论中,只要知道其中 2 个即可推出其它 3 个结论,即:①AB是直径②AB CD③CE DE④ 弧BC弧BD⑤ 弧AC弧 AD中任意 2 个条件推出其他 3 个结论。

九年级下册圆的知识点总结

九年级下册圆的知识点总结

九年级下册圆的知识点总结九年级下册的数学学习内容涉及到圆的相关知识,本文将对圆的性质、计算公式以及与其他几何图形之间的关系进行总结。

一、圆的性质1. 定义:圆是由平面上与一个固定点的距离恒定的所有点组成的集合。

2. 圆心与半径:圆心是距离所有边界点相等的点,半径是由圆心指向边界上的任意一点的线段,圆心与半径共同决定了一个圆。

3. 直径与周长:直径是通过圆心的两个边界点的线段,它的长度是半径的两倍。

周长是围绕圆边界的长度,可以用2πr表示,其中r为圆的半径。

4. 弧与弦:弧是圆上两个点之间的一段曲线,弦是圆上两个点之间的一条直线段,弦的两个端点也在圆上。

二、圆的计算公式1. 圆的面积公式:圆的面积可以通过πr²计算,其中π为一个不变的常数,约等于3.14,r是圆的半径。

2. 弧长公式:弧长可以根据圆心角的大小和圆的半径计算,如果圆心角θ(单位为弧度)对应的圆弧长度为L,那么L = rθ。

3. 弦长公式:给定圆心角θ和圆的半径r,弦长可以通过2rsin(θ/2)计算得到。

三、圆与其他几何图形的关系1. 圆与直线:圆与直线可以有多种位置关系,可能相离、相切或相交。

当一条直线与圆相交时,相交的点可能有两个、一个或没有。

2. 圆与三角形:圆可以与三角形有共同的一条边,这种情况下,圆称为三角形的内切圆;也可以与三角形相切于三条边,这种情况下,圆称为三角形的外切圆。

3. 圆与正多边形:正多边形是指所有边和角相等的多边形,能够内切于一个圆。

正多边形的外接圆则是能够将正多边形的所有顶点都包含在内部的一个圆。

总结:九年级下册的圆的知识点主要包括圆的性质、计算公式和与其他几何图形之间的关系。

圆的性质包括圆心和半径、直径和周长、弧和弦;计算公式包括圆的面积公式、弧长公式和弦长公式;圆与其他几何图形的关系包括圆与直线、三角形和正多边形之间的关系。

通过对这些知识点的学习和理解,可以更好地掌握圆的相关概念和运用技巧,为解决与圆相关的问题提供帮助。

数学九年级下册圆的知识点

数学九年级下册圆的知识点

数学九年级下册圆的知识点圆是数学几何中的一个重要概念,广泛应用于各个领域。

在九年级的数学学习中,我们将更加深入地学习圆的相关知识。

本文将围绕圆的定义、性质、公式和应用等方面展开详细介绍。

一、圆的定义在数学中,圆是由平面上到一个固定点距离相等的所有点组成的图形。

其中,距离固定点最远的点称为圆的半径,固定点称为圆心。

圆心与圆上任意一点之间的线段称为半径。

二、圆的性质1. 圆的半径相等性质:圆上任意两点间的线段都是半径,且长度相等。

2. 圆的直径性质:圆的直径是圆上任意两点的连线,且长度是半径的两倍。

3. 圆的弦性质:圆上的弦分为等弦和不等弦两种。

等弦对应的弦长相等,而不等弦对应的弦长不相等。

4. 圆的切线性质:过圆上一点可以作无数条切线,这些切线与以该点为顶点的两条切线相等,且相互垂直。

三、圆的公式1. 圆的周长公式:圆的周长称为圆周长,通常用C表示,公式为C = 2πr,其中r为圆的半径,π取近似值3.14。

2. 圆的面积公式:圆的面积称为圆面积,通常用A表示,公式为A = πr²,其中r为圆的半径,π取近似值3.14。

四、圆的应用1. 圆的运动学应用:在物理学中,圆的运动学应用非常广泛,例如机械运动中的回转运动、行星围绕太阳的椭圆轨道等。

2. 圆的建筑应用:在建筑学中,圆被广泛应用于设计和构建中,例如建筑物中的圆形窗户、圆形拱门等。

3. 圆的电子应用:在电子工程中,圆被广泛应用于电路板设计、天线设计等领域。

4. 圆的地理应用:在地理学中,圆被用于表示地球的形状,地球是近似于一个球体。

总结:在数学九年级下册中,我们系统学习了圆的定义、性质、公式和应用等知识点。

掌握了这些知识,我们能够更好地理解圆的特性,应用于各种实际问题中。

通过灵活运用圆的相关知识,我们可以提高解决问题的能力和思维能力,为今后的数学学习打下坚实的基础。

初中九年级圆的知识点详解

初中九年级圆的知识点详解

初中九年级圆的知识点详解在初中九年级数学课程中,圆是一个重要的几何概念。

我们将在本文中详细解释圆的知识点,包括定义、性质和常见的相关公式。

一、圆的定义圆是一个平面上所有到圆心距离都相等的点的集合。

这个距离被称为半径,用字母r表示。

圆的圆心和半径是确定一个圆的基本要素。

二、圆的性质1. 圆的直径和半径关系:圆的直径是通过圆心,并且两个端点在圆上的线段,它的长度是半径的两倍,即直径d=2r。

2. 圆的周长和面积:圆的周长是指圆上一周的长度,用字母C表示,它可以通过公式C=2πr来计算,其中π≈3.14是一个无理数,代表圆周率。

圆的面积是指圆内部的区域,用字母A表示,它可以通过公式A=πr²来计算。

3. 圆的切线和法线:圆上的切线是与圆切于一点的直线,切线与半径的夹角为90度。

圆上的法线是与圆相交于一点,并且与切线垂直的直线。

4. 圆的弧度制和度制:在解决一些圆相关问题时,我们通常使用弧度制来度量角度。

弧度制的角度是通过圆的弧长和半径之间的比值来定义的。

一个完整的圆的弧长等于2πr,所以一个完整圆的角度为360°。

三、常见的圆相关公式1. 圆的周长公式:C = 2πr2. 圆的面积公式:A = πr²3. 圆的弧长公式:L = 2πr(θ/360°),其中θ是所对应的圆心角的角度。

