华师大版数学九下几何问题的处理方法同步测试1

合集下载

【华东师大版】九年级数学下期末试题(含答案)(1)

【华东师大版】九年级数学下期末试题(含答案)(1)

一、选择题1.如图是某几何体的三视图及相关数据,则下面判断正确的是()A.a>c B.b>c C.a2+4b2=c2D.a2+b2=c22.如图所示的几何体是由4个相同的小正方体组成.其主视图为()A.B.C.D.3.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为()A.上午8时B.上午9时30分C.上午10时D.上午12时4.下列几何体中,其主视图、俯视图和左视图分别是图中三个图形的是()A.B.C.D.5.某个几何体的三视图如图所示,该几何体是( )A .B .C .D .6.在ABC 中,若21cos |1tan |02A B ⎛⎫-+-= ⎪⎝⎭,则C ∠的度数是( ) A .45︒ B .60︒ C .75︒ D .105︒ 7.菱形的周长为8cm ,高为1cm ,则该菱形两邻角度数比为( )A .5:1B .4:1C .3:1D .2:18.如图,为了测量某建筑物MN 的高度,在平地上A 处测得建筑物顶端M 的仰角为30°,向N 点方向前进16m 到达B 处,在B 处测得建筑物顶端M 的仰角为45°,则建筑物MN 的高度等于( )A .8(31)+mB .8(31)-mC .16(31)+mD .16(31)-m9.如图,若将四根木条钉成的矩形木框变形为平行四边形ABCD 的形状,并使得其面积变为原矩形面积的一半,则平行四边形ABCD 的内角BCD ∠的大小为( )A .100°B .120°C .135°D .150°10.如图,在平面直角坐标系中,Rt OAB 的斜边OA 在第一象限,并与x 轴的正半轴夹角为30度,C 为OA 的中点,BC=1,则A 点的坐标为( )A .()3,3B .()3,1C .()2,1D .()2,3 11.如图,AB 为半圆O 的直径,10AB =,AC 为O 的弦,8AC =,D 为AB 的中点,DM AC ⊥于M ,则DM 的长为( )A .42B .2C .1D .3 12.若函数5y x =与1y x =+的图像交于点(),A a b ,则11a b -的值为 ( ) A .15- B .15 C .5- D .5二、填空题13.桌上摆满了朋友们送来的礼物,小狗贝贝好奇地想看个究竟.①小狗先是站在地面上看;②然后抬起了前腿看;③唉,还是站到凳子上看吧;④最后,它终于爬上了桌子….请你根据小狗四次看礼物的顺序,把下面四幅图片按对应字母正确排序为_________________.14.如图,一几何体的三视图如图:那么这个几何体是______.15.如图,小军、小珠之间的距离为2.8m ,他们在同一盏路灯下的影长分别为1.7m ,1.5m ,已知小军、小珠的身高分别为1.7m ,1.5m ,则路灯的高为________m .16.已知抛物线2y ax bx c =++过点()0,3A ,且抛物线上任意不同两点()11,M x y ,()22,N x y ,都满足:当120x x <<时,()()12120x x y y -->;当120x x <<时,()()12120x x y y --<.以原点O 为圆心,OA 为半径的圆与抛物线的另两个交点为B ,C ,且B 在C 的左侧,ABC ∆有一个内角为60︒,则抛物线的解析式为______. 17.如图, 圆O 的直径AB 垂直于弦CD ,垂足是E ,22.5A ∠=︒,4OC =,CD 的长为__________.18.如图,正方形ABCD 的边长为22,过点A 作AE ⊥AC,AE=1,连接BE ,则tanE= .19.如图,已知CD为O的直径,弦AB CD⊥交CD于点E,连接BD,OB,AC,若8AB=,2DE=,则O的半径为______.20.若函数2yx=与24y x=--的图像的交点坐标为(,)a b, 则12a b+的值是______.三、解答题21.如图,上午小明在上学路上发现路灯的灯泡B在太阳光下的影子恰好落到点E处,他自己的影子恰好落在另一灯杆CD的底部点C处,晚自习放学时,小明又站在上午同一地方,此时发现灯泡D的灯光下自己的影子恰好落在点E处.请在图中画出表示小明身高的线段(用线段FG表示).22.如图是由7个相同小正方体组成的几何体,请在方格纸中分别画出它的三个视图.23.计算:202( 3.14)1244sin 60π-+----︒.24.我市里运河有一座人行天桥如图所示,天桥高为6米,坡面BC 的坡度为1:1,文化墙PM 在天桥底部正前方8米处(PB 的长),为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:3.有关部门规定,文化墙距天桥底部小于3米时应拆除,天桥改造后,该文化墙PM 是否需要拆除?请说明理由.(参考数据:2=1.414,3=1.732)25.如图,在1010⨯的正方形网格中,每个小正方形的边长为1,建立如图所示的坐标系,ABC 的三个顶点均在格点上.(1)若将ABC 沿x 轴对折得到111A B C △,则1C 的坐标为________.(2)以点B 为位似中心,将ABC 各边放大为原来的2倍,得到22A BC ,请在这个网格中画出22A BC .(3)在(2)的条件下,求22A BC 的面积是多少?26.如图,在平面直角坐标系xOy 中,已知四边形DOBC 是矩形,且D (0,4),B (6,0).若反比例函数11k y x=(x >0)的图象经过线段OC 的中点A ,交DC 于点E ,交BC 于点F .设直线EF 的解析式为y 2=k 2x+b .(1)求反比例函数和直线EF 的解析式; (温馨提示:平面上有任意两点M (x 1,y 1)、N (x 2,y 2),它们连线的中点P 的坐标为( 121222x x y y ++,))(2)求△OEF 的面积; (3)请结合图象直接写出不等式k 2x -b ﹣1k x>0的解集.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】由三视图可知该几何体是圆锥,圆锥的高是a ,母线长是c ,底面圆的半径是b ,刚好组成一个以c 为斜边的直角三角形,由勾股定理,可得解.【详解】由题意可知该几何体是圆锥,根据勾股定理得,a 2+b 2=c 2故选:D .【点睛】本题考查三视图和勾股定理,关键是由三视图判断出几何体是圆锥.2.D解析:D【分析】根据主视图定义,得到从几何体正面看得到的平面图形即可.【详解】从正面看得到2列正方形的个数依次为2,1,故选D .【点睛】此题主要考查了几何体的三视图;掌握主视图是从几何体正面看得到的平面图形是解决本题的关键.3.A解析:A【分析】根据从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长可知.【详解】解:根据从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长.可知影子最长的时刻为上午8时.故选A.【点睛】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长.4.A解析:A【解析】分析:根据三视图想象立体图形,从主视图可以看出左边的一列有两个,左视图可以看出右边一列有两个,俯视图中左边的一列有两个,综合起来可得解.详解:从主视图可以看出左边的一列有两个,右边的两列只有一行(第二行);从左视图可以看出右边的一列有两个,左边的一列只有一行(第二行);从俯视图可以看出左边的一列有两个,右边的两列只有一行(第一行).故选A.点睛:本题考查由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.5.D解析:D【解析】【分析】根据几何体的三视图判断即可.【详解】由三视图可知:该几何体为圆锥.故选D.【点睛】考查了由三视图判断几何体的知识,解题的关键是具有较强的空间想象能力,难度不大.6.C解析:C【分析】根据偶次方和绝对值的非负性可得1cos02A-=,1tan0B-=,利用特殊角的三角函数值可得A∠和B的度数,利用三角形内角和定理即可求解.解:21cos |1tan |02A B ⎛⎫-+-= ⎪⎝⎭, 21cos 0,|1tan |02A B ⎛⎫∴-=-= ⎪⎝⎭, 1cos 02A ∴-=,1tan 0B -=,则1cos 2A =,tan 1B =, 解得:60A ∠=︒,45B ∠=︒,则180604575C ∠=︒-︒-︒=︒.故选:C .【点睛】本题考查偶次方和绝对值的非负性、特殊角的三角函数值、三角形内角和定理,熟悉特殊角的三角函数值是解题的关键. 7.A解析:A【分析】先根据菱形的性质求出菱形的边长,再根据菱形的高与边长的关系求出∠A ,进而可求出∠ADC ,从而可得答案.【详解】解:如图,DE 是菱形ABCD 的高,DE=1cm ,∵菱形ABCD 的周长是8cm ,∴AD=2cm ,在Rt △ADE 中,∵DE=12AD ,∴∠A=30°, ∵AB ∥DC ,∴∠A+∠ADC=180°,∴∠ADC=150°,∴∠ADC :∠A=150°:30°=5:1.故选:A .【点睛】本题考查了菱形的性质和30°角的直角三角形的性质,属于基本题型,熟练掌握上述知识是解题的关键.8.A【解析】设MN=xm ,在Rt △BMN 中,∵∠MBN=45∘,∴BN=MN=x ,在Rt △AMN 中,tan ∠MAN=MN AN , ∴tan30∘=16x x + =3√3, 解得:x=8(3 +1), 则建筑物MN 的高度等于8(3 +1)m ;故选A.点睛:本题是解直角三角形的应用,考查了仰角和俯角的问题,要明确哪个角是仰角,哪个角是俯角,知道仰角是向上看的视线与水平线的夹角,俯角是向下看的视线与水平线的夹角,并与三角函数相结合求边的长.9.D解析:D【分析】作AE ⊥BC 于E ,根据平行四边形的面积=矩形面积的一半,得出AE=12AB ,再由三角函数即可求出∠ABC 的度数,即可得到答案.【详解】解:作AE ⊥BC 于E ,如图所示:则∠AEB=90°,根据题意得:平行四边形的面积=BC•AE=12BC•AB , ∴AE=12AB , ∴sinB=12AE AB =, ∴∠ABC=30°,∴∠BCD=150°.故选:D .【点睛】本题考查了平行四边形的性质、矩形的性质、面积的计算以及三角函数;熟练掌握平行四边形和矩形的性质,并能进行推理计算是解决问题的关键.10.B解析:B【分析】根据题画出图形,再根据直角三角形斜边上的中线等于斜边的一半可得AB 的值,再根据勾股定理可得OB 的值,进而可得点A 的坐标.【详解】解:如图,过A 点作AD x ⊥轴于D 点,Rt OAB ∆的斜边OA 在第一象限,并与x 轴的正半轴夹角为30.30AOD ∴∠=︒, 12AD OA ∴=, C 为OA 的中点,1AD AC OC BC ∴====,2OA ∴=,3OD ∴=,则点A 的坐标为:(3,1).故选:B .【点睛】本题考查了解直角三角形、坐标与图形性质、直角三角形斜边上的中线,解决本题的关键是综合运用以上知识.11.C解析:C【分析】如图,连接OD 交AC 于H ,连接BC .利用勾股定理求出BC ,再利用相似三角形的性质求出OH ,AH ,DH ,证明△DMH ∽△AOH ,构建关系式即可解决问题.【详解】解:如图,连接OD 交AC 于H ,连接BC .∵AB 是直径,∴∠ACB=90°,∴6BC =,∵AD DB =,∴OD ⊥AB ,∵∠OAH=∠CAB ,∠AOH=∠ACB=90°,∴△AOH ∽△ACB , ∴OH OA AH BC AC AB== ∴56810OH AH == ∴1525,44OH AH ==, ∵DH=OD-OH=155544-=, ∵DM ⊥AC ,∵∠DMH=∠AOH=90°,∠DHM=∠AHO ,∴△DMH ∽△AOH , ∴DM DH AO AH=, ∴542554DM =, ∴DM=1,故选:C .【点睛】本题考查勾股定理,圆周角定理,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识.12.B解析:B【分析】先把A (a ,b )分别代入两个解析式得到5b a =,b =a +1,则ab =5,b -a =1,再变形11a b -得到b a ab-,然后利用整体思想进行计算即可. 