圆周角第一第二课时教案
九年级数学上册《圆周角》教学设计(第一课时)
24.1.4 圆周角教案设计(第一课时)教学目标: 1、理解圆周角的概念,会在具体情境中辨别圆周角。
2、掌握圆周角定理的内容及推论,并能灵活运用这些知识进行简单的计算和证明。
3、 继续培养学生观察、分析、想象、归纳和逻辑推理的能力。
教学重点:圆周角的概念和圆周角定理教学难点:圆周角定理的证明中由“特殊到一般” 的数学思想方法和完全归纳法的数学思想。
过程与方法:1、 在探索圆周角与圆心角的关系的过程中,学会运用分类讨论、转化的数学思想解决问题。
2、 学习中经历操作、观察、发现、猜想、分析、交流、归纳等数学活动,体验圆周角定理的探索过程,培养合理推理能力,发展逻辑思维能力、推理论证能力和用几何语言表达的能力。
教学活动设计:(一) 情境引入动画和画面:2012年欧洲足球杯西班牙与意大利比赛中的一个片段中,Fabregas 带球冲到对方球门附近,Fabregas 没有直接射门,而是将球传给离球门较远的队友David Silva ,由他射门,为什么?(球进了吗?)问:射门的位置跟什么因素有关?学了这节课我们就明白了这个问题。
设计意图:从学生熟悉的足球活动引入,设置问题引起悬念,引起学生的好奇心、调动学生的积极性。
(二)圆周角的概念1、探索问题:将圆心角顶点向上移,直至与⊙O 相交于点 C ,观察 得到的∠ACB 。
问:顶点在哪里?两边与圆有什么位置关系?圆周角的定义:顶点在圆上,并且两边都和圆相交的角叫圆周角..A C B学生活动:1、认识圆周角师问:判断圆周角有什么方法?学生归纳:先找顶点在不在圆周上,再看角的两边是否与圆相交。
设计意图:在具体情境中辨别圆周角,巩固知识的形成。
学生活动:2、找一找:圆中有多少个圆周角?分别说出来。
问:你是怎么找到的? 设计意图:在复杂的图中找圆周角,进一步强化圆周角的两个特征,学会分类思想。
问:每个圆周角对应一条相应的弧,观察一下,有没有某两个圆周角对应同一条弧,也就是说同一条弧对着多个圆周角? 设计意图:引入下一个环节 (三)探究一条弧所对的圆周角和圆心角的关系 学生活动3:试着画一画,一条弧所对的圆周角有多少个? 问:虽然一条弧所对的圆周角有无数个,但观察它们与圆心的位置关系,可分为哪几种情况? (交流讨论后学生回答) 设计意图:通过学生动手操作,想象,观察,对比分析,从圆周角与圆心的位置关系可分为三种,让学生亲自体验并学会分类讨论。
圆周角教案说明
圆周角教案说明(第一课时)苏科版义务教育课程标准实验教科书九年级上册广东韶关乐昌市新时代学校邱荣锋《圆周角》教案说明(苏科版数学九年级上册第五章第三节)广东韶关乐昌市新时代学校邱荣锋一、数学本质与教学目标定位圆是揭示空间与图形关系的重要内容.由于它既是中心对称图形,又是轴对称图形,所以对培养学生的数学能力,形成良好数学思想方法具有重要的意义.圆周角与圆心角之间的关系是圆的重要内容之一,它们的关系与研究关系的方法有助于提高学生对圆的认识.九年级学生有较强的自我发展意识和感兴趣的“挑战性”心理.根据新课程标准的学段目标要求,结合学生的实际情况,提出以下三方面的教学目标定位:(1)知识目标1、体会圆周角与圆心角关系的探索过程,发现、验证圆周角与圆心角的关系,遵循“从特殊到一般”,体现“分类”和“化归”思想.2、利用圆周角与圆心角的关系进行简单的说理,培养学生分析问题和解决问题的能力.(2)能力目标1、通过学生的探索,培养学生动手实践、自主探索和合作交流的能力.2、让学生口述,培养他们有条理的表达能力.通过直观的动画展示,培养学生观察现象、分析问题的能力.(3)情感目标通过操作和交流等活动,培养学生互帮互助、协同作战的团队精神,提高学生学习数学的兴趣.二、教材的地位与作用《圆周角》是苏科版教材九年级(上)第五章第三节的内容,是在学生学习了圆、弦、弧、圆心角等概念和圆的有关性质,并且具备初步的观察操作等活动经验的基础上出现的,本节课的教学目的在于让学生通过对圆周角与圆心角关系的探索,对圆及其有关的性质进行系统的梳理,进一步学习、掌握说理和进行简单推理的数学方法.由于本节课内容在圆的有关说理、作图和计算中应用比较广泛,因此,它既是前面所学知识的继续,又是后面研究圆与其它平面图形(圆内接四边形等)的桥梁和纽带.圆这种基本的几何图形已广泛运用到自然科学和社会科学的各个领域,因此,本节课的教学对整章乃至今后的教学都至关重要.圆周角与圆心角的关系貌似简单,它蕴含了丰富多彩的数学思想方法等教育素材.教学目标是一概念(圆周角的概念),一定理(圆周角与圆心角的关系定理),获得猜想后,用分类和化归思想,把圆周角定理的证明分为三种情况,先证明圆心在圆周角一边上的特殊情况,再把圆心在圆周内和圆心在圆周角外的情形分别化归为在圆周角一边上的情形.这种先猜后证的教学设计能有效地激发他们主动探索,验证知识的积极性.可以看到,在圆周角与圆心角关系的证明过程中,渗透了运动变化思想、特殊化思想、分类讨论思想和化归思想,同时也说明了本节教材内涵的丰富.本节教材分两课时进行教学,第一课时是探索圆周角与圆心角的关系,第二课时是探索直径所对圆周角的特点.今天,我所教学的是第一课时.三、教学诊断分析本节课的知识主要是一概念(圆周角的概念),一定理(圆周角与圆心角的关系定理),学生容易掌握.难点是圆周角与圆心角关系的证明,学生一时难以找到证明的途径.通过自主探究、小组讨论、老师的引导和几何画板的直观演示,既突出了重点又突破了难点.有了课本例题与例题的变式做铺垫,课前遇到的"足球射门"问题(图1)和本节教学中的A组练习题就就迎刃而解了.从而,让学生再次体会生活中的数学,提高他们学习数学的兴趣.在知识的运用上较难的是图形没有明确所要的圆周角,或图形较复杂,学生一时找不到对应的圆周角,这时需要老师做添加辅助线的引导,降低解题的难度.如例1(图2)中作辅助线BE或CF的考虑.图1 图2四、教法特点及预期效果分析1、新课程标准的总体思想,是如何将数学与生活实际结合起来.我联系生活中学生喜闻乐见的足球射门,创设了具有挑战性的问题情境,导入新课,建立数学模型,引导他们找出图中的∠C 、∠D (圆周角)与圆心角∠AOB的关系,选择新旧知识的切入点,既复习上节课的内容,又激发了学生学习新知识的兴趣.让学生试着给圆周角下定义,以提高学生的概括能力.2、新课程标准不仅重视知识技能目标,还特别强调过程性目标,注重学生的学习体验和探索感受.说百句不如动一动,教师应善于组织学生进行实践活动.自主探究也是新课标理念下学生学习的重要方式.以教师为主导,学生为主体,能让学生更自主,更有效地沟通交流,建构其良好的知识结构收到更好的教学效果.学生的合作与交流,一方面能提高学习效率,另一方面能从中培养合作的习惯,交流的能力,更好地促进学生的发展.3、利用几何画板演示圆心与圆周角的三种位置关系 (学生很快得到图3—图5的三种情况),为定理的分类证明埋下了“伏笔” .利用几何画板直观形象的演示圆周角与圆心角的数量关系,使抽象的数学知识以简单明了的形式展现在学生面前,缩短了知识与学生之间的距离.E图(3) 图(4) 图(5)4、揭示定理的内涵:定理的第一种形(如图3)学生较容易证明,第二、三种情形的证明,是本节课的难点,其关键是如何突破由“一般”到“特殊”的转化.当我把圆心在圆周角内部的图形投影出来时,学生一时难以找到证明的途径,我就又把圆心在圆周角边上的特殊情况投影出来,并且使对应的线条的颜色一致,再引导学生观察交流讨论.这样,大部分的学生能自己想到通过作直径AD ,把第二种情况的图形(图4)转化成两个第一种情况,即圆心在圆周角边上的特殊图形进行证明.第三种圆心在圆周角外部的引导方法也一样.这样,学生会发现三种情况证明的统一性.本节课所涉及到的分类和转化思想,通过《几何画板》的演示,让学生自主探究,合作交流,对学生对分类和转化思想的获得起到了潜移默化的作用.因材施教,分层教学,关注学生的个性差异.根据学生的知识能力,我设计了分层课堂练习和课后作业,让学生吃饱吃好,实现不同的学生得到不同的发展,充分的展示学生的个性.最后,我还设计了一个教学反馈表,让学生自己对本节课学习效果有更清楚的认识,既是一个反省,又是一个激励,有助于学生心灵的自我完善和发展.对于教师而言也是教学上的一个较全面的教学反馈,有利于教师达到精益求精的教学目的.A A BC课后教学反馈表。