4. 扇形面积公式:S = 0.5r²(θ/360°),其中θ是所对应的圆心角的角度。

五、相关解题方法1. 已知圆的半径求周长和面积:根据上述公式直接计算即可。

2. 已知圆的周长求半径和面积:由C=2πr可得r=C/(2π),再带入A=πr²即可计算面积。

3. 已知圆的面积求半径和周长:由A=πr²可得r=√(A/π),再带入C=2πr即可计算周长。

4. 已知圆心角和半径求弧长和扇形面积:根据相应的公式计算即可。

六、例题解析1. 已知一个圆的半径为5cm,求其周长和面积。

九年级圆的知识点详细总结归纳

九年级圆的知识点详细总结归纳

九年级圆的知识点详细总结归纳一、圆的定义和关键概念圆是一个平面上的简单闭曲线,由与一个固定点的所有点到该点的距离相等的点组成。

下面是一些重要的圆的关键概念:1. 圆心 (Center):圆心是圆的中心点,标记为O。

2. 圆周 (Circumference):圆的周长,也称为圆周,用C表示。

3. 直径 (Diameter):直径是通过圆心的、连接圆上两点的线段。

直径的长度是圆直径的两倍。

直径用d表示。

4. 半径 (Radius):半径是从圆心到圆上任意一点的线段。

半径的长度是直径的一半。

半径用r表示。

5. 弧 (Arc):圆上两点之间的一段路径叫做弧。

6. 弦 (Chord):圆上两点之间的线段叫做弦。

7. 切线 (Tangent):切线是切于圆的一条直线,且与圆仅有一个交点。

二、圆的性质和定理圆的性质和定理是研究圆的重要基础,下面是一些常见的圆的性质和定理:1. 直径定理:直径是最长的弦,且它把一个圆分成两个半圆。

2. 弧长定理:一个圆的弧长是根据圆的半径和弧度来计算的。

弧长等于半径乘以弧的弧度。

3. 弧心角定理:圆心角是以圆心为顶点的角,它的弧度等于弧长与半径的比值。

4. 切线定理:切线与半径的关系是垂直。

5. 切线和半径的性质:当一条直线与圆相切时,与切点相连的半径垂直于切线。

6. 切割定理:如果一个弦垂直于一个半径,那么它将被切分成两个互为正方向的弧。

7. 切割角度定理:互不相交的弧它们对应的圆心角相等,相交的弧,它们对应切线切割的角相等。

8. 重合弧定理:在同一个圆上,两个重合的弧对应的圆心角相等。

三、圆的应用圆在日常生活和实际问题中有很多应用,下面是一些常见的圆的应用:1. 圆的测量:通过测量圆的直径或半径可以计算圆的周长和面积。

2. 圆的构造:通过给定圆的半径或直径可以构造圆。

3. 圆的几何关系:圆与直线、圆与圆之间有各种几何关系,如相离、相切、相交等。

4. 圆的运动学:在物理学中,圆的运动学广泛应用于描述物体的圆周运动和周期性运动。

九年级数学下册圆的知识点整理

九年级数学下册圆的知识点整理

1.圆的定义与性质-定义:圆是平面上所有距离等于半径的点的集合。

-圆心:圆上任意两点的连线的垂直平分线的交点。

-半径:从圆心到圆上任意一点的长度。

-直径:通过圆心的两个点所确定的线段的长度,等于半径的2倍。

-弦:连接圆上两点的线段。

-弧:圆上的一段弯曲的连续的部分。

-弧长:弧所对应的圆的周长的比例,弧长等于弧所对应的圆的弧度乘以半径。

-圆周角:以圆心为顶点的角,大小等于所对弧的弧度。

2.圆心角与弧长的关系-弧度制:弧所对应的圆的半径长的角,记作弧长/半径。

-弧度制与度角制的换算:180°=Π弧度,1°=Π/180弧度。

-圆心角的弧度等于所对弧的弧长除以半径。

3.圆的位置关系-相交:两个圆的内部有公共点。

-外切:一个圆与另一个圆的外部只有一个公共点。

-两圆相切:两个圆的外部有一个公共点。

-相离:两个圆的内部没有公共点,也没有公共切点。

4.弧与弦的关系-弦分弧:一个弦所对的两条弧,互为补角。

-等弧等价:等长的弧。

5.切线与圆的关系-切线:与圆仅有一个公共点的直线。

-切线的性质:切线与半径垂直,半径在切点上的垂线上。

6.直径、弦与切线的关系-直径是两个切点的连线。

-沿切线作的直径过切点的垂线,则直径上的垂直弦与切线相交于切点。

-公共切线:与两个圆分别有且仅有一个公共切点的直线。

7.线段与圆的位置关系-线段在圆内:线段的两个端点在圆内部。

-线段与圆相交:线段的一个端点在圆内部,另一个端点在圆外部。

-线段切圆:线段的一个端点在圆上,另一个端点在圆外部。

-线段被圆所截:线段的两个端点都在圆外部。

8.弦的性质-弦的中点:连接圆弧两端点的线段的中点在圆的内部。

-等弧等价:等长的弦所对的两条弧相等。

-弦的位置:两个相等长的弦互为等幅弦。

-垂直弦:以圆心为直径的弦是直径。

-到圆心的距离:从圆心到弦的中点的距离等于半径的长度。

九年级圆的知识点总结

九年级圆的知识点总结

九年级圆的知识点总结九年级数学课程中,圆是一个重要的几何图形。

本文将对九年级圆的相关知识点进行总结,包括圆的定义、圆的性质、圆的元素和圆的应用。

一、圆的定义圆是由平面上离一个定点距离相等的所有点组成的集合。

这个定点叫做圆心,距离叫做半径。

二、圆的性质1. 圆的半径相等的两个圆是相等的。

2. 圆的直径是任意两点在圆上的端点所确定的线段,等于圆的半径的两倍。

3. 圆上任意一点与圆心的距离等于半径的长度。

4. 圆上的任意一条弧,它所对应的圆心角的度数等于弧上的弧度数。

三、圆的元素1. 直径:通过圆心的两个端点构成的线段,是圆的最长的一条线段。

2. 弧:圆上的一部分,可以由两个端点和连接两个端点的弧线构成。

3. 弦:圆上的一条线段,连接圆上的任意两个点,不能通过圆心。

4. 切线:与圆相切于圆的一条线,切点为切线与圆相交的唯一一点。

四、圆的应用1. 圆的面积和周长:圆的面积公式为A=πr²,周长公式为C=2πr。

2. 弧长和扇形面积:弧长公式为L=θr,其中θ为弧度;扇形面积公式为S=θr²/2。

3. 圆与其他几何图形的关系:圆与直线的交点、圆与弦的位置关系等。

在实际应用中,圆经常出现在测量和建模等领域。

比如在测量中,我们常用圆盘测量直径或周长。

在建模中,圆可以用来模拟轮胎、乒乓球等实物的形状。

九年级圆的知识点总结到此结束。

通过对圆的定义、性质、元素和应用的学习,可以帮助我们更好地理解和应用圆的概念。

掌握这些基础知识,有助于我们在解决相关问题时能够准确、高效地运用圆的相关概念和公式。

新人教版初中数学——圆的性质及与圆有关的位置关系-知识点归纳及中考典型题解析

新人教版初中数学——圆的性质及与圆有关的位置关系-知识点归纳及中考典型题解析

人教版初中数学——圆的性质及与圆有关的位置关系知识点归纳及中考典型例题解析一、圆的有关概念1.与圆有关的概念和性质(1)圆:平面上到定点的距离等于定长的所有点组成的图形.(2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.(4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(6)弦心距:圆心到弦的距离.2.注意(1)经过圆心的直线是该圆的对称轴,故圆的对称轴有无数条;(2)3点确定一个圆,经过1点或2点的圆有无数个.(3)任意三角形的三个顶点确定一个圆,即该三角形的外接圆.二、垂径定理及其推论1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.2.推论(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.三、圆心角、弧、弦的关系1.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.2.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.四、圆周角定理及其推论1.定理一条弧所对的圆周角等于它所对的圆心角的一半.2.推论(1)在同圆或等圆中,同弧或等弧所对的圆周角相等.(2)直径所对的圆周角是直角.圆内接四边形的对角互补.在圆中求角度时,通常需要通过一些圆的性质进行转化.比如圆心角与圆周角间的转化;同弧或等弧的圆周角间的转化;连直径,得到直角三角形,通过两锐角互余进行转化等.五、与圆有关的位置关系1.点与圆的位置关系设点到圆心的距离为d.(1)d<r⇔点在⊙O内;(2)d=r⇔点在⊙O上;(3)d>r⇔点在⊙O外.判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.2.直线和圆的位置关系位置关系相离相切相交图形公共点个数0个1个2个数量关系d>r d=r d<r由于圆是轴对称和中心对称图形,所以关于圆的位置或计算题中常常出现分类讨论多解的情况.