【详解】解:把A (a ,b )代入5y x=与y =x +1,得5ba=,b=a+1,即ab=5,b-a=1,所以11a b-=b aab-=15.故选:B.【点睛】本题考查了反比例函数与一次函数的交点问题:反比例函数图象与一次函数图象的交点坐标满足两函数的解析式.二、填空题13.bdca【解析】试题分析:根据观察的角度不同得到的视图不同可得答案①小狗先是站在地面上看②然后抬起了前腿看③唉还是站到凳子上看吧④最后它终于爬上了桌子…看到的由少到多最后全看到得bdca考点:简单几解析:bdca.【解析】试题分析:根据观察的角度不同,得到的视图不同,可得答案.①小狗先是站在地面上看,②然后抬起了前腿看,③唉,还是站到凳子上看吧,④最后,它终于爬上了桌子…看到的由少到多,最后全看到,得b,d,c,a.考点:简单几何体的三视图.14.圆锥【解析】试题分析:由主视图和左视图为三角形判断出是锥体由俯视图是圆形可判断出这个几何体应该是圆锥故答案为圆锥考点:由三视图判断几何体解析:圆锥【解析】试题分析:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥.故答案为圆锥.考点:由三视图判断几何体.15.3【分析】如图由题意证明AB=EBAB=BF推出DB=AB﹣17BN=AB﹣15根据DN=28构建方程求解即可【详解】解:如图由题意可得:在Rt△CDE中CD =DE=17m在Rt△MNF中MN=NF解析:3【分析】如图,由题意证明AB=EB,AB=BF,推出DB=AB﹣1.7,BN=AB﹣1.5,根据DN=2.8,构建方程求解即可.【详解】解:如图,由题意可得:在Rt△CDE中,CD=DE=1.7m,在Rt△MNF中,MN=NF=1.5m,∵∠CDE =∠MNF =90°,∴∠E =∠F =45°,∵AB ⊥EF ,∴AB =EB =BF ,∴DB =AB ﹣1.7,BN =AB ﹣1.5,∵DN =2.8m ,∴2AB ﹣1.7﹣1.5=2.8,∴AB =3(m ),即路灯的高为3米.故答案为:3.【点睛】本题考查了中心投影和等腰直角三角形的判定和性质,属于常考题型,熟练掌握上述知识是解题的关键.16.【分析】由A 的坐标确定出c 的值根据已知不等式判断出y1-y2<0可得出抛物线的增减性确定出抛物线对称轴为y 轴且开口向下求出b 的值如图1所示可得三角形ABC 为等边三角形确定出B 的坐标代入抛物线解析式即 解析:2233=-+y x 【分析】由A 的坐标确定出c 的值,根据已知不等式判断出y 1-y 2<0,可得出抛物线的增减性,确定出抛物线对称轴为y 轴,且开口向下,求出b 的值,如图1所示,可得三角形ABC 为等边三角形,确定出B 的坐标,代入抛物线解析式即可.【详解】解:∵抛物线过点A (0,3),∴c=3,当x 1<x 2<0时,x 1-x 2<0,由(x 1-x 2)(y 1-y 2)>0,得到y 1-y 2<0,∴当x <0时,y 随x 的增大而增大,同理当x >0时,y 随x 的增大而减小,∴抛物线的对称轴为y 轴,且开口向下,即b=0,∵以O 为圆心,OA 为半径的圆与抛物线交于另两点B ,C ,如图所示,∴△ABC 为等腰三角形,∵△ABC 中有一个角为60°,∴△ABC 为等边三角形,且OC=OA=3,设线段BC 与y 轴的交点为点D ,则有BD=CD ,且∠OBD=30°,333cos30sin 302︒︒∴=⋅==⋅=BD OB OD OB ∵B 在C 的左侧,∴B 的坐标为333,22⎛⎫-- ⎪ ⎪⎝⎭∵B 点在抛物线上,且c=3,b=0,327432∴+=-a 解得:23a =- 则抛物线解析式为2233=-+y x 故答案为: 2233=-+y x . 【点睛】 此题属于二次函数综合题,涉及的知识有:待定系数法求二次函数解析式,二次函数的图象与性质,锐角三角函数定义,熟练掌握各自的性质是解本题的关键.17.【分析】根据圆周角定理得由于的直径垂直于弦根据垂径定理得且可判断为等腰直角三角形所以然后利用进行计算【详解】解:∵∴∵的直径垂直于弦∴∴为等腰直角三角形∴∴故答案是:【点睛】本题考查了垂径定理:垂直 解析:2【分析】根据圆周角定理得245BOC A ∠=∠=︒,由于O 的直径AB 垂直于弦CD ,根据垂径定理得CE DE =,且可判断OCE △为等腰直角三角形,所以222CE ==后利用2CD CE =进行计算.【详解】解:∵22.5A ∠=︒∴245BOC A ∠=∠=︒∵O 的直径AB 垂直于弦CD∴CE DE =∴OCE △为等腰直角三角形 ∴2222CE OC == ∴242CD CE ==.故答案是:42【点睛】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了等腰直角三角形的性质和圆周角定理.18.【详解】如图延长CA 使AF=AE 连接BF 过B 点作BG ⊥AC 垂足为G ∵四边形ABCD 是正方形∴∠CAB=45°∴∠BAF=135°∵AE ⊥AC ∴∠BAE=135°∴∠BAF=∠BAE ∵在△BAF 和△B解析:23【详解】如图,延长CA 使AF=AE ,连接BF ,过B 点作BG ⊥AC ,垂足为G ,∵四边形ABCD 是正方形,∴∠CAB=45°.∴∠BAF=135°.∵AE ⊥AC ,∴∠BAE=135°.∴∠BAF=∠BAE .∵在△BAF 和△BAE 中,BA BA{BAF BAE AE AF∠∠===,∴△BAF ≌△BAE (SAS ).∴∠E=∠F .∵四边形ABCD 是正方形,BG ⊥AC ,∴G 是AC 的中点.∴BG=AG=2.在Rt △BGF 中,BG 2tanF FG 3==,即tanE=23. 考点:正方形的性质,全等三角形的判定和性质,锐角三角函数的定义,19.5【分析】设的半径为则由垂径定理得证明根据对应边成比例列式求出r 的值【详解】解:∵∴∵∴∴设的半径为则∵∴∴解得故答案是:5【点睛】本题考查圆的性质和相似三角形的性质和判定解题的关键是掌握圆周角定理 解析:5【分析】设O 的半径为r ,则22CE r =-,由垂径定理得142AE BE AB ===,证明AEC DEB ,根据对应边成比例列式求出r 的值.【详解】 解:∵AB CD ⊥,∴90ACE DBE ∠=∠=︒,∵AEC DEB ∠=∠,∴AEC DEB , ∴AE EC DE EB=, 设O 的半径为r ,则22CE r =-, ∵AB CD ⊥, ∴142AE BE AB ===, ∴42224r -=,解得=5r . 故答案是:5.【点睛】本题考查圆的性质和相似三角形的性质和判定,解题的关键是掌握圆周角定理和垂径定理,以及相似三角形对应边成比例的性质.20.-2【分析】求出两函数组成的方程组的解即可得出ab 的值再分别代入求出即可【详解】解:由题意得:把①代入②得:整理得:x2+2x+1=0解得:∴交点坐标是(-1-2)∴a=-1b=-2∴=-1+(-1解析:-2【分析】求出两函数组成的方程组的解,即可得出a 、b 的值,再分别代入求出即可.【详解】 解:由题意得:224yx y x ⎧=⎪⎨⎪=--⎩①②把①代入②得:224x x=--, 整理得: x 2+ 2x +1=0, 解得: 12x y =-⎧⎨=-⎩∴交点坐标是(-1,-2),∴ a= -1,b= -2,∴12a b+= -1 +(-1)= -2. 故答案为:- 2.【点睛】 本题主要考查函数交点坐标求法与运用;求出两函数组成的方程组的解,即为交点坐标是本题的解题关键.三、解答题21.详见解析.【分析】先画出上午太阳光线下的灯泡B 的照射光线BE ,过点C 作BE 的平行线,再连接下午时灯光下灯泡D 的光线DE ,与过点C 的光线交于点G ,在过点G 作地面的垂线GF ,即是表示小明身高的线段.【详解】如图所示,线段FG 即为所求.【点睛】此题考查投影,投影分为平行投影和中心投影,解题中能正确区分两种投影的区别是解题的关键.22.详见解析.【分析】根据几何体依次画图即可.【详解】【点睛】此题考查立体图形的三视图,需要有空间感.23.-7【分析】将原式依次利用乘方运算、零指数幂、绝对值的代数意义化简、特殊角的三角函数值计算进行化简,再计算即可得到结果.【详解】原式3 41(412)4=-+---341223=--+342323=--+7=-.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.24.该文化墙PM不需要拆除,见解析【分析】首先过点C作CD⊥AB于点D,则天桥高CD=6,由新坡面的坡度为13tanα=tan∠CAB=33==,然后由特殊角的三角函数值来求AD,BD的长;由坡面BC的坡度为1:1,新坡面的坡度为13AD,BD的长,继而求得AB=AD-BD的长,则可求得PA答案.【详解】解:该文化墙PM不需要拆除,理由:设新坡面坡角为α,新坡面的坡度为13,∴tanα333==,∴α=30°.作CD⊥AB于点D,则CD=6米,∵新坡面的坡度为13∴tan∠CADCD6AD AD3 ===解得,AD=3∵坡面BC的坡度为1:1,CD=6米,∴BD=6米,∴AB=AD﹣BD36)米,又∵PB=8米,∴PA=PB﹣AB=836)=14﹣3≈14﹣6×1.732≈3.6米>3米,∴该文化墙PM 不需要拆除.【点睛】此题考查了坡度坡角的知识.注意根据题意构造直角三角形,利用好坡比,会解直角三角形是关键.25.(1)(4,)1-;(2)画图见解析;(3)12.【分析】(1)直接利用关于x 轴对称图形的性质得出得出对应点位置即可;(2)直接利用位似图形的性质得出对应点位置进而得出答案;(3)直接运用三角形面积公式求出△A 2BC 2的面积即可.【详解】解:(1)如图所示:111A B C △,即为所求,则1C 的坐标为:(4,)1-.故答案为:(4,)1-.(2)如图所示:22A BC ,即为所求.(3)22164122A BC S =⨯⨯=. 【点睛】此题主要考查了位似变换以及轴对称变换,正确得出对应点位置是解题关键. 26.(1)62,53y y x x ==-+(2)454(3)x <-6或-1.5<x <0 【分析】(1)根据点A 是OC 的中点,可得A (3,2),可得反比例函数解析式为y 1=6x ,根据E (32,4),F (6,1),运用待定系数法即可得到直线EF 的解析式为y=-23x+5;(2)过点E 作EG ⊥OB 于G ,根据点E ,F 都在反比例函数y 1=6x 的图象上,可得S △EOG =S △OBF ,再根据S △EOF =S 梯形EFBG 进行计算即可; (3)根据点E ,F 关于原点对称的点的坐标分别为(-1.5,-4),(-6,-1),可得不等式k 2x-b-1k x >0的解集为:x <-6或-1.5<x <0.【详解】(1)∵D (0,4),B (6,0),∴C (6,4),∵点A 是OC 的中点,∴A (3,2),把A (3,2)代入反比例函数y 1=1k x ,可得k 1=6,∴反比例函数解析式为y 1=6x ,把x=6代入y 1=6x ,可得y=1,则F (6,1),把y=4代入y 1=6x ,可得x=32,则E (32,4),把E (32,4),F (6,1)代入y 2=k 2x+b ,可得2234216k b k b ⎧+⎪⎨⎪+⎩==,解得2235k b ⎧-⎪⎨⎪⎩==,∴直线EF 的解析式为y=-23x+5;(2)如图,过点E 作EG ⊥OB 于G ,∵点E ,F 都在反比例函数y 1=6x 的图象上,∴S △EOG =S △OBF ,∴S △EOF =S 梯形EFBG =12(1+4)×92=454;(3)由图象可得,点E ,F 关于原点对称的点的坐标分别为(-1.5,-4),(-6,-1),∴由图象可得,不等式k2x-b-1k>0的解集为:x<-6或-1.5<x<0.x【点睛】本题主要考查了反比例函数与一次函数交点问题以及矩形性质的运用,求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解.解题时注意运用数形结合思想得到不等式的解集.。