圆周角教案(1)
人教版九年级上册§24.1.4 圆周角(教案)第一课时24.1.4 圆周角(第一课时教案)教材分析:1、本节课是在学习了圆的有关概念、垂径定理、圆心角定理的基础上对圆的有关性质的进一步探索。
2、利用弧等构造弦等、角等是解决圆中相关问题非常重要的方法。
学情分析:九年级的学生虽然已经具备了一些问题的说理能力,但是初三的几何证明过程中,学生的逻辑思维仍然是不成熟的,所以对于知识的生成过程任然是教学中的重点内容,针对上述情况,本节课我采用了学生动手操作——猜想——验证——组长对组员进一步讲解的学习过程。
一、目标设计:(一)知识技能:1、了解圆周角的概念,会证明圆周角的定理及推论。
2、掌握圆周角定理的两个推论,并能简单应用。
(二)过程方法:1、培养学生观察、分析、想象、归纳和逻辑推理的能力。
2、结合圆周角定理的探索与证明的过程,进一步体会分类讨论和转化的思想方法。
(三)情感态度:1、通过组长的讲,小组的交流,增进同学间互相学习、互相帮助、共同提高的氛围。
2、通过小组合作学习创造学习气氛,培养学生的学习兴趣。
二、教学重难点:重点:定理及推论的理解与运用难点:定理的证明三、教学过程:【课前引入】:出示几何画板,一个圆柱形房间有4人:A、B、C、D,D站在圆心位置,A,B,C三人在圆周上观察弧形落地窗外的风景,四人谁的视角比较大?大多少?设计意图:带着问题进入本节内容,培养学生的学习兴趣。
【课堂探究】:探究一:圆周角概念的理解。
圆周角:顶点在圆上,并且两边都与圆相交的角。
针对性思考:判断下列图形中的角,哪些是圆周角?()()()()()()()()设计意图:学生通过对图形的识别,得出圆周角的两个特点:顶点在圆上;两边都与圆相交。
通过正例与反例的判断,加深对概念的理解。
探究二:圆周角定理的掌握。
1、学生度量图1中弧BC所对的圆周角和圆心角的大小,猜想这两个角的大小关系。
教师也可利用几何画板的动态性来加以验证。
人教版 数学九年级上册《24.1.4 圆周角》(第1课时)教案
《24.1.4 圆周角》教案第1课时圆周角的概念和圆周角定理教学目标1.理解圆周角的定义,了解与圆心角的关系,会在具体情景中辨别圆周角。
2.通过学生的探索过程,培养学生的动手操作、自主探索和合作交流的能力。
3.通过操作交流等活动,培养学生互相帮助、团结协作、互相讨论的团队精神,培养学生学习数学的兴趣。
教学重点圆周角定理及其推论的探究与应用。
教学难点圆周角定理的证明中由一般到特殊的数学思想方法以及圆周角定理及推论的应用。
课时安排1课时教学方法启发引导、合作探究、拓展新知课前准备课件、课本等教学过程一、导入新知活动:请同学们口答下面两个问题.1.什么叫圆心角?2.圆心角、弦、弧之间有什么内在联系呢?点评:1.我们把顶点在圆心的角叫圆心角.2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,•那么它们所对的其余各组量都分别相等.刚才讲的,顶点在圆心上的角,有一组等量的关系,如果顶点不在圆心上,它在其它的位置上?如在圆周上,是否还存在一些等量关系呢?这节课,我们就一起来学习《圆周率的概念和圆周角定理》。
(板书课题)二、探究新知(一)师生互动,启发猜想1.摆一摆:一条弧对的圆心角有几个,圆周角有几个?学生利用手中的学具和皮筋,通过由实验、观察等方法可得出:一条弧对的圆心角只有一个,圆周角有无数个;2.找一找:圆心与圆周角有几种位置关系?充分的活动交流后,教师挑选有代表性的几个小组派代表在展台上展示图片,说明圆心与圆周角的位置关系:①圆心O在∠BAC的内部②圆心O在∠BAC的一边上③圆心O在∠BAC的外部请同学们思考除这三种位置关系外是否还有遗漏?分别做出这三个图中的圆心角∠BOC,①圆心O在∠BAC的内部②圆心O在∠BAC的一边上③圆心O在∠BAC的外部3.量一量:同一条弧所对的圆周角∠BAC与圆心角∠BOC的度数,你有什么发现?(二)观察猜想,寻找规律1.教师出示同一条弧所对圆周角为90°,圆心角为180°和同一条弧所对圆周角为45°,圆心角为90°的特殊情况的图形.提出问题:在这两个图形中,对着同一条弧的圆周角和圆心角,它们之间有什么数量关系.由于情况特殊,学生观察、测量后,容易得出:对着同一条弧的圆周角是圆心角的一半.2.教师提出:在一般情况下,对着同一条弧的圆周角还是圆心角的一半吗?通过上面的特例,学生猜想,得出命题:一条弧所对的圆周角等于它所对的圆心角的一半.(三)动手画图,证明定理1.猜想是否正确,还有待证明.教师引导学生结合命题,画出图形,写出已知、求证.2.先分小组交流画出的图形,议一议:所画图形是否相同?所画图形是否合理?3.利用实物投影在全班交流,得到三种情况.若三种位置关系未出现全,教师利用电脑演示同一条弧所对圆周角的顶点在圆周上运动的过程,得出同一条弧所对的圆心角和圆周角之间可能出现的不同位置关系,得到圆心角的顶点在圆周角的一边上、内部、外部三种情况.4.引导学生选一种最特殊、最容易证明的“圆心角的顶点在圆周角的一边上”进行证明,写出证明过程,教师点评.5.引导学生通过添加辅助线,把“圆心角的顶点在圆周角的内部、外部”转化成“圆心角的顶点在圆周角的一边上”的情形,进行证明,若学生不能构造过圆周角和圆心角顶点的直径,教师给予提示.然后小组交流讨论,上台展示证明过程,教师点评证明过程.6.将“命题”改为“定理”,即“圆周角定理”.三、随堂练习1.教材第88页练习第1题.2.如图,∠BAC和∠BOC分别是⊙O中的弧BC所对的圆周角和圆心角,若∠BAC=60°,那么∠BOC=________.3.如图,AB,AC为⊙O的两条弦,延长CA到D,使AD=AB,如果∠ADB=30°,那么∠BOC=________.答案:1.略;2.120°;3.120°.四、归纳新知1.圆周角概念及定理.2.类比从一般到特殊的数学方法及分类讨论、转化与化归的数学思想.五、教后反思。
圆周角 优课教案
圆周角【课时安排】2课时【第一课时】教学目标(一)知识与能力1.了解圆周角的概念。
2.熟练掌握定理及推论。
(二)过程与方法探索圆周角定理时,体会“分类讨论”的数学思想。
(三)情感态度价值观通过对三种情况的圆周角与其所对弧的圆心角关系的证明,学会“转化”的数学思想。
教学重点圆周角的定理的推导及运用它们解题。
教学难点探索证明圆周角的定理教学过程教师活动学生活动一、激情导入二、认定目标三、自主探究引导学生画圆,并画出一个圆心角,指出当顶点,在圆周上时又出现一种新的角——圆周角,本节课我们将进行学习。
出示学习目标自学导航1.判断下列图形中的角是否是圆周角?学生独立画图观察直观感受圆周角有关探索。
一生口述目标,其余生静听、领会。
四、激情互动利用图形说明圆周角的概念。
2.如图思考∠AOB与∠C的关系。
3.如图思考∠AOC与∠B的关系。
从上图可以总结出圆周角与圆心角的关系。
指导生互动交流,解决生自学中的困惑问题。
点评:定理:一条弧所对的圆周角的度数等于它所对的圆心角度数的一半;同弧或等弧所对的圆周角相等,在同圆或等圆中,相等圆周角所对的弧相等。
学生独立思考理解圆心角的概念。
学生独立思考同弧所对的圆心角与圆周角的关系,试说明理由。
组内交流自学中的困惑问题,全组达成一致意见。
有困惑的组由科代表提出本组困惑问题,寻求其他组帮助,各组选派代表说明解法。