六、切线的性质与判定1.切线的性质(1)切线与圆只有一个公共点.(2)切线到圆心的距离等于圆的半径.(3)切线垂直于经过切点的半径.利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.2.切线的判定(1)与圆只有一个公共点的直线是圆的切线(定义法).(2)到圆心的距离等于半径的直线是圆的切线.(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.七、三角形与圆1.三角形的外接圆相关概念经过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形.外心是三角形三条垂直平分线的交点,它到三角形的三个顶点的距离相等.2.三角形的内切圆与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.内心是三角形三条角平分线的交点,它到三角形的三条边的距离相等.考向一圆的基本认识1.在一个圆中可以画出无数条弦和直径.2.直径是弦,但弦不一定是直径.3.在同一个圆中,直径是最长的弦.4.半圆是弧,但弧不一定是半圆.弧有长度和度数,规定半圆的度数为180°,劣弧的度数小于180°,优弧的度数大于180°.5.在同圆或等圆中能够互相重合的弧是等弧,度数或长度相等的弧不一定是等弧.典例1下列命题中正确的有①弦是圆上任意两点之间的部分;②半径是弦;③直径是最长的弦;④弧是半圆,半圆是弧.A.1个B.2个C.3个D.4个【答案】A【解析】①弦是圆上任意两点之间所连线段,所以①错误;②半径不是弦,所以②错误;③直径是最长的弦,正确;④只有180°的弧才是半圆,所以④错误,故选A.1.把圆的半径缩小到原来的14,那么圆的面积缩小到原来的A.12B.14C.18D.1162.半径为5的圆的一条弦长不可能是A.3 B.5 C.10 D.12考向二垂径定理1.垂径定理中的“弦”为直径时,结论仍然成立.2.垂径定理是证明线段相等、弧相等的重要依据,同时也为圆的计算和作图问题提供了理论依据.典例2如图,已知⊙O的半径为6 cm,两弦AB与CD垂直相交于点E,若CE=3 cm,DE=9 cm,则AB=A3cm B.3cm C.3D.3【答案】D【解析】如图,连接OA,∵⊙O的半径为6 cm,CE+DE=12 cm,∴CD是⊙O的直径,∵CD⊥AB,∴AE=BE,OE=3,OA=6,∴AE=2233OA OE-=,∴AB=2AE=63,故选D.典例3如图,将半径为2 cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为A.2 cm B.3cmC.23cm D.25cm【答案】C【解析】在图中构建直角三角形,先根据勾股定理得AD的长,再根据垂径定理得AB的长.作OD⊥AB于D,连接OA.根据题意得OD=12OA=1cm,再根据勾股定理得:AD3,根据垂径定理得AB3.故选C.3.如图,⊙O的直径为10,圆心O到弦AB的距离OM的长为4,则弦AB的长是A.3 B.6 C.4 D.84.如图,某菜农在蔬菜基地搭建了一个横截面为圆弧形的蔬菜大棚,大棚的跨度弦AB的长为8515米,大棚顶点C离地面的高度为2.3米.(1)求该圆弧形所在圆的半径;(2)若该菜农的身高为1.70米,则他在不弯腰的情况下,横向活动的范围有几米?考向三弧、弦、圆心角、圆周角1.圆心角的度数等于它所对弧的度数,把顶点在圆心的周角等分成360份,每一份的圆心角是1°的角,1°的圆心角对着1°的弧.2.圆周角要具备两个特征:①顶点在圆上;②角的两边都和圆相交,二者缺一不可.典例4如图,在⊙O中∠O=50°,则∠A的度数为A.50°B.20°C.30°D.25°【答案】D【解析】∠A=12BOC=12×50°=25°.故选D.典例5如图,AB是⊙O的直径,△ACD内接于⊙O,延长AB,CD相交于点E,若∠CAD=35°,∠CDA=40°,则∠E的度数是A.20°B.25°C.30°D.35°【答案】B【解析】如图,连接BD,∵AB是⊙O的直径,∴∠ADB=90°,由三角形内角和定理得,∠ACD=180°﹣∠CAD﹣∠CDA=105°,∴∠ABD=180°﹣∠ACD=75°,∴∠BAD=90°﹣∠ABD=15°,∴∠E=∠CDA﹣∠DAB=25°,故选B.5.如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则BC的长为A.103πB.109πC.59πD.518π6.如图,AB是⊙O的直径,=BC CD DE,∠COD=38°,则∠AEO的度数是A.52°B.57°C.66°D.78°考向四点、直线与圆的位置关系1.点和圆的位置关系:①在圆上;②在圆内;③在圆外.2.直线和圆的位置关系:相交、相切、相离.典例6已知⊙O的半径是5,点A到圆心O的距离是7,则点A与⊙O的位置关系是A.点A在⊙O上B.点A在⊙O内C.点A在⊙O外D.点A与圆心O重合【答案】C【解析】∵O的半径是5,点A到圆心O的距离是7,即点A到圆心O的距离大于圆的半径,∴点A在⊙O外.故选C.【点睛】直接根据点与圆的位置关系的判定方法进行判断.典例7在△ABC中,AB=AC=2,∠A=150°,那么半径长为1的⊙B和直线AC的位置关系是A.相离B.相切C.相交D.无法确定【答案】B【解析】过B作BD⊥AC交CA的延长线于D,∵∠BAC=150,∴∠DAB=30°,∴BD=11222AB=⨯=1,即B到直线AC的距离等于⊙B的半径,∴半径长为1的⊙B和直线AC的位置关系是相切,故选B.【点睛】本题考查了直线与圆的位置关系的应用,过B作BD⊥AC交CA的延长线于D,求出BD和⊙B的半径比较即可,主要考查学生的推理能力.7.如图,⊙O的半径为5cm,直线l到点O的距离OM=3cm,点A在l上,AM=3.8cm,则点A与⊙O的位置关系是A.在⊙O内B.在⊙O上C.在⊙O外D.以上都有可能8.如图,⊙O的半径OC=5cm,直线l⊥OC,垂足为H,且l交⊙O于A、B两点,AB=8cm,则l沿OC 所在直线向下平移__________cm时与⊙O相切.考向五切线的性质与判定有圆的切线时,常常连接圆心和切点得切线垂直半径,这是圆中作辅助线的一种方法.典例8如图,⊙O以AB为直径,PB切⊙O于B,近接AP,交⊙O于C,若∠PBC=50°,∠ABC=A.30°B.40°C.50°D.60°【答案】B【解析】∵⊙O以AB为直径,PB切⊙O于B,∴∠PBA=90°,∵∠PBC=50°,∴∠ABC=40°.故选B.典例9如图,Rt△ABC中,∠C=90°,AB=5,AC=3,点E在中线AD上,以E为圆心的⊙E分别与AB、BC相切,则⊙E的半径为A.78B.67C.56D.1【答案】B【解析】作EH⊥AC于H,EF⊥BC于F,EG⊥AB于G,连接EB,EC,设⊙E的半径为r,如图,∵∠C=90°,AB=5,AC=3,∴BC22AB AC-,而AD为中线,∴DC=2,∵以E为圆心的⊙E分别与AB、BC相切,∴EG=EF=r,∴HC=r,AH=3–r,∵EH∥BC,∴△AEH∽△ADC,∴EH∶CD=AH∶AC,即EH=233r-(),∵S △ABE +S △BCE +S △ACE =S △ABC , ∴()1112154333422232r r r ⨯⨯+⨯⨯+⨯⨯-=⨯⨯,∴67r =.故选B .9.已知四边形ABCD 是梯形,且AD ∥BC ,AD <BC ,又⊙O 与AB 、AD 、CD 分别相切于点E 、F 、G ,圆心O 在BC 上,则AB +CD 与BC 的大小关系是 A .大于 B .等于C .小于D .不能确定10.如图,以等腰△ABC 的腰AB 为⊙O 的直径交底边BC 于D ,DE AC ⊥于E .求证:(1)DB DC =; (2)DE 为⊙O 的切线.1.下列关于圆的叙述正确的有①圆内接四边形的对角互补; ②相等的圆周角所对的弧相等;③正多边形内切圆的半径与正多边形的半径相等; ④同圆中的平行弦所夹的弧相等.A .1个B .2个C .3个D .4个2.如图,AB 是⊙O 的直径,C 是⊙O 上一点(A 、B 除外),∠AOD =136°,则∠C 的度数是A .44°B .22°C .46°D .36°3.如图,半径为5的⊙A 中,弦BC ,ED 所对的圆心角分别是∠BAC ,∠EAD ,已知DE =6,∠BAC +∠EAD =180°,则弦BC 的长等于A .41B .34C .8D .64.如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,则圆心坐标是A .点(1,0)B .点(2,1)C .点(2,0)D .点(2.5,1)5.如图,O 的直径8AB =,30CBD ∠=︒,则CD 的长为A .2B .3C .4D .36.