华师大数学九年级下第10讲 中考第二轮复习之几何题精选(1)

华师大数学九年级下第10讲 中考第二轮复习之几何题精选(1)

第10讲 中考第二轮复习之几何题精选一、 旋转精选题【例1】 ⑴如图,P 是等腰直角△ABC 外一点,把BP 绕点B 顺时针旋转90°到BP ′,已知∠AP ′B =135°,P′A :P ′C =1:3,则P ′A :PB =( )A .1:2B .1:2C .3:2D .1:3⑵如图,在平面直角坐标系中,矩形OEFG 的顶点F 的坐标为(4,2), 将矩形OEFG 绕点O 逆时针旋转,使点F 落在y 轴上,得到矩形OMNP ,OM 与GF 相 交于点A .若经过点A 的反比例函数(0)ky x x=>的图象交EF 于点B ,则点B 的坐标为 .⑶如图,把一个斜边长为2且含有30°的直角三角板ABC 绕直角顶点C 顺时针旋转90°到 △A 1B 1C ,则在旋转过程中这个三角板扫过的图形的面积是( ) A .πB 3C .334π D .11312π⑷(如图,正方形ABCD 与正三角形AEF 的顶点A 重合,将△AEF 绕顶点A 旋转,在旋转过程中,当BE=DF 时,∠BAE 的大小可以是 .FEABC DP 'PCB AOEF NMG Py xBA30°A 1B 1CBA二、圆精选题【例2】如图△ABC内接于⊙O,CD平分∠ACB交⊙O于D,过点D作PQ∥AB分别交CA、CB延长线于P、Q,连接BD.(1)求证:PQ是⊙O的切线;(2)求证:BD2=AC•BQ;(3)若AC、BQ的长是关于x的方程x+=m的两实根,且tan∠PCD=,求⊙O的半径.【例3】如图,在Rt△ABC中,∠ABC=90°,以CB为半径作⊙C,交AC于点D,交AC的延长线于点E,连接BD,BE.(1)求证:△ABD∽△AEB;(2)当=时,求tanE;(3)在(2)的条件下,作∠BAC的平分线,与BE交于点F,若AF=2,求⊙C的半径.三.三角形、四边形精选题例4.问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD ⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.中考真题演练:1.如图,在Rt△ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,E是AC的中点,OE交CD于点F.(1)若∠BCD=36°,BC=10,求的长;(2)判断直线DE与⊙O的位置关系,并说明理由;(3)求证:2CE2=AB•EF.2.如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O 于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)3.我们知道,三角形的内心是三条角平分线的交点,过三角形内心的一条直线与两边相交,两交点之间的线段把这个三角形分成两个图形.若有一个图形与原三角形相似,则把这条线段叫做这个三角形的“內似线”.(1)等边三角形“內似线”的条数为;(2)如图,△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求证:BD是△ABC的“內似线”;(3)在Rt△ABC中,∠C=90°,AC=4,BC=3,E、F分别在边AC、BC上,且EF是△ABC的“內似线”,求EF的长.4.在平面直角坐标系中,A,B,C三点坐标分别为A(﹣6,3),B(﹣4,1),C(﹣1,1).(1)如图1,顺次连接AB,BC,CA,得△ABC.①点A关于x轴的对称点A1的坐标是,点B关于y轴的对称点B1的坐标是;②画出△ABC关于原点对称的△A2B2C2;③tan∠A2C2B2=;(2)利用四边形的不稳定性,将第二象限部分由小正方形组成的网格,变化为如图2所示的由小菱形组成的网格,每个小菱形的边长仍为1个单位长度,且较小内角为60°,原来的格点A,B,C分别对应新网格中的格点A′,B′,C′,顺次连接A′B′,B′C′,C′A′,得△A′B′C′,则tan∠A′C′B′=.5.已知点O是正方形ABCD对角线BD的中点.(1)如图1,若点E是OD的中点,点F是AB上一点,且使得∠CEF=90°,过点E作ME∥AD,交AB 于点M,交CD于点N.求证:①∠AEM=∠FEM;②点F是AB的中点;(2)如图2,若点E是OD上一点,点F是AB上一点,且使==,请判断△EFC的形状,并说明理由;(3)如图3,若E是OD上的动点(不与O,D重合),连接CE,过E点作EF⊥CE,交AB于点F,当=时,请猜想的值(请直接写出结论).课后作业(定时练习30分钟)一.选择题(共6小题)1.下列实数中,无理数是()A.0 B.C.﹣2 D.2.下列方程中,没有实数根的是()A.x2﹣2x=0 B.x2﹣2x﹣1=0 C.x2﹣2x+1=0 D.x2﹣2x+2=03.如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是A.k>0,且b>0 B.k<0,且b>0 C.k>0,且b<0 D.k<0,且b<04.数据2、5、6、0、6、1、8的中位数和众数分别是()A.0和6 B.0和8 C.5和6 D.5和85.下列图形中,既是轴对称又是中心对称图形的是()A.菱形 B.等边三角形C.平行四边形D.等腰梯形6.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB二.填空题(共12小题)7.计算:2a•a2=.8.不等式组的解集是.9.方程=1的解是.10.如果反比例函数y=(k是常数,k≠0)的图象经过点(2,3),那么在这个函数图象所在的每个象限内,y的值随x的值增大而.(填“增大”或“减小”)11.某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了10%,如果今年PM2.5的年均浓度比去年也下降10%,那么今年PM2.5的年均浓度将是微克/立方米.12.不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是.13.已知一个二次函数的图象开口向上,顶点坐标为(0,﹣1 ),那么这个二次函数的解析式可以是.(只需写一个)14.某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是万元.15.如图,已知AB∥CD,CD=2AB,AD、BC相交于点E,设=,=,那么向量用向量、表示为.16.一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA与边FE叠合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180 ),如果EF∥AB,那么n的值是.17.如图,已知Rt△ABC,∠C=90°,AC=3,BC=4.分别以点A、B为圆心画圆.如果点C在⊙A内,点B在⊙A外,且⊙B与⊙A内切,那么⊙B的半径长r的取值范围是.18.我们规定:一个正n边形(n为整数,n≥4)的最短对角线与最长对角线长度的比值叫做这个正n边形的“特征值”,记为λn,那么λ6=.三.解答题1.当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.(1)求七年级已“建档立卡”的贫困家庭的学生总人数;(2)将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;(3)现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.2.2017年6月2日,贵阳市生态委发布了《2016年贵阳市环境状况公报》,公报显示,2016年贵阳市生态环境质量进一步提升,小颖根据公报中的部分数据,制成了下面两幅统计图,请根据图中提供的信息,回答下列问题:(1)a=,b=;(结果保留整数)(2)求空气质量等级为“优”在扇形统计图中所占的圆心角的度数;(结果精确到1°)(3)根据了解,今年1~5月贵阳市空气质量优良天数为142天,优良率为94%,与2016年全年的优良率相比,今年前五个月贵阳市空气质量的优良率是提高还是降低了?请对改善贵阳市空气质量提一条合理化建议.3.随着通讯技术的迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为;(2)将条形统计图补充完整;(3)该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名?(4)某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选择同一种沟通方式的概率.。