师生互动结合图形识记定理。
结合图形给出推论。
OBCOBACD五、当堂检测(1)如图,AB是⊙O的直径,∠A=10°,则∠ABC=________。
(2)如图,AB是⊙O的直径,CD是弦,∠ACD=40°,则∠BCD=_______,∠BOD=_______。
(3)如图,AB是⊙O的直径,D是⊙O上的任意一点(不与点A、B重合),延长BD到点C,使DC=BD,判断△ABC的形状:__________。
(4)如图,AB是⊙O的直径,AC是弦,∠BAC=30°,则AC的度数是()A.30°B.60°C.90°D.120°学生思考后口答。
圆周角教案
课题:5.3圆周角(第一课时)授课教师:镇江市索普初级中学马聪一、教学目标:1.知识与技能目标:使学生理解圆周角的概念,掌握圆周角的性质;准确地运用圆周角性质进行简单的证明计算。
2.过程与方法目标:引导学生能主动地通过:实验、观察、猜想、验证“圆周角与圆心角的关系”,培养学生的合情推理能力、实践能力与创新精神,从而提高数学素养。
3.情感与态度目标:营造“民主、和谐”的课堂氛围,让学生在愉快的学习中不断获得成功的体验,同时培养学生以严谨求实的态度思考数学。
二、教学重点:经历探索“圆周角与圆心角的关系”的过程,掌握圆周角定理。
三、教学难点:了解圆周角的分类、用化归思想,合情推理验证“圆周角与圆心角的关系”。
四、教学方法与教学手段:《数学新课标》指出“学生是学习的主人,教师是学习的组织者、引导者、和合作者。
”本课以学生的活动为主线,以突出重点、突破难点、发展学生数学素养为目的,采用以“探究式教学法”为主,讲授法、发现法、分组交流合作法、启发式教学法、几何画板辅助教学等多种方法相结合。
注重师生互动、生生互动,让不同层次的学生动眼、动脑、动手、动口,参与数学思维活动,充分发挥学生的主体作用。
五、教学过程:一、导入新课:1、问题(1):如图,在⊙O中∠BOC是什么角?(2):的度数和圆心角的度数有什么关系?作图:在活动单上分四个小组(A-D)利用三角板分别作一个30°,45°,60°,90°的圆心角∠BOC(设计意图:回顾旧知,作图时选了一些特殊角度,为了后面通过特殊角度值发现圆周角的性质做铺垫。
)BC2、移动∠BOC 的顶点到圆周上,得到∠BAC问题(1):这个角还是圆心角吗?你给它取个什么名字? (2):你为什么给它取名圆周角? (3):你能给圆周角下个完整的定义吗?(设计意图:通过不断的追问,让学生注意观察角的特征,并能归纳得出圆周角的定义,引入今天的新课内容。
湘教版九年级数学下册《圆周角》教案
2.2.2 圆周角第1课时圆周角(1)【知识与技能】1.理解圆周角的定义,会区分圆周角和圆心角.2.能在证明或计算中熟练运用圆周角的定理.【过程与方法】经历探索圆周角与圆心角的关系的过程,加深对分类讨论和由特殊到一般的转化等数学思想方法的理解.【情感态度】1.在探究过程中体验数学的思想方法,进一步提高探究能力和动手能力.2.通过分组讨论,培养合作交流意识和探索精神.【教学重点】理解并掌握圆周角的概念及圆周角与圆心角之间的关系,能进行有关圆周角问题的简单推理和计算.【教学难点】分类讨论及由特殊到一般的转化思想的应用.一、情境导入,初步认识阅读教材P49-50,回答下列问题.1.如图所示的角中,哪些是圆周角?2.顶点在______上,并且两边都与圆_________的角叫做圆周角.3.在同圆或等圆中,_____或_______所对的圆周角相等,都等于这条弧所对的______的一半.4.在同圆或等圆中,相等的圆周角所对的弧也_______.【教学说明】圆周角必须符合两个条件:①顶点在圆上;②两边与圆相交.二、思考探究,获取新知探究圆周角定理.1.同学们作出AB所对的圆周角,和圆心角,学生分组讨论,并回答下列问题:问题1 AB所对的圆周角有几个?问题2 度量下这些圆周角的关系.问题3 这些圆周角与圆心角∠AOB的关系.学生解答:【教学说明】①AB所对的圆周角的个数有无数个.②通过度量,这些圆周角相等.③通过度量,同弧对的圆周角是它所对圆心角的一半.2.同学们思考如何推导上面的问题(3)的结论?教师引导,学生讨论①当点O在∠BAC边AB上,②当点O在∠BAC的内部,③当点O在∠BAC外部.①②由同学们分组讨论,自己完成.③由同学们讨论,代表回答.【教学说明】作直径AE,由∠BAC=∠OAC-∠OAB,由∠OAC=12∠EOC,∠OAB=12∠BOE得:∠BAC=12∠EOC-12∠BOE=12(∠EOC-∠BOE)=12∠BOC.从①②③得出圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.还可以得出下面推论:同圆或等圆中,如果两个圆周角相等,那么它们所对的弧一定相等;3.讲例题:如图,(1)已知AD BC=.求证:AB=CD.(2)如果AD=BC,求证:DC AB=.证明:(1)∵AD BC=,∴AD AC BC AC+=+,∴DC AB=,∴AB=CD.(2)∵AD=BC,∴AD BC=,∴AD AC BC AC+=+,即DC AB=.【教学说明】在今后证明线段相等的题目中又加了一种有弧相等也可以得到线段相等的方法了.三、运用新知,深化理解1.如图,在⊙O中,AD=DC,则图中相等的圆周角的对数是()A.5对B.6对C.7对D.8对2.如图所示,点A,B,C,D在圆周上,∠A=65°,求∠D的度数.第2题图第3题图3.如图所示,已知圆心角∠BOC=100°,点A为优弧BC上一点,求圆周角∠BAC的度数.4.如图所示,在⊙O中,∠AOB=100°,C为优弧AB的中点,求∠CAB的度数.【教学说明】在圆中利用同弧所对的圆周角相等推得角相等是灵活对角进行等量转换的关键,要特别注意等弧所对的圆心角也相等.【答案】1.D 2.65° 3.50° 4.65°四、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答基础上.【教学说明】①圆周角的定义是基础.②圆周角的定理是重点,圆周角定理的推导是难点.③圆周角定理的应用才是重中之重.1.教材P56第3~5题.2.完成同步练习册中本课时的练习.第2课时圆周角(2)【知识与技能】1.巩固圆周角概念及圆周角定理.2.掌握圆周角定理的推论:直径所对的圆周角是直角,90°的圆周角所对的弦是直径.3.圆内接四边形的对角互补.【过程与方法】在探索圆周角定理的推论中,培养学生观察、比较、归纳、概括的能力.【情感态度】在探索过程中感受成功,建立自信,体验数学学习活动充满着探索与创造,交流与合作的乐趣.【教学重点】对直径所对的圆周角是直角及90°的圆周角所对的弦是直径这些性质的理解.【教学难点】对圆周角定理推论的灵活运用是难点.一、情境导入,初步认识1.如图,木工师傅为了检验如图所示的工件的凹面是否成半圆,他只用了曲尺(它的角是直角)即可,你知道他是怎样做的吗?【分析】当曲尺的两边紧靠凹面时,曲尺的直角顶点落在圆弧上,则凹面是半圆形状,因为90度的圆周角所对的弦是直径.解:当曲尺的两边紧靠凹面时,曲尺的直角顶点落在圆弧上,则凹面是半圆形状,否则工件不合格.2.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.3.圆内接四边形的对角互补.【教学说明】半圆(或直径)所对的圆周角是直角,90°的圆周角所对弦是直径都是圆周角定理可推导出来的.试着让学生简单推导,培养激发他们的学习兴趣.二、思考探究,获取新知1.直径所对的圆周角是直角,90°的角所对的弦是直径.如图,∠C1、∠C2、∠C3所对的圆心角都是∠AOB,只要知道∠AOB的度数,就可求出∠C1、∠C2、∠C3的度数.【教学说明】∵A、O、B在一条直线上,∠AOB是平角,∠AOB=180°,由圆周角定理知∠C1=∠C2=∠C3=90°,反过来也成立.2.