如图,一圆内切四边形ABCD ,且BC =10,AD =7,则四边形的周长为A .32B .34C .36D .387.已知在⊙O 中,AB =BC ,且34AB AMC =∶∶,则∠AOC =__________.8.如图,A 、B 、C 、D 都在⊙O 上,∠B =130°,则∠AOC 的度数是__________.9.如图,PA 、PB 分别切⊙O 于A 、B ,并与圆O 的切线DC 分别相交于D 、C .已知△PCD 的周长等于14 cm ,则PA =__________cm .10.如图,在⊙O 的内接四边形ABCD 中,AB AD =,120C ∠=︒,点E 在弧AD 上.若AE 恰好为⊙O的内接正十边形的一边,DE 的度数为__________.11.如图,半圆O 的直径是AB ,弦AC 与弦BD 交于点E ,且OD ⊥AC ,若∠DEF =60°,则tan ∠ABD =__________.12.如图,AB为⊙O的直径,C、F为⊙O上两点,且点C为弧BF的中点,过点C作AF的垂线,交AF 的延长线于点E,交AB的延长线于点D.(1)求证:DE是⊙O的切线;(2)如果半径的长为3,tan D=34,求AE的长.13.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.14.如图1,⊙O是△ABC的外接圆,AB是直径,D是⊙O外一点且满足∠DCA=∠B,连接AD.(1)求证:CD是⊙O的切线;(2)若AD⊥CD,CD=2,AD=4,求直径AB的长;(3)如图2,当∠DAB=45°时,AD与⊙O交于E点,试写出AC、EC、BC之间的数量关系并证明.1.如图,在O 中,AB 所对的圆周角50ACB ∠=︒,若P 为AB 上一点,55AOP ∠=︒,则POB ∠的度数为A .30°B .45°C .55°D .60°2.如图,AD 是O 的直径,AB CD =,若40AOB ∠=︒,则圆周角BPC ∠的度数是A .40︒B .50︒C .60︒D .70︒3.如图,AB ,AC 分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为A .25B .4C .213D .4.84.如图,PA 、PB 为圆O 的切线,切点分别为A 、B ,PO 交AB 于点C ,PO 的延长线交圆O 于点D ,下列结论不一定成立的是A .PA =PB B .∠BPD =∠APDC .AB ⊥PDD .AB 平分PD5.如图,PA 、PB 是⊙O 切线,A 、B 为切点,点C 在⊙O 上,且∠ACB =55°,则∠APB 等于A .55°B .70°C .110°D .125°6.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,若∠C =40°,则∠B 的度数为A .60°B .50°C .40°D .30°7.如图,AB 是⊙O 的直径,点C 、D 是圆上两点,且∠AOC =126°,则∠CDB =A .54°B .64°C .27°D .37°8.如图,AB 为O 的直径,BC 为O 的切线,弦AD ∥OC ,直线CD 交的BA 延长线于点E ,连接BD .下列结论:①CD 是O 的切线;②CO DB ⊥;③EDA EBD △∽△;④ED BC BO BE ⋅=⋅.其中正确结论的个数有A .4个B .3个C .2个D .1个9.如图,C 、D 两点在以AB 为直径的圆上,2AB =,30ACD ∠=︒,则AD =__________.10.如图,△ABC 内接于⊙O ,∠CAB =30°,∠CBA =45°,CD ⊥AB 于点D ,若⊙O 的半径为2,则CD 的长为__________.11.如图,四边形ABCD内接于⊙O,AB=AC,AC⊥BD,垂足为E,点F在BD的延长线上,且DF=DC,连接AF、CF.(1)求证:∠BAC=2∠CAD;(2)若AF=10,BC=45,求tan∠BAD的值.12.如图,在△ABC中,BA=BC,∠ABC=90°,以AB为直径的半圆O交AC于点D,点E是BD上不与点B,D重合的任意一点,连接AE交BD于点F,连接BE并延长交AC于点G.(1)求证:△ADF≌△BDG;(2)填空:①若AB=4,且点E是BD的中点,则DF的长为__________;②取AE的中点H,当∠EAB的度数为__________时,四边形OBEH为菱形.1.【答案】D【解析】设原来的圆的半径为r ,则面积S 1=πr 2, ∴半径缩小到原来的14后所得新圆的面积22211π()π416S r r ==, ∴22211π116π16rS S r ==,故选D . 2.【答案】D【解析】∵圆的半径为5,∴圆的直径为10,又∵直径是圆中最长的弦,∴圆中任意一条弦的长度10l ≤,故选D . 3.【答案】B【解析】如图,连接OA ,∵O 的直径为10,5OA ∴=,∵圆心O 到弦AB 的距离OM 的长为4, 由垂径定理知,点M 是AB 的中点,12AM AB =, 由勾股定理可得,3AM =,所以6AB =.故选B .4.【解析】(1)如图所示:CO ⊥AB 于点D ,设圆弧形所在圆的半径为xm ,根据题意可得:DO 2+BD 2=BO 2, 则(x –2.3)2+851×12)2=x 2,解得x =3. 变式训练答:圆弧形所在圆的半径为3米;(2)如图所示:当MN =1.7米,则过点N 作NF ⊥CO 于点F ,可得:DF =1.7米,则FO =2.4米,NO =3米,故FN =223 2.4-=1.8(米), 故该菜农身高1.70米,则他在不弯腰的情况下,横向活动的范围有3.6米. 5.【答案】B【解析】根据题意可知:∠OAC =∠OCA =50°,则∠BOC =2∠OAC =100°,则弧BC 的长度为:100π210π1809⨯=,故选B .6.【答案】B【解析】∵=BC CD DE =,∴∠BOC =∠DOE =∠COD =38°, ∴∠BOE =∠BOC +∠DOE +∠COD =114°,∴∠AOE =180°–∠BOE =66°, ∵OA =OE ,∴∠AEO =(180°–∠AOE )÷2=57°,故选B . 7.【答案】A【解析】如图,连接OA ,则在直角△OMA 中,根据勾股定理得到OA =223 3.823.445+=<. ∴点A 与⊙O 的位置关系是:点A 在⊙O 内.故选A .8.【答案】2【解析】连接OA .∵直线和圆相切时,OH =5,又∵在直角三角形OHA 中,HA =AB ÷2=4,OA =5,∴OH =3. ∴需要平移5–3=2(cm ).故答案为:2.【点睛】本题考查垂径定理及直线和圆的位置关系.注意:直线和圆相切,应满足d =R . 9.【答案】B【解析】如图,连接OF ,OA ,OE ,作AH ⊥BC 于H .∵AD 是切线,∴OF ⊥AD ,易证四边形AHOF 是矩形,∴AH =OF =OE , ∵S △AOB =12•OB •AH =12•AB •OE ,∴OB =AB ,同理可证:CD =CO , ∴AB +CD =BC ,故选B .【点睛】本题考查了切线的性质,切线垂直于过切点的半径,正确作出辅助线是关键. 10.【解析】(1)如图,连AD ,∵AB 是直径,∴90ADB ∠=︒,AD BC ⊥, 又AB AC =,∴D 为BC 中点,DB DC =; (2)连OD ,∵D 为BC 中点,OA OB =, ∴OD 为ABC △中位线,OD AC ∥, 又DE AC ⊥于,E ∴90ODE DEC ∠=∠=︒, ∴DE 为⊙O 的切线.1.【答案】B【解析】①圆内接四边形的对角互补;正确;②相等的圆周角所对的弧相等;错误;③正多边形内切圆的半径与正多边形的半径相等;错误;④同圆中的平行弦所夹的弧相等;正确; 正确的有2个,故选B . 2.【答案】B【解析】∵∠AOD =136°,∴∠BOD =44°,∴∠C =22°,故选B . 3.【答案】C【解析】如图,延长CA ,交⊙A 于点F ,考点冲关∵∠BAC+∠BAF=180°,∠BAC+∠EAD=180°,∴∠BAF=∠DAE,∴BF=DE=6,∵CF是直径,∴∠ABF=90°,CF=2×5=10,∴BC=228CF BF-=.故选C.4.【答案】C【解析】根据勾股定理可知A、B、C点到(2,0)的距离均为5,然后可知圆心为(2,0)或者通过AB、BC的垂直平分线求解也可以.故选C.5.【答案】C【解析】如图,作直径DE,连接CE,则∠DCE=90°,∵∠DBC=30°,∴∠DEC=∠DBC=30°,∵DE=AB=8,∴12DC DE==4,故选C.6.【答案】B【解析】由题意可得圆外切四边形的两组对边和相等,所以四边形的周长=2×(7+10)=34.故选B.7.