数学初三下华师大版29.1.2几何问题的处理方法(2)教案

数学初三下华师大版29.1.2几何问题的处理方法(2)教案

数学初三下华师大版29.1.2几何问题的处理方法(2)教案【教学目标】:使学生理解推理证明是判断猜想正确与否的重要手段,明确推理证明所要依据的公理,掌握证明的方法,培养学生逻辑推理能力。

【重点难点】:重点:推理证明的方法和学生逻辑推理能力的培养。

难点:学生逻辑推理能力的培养。

【教学过程】:【一】理解为何需要推理证明同学们想一想,我们是如何明白三角形内角和等于180°呢?当时我们通过画不同的三角形,测量出它们的内角,然后算得各个三角形的三个内角和为180°,或将一个三角形的三个内角拼在一起(如图(1),发明三角形的三个内角的和筹于180°。

用测量的方法能保证每次画出的三角形的内角和正好等于180°吗?用观看的方法能保证三个内角拼成的角一定是平角吗?为了确保精确无误,人们发明以下证明的方法。

求证:三角形的内角等于180°。

:如图(2),任意△ABC的内角为∠A、∠B、∠C。

求证:∠A+∠B+∠C=180°。

证明:延长线段AB到D,过B点作BE∥AC。

∵AC=BE∴∠2=∠C(两直线平行,内错角相等)∠1=∠A(两直线平行,同位角相等)又∵∠1+∠2+∠ABC=180°(平角的定义)∴∠A+∠ABC+∠C=180°(等量代换)上面的括号里的内容是这一步的依据,所谓推理、证明讲究的是依据,这些依据从哪里来呢? 【三】推理证明的依据逻辑推理需要依据,我们试图用最少的几条差不多事实作为逻辑推理的最原始的依据。

上面,学习了一些公理(事实)。

(1)一条直线截两条平行线所得的同位角相等。

(2)两条直线被第三条直线所截,假如同位角相等,那么这两条直线平行。

(3)假如两个三角形的两边及其夹角(或两角及其夹边、或三边)分别对应相等,那么这两个三角形全等。

(4)全等三角形的对应边、对应角分别相等。

等式、不等式的有关性质以及等量代换也是逻辑推理的依据。

华师大版九年级(下) 中考题同步试卷:29.1 几何问题的处理方法(01)

华师大版九年级(下) 中考题同步试卷:29.1 几何问题的处理方法(01)

华师大版九年级(下)中考题同步试卷:29.1 几何问题的处理方法(01)一、选择题(共25小题)1.下列命题中,假命题是()A.平行四边形是中心对称图形B.三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C.对于简单的随机样本,可以用样本的方差去估计总体的方差D.若x2=y2,则x=y2.下列命题是真命题的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.对角线互相垂直的四边形是正方形3.下列命题中,真命题的个数有()①对角线互相平分的四边形是平行四边形;②两组对角分别相等的四边形是平行四边形;③一组对边平行,另一组对边相等的四边形是平行四边形.A.3个B.2个C.1个D.0个4.下列命题正确的是()A.一组对边相等,另一组对边平行的四边形是平行四边形B.对角线相互垂直的四边形是菱形C.对角线相等的四边形是矩形D.对角线相互垂直平分且相等的四边形是正方形5.下列说法不正确的是()A.圆锥的俯视图是圆B.对角线互相垂直平分的四边形是菱形C.任意一个等腰三角形是钝角三角形D.周长相等的正方形、长方形、圆,这三个几何图形中,圆面积最大6.下列命题:①平行四边形的对边相等;②对角线相等的四边形是矩形;③正方形既是轴对称图形,又是中心对称图形;④一条对角线平分一组对角的平行四边形是菱形.其中真命题的个数是()A.1B.2C.3D.4 7.下列命题中,为真命题的是()A.六边形的内角和为360度B.多边形的外角和与边数有关C.矩形的对角线互相垂直D.三角形两边的和大于第三边8.下列命题中错误的是()A.平行四边形的对角线互相平分B.菱形的对角线互相垂直C.同旁内角互补D.矩形的对角线相等9.下列命题是假命题的是()A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直的矩形是正方形C.对角线相等的菱形是正方形D.对角线互相垂直的四边形是正方形10.下列命题中,属于真命题的是()A.各边相等的多边形是正多边形B.矩形的对角线互相垂直C.三角形的中位线把三角形分成面积相等的两部分D.对顶角相等11.已知下列命题:①在Rt△ABC中,∠C=90°,若∠A>∠B,则sin A>sin B;②四条线段a,b,c,d中,若=,则ad=bc;③若a>b,则a(m2+1)>b(m2+1);④若|﹣x|=﹣x,则x≥0.其中原命题与逆命题均为真命题的是()A.①②③B.①②④C.①③④D.②③④12.下列命题中,属于真命题的是()A.三点确定一个圆B.圆内接四边形对角互余C.若a2=b2,则a=b D.若=,则a=b13.命题“关于x的一元二次方程x2+bx+1=0,必有实数解.”是假命题.则在下列选项中,可以作为反例的是()A.b=﹣3B.b=﹣2C.b=﹣1D.b=214.下列说法正确的是()A.面积相等的两个三角形全等B.矩形的四条边一定相等C.一个图形和它旋转后所得图形的对应线段相等D.随机投掷一枚质地均匀的硬币,落地后一定是正面朝上15.下列命题正确的是()A.对角线互相垂直的四边形是菱形B.一组对边相等,另一组对边平行的四边形是平行四边形C.对角线相等的四边形是矩形D.对角线互相垂直平分且相等的四边形是正方形16.下列命题正确的是()A.矩形的对角线互相垂直B.两边和一角对应相等的两个三角形全等C.分式方程+1=可化为一元一次方程x﹣2+(2x﹣1)=﹣1.5D.多项式t2﹣16+3t因式分解为(t+4)(t﹣4)+3t17.下列四个命题中,真命题是()A.“任意四边形内角和为360°”是不可能事件B.“湘潭市明天会下雨”是必然事件C.“预计本题的正确率是95%”表示100位考生中一定有95人做对D.抛掷一枚质地均匀的硬币,正面朝上的概率是18.在平面直角坐标系中,任意两点A(x1,y1),B(x2,y2),规定运算:①A⊕B=(x1+x2,y1+y2);②A⊗B=x1x2+y1y2;③当x1=x2且y1=y2时,A=B,有下列四个命题:(1)若A(1,2),B(2,﹣1),则A⊕B=(3,1),A⊗B=0;(2)若A⊕B=B⊕C,则A=C;(3)若A⊗B=B⊗C,则A=C;(4)对任意点A、B、C,均有(A⊕B)⊕C=A⊕(B⊕C)成立,其中正确命题的个数为()A.1个B.2个C.3个D.4个19.下列命题中,真命题的个数是()①若﹣1<x<﹣,则﹣2;②若﹣1≤x≤2,则1≤x2≤4③凸多边形的外角和为360°;④三角形中,若∠A+∠B=90°,则sin A=cos B.A.4B.3C.2D.120.下列命题中是真命题的是()A.确定性事件发生的概率为1B.平分弦的直径垂直于弦C.正多边形都是轴对称图形D.两边及其一边的对角对应相等的两个三角形全等21.下列命题中,是假命题的是()A.对顶角相等B.同旁内角互补C.两点确定一条直线D.角平分线上的点到这个角的两边的距离相等22.下列命题是真命题的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的平行四边形是矩形C.四条边相等的四边形是菱形D.正方形是轴对称图形,但不是中心对称图形23.下列给出5个命题:①对角线互相垂直且相等的四边形是正方形②六边形的内角和等于720°③相等的圆心角所对的弧相等④顺次连接菱形各边中点所得的四边形是矩形⑤三角形的内心到三角形三个顶点的距离相等.其中正确命题的个数是()A.2个B.3个C.4个D.5个24.下列命题错误的是()A.对角线互相垂直平分的四边形是菱形B.平行四边形的对角线互相平分C.矩形的对角线相等D.对角线相等的四边形是矩形25.下列命题中的真命题是()A.两边和一角分别相等的两个三角形全等B.相似三角形的面积比等于相似比C.正方形不是中心对称图形D.圆内接四边形的对角互补二、填空题(共5小题)26.下列命题:①对角线互相垂直的四边形是菱形;②点G是△ABC的重心,若中线AD=6,则AG=3;③若直线y=kx+b经过第一、二、四象限,则k<0,b>0;④定义新运算:a*b=2a﹣b2,若(2x)*(x﹣3)=0,则x=1或9;⑤抛物线y=﹣2x2+4x+3的顶点坐标是(1,1).其中是真命题的有(只填序号)27.以下四个命题:①若一个角的两边和另一个角的两边分别互相垂直,则这两个角互补;②边数相等的两个正多边形一定相似;③等腰三角形ABC中,D是底边BC上一点,E是一腰AC上的一点,若∠BAD=60°且AD=AE,则∠EDC=30°;④任意三角形的外接圆的圆心一定是三角形三条边的垂直平分线的交点.其中正确命题的序号为.28.命题“全等三角形的面积相等”的逆命题是命题.(填入“真”或“假”)29.命题“对角线相等的四边形是矩形”是命题(填“真”或“假”).30.下列四个命题中,正确的是(填写正确命题的序号)①三角形的外心是三角形三边垂直平分线的交点;②函数y=(1﹣a)x2﹣4x+6与x轴只有一个交点,则a=;③半径分别为1和2的两圆相切,则两圆的圆心距为3;④若对于任意x>1的实数,都有ax>1成立,则a的取值范围是a≥1.华师大版九年级(下)中考题同步试卷:29.1 几何问题的处理方法(01)参考答案一、选择题(共25小题)1.D;2.A;3.B;4.D;5.C;6.C;7.D;8.C;9.D;10.D;11.A;12.D;13.C;14.C;15.D;16.C;17.D;18.C;19.B;20.C;21.B;22.C;23.A;24.D;25.D;二、填空题(共5小题)26.③④;27.②③④;28.假;29.假;30.①④;。