讲教材P54例3【教学说明】在圆中求角时,一种方法是利用圆心角的度数求,另一种方法是把所求的角放在90°的三角形中去求.3.讲圆内接四边形和四边形的外接圆的概念.如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做多边形的外接圆;圆内接四边形对角互补.例1如图所示,OA为⊙O的半径,以OA为直径的圆⊙C与⊙O的弦AB相交于点D,若OD=5cm,则BE=10cm.【教学说明】在题中利用两个直径构造两个垂直,从而构造平行,产生三角形的中位线,从而求解.例2如图,已知∠BOC=70°,则∠BAC=_____,∠DAC=______.【分析】由∠BOC=70°可得所对的圆周角为35°,又∠BAC与该圆周角互补,故∠BAC=145°.而∠DAC+∠BAC=180°,则∠DAC=35°.答案:145°35°例3如图,点A、B、D、E在⊙O上,弦AE、BD的延长线相交于点C.若AB是⊙O的直径,D是BC的中点.(1)试判断AB、AC之间的大小关系,并给出证明;(2)在上述题设条件下,△ABC还需满足什么条件,使得点E一定是AC的中点(直接写出结论)【教学说明】连接AD,得AD⊥BC,构造出Rt△ABD≌Rt△ACD.解:(1)AB=AC.证明:如图,连接AD,则AD⊥BC.∵AD是公共边,BD=DC,∴Rt△ABD≌Rt△ACD,∴AB=AC.(2)△ABC为正三角形或AB=BC或AC=BC或∠BAC=∠B或∠BAC=∠C.三、运用新知,深化理解1.(湖南湘潭中考)如图,AB是半圆O的直径,D是AC的中点,∠ABC=40°,则∠A等于()A.30°B.60°C.80°D.70°2.如图,AB是⊙O的直径,∠BAC=40°,点D在圆上,则∠ADC=_______.3.(山东威海中考)如图,AB为⊙D的直径,点C、D在⊙O上.若∠AOD=30°,则∠BCD的度数是______.4.(浙江金华中考)如图,AB是⊙O的直径,C是BD的中点,CE ⊥AB于E,BD交CE于点F.(1)求证:CF=BF;(2)若CD=6,AC=8,则⊙O的半径为,CE的长是_____.【教学说明】①遇到直径常设法构造直角三角形;②注意:“角→弧→角”之间转化.【答案】1.D 2.50°3.105°4.解:(1)AB 为⊙O 直径,∴∠ACB=90°,∴∠A+∠CBA=90°.又CE ⊥AB ,∠ECB+∠CBA=90°,∠BCE=∠A,又CD BC =,∴∠A=∠CBD ,∴∠ECB=∠DBC ,∴CF=BF.(2)半径为5.CE=·6810AC BC AB ⨯= =4.8. 四、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答基础上,教师强调:①半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径;②圆内接四边形定义及性质;③关于圆周角定理运用中,遇到直径,常构造直角三角形.1.教材P 57第7~9题.2.完成同步练习册中本课时的练习.。
课题:圆周角第二课时 教案
课题
4.3圆周角(2)
课型
新授课
第二课时
教学目标
知识与技能
掌握圆周角定理的推论3,并会熟练运用这些知识进行有关的计算和证明
过程与方法
进一步培养学生观察、分析及解决问题的能力及逻辑推理能力
情感态度与价值观
培养添加辅助线的能力和思维的广阔性
教学重点
圆周角定理的推论的应用
教学难点
推论的灵活应用பைடு நூலகம்及辅助线的添加
问题导学,有效引发学生的积极思考问题,积极参与交流,并自主获取结论。
这个推论是圆中一个很重要的性质,为在圆中确定直角、成垂直关系创造了条件,要熟练掌握
强化对推论3的理解
生通过交流获得知识,梳理知识形成体系。
巩固所学知识
附板书设计:圆周角(2)
圆周角定义:顶点在圆上,并且两边都和圆相交的角叫圆周角.
圆周角定理:圆周角的度数等于它所对的弧的度数的一半。
教与学策略
知识是通过学生自己动口、动手、动脑,积极思考、主动探索获得.我将课堂交给学生,让学生自己去探索,发现验证知识.自主探索,研讨发现,得出结论是本节课主要的学习方法.
课前准备(教具、活动准备等)
教师:多媒体、课件、圆规、三角板等
学生:圆形硬纸片若干、直尺、圆规、量角器等
教学过程
教学步骤
教师活动
能力:在解圆的有关问题时,常常需要添加辅助线,构成直径所对的圆周角或构成相似三角形,这种基本技能技巧一定要掌握.
课本20页习题4.5第1.2.3
让学生自主练习
让学生充分交流
学生先个人自主探索,然后交流讨论,获得结论。
学生自我反省,交流总结
以题目的形式复习上节学习内容,增加复习的实效性。
《圆周角+第1课时》教学方案
第二十四章圆24.3 圆周角第1课时圆周角一、教学目标1.了解圆周角的概念;2.掌握圆周角定理及其推论,并会熟练运用它们解决问题;3.由圆周角与圆心角的关系的探索学会以特殊情形为基础,通过转化来解决一般问题的方法,并渗透分类的数学思想;4.通过学生自主探究圆周角的概念及定理,合作交流的学习过程,体验实现自身价值的愉悦和数学的应用.二、教学重难点重点:圆周角定理及其两个推论与应用.难点:分三种情况探索圆周角定理及理解两个推论.三、教学用具多媒体课件四、教学过程设计【回顾】什么是圆心角?教师活动:教师提出问题,全班学生回顾并作答:“顶点在圆心的角叫做圆心角(如下图)”.然后教师可追问:一个三角形,当它内接于一个圆时,它的任一个角都与圆有什么位置关系?【观察思考】预设答案:①顶点在圆上;②角的两边与圆各另有一个公共点.教师活动:教师以∠A为例引导学生观察思考,找出∠A的顶点、两条边分别与圆的位置关系.进而归纳出圆周角的定义:顶点在圆上,并且两边都与圆还有另一个公共点的角叫做圆周角.教师适当强调,圆周角应该满足两个条件,①顶点在圆上;②角的两边与圆各另有一个公共点.这两个条件缺一不可.【想一想】判断下列各图中,哪些是圆周角?预设答案:(1)√,(2)×,(3)×,(4)×,(5)×,(6)√.【思考】问题2:如图,△ABC是等边三角形,⊙O是其外接圆.你能发现∠BAC和∠BOC的大小有什么关系吗?预设答案:∠BAC=12∠BOC教师活动:教师提出问题,引导学生思考,因为△ABC是等边三角形,不难得出∠BAC=60°,∠AOB=∠BOC=∠AOC=120°.从而∠BAC=12∠BOC.进而教师追问:当△ABC是任意三角形时,这个结论还成立吗?如图,△ABC是⊙O的任一内接三角形.继续探究∠BAC和∠BOC的大小关系.教师活动:教师提出问题,组织学生动手测量,得出结论:∠BAC=12∠BOC.然后小组交流讨论,通过得出的结论,提出猜想.【猜想】一条弧所对的圆周角等于它所对圆心角的一半.追问:你能证明这个猜想吗?教师活动:教师提出问题后,先让学生在圆中画出同弧所对的圆心角和圆周角,引导学生观察圆心与圆周角位置,发现有3类情况:1.圆心在圆周角的一边上,如图(1);2.圆心在圆周角的内部,如图(2);3.圆心在圆周角的外部,如图(3).【证明】在第(1)种情况下,如何证明1=2A BOC ∠∠预设答案:∵OA=OC,∴∠A=∠C又∵∠BOC=∠A+∠C∴1=2A BOC ∠∠.教师活动:教师提出问题,带领学生分析第(1)种情况的证明思路,然后让学生自行完成第(2)、(3)种情况的证明,最终教师PPT 展示.第(2)种情形:=BAC DAC DAB +∠∠∠11=22DOC DOB +∠∠ 1=2BOC ∠ 第(3)种情形:=BAC DAC DAB -∠∠∠11=22DOC DOB -∠∠ 1=2BOC ∠ 【归纳】 圆周角定理:一条弧所对的圆周角等于它所对圆心角的一半. 【做一做】如图,在⊙O 中,∠BOC =50°,求∠A 的大小.