【答案】144°【解析】根据AB=BC可得:弧AB的度数和弧BC的度数相等,则弧AMC的度数为:(360°÷10)×4=144°,则∠AOC =144°. 8.【答案】100°【解析】∵∠B =130°,∴∠D =180°-130°=50°,∴∠AOC =2∠D =100°.故答案为100°. 9.【答案】7【解析】如图,设DC 与⊙O 的切点为E ;∵PA 、PB 分别是⊙O 的切线,且切点为A 、B ,∴PA =PB ; 同理,可得:DE =DA ,CE =CB ;则△PCD 的周长=PD +DE +CE +PC =PD +DA +PC +CB =PA +PB =14(cm ); ∴PA =PB =7cm ,故答案是:7. 10.【答案】84︒【解析】如图,连接BD ,OA ,OE ,OD ,∵四边形ABCD 是圆的内接四边形,∴180BAD C ∠+∠=︒, ∵120C ∠=︒,∴60BAD ∠=︒,∵AB AD =,∴ABD △是正三角形,∴60ABD ∠=︒,2120AOD ABD ∠=∠=︒, ∵AE 恰好是⊙的内接正十边形的一边,∴3603610AOE ︒∠==︒, ∴1203684DOE ∠=︒-︒=︒,∴DE 的度数为84°.故答案为:84°.113【解析】∵OD ⊥AC ,∠DEF =60°, ∴∠D =30°,∵OD=OB,∴∠ABD=∠D=30°,∴tan∠ABD=33,故答案为:33.12.【解析】(1)连接OC,如图.∵点C为弧BF的中点,∴弧BC=弧CF,∴∠BAC=∠FAC.∵OA=OC,∴∠OCA=∠OAC,∴∠OCA=∠FAC,∴OC∥AE.∵AE⊥DE,∴OC⊥DE,∴DE是⊙O的切线;(2)在Rt△OCD中,∵tan D=34OCCD=,OC=3,∴CD=4,∴OD=22OC CD+=5,∴AD=OD+AO=8.在Rt△ADE中,∵sin D=35OC AEOD AD==,∴AE=245.13.【解析】(1)直线DE与⊙O相切,理由如下:如图,连接OD,∵OD=OA,∴∠A=∠ODA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠ODA+∠EDB=90°,∴∠ODE=180°–90°=90°,∴直线DE与⊙O相切;(2)连接OE,设DE=x,则EB=ED=x,CE=8–x,∵∠C=∠ODE=90°,∴OC2+CE2=OE2=OD2+DE2,∴42+(8–x)2=22+x2,解得:x=4.75,则DE=4.75.14.【解析】(1)如图1,连接OC.∵OB=OC,∴∠OCB=∠B,∵∠DCA=∠B,∴∠DCA=∠OCB,∵AB是直径,∴∠ACB=90°,∴∠DCA+∠ACO=∠OCB+∠ACO=90°,即∠DCO=90°,∴CD是⊙O的切线.(2)∵AD⊥CD,CD=2,AD=4.∴222425AC=+=由(1)可知∠DCA=∠B,∠D=∠ACB=90°,∴△ADC∽△ACB,∴AD ACAC AB=2525=,∴AB=5.(3)2AC BC EC=+,如图2,连接BE,在AC上截取AF=BC,连接EF.∵AB 是直径,∠DAB =45°, ∴∠AEB =90°,∴△AEB 是等腰直角三角形, ∴AE =BE ,又∵∠EAC =∠EBC ,∴△ECB ≌△EFA ,∴EF =EC , ∵∠ACE =∠ABE =45°, ∴△FEC 是等腰直角三角形, ∴2FC EC =,∴2AC AF FC BC EC =+=.1.【答案】B【解析】∵∠ACB =50°,∴∠AOB =2∠ACB =100°,∵∠AOP =55°,∴∠POB =45°,故选B . 2.【答案】B【解析】∵AB CD =,40AOB ∠=︒,∴40COD AOB ∠=∠=︒, ∵180AOB BOC COD ∠+∠+∠=︒,∴100BOC ∠=︒, ∴1502BPC BOC ∠=∠=︒,故选B . 3.【答案】C【解析】∵AB 为直径,∴90ACB ∠=︒,∴22221086BC AB AC =--=,∵OD AC ⊥,∴142CD AD AC ===, 直通中考在Rt CBD △中,2246213BD =+=.故选C .4.【答案】D【解析】∵PA ,PB 是⊙O 的切线,∴PA =PB ,所以A 成立;∠BPD =∠APD ,所以B 成立; ∴AB ⊥PD ,所以C 成立;∵PA ,PB 是⊙O 的切线,∴AB ⊥PD ,且AC =BC ,只有当AD ∥PB ,BD ∥PA 时,AB 平分PD ,所以D 不一定成立,故选D . 5.【答案】B【解析】如图,连接OA ,OB ,∵PA ,PB 是⊙O 的切线,∴PA ⊥OA ,PB ⊥OB ,∵∠ACB =55°,∴∠AOB =110°, ∴∠APB =360°-90°-90°-110°=70°.故选B .6.【答案】B【解析】∵AC 是⊙O 的切线,∴AB ⊥AC ,且∠C =40°,∴∠ABC =50°,故选B . 7.【答案】C【解析】∵∠AOC =126°,∴∠BOC =180°-∠AOC =54°,∵∠CDB =12∠BOC =27°.故选C . 8.【答案】A【解析】如图,连接DO .∵AB 为O 的直径,BC 为O 的切线,∴90CBO ∠=︒,∵AD OC ∥,∴DAO COB ∠=∠,ADO COD ∠=∠. 又∵OA OD =,∴DAO ADO ∠=∠,∴COD COB ∠=∠.在COD △和COB △中,CO CO COD COB OD OB =⎧⎪∠=∠⎨⎪=⎩,∴COD COB △≌△,∴90CDO CBO ∠=∠=︒.又∵点D 在O 上,∴CD 是O 的切线,故①正确,∵COD COB △≌△,∴CD CB =,∵OD OB =,∴CO 垂直平分DB ,即CO DB ⊥,故②正确; ∵AB 为O 的直径,DC 为O 的切线,∴90EDO ADB ∠=∠=︒,∴90EDA ADO BDO ADO ∠+∠=∠+∠=︒,∴ADE BDO ∠=∠, ∵OD OB =,∴ODB OBD ∠=∠,∴EDA DBE ∠=∠, ∵E E ∠=∠,∴EDA EBD △∽△,故③正确;∵90EDO EBC ∠=∠=︒,E E ∠=∠,∴EOD ECB △∽△, ∴ED ODBE BC=,∵OD OB =, ∴ED BC BO BE ⋅=⋅,故④正确,故选A . 9.【答案】1【解析】∵AB 为直径,∴90ADB ∠=︒,∵30B ACD ∠=∠=︒,∴112122AD AB ==⨯=. 故答案为:1. 10.【答案】2【解析】如图,连接CO 并延长交⊙O 于E ,连接BE ,则∠E =∠A =30°,∠EBC =90°,∵⊙O 的半径为2,∴CE =4,∴BC =12CE =2, ∵CD ⊥AB ,∠CBA =45°,∴CD =22BC =2,故答案为:2. 11.【解析】(1)∵AB =AC ,∴AB AC =,∠ABC =∠ACB ,∴∠ABC =∠ADB ,∠ABC =(180°-∠BAC )=90°-∠BAC ,∵BD⊥AC,∴∠ADB=90°-∠CAD,∴12∠BAC=∠CAD,∴∠BAC=2∠CAD.(2)∵DF=DC,∴∠DFC=∠DCF,∴∠BDC=2∠DFC,∴∠BFC=12∠BDC=12∠BAC=∠FBC,∴CB=CF,又BD⊥AC,∴AC是线段BF的中垂线,AB=AF=10,AC=10.又BC=45,设AE=x,CE=10-x,由AB2-AE2=BC2-CE2,得100-x2=80-(10-x)2,解得x=6,∴AE=6,BE=8,CE=4,∴DE=648AE CEBE⋅⨯==3,∴BD=BE+DE=3+8=11,如图,作DH⊥AB,垂足为H,∵12AB·DH=12BD·AE,∴DH=11633105 BD AEAB⋅⨯==,∴BH2244 5BD DH-=,∴AH=AB-BH=10-446 55=,∴tan∠BAD=331162 DHAH==.12.【解析】(1)∵BA=BC,∠ABC=90°,∴∠BAC=45°,∵AB是⊙O的直径,∴∠ADB=∠AEB=90°,∴∠DAF+∠BGD=∠DBG+∠BGD=90°,∴∠DAF=∠DBG,∵∠ABD+∠BAC=90°,∴∠ABD=∠BAC=45°,∴AD=BD,∴△ADF≌△BDG.(2)①如图2,过F作FH⊥AB于H,∵点E是BD的中点,∴∠BAE=∠DAE,∵FD⊥AD,FH⊥AB,∴FH=FD,∵FHBF=sin∠ABD=sin45°2,∴22FDBF=BF2FD,∵AB=4,∴BD=4cos45°2,即BF+FD22+1)FD2,∴FD=2221=4-22,故答案为:4-22.②连接OH,EH,∵点H是AE的中点,∴OH⊥AE,∵∠AEB=90°,∴BE⊥AE,∴BE∥OH,∵四边形OBEH为菱形,∴BE=OH=OB=12 AB,∴sin∠EAB=BEAB=12,∴∠EAB=30°.故答案为:30°.31。