华师大版九年级数学下册《解直角三角形》单元检测试卷及答案解析

华师大版九年级数学下册《解直角三角形》单元检测试卷及答案解析

华师大版九年级数学下册《解直角三角形》单元检测试卷一、选择题1、如图,轮船从B 处以每小时60海里的速度沿南偏东20°方向匀速航行,在B 处观测灯塔A 位于南偏东50°方向上,轮船航行40分钟到达C 处,在C 处观测灯塔A 位于北偏东10°方向上,则C 处与灯塔A 的距离是( )A .20海里B .40海里C .海里D .海里2、tan45º的值为( )A .B .1C .D .3、如图,直线与x 轴、y 轴分别交于A 、B 两点,把△AOB 沿直线AB 翻折后得到△AO ′B ,则点O ′的坐标是( ) A .(,3) B .(,) C .(2,) D .(,4)(第1题图) (第3题图) (第4题图)4、如图所示,△ABC 的顶点是正方形网格的格点,则sin B 的值为( )A. B. C.5、如图是教学用直角三角板,边AC =30cm ,∠C =90°,tan ∠BAC =,则边BC 的长为( ) A .30cm B .20cm C .10cm D .5cm6、如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D.若AC =,BC =2,则sin∠ACD 的值为( )A. B. C. D.(第5题图) (第6题图) (第9题图) (第10题图)7、某人沿坡度i =1:的坡面向上走50米,则此人离地面的高度为( )A .25米B .50米C .25米D .50米8、如图所示,在数轴上点A 所表示的数x 的范围是( )A .sin 30°<x <sin 60° B .cos 30°<x <cos 45°C .tan 30°<x <tan 45°D .tan 45°<x <tan 60°9、在寻找马航MH 370航班过程中,某搜寻飞机在空中A 处发现海面上一块疑似漂浮目标B ,此时从飞机上看目标B 的俯角为α.如图,已知飞行高度AC =1500米,tan α=,则飞机距疑似目标B 的水平距离BC 为( ) A .2400米 B .2400米 C .2500米 D .2500米10、如图,已知45°<∠A <90°,则下列各式成立的是( )A .sin A =cos AB .sin A>cos AC .sin A>tan AD .sin A<cos A二、填空题11、如图,折叠矩形ABCD 的一边AD ,使点D 落在BC 边的点F 处,已知AB=8cm ,BC=10cm ,则tan ∠EAF 的值= 。

华师大版九年级数学下册课后练习:解直角三角形 课后练习二及详解(1)

华师大版九年级数学下册课后练习:解直角三角形 课后练习二及详解(1)

学科:数学专题:解直角三角形金题精讲题一:题面:如图,在△ABC中,∠ACB=90°,BC=4,AC=5,CD⊥AB,则sin∠ACD的值是,tan∠BCD的值是 .题二:题面:已知如图,△ABC中,AD⊥BC于D,AC=BD=5,tan∠CAD=12,求AB的值.满分冲刺题一:题面:如图,在△ABC中,∠A=135°,AB=20,AC=30,求△ABC的面积.题二:题面:如图,已知AD是Rt△ABC斜边BC上的高,且AB=6,BC=10.则AC= ,sin a= .题三:2,求AB的长.题面:如图,在△ABC中,∠A=30°,∠B=45°,AC=3课后练习详解金题精讲题一:答案:41;45详解:∵△ABC 中,∠ACB =90°,BC =4,AC =5,CD ⊥AB ,∴AB在Rt△ABC 与Rt△ACD 中,∠A +∠B =90°,∠A +∠ACD =90°,∠ADC =∠ACB =90°. ∴∠B =∠ACD .Rt△ABC ∽Rt△ACD ,∠BCD =∠A .故sin∠ACD =sin∠B =AC AB , tan∠BCD =tan∠A =BC AC =45. 题二:答案: 详解:∵AD ⊥BC ,△ADC 为Rt△,又在Rt△ADC 中tan ∠CAD =1=2CD AD , ∴设CD =x ,AD =2x , 由:CD 2+AD 2=AC 2得 x 2+4x 2=25,∵x >0∴x ∴在Rt△ADB 中AB =,即AB 长为满分冲刺题一:答案:详解:过点B 作BE ⊥AC ,∵∠A =135°,∴∠BAE =180°-∠A =180°-135°=45°,∴∠ABE =90°-∠BAE =90°-45°=45°,在Rt △BAE 中,∵AB =20,∴BE =,∵AC =30,∴S △ABC =12AC •BE =12×30×=题二:答案:8;45.详解:在Rt△ABC 中,AC =8;AB 2=BD •BC ,∴BD =3.6,CD =6.4,在Rt△ACD 中,sin a =CD AC =45. 题三:答案:详解:过点C 作CD ⊥AB 于D ,在Rt △ACD 中,∠A =30°,AC ==. ∴CD=AC×sin A=0.5,AD=AC×cos A=32在Rt△BCD中,∠B=45°,则BD=CD AB=AD+BD。

新思维系列华师大版九下数学2几何问题的处理方法课后拓展训练

新思维系列华师大版九下数学2几何问题的处理方法课后拓展训练

几何问题的处理方法(一)1.在平面直角坐标系中,已知点A(0,2),B(-30),C(0,-2),D30),则以这四个点为顶点的四边形ABCD是( )A.矩形B.菱形C.正方形D.梯形2.在平面直角坐标系中,已知点A(-4,0),B(2,0),若点C在一次函数y=-12x+2的图象上,且△ABC为直角三角形,则满足条件的点C有( )A.1个B.2个C.3个D.4个3.若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为( ) A.50°B.80°C.65°或50°D.50°或80°4.如图29-24所示,正方形ABCD中,点E是CD边上一点,连接AE,交对角线BD于点F,连接CF,则图中全等三角形共有( )A.1对B.2对C.3对D.4对5.已知△ABC和△A′B′C′是位似图形,△A′B′C′的面积为6 cm2,周长是△ABC的一半,AB=8 cm,则AB边上的高等于( ) A.3 cm B.6 cmC.9 cm D.12 cm6.如图29-25所示,正方形ABCD中,E为AB边的中点,G,F分别为AD,BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为.7.如果一个多边形的边数增加1,那么这个多边形的内角和增加;若将n边形的边数增加一倍,则它的内角和增加.8.若三角形的一个内角是70°,则另两个角的平分线所夹角的度数是.9.在△ABC中,高AD,CE相交于点M,若∠BAC=45°,∠ACB=75°,则∠AMC =.10.如图29-26所示,求∠A+∠B+∠C+∠D+∠E的度数.11.在△ABC中,∠A=x-y,∠B=x,∠C=x+y,0°<y<x<90°,若∠A与∠C的平分线交于点P,求∠APC的度数.12.一个凸多边形的内角和与某一个外角的度数总和为1350°,求这个多边形的边数.13.如图29-27所示,∠A=20°,∠ABC=162°,∠C=27°,求∠D的度数.14.如图29-28所示,已知DE∥BC,CD是∠ACB的平分线,∠B=60°,∠A=50°,求∠EDC和∠BDC的度数.15.如图29-29所示,在△ABC中,∠A=100°,求∠ABC的平分线与∠ACB的外角平分线所成的锐角P的度数.参考答案1.B 2.D[提示:本题是一道开放性试题,考查一次函数和直角三角形的综合应用,重在思维的全面性.] 3.D[提示:因为50°可能是顶角,也可能是底角,当50°是底角时,顶角为180°-50°×2=80°,本题难度中等,考查等腰三角形的性质.] 4.C[提示:因为正方形有一条对角线平分一组对角,而且邻边相等,根据边角边公理可知△ABF≌△CBF,△ABD≌△CBD,△ADF≌△CDF,有三对全等的三角形.] 5.B [提示:本题难度中等,考查位似图形的性质,因为△ABC和△A′B′C′是位似图形,所以△ABC∽△A′B′C′,因为△A′B′C′的周长是△ABC的一半,所以相似比为1∶2,所以S△A′B′C′∶S△ABC=1∶4,因为△A′B′C′的面积是6 cm2,所以S△ABC=24 cm2,因此AB边上的高等于24182⨯=6(cm).] 6.3[提示:本题考查一对相似三角形的应用,根据已知条件可得△AEG∽△BFE,从而推出对应边成比例,即AE AGBF BE=.又因为AE=BE,所以AE2=AG·BF=2,取正值得AE] 7.180°180°n[提示:180°(n+1-2)-180°(n-2)=180°,180°(2n-2)-180°(n-2)=180°n.] 8.125°或55°[提示:90°+702︒=125°,180°-125°=55°.] 9.120°[提示:∵∠BAC=45°,∠ACB=75°,∴∠B=180°-45°-75°=60°.在四边形BDME中,∠EMD=360°-90°-90°-60°=120°,∴∠AMC=120°.]10.解法1:∵∠A+∠AFG+∠AGF=180°,∠AFG=∠B+∠D,∠AGF=∠C+∠E,∴∠A+∠B+∠C+∠D+∠E=180°.解法2:∵∠A+∠C+∠AJC=180°,∠AJC =∠E+∠EFJ,∠EFJ=∠B+∠D,∴∠A+∠B+∠C+∠D+∠E=180°.11.提示:∠APC的度数为120°.12.解:设多边形的边数为n,这个外角为x°,则0<x<180.∵1350<180<1350-x<1350,即1170<1350-x<1350.又∵(n-2) ·180=1350-x,∴1170<(n-2)·180<1350,∴8.5<n<9.5,∴n=9.13.提示:∠D=∠ABC-∠A-∠C=115°.14.解:在△ABC中,∠A=50°,∠B=60°,∴∠ACB=180°-50°-60°=70°.∵CD平分∠ACB,∴∠DCB=∠ECD=35°.∵DE∥BC,∴∠EDC=∠DCB=35°.在△BDC中,∠B=60°,∠DCB=35°,∴∠BDC=180°-60-°35°=85°.15.提示:∠P=∠PCE-∠2=100222ACE ABC A∠-∠∠︒===50°.。