答:25°.【思考】问题3:“在同圆或等圆中,同弧所对的圆心角相等”那么同弧所对的圆周角呢?预设答案:相等.教师活动:教师提出问题后,先让学生试着猜想,然后再验证.证明:连接OA ,OB .由圆周角定理得:11=2AC B AOB ∠∠,21=2AC B AOB ∠∠,31=2AC B AOB ∠∠.∴∠AC 1B =∠AC 2B =∠AC 3B追问1:等弧所对的圆周角呢?相等吗? 教师活动:教师提出问题,学生仿照前面的思路证明,教师PPT 展示过程.证明:连接OA 、OB 、OC 、OD ;∵ AC BD =,∴∠AOC =∠BOD又∵1=2ADC AOC ∠∠,1=2BAD BOD ∠∠∴∠ADC =∠BAD. 结论:在同圆或等圆中,同弧或等弧所对的圆周角相等.追问2:反过来,在同圆或等圆中,如果圆周角相等,那它们所对的弧相等吗?预设答案:相等.教师活动:教师引导学生理解由圆周角相等,可推出所对的圆心角相等,结合“圆心角的度数与它所对的弧的度数相等”可得:在同圆或等圆中,相等的圆周角所对的弧也相等.从而得出圆周角定理的推论:推论1:在同圆或等圆中,同弧或等弧所对的圆周角相等.相等的圆周角所对的弧也相等.【做一做】如图,AB是直径,C是圆上任意一点(不与A、B重合),求∠ACB=°.预设答案:90.教师活动:教师提出问题,学生应用所学知识作答.在学生得到结果后,教师追问:如果∠ACB=90°,能得出AB是直径吗?引导学生得出答案后,归纳总结圆周角定理的另一个推论:推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.【归纳】【典型例题】教师活动:教师提出问题,学生先独立思考,解答.然后再小组交流探讨,教师巡视,如遇到有困难的学生适当点拨,最终教师展示答题过程.例1 如图,AB为⊙O的直径,弦CD交AB 于点P,∠ACD=60°,∠ADC=70°. 求∠APC的度数.解:连接BC,则∠ACB=90°,∠DCB=∠ACB-∠ACD=90°-60°=30°.又∵∠BAD=∠DCB=30°,∴∠APC=∠BAD+∠ADC=30°+70°=100°.教师活动:教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.如图,四边形ABCD的四个顶点在⊙O上,找出图中分别与∠1、∠2、∠3、∠4相等的角.解:∠1=∠CBD;∠2=∠ACB;∠3=∠CAB;∠4=∠ABD.2.如图AB是⊙O的直径,C,D是圆上的两点,若∠ABD=40°,则∠BCD=___.答:50°.3.已知:如图,OA,OB,OC都是⊙O的半径,∠AOB=2∠BOC.求证:∠ACB=2∠BAC.解:∵∠AOB=2∠ACB,∠AOB=2∠BOC,∴∠ACB=∠BOC.∵∠BOC=2∠BAC,∴∠ACB=2∠BAC.4.证明:如果三角形一边上的中线等于该边的一半,那么这个三角形是直角三角形.已知:△ABC中,OB是AC边的中线,且OB=12 AC.求证:△ABC是直角三角形.证明:由题意得:OA=OB=OC.即△ABC三个顶点都在以点O为圆心,OA的长为半径的圆上.∵AC是⊙O的直径,根据直径所对的圆周角是90°可得:∠ABC=90°,即△ABC是直角三角形.思维导图的形式呈现本节课的主要内容:教科书第31页习题24.3第1、2题.。
《圆周角(第一课时)》教案
《圆周角(第一课时)》教案如图:教练让甲, 乙, 丙三人分别在A, B, C三处射门,仅从射门角度大小考虑,教练的做法公平吗?为什么?1. 探究活动一:圆周角概念角的顶点在圆上,角的两边与圆的位置关系都有哪些类型?请同学们尝试画一画.O O O2.圆周角:我们把顶点在圆上,并且两边都与圆相交的角,叫做圆周角.如图,∠ACB为⊙O的圆周角,所对的弦为AB,所对的弧为AB.3.练习:判断下列图形中的角是不是圆周角,并说明理由:(2)圆心在圆周角内(3)圆心在圆周角外4.圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半.如图,∠P是MN所对的圆周角,∠O是MN所对的圆心角,∴∠P=12∠O.证明:连接BO并延长,交⊙O于点E.∵∠1=12∠3,∠2=12∠4,∴∠MBN=12∠MON.证明:∵OA=ON,∴∠A=∠N.又∵∠MON是△AON的外角,∴∠MON=∠A+∠N,∴∠MON=2∠A,即∠A=12∠MON.证明:连接CO并延长,交⊙O于点F.∵∠1=12∠3,∠OCN=12∠FON,∴∠MCN=12∠MON.2.等弧所对的圆周角相等.已知:如图,MN 与''M N 相等,求证:∠P=∠Q.3.圆周角定理推论(一) 同弧或等弧所对的圆周角相等.1.探究活动六:特殊的角度证明:∵∠P =12∠O ,∠Q =12∠O , ∴∠P =∠Q.证明:连接OM ,ON ,OM’,ON’.∵MN =''M N , ∴∠MON =∠M ’ON ’.∵∠P =12∠MON , ∠Q =12∠M ’ON ’.∴∠P=∠Q.发现: 当∠O 变为180°,即MN 是圆O 直径时,∠P =90°,反之,圆周角∠P 为90°时,圆心角∠O 则为180°.2.圆周角定理推论(二)半圆(或直径)所对的圆周角是直角. 90°的圆周角所对的弦是直径.3.练习1.如图①,已知AB 是⊙O 的直径,点C 在⊙O 上,若∠CAB =40°, 则∠ABC =_______°.2.如图②,△ABC 的顶点都在⊙O 上,BD 是⊙O 直径,若∠CBD =21°,则∠A =_______°.例:如图,⊙O 的直径 AB 为 10 cm ,弦 AC 为 6 cm ,∠ACB 的平分线交⊙O 于点 D ,求 BC ,AD ,BD 的长.MN 为⊙O 直径,∠MPN=_____°.∠MPN=90°, ∠MON=_____°.提高题:如图,圆上分布着7个点,A1,A2,……,A7,从A1起顺次连接A3,A5,A7,A2,A4,A6,A1,得到“七角星”,则∠A1+∠A2+……+∠A7=_______知能演练提升一、能力提升1.如图,☉O中,OC⊥AB,∠APC=28°,则∠BOC的度数为()A.14°B.28°C.42°D.56°⏜,则DC2.如图,A是☉O上一点,BC是直径,AC=2,AB=4,点D在☉O上且平分BC的长为()A.2√2B.√5C.2√5D.√103.如图,AB是☉O的直径,点C,D,E在☉O上,若∠AED=20°,则∠BCD的度数为()A.100°B.110°C.115°D.120°⏜=AD⏜,AC交BD于点G.若∠4.如图,BD是☉O的直径,点A,C在☉O上,ABCOD=126°,则∠AGB的度数为()A.99°B.108°C.110°D.117°5.如图,已知BC是☉O的直径,半径OA⊥BC,点D在劣弧AC上(不与点A,点C 重合),BD与OA交于点E.设∠AED=α,∠AOD=β,则()A.3α+β=180°B.2α+β=180°C.3α-β=90°D.2α-β=90°⏜的中点,若∠ABC=30°,则弦AB的6.如图,☉O的半径为5,AB为弦,点C为AB长为.(第6题图)7.如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为.⏜=BC⏜=AC⏜,点P为劣弧BC⏜上的一点.8.如图,已知AB(1)求∠BPC的度数;(2)求证:PA=PB+PC.⏜上一点(点C不★9.如图,△ABC的三个顶点都在☉O上,并且点C是优弧AmB与点A,B重合).设∠OAB=α,∠C=β.(1)当α=35°时,求β的度数;(2)猜想α与β之间的关系,并给予证明.二、创新应用★10.我们知道:顶点在圆上,并且两边都和圆相交的角,叫做圆周角.因为一条弧所对的圆周角等于它所对的圆心角的一半,而圆心角的度数等于它所对的弧的度数,所以圆周角的度数等于它所对的弧的度数的一半.