人教版九年级圆的知识点总结

人教版九年级圆的知识点总结

人教版九年级圆的知识点总结
嘿!同学们,咱们今天来好好聊聊人教版九年级圆的知识点呀!
哎呀呀,圆这个东西可真是神奇又重要呢!首先咱们得知道圆的定义吧?圆就是平面内到定点的距离等于定长的点的集合呀!那这个定点就叫做圆心,定长就是半径啦!哇!是不是很好理解?
再来说说圆的弦,连接圆上任意两点的线段就是弦哦!最长的弦那当然是直径啦!直径可是等于两倍的半径呢!
圆的周长公式C=2πr ,这里的π约等于3.14 呀!记住这个公式,计算周长就容易多啦!还有圆的面积公式S=πr² ,是不是很简单呢?
圆的位置是由圆心决定的,圆的大小是由半径决定的哟!这可得牢记呀!
说到圆的切线,这也是个重要的知识点呢!经过半径的外端并且垂直于这条半径的直线就是切线啦!切线的性质和判定定理都要掌握清楚哦!
圆与圆的位置关系也有讲究呀!外离、外切、相交、内切、内含,每种关系对应的条件都不一样,得仔细分辨呢!
圆中的角度关系也不能忽视呀!比如同弧所对的圆周角是圆心角的一半,这个定理经常会用到呢!
哎呀呀,关于人教版九年级圆的知识点咱们就先总结到这啦!同学们,一定要好好掌握,在做题的时候才能游刃有余呀!加油加油!。

九年级数学圆的知识点总结大全

九年级数学圆的知识点总结大全

一、圆的定义和性质1.圆的定义:平面上到定点的距离等于定长的点的集合。

2.圆的要素:圆心、半径、圆周。

3.圆的性质:(1)半径相等的两个圆是同心圆;(2)同圆中,圆心角等于圆周角的1/2;(3)同弧上的两条弦所对的圆心角相等;(4)圆心角相等的弧相等;(5)相等弧所对的弦相等;(6)正多边形的内角和是定值,因此内接于一个圆的正多边形的各个内角相等;(7)直径是弦中最长的。