专题26.3.2 几何图形面积最值问题-九年级数学同步精讲精练之二次函数(华师大版)

专题26.3.2 几何图形面积最值问题-九年级数学同步精讲精练之二次函数(华师大版)

26.3.2 几何图形面积最值问题【同步测试】一.选择题(共2小题)1.用长40m的篱笆围成一个矩形菜园,则围成的菜园的最大面积为()A.400m2B.300m2C.200m2D.100m2【答案】D【解析】解:设矩形的面积为S平方米,长为xm,由题意,得S=x(20﹣x),s最大=100.故选:D.【点睛】本题考查了运用待定系数法求二次函数的解析式的运用,抛物线的顶点式的运用,矩形的面积公式,解答时求出矩形的面积表达式是关键.2.如图,一边靠校园围墙,其他三边用总长为40米的铁栏杆围成一个矩形花圃,设矩形ABCD的边AB为x米,面积为S平方米,要使矩形ABCD面积最大,则x的长为()A.10米B.15米C.20米D.25米【答案】A【解析】解:设矩形ABCD的边AB为x米,则宽为(40﹣2x)米,S=(40﹣2x)x=﹣2x2+40x.要使矩形ABCD面积最大,则x10米,即x的长为10米.故选:A.【点睛】求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=﹣x2﹣2x+5,y=3x2﹣6x+1等用配方法求解比较简单.二.填空题(共3小题)3.如图,用长20m的篱笆,一面靠墙(墙足够长)围成一个长方形的园子,最大面积是________m2.【答案】50m2【解析】解:设与墙平行的一边长为xm,则另一面为,其面积x x2﹣10x,∴最大面积为50即最大面积是50m2.【点睛】求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=﹣x2﹣2x+5,y=3x2﹣6x+1等用配方法求解比较简单.4.周长为13cm的矩形铁板上剪去一个等边三角形(这个等边三角形的一边是矩形的宽),则矩形宽为_____cm,长为____cm时,剩下的面积最大,这个最大面积是_________.【答案】见解析经整理,得:y x2x,当x4时,y取得最大值,y最大(4),此时长为().【点睛】本题考查了二次函数在实际生活中的运用,重点是求最值问题.5.如图,在△ABC中,∠B=90°,AB=8cm,BC=6cm,点P从点A开始沿AB向B以2cm/s的速度移动,点Q从点B开始沿BC向C点以1cm/s的速度移动,如果P,Q分别从A,B同时出发,当△PBQ的面积为最大时,运动时间t为______s.【答案】2∵由以上函数图象知∴当t=2时,△PBQ的面积最大为4cm2.【点睛】求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=﹣x2﹣2x+5,y=3x2﹣6x+1等用配方法求解比较简单.三.解答题(共3小题)6.一养鸡专业户计划用长116m的竹篱笆靠墙(如图)围成一个长方形鸡舍,怎样设计才能使围成的长方形鸡舍的面积最大?最大面积为多少?【答案】见解析【解析】解:∵四边形ABCD是矩形,∴AB=CD.设BC=xm,则AB=CD(116﹣x)m,矩形的面积为S.由题意,得S=x•x2+58x(x﹣58)2+1682.∴当x=58m时,S最大=1682m2.【点睛】本题考查了矩形的性质的运用,矩形的面积公式的运用,二次函数的解析式的顶点式的运用.解答时求出S与x之间的关系式是关键.7.如图等腰梯形ABCD中,AB=4,CD=9,∠C=60°,动点P从点C出发沿CD方向向点D运动,动点Q同时以相同速度从点D出发沿DA方向向终点A运动,其中以个动点到达端点时,另一个动点也随之停止运动(1)求AD的长;(2)设CD=x,问当x为何值时△PDQ的面积达到最大?并求出最大值.【答案】见解析【解析】解:(1)如图1在Rt△ADE中,AD2=5;(2)如图1∵CP=x,h为PD边上的高,依题意,△PDQ的面积S可表示为:(x)2.(0≤x≤5)∴a0,∴当x时(满足0≤x≤5),S最大值.学科&网【点睛】本题考查了学生的分析作图能力和考查学生综合运用平行线、等腰梯形、等边三角形、菱形、二次函数等知识.这里设计了一个开放的、动态的数学情境,为学生灵活运用基础知识、分析问题、解决问题留下了广阔的探索、创新的思维空间.8.如图等腰梯形花圃ABCD的底边AD靠墙,另三边用长为40m的铁栏围成,设AB的长为xm,该花圃的面积为Sm2(1)求出底边BC的长.(用含x的代数式表示)(2)若∠BAD=60°,求S与x之间的函数关系式;(3)在(2)的条件下,若墙长为24m,试求S的最大值.【答案】见解析【解析】解:(1)∵AB=CD=x米,∴BC=40﹣AB﹣CD=(40﹣2x)米.(2)如图,过点B、C分别作BE⊥AD于E,CF⊥AD于F,在Rt△ABE中,AB=x,∠BAE=60°∴AE x,BE x,∴S(40﹣2x+40﹣x)•x x(80﹣3x)(0<x<20),当S=93时,,解得:x1=6,x2=20(舍去).∴x=6(3)由题意,得40﹣x≤24,解得x≥16,结合(2)得16≤x<20.由(2),S∵a∴函数图象为开口向下的抛物线的一段(附函数图象草图如左).其对称轴为x,∵16,由左图可知,当16≤x<20时,S随x的增大而减小,∴当x=16时,S取得最大值,此时S最大值162+2016=128m2.【点睛】本题考查了二次函数的性质的运用,等腰梯形的性质的运用.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.本题主要考查二次函数的运用,运算较复杂,难度偏难.。

难点解析华东师大版九年级数学下册第27章 圆同步测评试题(含详解)

难点解析华东师大版九年级数学下册第27章 圆同步测评试题(含详解)