类似地,我们定义:顶点在圆外,并且两边都和圆相交的角叫圆外角.如图,∠DPB是圆外角,那么∠DPB⏜和AC⏜的度数有什么关系?的度数与它所夹的两段弧BD(1)请把你的结论用文字表述为(不能出现字母和数字符号):.(2)证明你的结论.知能演练·提升一、能力提升1.D2.D3.B如图,连接AC.∵AB为☉O的直径,∴∠ACB=90°.∵∠AED=20°,∴∠ACD=20°,∴∠BCD=∠ACB+∠ACD=110°,故选B.4.B5.D6.5√3如图,连接OC,OA,∵∠ABC=30°,∴∠AOC=60°.⏜的中点,∵AB为弦,点C为AB∴OC⊥AB..在Rt△OAE中,AE=5√32∴AB=5√3.7.88°∵AB=AC=AD,∴∠ABC=∠ACB,点B,C,D在以A为圆心,AB为半径的圆周上, ∴∠BDC=1∠BAC,2∠CAD=2∠CBD.∵∠BAC=44°,∴∠BDC=22°,∵∠CBD=2∠BDC=44°,∴∠CAD=88°.⏜=BC⏜=AC⏜,8.(1)解∵AB∴AB=BC=AC.∴∠BAC=60°.又∠BPC+∠BAC=180°,∴∠BPC=120°.(2)证明如图,在PA上截取PD=PC,连接DC,∵AB=AC=BC,∴∠APB=∠APC=60°.∴△PCD为等边三角形.∴∠ADC=120°.又∠CAD=∠PBC,且AC=BC,∴△ACD≌△BCP.∴AD=PB.∴PA=AD+PD=PB+PC.9.解(1)如图,连接OB,则OA=OB,∴∠OBA=∠OAB=35°,∴∠AOB=180°-∠OAB-∠OBA=110°.∴β=∠C=1∠AOB=55°.2(2)α与β之间的关系是α+β=90°.证法一:如图,连接OB,则OA=OB,∴∠OBA=∠OAB=α,∴∠AOB=180°-2α.∴β=∠C=1∠AOB2=1(180°-2α)=90°-α.2∴α+β=90°.证法二:如图,连接OB,则OA=OB,∴∠AOB=2∠C=2β.过点O作OD⊥AB于点D,则OD平分∠AOB,∴∠AOD=1∠AOB=β.2在Rt△AOD中,∠OAD+∠AOD=90°,∴α+β=90°.证法三:如图,延长AO交☉O于点E,连接BE,则∠E=∠C=β.∵AE是☉O的直径,∴∠AOE=180°,∴∠ABE=90°,∴∠BAE+∠E=90°,即α+β=90°.二、创新应用10.分析本题是一道结论探索题,解题的关键是如何将圆外角∠DPB与圆周角联系⏜所对的圆周角,∠DAB是BD⏜所对的圆周角,再根据三角起来.不妨连接AD,这时∠D是AC形的一个外角等于和它不相邻的两个内角的和找到这三个角的联系,从而使问题解决.解(1)圆外角的度数等于它所夹的两段弧度数差的一半.(2)如图,连接AD,则∠DPB=∠DAB-∠D.因为∠DAB=12×BD ⏜的度数,∠D=12×AC ⏜的度数, 所以∠DPB=12×(BD⏜的度数-AC ⏜的度数), 即圆外角的度数等于它所夹的两段弧度数差的一半.。
数学九年级上册《圆周角(1)》教案
初中20 -20 学年度第一学期教学设计主备教师审核教师授课周次授课时间课题24.1.4 圆周角(1)课型新授课教学目标1、了解圆周角的概念, 掌握圆周角的两个特征.理解圆周角定理的证明.2、会运用圆周角定理进行简单的计算与证明.3.在探索定理的过程中体会分类转化的数学思想.教学重点圆周角的性质及应用.教学难点利用圆周角的性质解决问题.教学方法与手段自主探究式教学教学准备多媒体课件辅助教学第一课时课时数课时教学流程二次备课(标、增、改、删、调)一、情境创设在圆中,除圆心角外,还有一类角----圆周角2.定义:叫做圆周角。
二、探究学习通过度量教材85页探究中各角的度数,思考圆周角与圆心角的关系。
并度量教材86页图24.1-12的角度数进行验证。
思考:现在通过圆周角的概念和度量的方法回答下面的问题.1.一段弧所对的圆周角的个数有多少个?2.同弧所对的圆周角的度数是否发生变化?3.同弧上的圆周角与圆心角有什么关系?(学生分组讨论)提问二到三位同学代表发言.老师点评:1.一段弧所对的圆周角的个数有无数多个.2.通过度量,我们可以发现,同弧所对的圆周角是没有变化的.3.通过度量,我们可以得出,同弧上的圆周角是圆心角的一半.下面,我们通过逻辑证明来说明“同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半.”(1)设圆周角∠ABC的一边BC是☉O的直径,如图所示∵∠AOC是△ABO的外角,∴∠AOC=∠ABO+∠BAO.∵OA=OB, ∴∠ABO=∠BAO.∴∠AOC=2∠ABO. ∴∠ABC=错误!未找到引用源。
∠AOC.(2)如图,圆周角∠ABC的两边AB、BC在一条直径OD的两侧,那么∠ABC=1/2∠AOC吗?请同学们独立完成这道题的说明过程.第(2)题图第(3)题图(3)如图,圆周角∠ABC的两边AB、BC在一条直径OD的同侧,那么∠ABC=错误!未找到引用源。
∠AOC吗?请同学们独立完成证明.现在,如果再画一个任意的圆周角∠AB'C,同样可证得它等于同弧上圆心角的一半,因此,同弧上的圆周角是相等的.从(1)、(2)、(3)我们可以总结归纳出圆周角定理:定理:一条弧所对的圆周角等于它所对的圆心角的一半推论:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半。
人教版九年级数学上册《圆周角》教学设计(第二课时)
圆周角(2)教学设计教学目标:掌握圆周角定理的两个推论掌握圆内接四边形的性质能运用圆周角定理及其推论、圆内接四边形的性质进行证明和计算教学重点:圆周角定理的两个推论、圆内接四边形的性质教学难点:圆周角定理及其推论、圆内接四边形的性质进行证明和计算教学过程:一探索圆周角定理的的推论问题1 通过上一堂课的学习,我们已经掌握了圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。
在圆周角定理的探索过程中,我们知道:一条弧可以对着不同的圆周角,那么这些圆周角之间有什么关系呢?也就是说,同弧或等弧所对的圆周角之间有什么关系呢?师生活动:学生画出弧BC所对的几个圆周角和圆心角,先观察、猜想,根据定理得到结论:一条弧所对的圆周角相等。
再思考同弧或等弧的情况。
如果学生遇到困难,教师可根据情况提示学生:考虑圆周角与圆心角之间的关系、弧与圆心角之间的关系,通过弧相等得到结论。
设计意图:让学生经历观察、猜想、证明得出推论的探索过程,得到圆周角定理的推论,进一步认识与圆有关的角和弧之间的关系问题2 如图,BC是⊙O的直径,A是⊙O上任一点,你能确定∠BAC的度数吗?师生活动:先让学生动手量一量,然后讨论交流,最后让学生自己归纳发现的结论.方法一:学生从圆周角、圆心角和弧的关系入手考虑;方法二:连接OA,从三角形内角和考虑.设计意图:让学生自己探究并说明理由,加深对圆周角、圆心角和弧的关系的理解.让学生自己归纳,培养学生归纳总结的能力.如图,圆周角∠BAC =90º,弦BC经过圆心O吗?为什么?师生活动:让学生先独立思考,然后小组讨论交流,最后全班展示交流,并让学生自己归纳发现的结论.设计意图:培养学生逆向思维的能力和自主探究的能力.让学生自己归纳,培养学生归纳总结的能力.二应用圆周角定理与推论问题3 如图,⊙O的直径AB为10厘米,弦AC为6厘米,∠ACB的平分线交⊙O于点D,求BC,AD和BD的长.师生活动:先让学生自主探究(引导学生当看到已知条件中有直径这一条件时,想圆周角定理的推论2;当已知条件中有圆周角之间的关系时,想圆心角之间的关系,进而可转化成弧、弦之间的关系)再组织学生交流.设计意图:应用圆周角定理及其推论解决问题,巩固所学内容。
圆周角 第二课时教案
(3)如果一个圆周角是90°,它所对的弦是哪一条?