二、弧与圆周角1.弧的定义:圆上两点间的弧是以这两点为端点的两条互不相交的圆弧中,长的那一段。

2.弧的性质:(1)圆周角所对的弧是唯一确定的;(2)全周角所对的弧是定长的。

3.圆周角的定义:以圆心为端点的两条互不相交的射线所夹的角。

4.圆周角的度量:可以用角的度数来衡量。

三、切线与弦1.切线的定义:切线是与圆只有一个公共点的直线。

2.切线与半径的关系:切线与半径的关系是切线⊥半径。

3.弦的定义:两点之间的线段叫做弦。

4.弦的性质:(1)圆内的弦比它们所对的圆心角小,而且与一个圆心角的两个弧所对的弧一样;(2)相等的弦所对的圆心角相等。

四、相交弦定理1.弦上的点:如果一个点在弦上,则这个点到两个端点的距离相等。

2.相交弦定理:如果两个弦相交于圆内的一个点,则这两个弦上的两个点一定分别在另一个弦上的两侧。

五、余弦定理1.面积的性质:圆内、圆外的面积相等,夹在一个圆内的圆周弧的面积也相等。

2.余弦定理:在一个圆上,任意两条弧所对的圆心角的余弦值相等。

六、正多边形的面积公式1.正六边形的面积:正六边形的面积=3×(边长)²×√3÷22.正八边形的面积:正八边形的面积=2×(边长)²×√23.正十二边形的面积:正十二边形的面积=3×(边长)²×√34. 正十六边形的面积:正十六边形的面积=4×(边长)²×tan(22.5°)。

九年级常考的圆知识点总结

九年级常考的圆知识点总结

九年级常考的圆知识点总结圆是我们九年级数学中的一个重要知识点,也是经常出现在考试中的内容。

本文将对九年级常考的圆知识点进行总结和归纳,希望能够帮助同学们更好地理解和掌握这些知识。

一、圆的定义和性质圆是平面内所有与一个确定点距离相等的点构成的集合。

其中,确定的点称为圆心,相等的距离称为半径。

圆的性质有很多,包括以下几个重要的方面:1. 圆上任意两点与圆心的距离相等;2. 圆的直径是圆上任意两点的最大距离;3. 圆的半径垂直于切线;4. 圆的切线与半径的交角是直角;5. 圆的内接四边形的两对对边和相等。

二、圆的基本要素和计算1. 弧度制和度度量制弧度制是一种角度的计量单位,它是以圆的半径长的弧所对的圆心角来定义的。

与之相对的是度度量制,在度度量制中,一个圆被划分成360个度。

在解决圆的相关问题时,我们需要根据具体情况选择使用弧度制还是度度量制。

2. 圆的弧长和扇形面积当我们需要计算圆上两点之间的弧长时,可以使用下列公式进行计算:L = rθ,其中L表示弧长,r表示圆的半径,θ表示弧所对的圆心角的度数或弧度数。