华东师大版九年级数学下册第27章 圆同步测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AB 为O 的直径,弦CD AB ⊥于E ,已知16CD =,6OE =,则O 的直径为( )A .10B .18C .26D .202、如图,A ,B ,C ,D 都是O 上的点,OA BC ⊥,垂足为E ,若26OBC ∠=︒,则ADC ∠的度数为( )A .26︒B .32︒C .52︒D .64︒3、O 的半径为5 , 若直线l 与该圆相交, 则圆心O 到直线l 的距离可能是 ( )A .3B .5C .6D .104、如图,O 是ABC ∆的外接圆,40OCB ∠=︒,则A ∠的度数是( )A .40︒B .80︒C .50︒D .45︒5、如图,PA 、PB 是O 的切线,A 、B 是切点,点C 在O 上,且58ACB ∠=︒,则APB ∠等于( )A .54°B .58°C .64°D .68°6、如图,圆形螺帽的内接正六边形的面积为2,则圆形螺帽的半径是( )A .1cmB .2cmC .D .4cm7、矩形ABCD 中,AB =8,BC =4,点P 在边AB 上,且AP =3,如果⊙P 是以点P 为圆心,PD 为半径的圆,那么下列判断正确的是( )A .点B 、C 均在⊙P 内B .点B 在⊙P 上、点C 在⊙P 内 C .点B 、C 均在⊙P 外D .点B 在⊙P 上、点C 在⊙P 外8、如图,DC 是⊙O 的直径,弦AB ⊥CD 于M ,则下列结论不一定成立的是( )A .AM =BMB .CM =DMC .AC BC =D .AD BD =9、如图,AD 为O 的直径,8AD =,DAC ABC ∠=∠,则AC 的长度为( )A .B .C .4D .10、如图,四边形ABCD 内接于O ,如果它的一个外角64DCE ︒∠=,那么BOD ∠的度数为( )A .20︒B .64︒C .116︒D .128︒第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题3分,共计30分)1、如图,扇形AOB 的圆心角为120°,弦AB = _____.2、《九章算术》是我国古代的数学名著,书中有这样的一个问题:“今有勾八步,股十五步,问勾中容圆径几何?”.其意思是:“如图,现有直角三角形,勾(短直角边)长为 8 步,股(长直角边)长为 15 步,问该直角三角形所能容纳的最大圆的直径是多少?”答:该直角三角形所能容纳的最大圆的直径..是______步.3、已知点A 、B 、C 、D 在圆O 上,且FD 切圆O 于点D ,OE CD ⊥于点E ,对于下列说法:①圆上AbB 是优弧;②圆上AbD 是优弧;③线段AC 是弦;④CAD ∠和ADF ∠都是圆周角;⑤COA ∠是圆心角,其中正确的说法是________.4、如图,四边形ABCD 内接于O ,E 为直径AB 延长线上一点,且AB DC ,若70A ∠=︒,则CBE ∠的度数为______.5、如图,点A,B,C在⊙O上,四边形OABC是平行四边形,若对角线AC=AC的长为_____.6、如图,在⊙O中,AB=AC,AB=10,BC=12,D是BC上一点,CD=5,则AD的长为______.7、在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1,如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△AB′C′.则图中阴影部分的面积为_____.8、如图,已知P 的半径为1,圆心P 在抛物线2112y x =-+上运动,当P 与x 轴相切时,圆心P 的横坐标为______.9、如图,AB 为O 的弦,半径⊥OD AB 于点C .若8AB =,2CD =,则O 的半径长为______.10、如图,PA 、PB 分别与O 相切于A 、B 两点,若58P ∠=︒,则ACB ∠的度数为________.三、解答题(5小题,每小题8分,共计40分)1、【教材呈现】下图是华师版九年级下册数学教材第43页的部分内容.圆周角定理 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半;相等的圆周角所对的弧相等.由圆周角定理,可以得到以下推论:推论1 90°的圆周角所对的弦是直径.(如图)【推论证明】已知:△ABC 的三个顶点都在⊙O 上,且∠ACB =90°.求证:线段AB 是⊙O 的直径.请你结合图①写出推论1的证明过程.【深入探究】如图②,点A ,B ,C ,D 均在半径为1的⊙O 上,若∠ACB =90°,∠ACD =60°.则线段AD 的长为 .【拓展应用】如图③,已知△ABC 是等边三角形,以AC 为底边在三角形ABC 外作等腰直角三角形ACD ,点E 是BC 的中点,连结DE . 若AB =DE 的长为 .2、已知四边形 ABCD 是菱形, 4AB =, 点 E 在射线 CB 上, 点 F 在射线 CD 上,且 EAF BAD ∠=∠.(1)如图, 如果 90BAD ∠=, 求证: AE AF = ;(2)如图, 当点 E 在 CB 的延长线上时, 如果 60ABC ∠=, 设 ,AF DF x y AE==, 试建立 y与 x 的函数关系式,并写出 x 的取值范围(3)联结 ,2AC BE , 当 AEC △ 是等腰三角形时,请直接写出 DF 的长.3、如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,AB =5,AC =3.(1)求tanA 的值;(2)若D 为AB 的中点,连接CD 、BD ,求弦CD 的长.4、如图,△ABC 内接于⊙O ,弦BD ⊥AC ,垂足为E .点D ,点F 关于AC 对称,连接AF 并延长交⊙O 于点G .(1)连接OB ,求证:∠ABD =∠OBC ;(2)求证:点F,点G关于BC对称;(3)若BF=OB=2,求△ABC面积的最大值.5、下面是小玟同学设计的“作一个角等于已知角”的尺规作图过程.已知:在△ABC中,AB=BC,BD平分∠ABC交AC于点D.求作:∠BPC,使∠BPC=∠BAC.作法:① 分别以点B和点C为圆心,大于12BC的长为半径作弧,两弧交于点E和点F,连接EF交BD于点O;② 以点O为圆心,OB的长为半径作⊙O;③ 在劣弧AB上任取一点P(不与点A、B重合),连接BP和CP.所以∠BPC=∠BAC.根据小玟设计的尺规作图过程.(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接OA、OC.∵AB=BC,BD平分∠ABC,∴BD⊥AC且AD=CD.∴OA=OC.∵EF是线段BC的垂直平分线,∴OB= .∴OB=OA.∴⊙O 为△ABC 的外接圆.∵点P 在⊙O 上,∴∠BPC =∠BAC ( )(填推理的依据).-参考答案-一、单选题1、D【解析】【分析】连接OC ,由垂径定理及勾股定理即可求得圆的半径,从而可得直径的长.【详解】连接OC ,∵AB 为O 的直径,弦CD AB ⊥于E , ∴182CE CD ==,∴10OC ,∴O 的直径220AB OC ==,故选:D .【点睛】本题考查了垂径定理及勾股定理,连接OC 得到直角三角形是关键.2、B【解析】【分析】连接OC .根据OA BC ⊥确定AC AB =,90OEB ∠=︒,进而计算出AOB ∠,根据圆心角的性质求出AOC ∠,最后根据圆周角的性质即可求出ADC ∠.【详解】解:如下图所示,连接OC .∵OA BC ⊥,∴AC AB =,90OEB ∠=︒.∴AOC AOB ∠=∠.∵26OBC ∠=︒.∴64AOB ∠=︒.∴64AOC ∠=︒∵ADC ∠和AOC ∠分别是AC 所对的圆周角和圆心角, ∴3122A ADC OC ∠=︒∠=.故选:B.【点睛】本题考查垂径定理,圆心角的性质,圆周角的性质,综合应用这些知识点是解题关键.3、A【解析】【分析】根据直线l和⊙O相交⇔d<r,即可判断.【详解】解:∵⊙O的半径为5,直线l与⊙O相交,∴圆心D到直线l的距离d的取值范围是0≤d<5,故选:A.【点睛】本题考查直线与圆的位置关系,解题的关键是记住①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r③直线l和⊙O相离⇔d>r.4、C【解析】【分析】在等腰三角形OCB中,求得两个底角∠OBC、∠OCB的度数,然后根据三角形的内角和求得∠COB=100°;最后由圆周角定理求得∠A的度数并作出选择.【详解】=,解:在OCB∆中,OB OC∴∠=∠;OBC OCB∠=︒-∠-∠,COB OBC OCB40OCB∠=︒,180100COB ∴∠=︒; 又12A COB ∠=∠, 50A ∴∠=︒,故选:C .【点睛】本题考查了圆周角定理,等腰三角形的性质,三角形的内角和定理,熟练掌握圆周角定理是解题的关键.5、C【解析】【分析】连接OB ,OA ,根据圆周角定理可得2116AOB ACB ∠=∠=︒,根据切线性质以及四边形内角和性质,求解即可.【详解】解:连接OB ,OA ,如下图:∴2112AOB ACB ∠=∠=︒∵PA 、PB 是O 的切线,A 、B 是切点∴90OBP OAP ∠=∠=︒∴由四边形的内角和可得:36064APB OBP OAP AOB ∠=︒-∠-∠-∠=︒故选C .【点睛】此题考查了圆周角定理,切线的性质以及四边形内角和的性质,解题的关键是熟练掌握相关基本性质.6、D【解析】【分析】根据圆内接正六边形的性质可得△AOB 是正三角形,由面积公式可求出半径.【详解】解:如图,由圆内接正六边形的性质可得△AOB 是正三角形,过O 作OM AB ⊥于,M设半径为r ,即OA =OB =AB =r ,OM =OA •sin∠OAB ,∵圆O 的内接正六边形的面积为cm 2),∴△AOB 的面积为13=436(cm 2), 即1432AB OM, 134322r r ,解得r =4,故选:D.【点睛】本题考查正多边形和圆,作边心距转化为直角三角形的问题是解决问题的关键.7、D【解析】【分析】如图所示,连接DP,CP,先求出BP的长,然后利用勾股定理求出PD的长,再比较PC与PD的大小,PB与PD的大小即可得到答案.【详解】解:如图所示,连接DP,CP,∵四边形ABCD是矩形,∴∠A=∠B=90°,∵AP=3,AB=8,∴BP=AB-AP=5,∵5PD==,∴PB=PD,>=,∴PC PB PD∴点C在圆P外,点B在圆P上,故选D.【点睛】本题主要考查了点与圆的位置关系,勾股定理,矩形的性质,熟知用点到圆心的距离与半径的关系去判断点与圆的位置关系是解题的关键.8、B【解析】【分析】根据垂径定理“垂直于弦的直径平分这条弦,并且平分弦所对的两条弧”进行判断即可得.【详解】解:∵弦AB⊥CD,CD过圆心O,∴AM=BM,AC BC=,AD BD=,即选项A、C、D选项说法正确,不符合题意,当根据已知条件得CM和DM不一定相等,故选B.【点睛】本题考查了垂径定理,解题的关键是掌握垂径定理.9、A【解析】【分析】连接CD,由等弧所对的圆周角相等逆推可知AC=DC,∠ACD=90°,再由勾股定理即可求出AC=【详解】解:连接CD∠=∠∵DAC ABC∴AC=DC又∵AD为O的直径∴∠ACD=90°∴222+=AC DC AD∴22=2AC AD∴8===AC AD故答案为:A.【点睛】本题考查了圆周角的性质以及勾股定理,当圆中出现同弧或等弧时,常常利用弧所对的圆周角或圆心角,通过相等的弧把角联系起来,直径所对的圆周角是90°.10、D【解析】【分析】由平角的性质得出∠BCD=116°,再由内接四边形对角互补得出∠A=64°,再由圆周角定理即可求得∠BOD =2∠A =128°.【详解】∵64DCE ∠=︒∴18064116BCD ∠=︒-︒=︒∵四边形ABCD 内接于O∴180********A BCD ∠=︒-∠=︒-︒=︒又∵2BOD A ∠=∠∴264128A ∠=⨯︒=︒.故选:D .【点睛】本题考查了圆内接四边形的性质、圆周角定理,圆内接四边形的对角互补,并且任何一个外角都等于它的内对角;在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半.