学生动手探究,交流总结。利用圆周角定理可以得出:
半圆(或直径)所对的圆周角是直角,90°的圆周
角所对的弦是直径。
2、问题2:在同圆或等圆中,如果两个圆周角相等,
它们所对的弧一定相等吗?为什么?
学生讨论回答,得出结论。
例2:如图,AB是⊙O的直径,D是圆上任意一点(不与A、B重合),连接BD,并延长到C,使DC=DB,连接AC,判断△ABC的形状?
导析:AB作为⊙O的直径有无直接作用?怎样将圆周角定理推论利用起来?
学生探究方法。
连接AD,由AB是⊙O的直径,可以得出∠ADB
=90°,即AD⊥BC,
又因为BD=CD,所以可以得出AD为BC的垂直平分线,所以AB=AC,即△ABC为等腰三角形。
知识小结
知识巩固
三、课堂小结
引导学生作知识总结:
⑴圆周角定理推论内容,⑵辅助线的添加方法:构造直径所对的圆周角。
四、课堂练习
P93 2、3
五、作业
1பைடு நூலகம்P95 11
2、补充:如图,在圆内接四边形ABCD中,AC平分BD,且AC⊥BD,
∠BAD=70°18′,求四边形其它各角的度数。
六、板书设计
复习提问
探索新知
应用新知
3、范例:
例1:如图,⊙O的直径AB=10㎝,弦AC为㎝,∠ACB的平分线交⊙O于D,求BC、AD、BD的长。
导析:已知直径可以得到什么结论?在直
角三角形中有哪些已知条件?如何求出未知边的长度?
解:∵AB是直径
∴∠ACB=90°
在Rt△ABC中,
BC=
人教版数学九年级上册24.1.4圆周角(第2课时)教学设计
(一)导入新课
1.教学活动设计:
-利用多媒体展示生活中含有圆周角的物体,如时钟、风扇、自行车轮等,引导学生观察并思考这些物体上的圆周角特点。
-提问学生:“你们知道什么是圆周角吗?圆周角有哪些特点?”激发学生对圆周角的兴趣。
2.教学目的:
-通过生活中的实例,让学生感知圆周角的存在,为新课的学习做好铺垫。
2.自主探究,构建概念:
-让学生通过画圆、量角等活动,直观感受圆周角的特点。
-引导学生通过小组合作,探讨圆周角的定义,推导圆周角定理及推论。
-教师适时给予提示和引导,帮助学生理解圆周角的性质和定理。
3.实践应用,巩固知识:
-设计具有挑战性的练习题,让学生独立完成,巩固圆周角的知识。
-通过实际案例,如园林设计、道路规划等,让学生运用圆周角知识解决实际问题。
-对本节课学习的圆周角的定义、定理、推论进行梳理和归纳。
-总结圆周角知识在实际生活中的应用。
2.教学方法:
-学生分享学习体会,总结圆周角知识的关键点。
-教师点评学生的发言,强调重点知识,并对本节课进行总结。
五、作业布置
为了巩固学生对圆周角知识的掌握,提高学生的应用能力和思维能力,特布置以下作业:
1.基础知识巩固:
-激发学生的好奇心,引导学生积极思考,为新知的探究奠定基础。
(二)讲授新知
1.教学内容:
-圆周角的定义:从圆上任意两点分别向圆内引两条不重合的射线,所形成的角叫做圆周角。
-圆周角定理:ห้องสมุดไป่ตู้周角的度数等于它所对圆弧的度数的一半。
-圆周角推论:圆内接四边形的对角互补。
2.教学方法:
-采用讲解、演示、举例等教学方法,让学生理解圆周角的定义及性质。
【精】 《圆周角(第2课时)》精品教案
《圆周角(第2课时)》精品教案课题24.1.4圆周角单元第二十四章学科数学年级九年级上学习目标情感态度和价值观目标在圆周角定理的推论的发现过程中,不断变化图形,树立运动变化和对立统一的辩证证唯物主义观点。
能力目标通过圆周角定理的实际应用,发现圆内接四边形的对角互补的推论,进一步发展合情推理和演绎推理能力,感悟从特殊到一般、化一般为特殊的数学思想。
知识目标 1.了解并证明圆周角定理的推论:圆内接四边形的对角互补。
2.能应用圆周角定理及其推论解决问题。
重点圆内接四边形的对角互补。
难点圆周角定理及其推论的综合运用。
学法自主探究、合作交流;教法引导发现、直观演示教学法;教学过程教学环节教师活动学生活动设计意图导入新课一、复习旧知1、还记得圆周角的定义吗?2、请你说出圆周角定理及推论。
圆周角定理:一条弧所对的圆周角等于它所对圆心角的一半.推论1:同弧或等弧所对的圆周角相等.推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径. 教师提出问题,学生回忆上节课知识思考作答。
通过复习,强化学生已学相关的知识,为学生自主探究做奠基。
讲授新课二、探究新知活动1,抢答:1.你能用三角尺画出下面这个圆的圆心吗?学生联系已学知识,独立思考,理清题意,整理思复习圆周角定理及其推论,运用已学2.填空:如图,∠BAC=55°,∠CAD=45°,则∠DBC=_____°,∠BDC=_____°,∠BCD=______°3.如图,BD是⊙O的直径,∠ABC=130°则∠ADC=______°活动2:讨论请看我们做的抢答习题第2、3题,同学们有没有发现什么规律,请大家以小组为单位讨论后发言。
学生小组1回答:这个四边形的四个顶点,点A,点B,点C,点D都在⊙O上。
学生小组2回答:这个四边形的对角和是180°。
学生小组3回答:……学生小组4回答:……教师总结:同学们真是火眼金睛,找到的特点很多。
【浙教版初中数学】《圆周角(1)》教学案
3.5 圆周角(1)教学案教学目标:1.经历探索圆周角的有关性质的过程.2.理解圆周角的概念及其相关性质,并能运用相关性质解决有关问题.3.体会分类、转化等数学思想方法,学会数学地思考问题.教学重点:圆周角的概念及其相关性质,并能运用相关性质解决有关问题教学难点:体会分类、转化等数学思想方法,学会数学地思考问题一、课前自主学习活动一操作与思考如图,点A在⊙O外,点B1、B2、B3在⊙O上,点C在⊙O内,度量∠A、∠B1、∠B2、∠B3、∠C的大小,你能发现什么?∠B1、∠B2、∠B3有什么共同的特征?1归纳得出结论,顶点在_______,并且两边_________________的角叫做圆周角. 强调条件:①_______________________,②___________________________.识别图形:判断下列各图中的角是否是圆周角?并说明理由.活动二观察与思考如图,AB为⊙O的直径,∠BOC、∠BAC分别是BC所对的圆心角、圆周角,求出图(1)、(2)、(3)中∠BAC的度数.通过计算发现:∠BAC=__∠BOC.试证明这个结论:2活动三思考与探索1.如图,BC所对的圆心角有多少个?BC所对的圆周角有多少个?请在图中画出BC所对的圆心角和圆周角.2.思考与讨论(1)观察上图,在画出的无数个圆周角中,这些圆周角与圆心O有几种位置关系?(2)设BC所对的圆周角为∠BAC,除了圆心O在∠BAC的一边上外,圆心O1∠BOC还与∠BAC还有哪几种位置关系?对于这几种位置关系,结论∠BAC=2成立吗?试证明之.34通过上述讨论发现:3.尝试解题:(1)如图,点A 、B 、C 、D 在⊙O 上,点A 与点D 在点B 、C 所在直线的同侧,∠BAC=35°1)∠BDC=_______°,理由是___________________________________.2)∠BOC=_______°,理由是____________________________________.OABCD(2)如图,点A 、B 、C 在⊙O 上,1) 若∠BAC=60°,求∠BOC=______°;2)若∠AOB=90°,求∠ACB=______.OCBA如图,点A、B、C在⊙O上,点D在⊙O内,点A与点D在点B、C所在.直线的同侧,比较∠BAC与∠BDC的大小,并说明理由4.如图,AC是⊙O的直径,BD是⊙O的弦,EC∥AB,交⊙O于E.图中哪些与1∠BOC相等?请分别把它们表示出来.25.