而当我们需要计算一个扇形的面积时,可以使用下列公式:S = 0.5r²θ,其中S表示扇形的面积,r表示圆的半径,θ表示扇形所对的圆心角的度数或弧度数。

三、圆的位置关系和相交性质1. 相离和相切当两个圆没有任何交点时,我们称它们为相离的;当两个圆只有一个公共切点时,我们称它们为相切的。

2. 相交和内切当两个圆有两个交点时,我们称它们为相交的;当一个圆完全包含在另一个圆内部,并且两个圆的圆心重合时,我们称它们为内切的。

四、圆的切线和切点1. 切线的性质圆的切线与半径的交角是直角,这是一个重要的性质。

同时,切线与半径的长度相等。

2. 切点的坐标计算当我们知道切线的方程和圆的方程时,可以通过联立两个方程来求解切点的坐标。

五、圆的证明问题圆的证明问题是考察同学们对圆性质的理解和运用能力的重要环节。

初三数学圆的知识点和公式总结

初三数学圆的知识点和公式总结

初三数学圆的知识点和公式总结数学圆的知识点和公式总结如下:1. 圆的定义:圆是由平面上所有到一个固定点的距离等于一个常数的点的集合。

2. 圆的要素:- 圆心:到圆上任意一点的距离相等的点,通常用大写字母O表示。

- 圆的半径:连接圆心和圆上任意一点的线段的长度,通常用小写字母r表示。

- 圆的直径:通过圆心的两个点之间的距离的两倍,即2r。

- 圆周:圆上所有的点构成的曲线。

- 圆内部:圆周所围成的区域。

3. 圆的相关公式:- 圆的周长:C=2πr,其中π≈3.14。

- 圆的面积:A=πr²。

- 圆的直径与周长的关系:C=πd,其中d为直径。

- 圆的直径与面积的关系:A=π(d/2)²。

4. 圆与圆的位置关系:- 相离:两个圆没有交点,且两个圆心之间的距离大于两个半径之和。

- 外切:两个圆内切于一个切点,且两个圆心之间的距离等于两个半径之和。

- 相交:两个圆有两个交点,且两个圆心之间的距离小于两个半径之和。

- 内切:一个圆在另一个圆的内部,且两个圆心之间的距离等于两个半径之差。

- 同心:两个圆的圆心重合,半径可以相等也可以不相等。

5. 圆的常用定理:- 弧长公式:弧长L=2πr(θ/360°),其中θ为所对的圆心角的度数。

- 弦长公式:弦长l=2r*sin(θ/2),其中θ为所对的圆心角的度数。

- 弧度制与角度制的转换:1弧度=180°/π,1°=π/180弧度。

- 正弦定理:在任意三角形ABC中,a/sinA=b/sinB=c/sinC。

- 余弦定理:在任意三角形ABC中,c²=a²+b²-2ab*cosC。

- 勾股定理:在直角三角形ABC中,a²+b²=c²。

希望以上总结对你有帮助!如有其他问题,请随时提问。

九下数学圆知识点总结

九下数学圆知识点总结

九下数学圆知识点总结一、圆的定义与特点1、圆的定义:所有穿过固定一点O的直线段均等长的图形,称为圆。

2、圆心:圆上所有直线段等长的一点,叫做圆心,用符号O表示。

圆心也可以由圆上的任意点P作圆的过程,得到。

3、圆的半径:圆上任意一点P到其圆心O之间的一条线段,叫做圆的半径,用符号r表示。

4、圆的周长:圆是一种闭合的曲线,圆的周长是把圆一周的长度,用C表示,公式C = 2πr。

5、圆的面积:圆的面积是将圆区域内的面积,用S表示,公式S = πr2。

二、圆的性质1、相等性质:任意两个半径之和等于直径,称为圆的相等性质。

2、轴对称性质:圆上任一点考察其与圆心之间的连线,称之为一轴,其另一端点,也就是与轴点对称的点,在圆上。

3、夹角性质:任意两条分别经过圆心的弦所对应的夹角均等,称为圆的夹角性质。

4、平分线性质:任一点到圆心所确定的直线,把圆切成两半,称这条直线为圆的平分线。

5、大圆可容小:任一小圆的半径均小于大圆的半径,若把小圆的圆心置于大圆上,则小圆完全被大圆容纳。

三、圆的构造1、有数角法:通过画出带有指定数量的角的多边形,改变角的位置来移动其顶点,使得它变成一个圆形。

2、直线法:通过直线连接,将有序的三点(称为圆心、圆上点A、圆上点B)按正确的顺序连接起来,就形成一个圆环。

3、三角形法:以圆心O为顶点,圆上的任意两点A、B组成的三角形AOB,它的三条边AB,AO和BO的长度均相等时,这三条边所围成的三角形都相等,则圆出现。

4、根据半径画圆:用圆心O作圆的生成过程,用直尺度取半径为r的圆环,用圆规把圆环勾勒出来。

5、画园的旋转法:利用圆心O及一点A进行旋转绘图,用一支轴OA 连接着一个旋转轴,圆心O不动,点A在圆周上旋转,则圆也就出现了。

九年级下圆-知识点总结

九年级下圆-知识点总结

九年级下圆-知识点总结九年级下圆—知识点总结九年级下学期,我们学习了许多有关圆的知识,包括圆的定义、性质、相关定理等。

下面就九年级下圆的知识点进行总结。

一、圆的定义与性质圆是由平面上与一个确定点的距离相等的所有点组成的图形。

圆的性质有以下几点:1. 圆上任意两点之间的距离相等。

2. 圆心到圆上任意一点的距离相等,这个距离称为圆的半径。

3. 圆的直径是通过圆心并且两端点在圆上的线段,直径的长度是半径的两倍。

二、圆的相关定理1. 圆的直径是圆的最长的一条弦, 而圆的半径是最短的一条弦。

2. 圆的弧是两个端点在圆上的弦所对应的一段圆的长度。

3. 两条相交弦的乘积等于它们各自所分割的弧的乘积。

即,当AB和CD两条弦相交于点E时,有AE * BE = CE * DE。

4. 切线和半径垂直,切线是与圆相切于一点的直线。

切线和切线之间的夹角等于两条切线所对应的弧所夹的圆心角的一半。

5. 圆内接四边形的两条对角线之和等于常量。

即,当一个四边形的四个顶点都在同一个圆上时,它的两条对角线的和保持不变。

三、圆的面积与周长圆的周长是圆上任意一点到圆心的距离,也就是圆的半径乘以2π,即周长 = 2πr。

圆的面积是圆内的所有点构成的平面图形的大小,圆的面积公式为S = πr²,其中S表示面积,r表示半径。

四、圆锥与圆柱圆锥是由一个底面为圆的曲面和一个顶点所组成的立体图形。

圆柱是由两个平行的底面为圆的曲面和连接两个底面的侧面所组成的立体图形。

五、圆的应用1. 圆的运动:我们生活中有许多与圆相关的物体或现象,比如车轮的旋转、地球的公转等,这些都是圆的运动。

2. 圆的建筑与装饰:许多建筑物和装饰品中都用到了圆的形状,如钟楼、建筑的圆顶、圆形花坛等。

3. 圆的测量与制作:在工程测量和制图中经常用到圆的测量与制作,例如圆柱的体积计算、圆形图形的绘制等。

以上就是九年级下圆的知识点总结。

通过学习这些知识,我们对圆的性质和应用有了更深入的了解,也能更好地应用于实际生活中。

人教版初三数学下册-圆-知识点归纳

人教版初三数学下册-圆-知识点归纳

人教版初三数学下册-圆-知识点归纳-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN圆的知识点归纳圆的半径相等,所以两条半径与圆心构成的三角形是等腰三角形直径d与半径r的关系:d=2r直径所对圆周角等于90°;90°的圆周角所对的弦是直径圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等、所对的弦相等、所对的弦心距相等圆周角定理:1、在同圆或等圆中,相等的圆周角所对的弧相等、所对的弦相等、所对的弦心距相等 2、同弧所对圆周角是圆心角的一半垂径定理:一条直线,只要具备下列5条中的2条作为条件,就可以推出其他三条结论。

称为:知二推三1、平分弦所对的优弧2、平分弦所对的劣弧3、平分弦(这条弦不是直径)4、垂直于弦5、过圆心圆内接四边形对角互补切线的判定:①作半径,证垂直;②作垂直,证半径切线定理:圆的切线垂直于过其切点的半径切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角三角形的内接圆圆心,是这个三角形三条角平分线的交点三角形的外接圆圆心,是这个三角形三条垂直平分线的交点圆的周长:C圆=2πr 圆的面积:S圆=πr2弧长公式:l=nπr180扇形面积:S扇=nπr2360圆柱侧面积:S圆柱侧面=πdh圆锥侧面积:S圆锥侧面=πrl(其中l是母线)圆柱体积:V圆柱=S底h圆锥体积:V圆锥=13S底h圆的常见辅助线:1、作垂线2、连半径3、构造直径三角形点与圆的位置关系(以下d代表点到圆心距离,r代表圆的半径):1、点在圆外 d>r2、点在圆上 d=r3、点在圆内 d<r直线与圆的位置关系(以下d代表直线到圆心距离,r代表圆的半径):1、相离 d>r2、相切 d=r3、相交 d<r圆与圆的位置关系(以下d代表两圆的圆心距离,R、r分别代表两圆的半径):1、外离d>R+r2、外切d=R+r3、相交R-r<d<R+r4、内切d=R-r5、内含d<R-r。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的知识点归纳
圆的半径相等,所以两条半径与圆心构成的三角形是等腰三角形
直径d与半径r的关系:d=2r
直径所对圆周角等于90°;90°的圆周角所对的弦是直径
圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等、所对的弦相等、所对的弦心距相等
圆周角定理:1、在同圆或等圆中,相等的圆周角所对的弧相等、所对的弦相等、所对的弦心距相等
2、同弧所对圆周角是圆心角的一半
垂径定理:一条直线,只要具备下列5条中的2条作为条件,就可以推出其他三条结论。

称为:知二推三
1、平分弦所对的优弧
2、平分弦所对的劣弧
3、平分弦(这条弦不是直径)
4、垂直于弦
5、过圆心
圆内接四边形对角互补
切线的判定:①作半径,证垂直;②作垂直,证半径
切线定理:圆的切线垂直于过其切点的半径
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
三角形的内接圆圆心,是这个三角形三条角平分线的交点
三角形的外接圆圆心,是这个三角形三条垂直平分线的交点
圆的周长:C圆=2πr 圆的面积:S圆=πr2
弧长公式:l=nπr
180扇形面积:S

=nπr2
360
圆柱侧面积:S
圆柱侧面=πdh圆锥侧面积:S
圆锥侧面
=πrl(其中l是母线)
圆柱体积:V
圆柱=S

h圆锥体积:V
圆锥
=1
3
S

h
圆的常见辅助线:1、作垂线
2、连半径
3、构造直径三角形
点与圆的位置关系(以下d代表点到圆心距离,r代表圆的半径):
1、点在圆外 d>r
2、点在圆上 d=r
3、点在圆内 d<r
直线与圆的位置关系(以下d代表直线到圆心距离,r代表圆的半径):
1、相离 d>r
2、相切 d=r
3、相交 d<r
圆与圆的位置关系(以下d代表两圆的圆心距离,R、r分别代表两圆的半径):
1、外离d>R+r
2、外切d=R+r
3、相交R-r<d<R+r
4、内切d=R-r
5、内含d<R-r
&。

相关文档
最新文档