通过自主学习,对本节内容有何疑惑?二、课内互动学习51.检查与建构交流自主学习中的收获,解决存在的疑惑2.延伸与拓展引例:如图,点A、B、C、D在⊙O上,AC、BD相交于点P,求证∠ABC+∠ADC=180°变型1: 试找出上图中所有相等的圆周角;找出图中有几对相似三角形?请分别把它们表示出来.6O AC B变型2:如图,点A、B、C在⊙O上,∠C=150°,求∠AOB.对照学习课中的例题13.训练与反馈1).人们常用“一字之差,差之千里”来形容因一点小小的差别,往往会给问题本身带来很大的区别.在数学中,这样的例子比比皆是,下面两句话,先请你找出其中微小的区别,然后再比较解决问题的结果:(1)在⊙O中,一条弧所对的圆心角是120°,该弧所对的圆周角是多少度?7(2)在⊙O中,一条弦所对的圆心角是120°,该弦所对的圆周角是多少度?2).半径为R的圆中,有一弦分圆周成1:2两部分,求弦所对的圆周角的度数.3).如图,OA、OB、OC都是圆O的半径,∠AOB = 2∠BOC.求证:∠ACB = 2∠BAC.4).小结与反思8.三、课外独立练习A组1.如图,△ABC的3个顶点都在⊙O上,∠ACB=40°,则∠AOB=_______,∠OAB=_____.2.如图,点A、B、C、D在同一个圆上,四边形ABCD的对角线把4个内角分成8个角,在这8个角中,有几对相等的角?请把它们分别表示出来:___________________________________________________.3.如图,AB是⊙O的直径,∠BOC=120°,CD⊥AB,则∠ABD=___________.4.如图,△ABC的3个顶点都在⊙O上,∠BAC的平分线交BC于点D,交⊙O 于点E,则与△ABD相似的三角形有______________________.95.如图,在⊙O中,弦AB、CD相交于点E,∠BAC=40°,∠AED=75°,求∠ABD.的度数6.如图,AB是⊙O的直径,CD⊥AB,P是CD上的任意一点(不与点C、D重合),∠APC与∠APD相等吗?为什么?7. 如图,点A、B、C、D在⊙O上,∠ADC=∠BDC=60°.判断△ABC的形状,并说明理由.1011 ABCDEO8.如图,四边形ABCD 的顶点都在⊙O 上,点E 在DA延长线上,且BAD 的度数为130 °,求∠BAE 的度数.B 组9.如图,在⊙O 中, 弧DE=2弧BC , ∠ EOD=64°,求∠ A 的度数.12。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版九年级数学圆周角第一.第二课时教案
第一课时
三维目标:
(1)理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;
(2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力;
(3)渗透由“特殊到一般”,由“一般到特殊”的思想方法.
教学重点:圆周角的概念和圆周角定理
教学难点:圆周角定理的证明中由“一般到特殊”的思想方法和完全归纳法的思想.
教学设计:(在指导下完成)
(一)圆周角的概念
1、提问:
(1)什么是圆心角?
答:顶点在圆心的角叫圆心角.
(2)圆心角的度数定理是什么?
答:圆心角的度数等于它所对弧的度数.(如右图)
2、引题圆周角:
如果顶点不在圆心而在圆上,则得到如左图的新的角∠ACB,它就是圆周角.(如右图)(演示图形,提出圆周角的定义)
定义:顶点在圆周上,并且两边都和圆相交的角叫做圆周角
3、概念辨析:
1判断下列各图形中的是不是圆周角,并说明理由.
学生归纳:一个角是圆周角的条件:①顶点在圆上;②两边都和圆相交.
(二)圆周角的定理
1、提出圆周角的度数问题
问题:圆周角的度数与什么有关系?
经过电脑演示图形,让学生观察图形、分析圆周
角与圆心角,猜想它们有无关系.引导学生在建立关系
时注意弧所对的圆周角的三种情况:圆心在圆周角的一
边上、圆心在圆周角内部、圆心在圆周角外部.
(在引导下完成)
(1)当圆心在圆周角的一边上时,圆周角与相
应的圆心角的关系:(演示图形)观察得知圆心在
圆周角上时,圆周角是圆心角的一半.
提出必须用严格的方法去证明.
证明:(圆心在圆周角上)
(2)其它情况,圆周角与相应圆心角的关系:
当圆心在圆周角外部时(或在圆周角内部时)引导学生作辅助线将问题转化成圆心在圆周角一边上的情况,从而运用前面的结论,得出这时圆周角仍然等于相应的圆心角的结论.
证明:作出过C的直径(略)
可以发现同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对等于它所对圆心角的一半.
说明:这体现了中的分类方法;在证明中,后两种都化成了第一种情况,这体现中的化归思想.(对A层学生渗透完全归纳法)
2、巩固练习:
(1)如图,已知圆心角∠AOB=100°,求圆周角∠ACB、∠ADB的度数?
(2)一条弦分圆为1:4两部分,求这弦所对的圆周角的度数?
说明:一条弧所对的圆周角有无数多个,却这条弧所对的圆周角的度数只有一个,但一条弦所对的圆周角的度数只有两个.
(四)总结
知识:(1)圆周角定义及其两个特征;(2)圆周角定理的内容.
思想方法:一种方法和一种思想:
在证明中,运用了中的分类方法和“化归”思想.分类时应作到不重不漏;化归思想是将复杂的问题转化成一系列的简单问题或已证问题.
(五)作业:金3练
(六)教学反思:
圆周角第二课时
三维教学目标:
(1)掌握圆周角定理的推论,并会熟练运用这些知识进行有关的计算和证明;
(2)进一步培养学生观察、分析及解决问题的能力及逻辑推理能力;
(3)培养添加辅助线的能力和思维的广阔性.
教学重点:圆周角定理的推论的应用.
教学难点:推论的灵活应用以及辅助线的添加
教学设计:
(一)创设学习情境
问题1:画一个圆,以B、C为弧的端点能画多少个圆周角?它们有什么关系?
问题2:在⊙O中,若= ,能否得到∠C=∠G呢?根据什么?反过来,若土∠C=∠G ,是否得到= 呢?
(二)分析、研究、交流、归纳
让学生分析、研究,并充分交流.
注意:①问题解决,只要构造圆心角进行过渡即可;②若= ,则∠C=∠G;但反之不成立.
老师组织学生归纳:
1:同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等.
重视:同弧说明是“同一个圆”;等弧说明是“在同圆或等圆中”.
问题:“同弧”能否改成“同弦”呢?同弦所对的圆周角一定相等吗?(学生通过交流获得知识)问题3:(1)一个特殊的圆弧——半圆,它所对的圆周角是什么样的角?
(2)如果一条弧所对的圆周角是90°,那么这条弧所对的圆心角是什么样的角?
学生通过以上两个问题的解决,在引导下得推论
半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦直径.
指出:这个推论是圆中一个很重要的性质,为在圆中确定直角、成垂直关系创造了条件,要熟练掌握.
(三)应用、
交流:①分析解题思路;②作辅助线的方法;③解题推理过程(要规范).
例2:如图,已知在⊙O中,直径AB为10厘米,弦AC为6厘米,∠ACB的平分线交⊙O 于D;求BC,AD和BD的长.
说明:充分利用直径所对的圆周角为直角,解直角三角形.
(四)小结(指导学生共同小结)
知识:本节课主要学习了圆周角定理的几及其及推论.
推论各具特色,作用各异,在今后的学习中应用十分广泛,应熟练掌握.
能力:在解圆的有关问题时,常常需要添加辅助线,构成直径所对的圆周角或构成相似三角形,这种基本技能技巧一定要掌握.
(五)作业
P94习题
(六)教学反思:。