二、填空题1、4π3【解析】【分析】阴影部分面积为扇形与三角形的面积差,分别求解两部分的面积然后即可.【详解】解:由题意知:∵OA OB =∴△OAB 为等腰三角形 ∴()1180120302OAB ∠=︒-︒=︒∵12cos30OA⨯︒=∴2OA = ∵π120π24π1801803n r S ⨯⨯===扇1sin 302OAB S OA =⨯⨯︒⨯∴4π3AOB S S S=-=阴扇故答案为:4π3【点睛】本题考查了扇形的面积,锐角三角函数等知识.解题的关键在于求解扇形与三角形的面积. 2、6【解析】【分析】依题意,直角三角形性质,结合题意能够容纳的最大为内切圆,结合内切圆半径,利用等积法求解即可;【详解】设直角三角形中能容纳最大圆的半径为:r ;17= 依据直角三角形面积公式:12S ah =,即为1815602S =⨯⨯=; 内切圆半径面积公式:1()2S r a b c =++,即为1(81517)2S r =⨯++; 所以160(81517)2r =++,可得:3r =,所以直径为:26d r ==;故填:6;【点睛】本题主要考查直角三角形及其内切圆的性质,重点在理解题意和利用内切圆半径求解面积;3、①②③⑤【解析】【分析】根据优弧的定义,弦的定义,圆周角的定义,圆心角的定义逐项分析判断即可【详解】解:AbB,AbD都是大于半圆的弧,故①②正确,,A C在圆上,则线段AC是弦;故③正确;C A D都在圆上,,,∴CAD∠是圆周角而F点不在圆上,则ADF∠不是圆周角故④不正确;O是圆心,,C A在圆上∴COA∠是圆心角故⑤正确故正确的有:①②③⑤故答案为:①②③⑤【点睛】本题考查了优弧的定义,弦的定义,圆周角的定义,圆心角的定义,理解定义是解题的关键.优弧是大于半圆的弧,任意圆上两点的连线是弦,顶点在圆上,并且两边都和圆相交的角叫做圆周角,顶点在圆心,并且两边都和圆相交的角叫做圆心角.4、110°##110度【解析】【分析】根据圆内接四边形性质求出110C ∠=︒,再根据平行线的性质求出CBE ∠的度数即可.【详解】解:∵四边形ABCD 内接于O ,∴180A C ∠+∠=︒,∵70A ∠=︒,∴110C ∠=︒,∵AB DC ,∴110CBE C ∠=∠=︒;故答案为:110°.【点睛】本题考查了圆内接四边形的性质,解题关键是根据圆内接四边形的性质求出110C ∠=︒.5、4π3【解析】【分析】连接OB ,交AC 于点D ,根据有一组邻边相等的平行四边形是菱形,可得四边形OABC 为菱形,根据菱形的性质可得:OB AC ⊥,OA AB =,AD DC =,根据等边三角形的判定得出OAB 为等边三角形,由此得出120AOC ∠=︒,在直角三角形中利用勾股定理即可确定圆的半径,然后代入弧长公式求解即可.【详解】解:如图所示,连接OB ,交AC 于点D ,∵四边形OABC 为平行四边形,OA OC =,∴四边形OABC 为菱形,∴OB AC ⊥,OA AB =,12AD DC AC === ∵OA OB AB ==,∴OAB 为等边三角形,∴60AOB ∠=︒,∴120AOC ∠=︒,在Rt OAD 中,设AO r =,则12OD r =, ∴222AD OD AO +=,即22212r r ⎛⎫+= ⎪⎝⎭, 解得:2r =或2r =-(舍去),∴AC 的长为:120241803ππ⨯⨯=, 故答案为:43π. 【点睛】 题目主要考查菱形的判定和性质,等边三角形的判定和性质,勾股定理,弧长公式等,熟练掌握各个定理和公式是解题关键.6、3+3【解析】【分析】过A作AE⊥BC于E,过C作CF⊥AD于F,根据圆周角定理可得∠ACB=∠B=∠D,AB=AC=10,再由等腰三角形的性质可知BE=CE=6,根据相似三角形的判定证明△ABE∽△CDF,由相似三角形的性质和勾股定理分别求得AE、DF、CF, AF即可求解.【详解】解:过A作AE⊥BC于E,过C作CF⊥AD于F,则∠AEB=∠CFD=90°,∵AB=AC, AB=10,∴∠ACB=∠B=∠D,AB=AC=10,∵AE⊥BC,BC=12,∴BE=CE=6,∴8AE===,∵∠B=∠D,∠AEB=∠CFD=90°,∴△ABE∽△CDF,∴AB BE AE CD DF CF==,∵AB=10,CD=5,BE=6,AE=8,∴10685DF CF==,解得:DF=3,CF=4,在Rt△AFC中,∠AFC=90°,AC=10,CF=4,则AF =∴AD=DF+AF=3+故答案为:3+【点睛】本题考查圆周角定理、等腰三角形的性质、相似三角形的判定与性质、勾股定理,熟练掌握圆周角定理和相似三角形的判定与性质是解答的关键.7、2π【解析】【分析】利用勾股定理求出AC 及AB 的长,根据阴影面积等于AB C CAC DAB S S S''''--扇形扇形求出答案. 【详解】解:由旋转得,AB AB AC AC ''==,90CAC '∠=︒,B AC ''∠=∠BAC =30°,∵∠ABC =90°,∠BAC =30°,BC =1,∴AC =2BC =2,AB60CAB '∠=︒, ∴阴影部分的面积=AB C CAC DAB S S S ''''--扇形扇形2260902113603602ππ⨯⨯=--⨯=2π故答案为:2π.【点睛】此题考查了求不规则图形的面积,正确掌握勾股定理、30度角直角三角形的性质、扇形面积计算公式及分析出阴影面积的构成特点是解题的关键.8、2或2-或0【解析】【分析】当⊙P 与x 轴相切时,圆心P 的纵坐标为1或-1,根据圆心P 在抛物线上,所以当y 为±1时,可以求出点P 的横坐标.【详解】解:当y =1时,有1=-12x 2+1,x =0.当y =-1时,有-1=-12x 2+1,x =2±.故答案是:2或2-或0.【点睛】本题考查的是二次函数的综合题,利用圆与x轴相切得到点P的纵坐标,然后代入抛物线求出点P的横坐标.9、5【解析】【分析】先根据垂径定理求出AC的长,设⊙O的半径为r,再连接OA,在Rt△OAC中利用勾股定理求出r的值即可.【详解】解:∵⊙O的弦AB=8,半径OD⊥AB,∴AC=12AB=12×8=4,设⊙O的半径为r,则OC=r-CD=r-2,连接OA,在Rt△OAC中,OA2=OC2+AC2,即r2=(r-2)2+42,解得r=5.故答案为:5【点睛】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.10、61【解析】【分析】根据已知条件可得出90OAP OBP ∠=∠=︒,122AOB ∠=︒,再利用圆周角定理得出1612C AOB ∠=∠=︒即可.【详解】解:PA 、PB 分别与O 相切于A 、B 两点,OA PA ∴⊥,OB PB ⊥,90OAP OBP ∴∠=∠=︒,180********AOB P ∴∠=︒-∠=︒-︒=︒,111226122C AOB ∴∠=∠=⨯︒=︒. 故答案为:61︒.【点睛】本题考查的知识点是切线的性质以及圆周角定理,掌握以上知识点是解此题的关键.三、解答题1、【推论证明】见解析;【拓展应用】1+【解析】【分析】推论证明:根据圆周角定理求出180AOB ∠=︒,即可证明出线段AB 是⊙O 的直径;深入探究:连接AB ,首先根据∠ACB =90°得出AB 是⊙O 的直径,然后求出30BCD ∠=︒,然后根据同弧所对的圆周角相等得到30BAD ∠=︒,然后根据30°角直角三角形的性质求出BD 的长度,最后根据勾股定理即可求出AD 的长度;拓展应用:连接AE ,作CF ⊥DE 交DE 于点F ,首先根据等边三角形三线合一的性质求出AE BC ⊥,然后证明出A ,E ,C ,D 四点共圆,然后根据同弧或等弧所对的圆周角相等求出45CED CAD ∠=∠=︒,30EDC EAC ∠=∠=︒,最后根据等腰直角三角形的性质和30°角直角三角形的性质,结合勾股定理求解即可.【详解】解:推论证明:∵90C ∠=︒∴180AOB ∠=︒,∴A ,B ,O 三点共线,又∵点O 是圆心,∴AB 是⊙O 的直径;深入探究:如图所示,连接AB ,∵∠ACB =90°∴AB 是⊙O 的直径∴90ADB ∠=︒∵∠ACD =60°∴30BCD ACB ACD ∠=∠-∠=︒∵DB DB =∴30BAD BCD ∠=∠=︒∴在Rt ABD ∆中,112BD AB ==∴AD拓展应用:如图所示,连接AE ,作CF ⊥DE 交DE 于点F ,∵△ABC 是等边三角形,点E 是BC 的中点∴AE BC ⊥,1302CAE BAC ∠=∠=︒又∵以AC 为底边在三角形ABC 外作等腰直角三角形ACD∴90ADC ∠=︒,45DAC ∠=︒∴点A ,E ,C ,D 四点都在以AC 为直径的圆上,∵DC DC =∴45CED CAD ∠=∠=︒∵CF ⊥DE∴EFC ∆是等腰直角三角形∴EF CF =,222EF CF EC +=∴222EF EC =∵1122EC BC AB ===∴222EF =,解得:1EF =∴1FC = ∵EC EC =∴30EDC EAC ∠=∠=︒∴在Rt FCD ∆中,22CD FC ==∴DF∴1DE EF DF =+=【点睛】此题考查了圆周角定理,90°的圆周角所对的弦是直径,相等的圆周角所对的弧相等,等边三角形和等腰直角三角形的性质等知识,解题的关键是熟练掌握以上知识点和性质定理.2、 (1)证明过程详见解答; (2)4(04)4x y x -=<< (3)85DF =或167 【解析】【分析】(1)先证明四边形ABCD 是正方形,再证明ABE ADF ∆≅∆,从而命题得证;(2)在AD 上截取DG DF =,先证明DGF ∆是正三角形,再证明ABE AGF ∆∆∽,进一步求得结果;(3)当AE AC =时,作AH CE ⊥于H ,以F 为圆心,DF 为半径画弧交AD 于G ,作FN AD ⊥于N ,证明ABH FND ∆∆∽,AGF ABE ∠=∠,可推出12DG DF =,再证明ABE AGF ∆∆∽,可推出442DG GF -=,从而求得DF ,当6AC CE ==时,作AH CE ⊥于H ,以F 为圆心,DF 为半径画弧交AD 于G ,作FN AD ⊥于N ,作BM AC ⊥于M ,先根据1122ABC S AC BM BC AH ∆=⋅=⋅求得AH ,进而求得BH ,根据ABH FGN ∆∆∽,ABE AFF ∆∆∽,14DG GF =和412DG GF +=,从而求得DF ,根据三角形三边关系否定AE CE =,从而确定DF 的结果.(1) 解:证明:四边形ABCD 是菱形,90BAD ∠=︒,∴菱形ABCD 是正方形,90BAE ABC ADF ∴∠=∠=∠=︒,AD AB =,BAE DAF ∠=∠,()ABE ADF ASA ∴∆≅∆,AE AF ∴=;(2)解:如图1,在AD 上截取DG DF =,四边形ABCD 是菱形,60ADF ABC ∴∠=∠=︒,6AD AB ==,DGF ∴∆是正三角形,60DFG ∴∠=︒,GF DF DG x ===,120AGF ABE ∴∠=∠=︒,4AG x =-,BAE DAF ∠=∠,ABE AGF ∴∆∆∽, ∴AF AG AE AB=, 4(04)4x y x -∴=<<; (3)如图2,当AE AC =时,作AH CE ⊥于H ,以F 为圆心,DF 为半径画弧交AD 于G ,作FN AD ⊥于N ,11(42)322CH CE ∴==⨯+=,90FND AHB ∠=∠=︒,D FGD ∠=∠,2DG DN =, 431BH BC CH ∴=-=-=,四边形ABCD 是菱形,D ABC ∴∠=∠,ABH FND ∴∆∆∽,AGF ABE ∠=∠, ∴14DN BH DF AB ==, ∴12DG GF =①, BAE DAF ∠=∠,ABE AGF ∴∆∆∽, ∴AG GF AB BE=, ∴442DG GF -=②, 由①②得,85GF =, 85DF ∴=,如图3,当6AC CE ==时,作AH CE ⊥于H ,以F 为圆心,DF 为半径画弧交AD 于G ,作FN AD ⊥于N , 作BM AC ⊥于M ,132CM AC ∴==,BM ∴= 由1122ABC S AC BM BC AH ∆=⋅=⋅得,4AH =⋅,AH ∴12BH ∴, 由第一种情形知:ABH FGN ∆∆∽,ABE AFF ∆∆∽, ∴18GN BH FG AB ==,12AG AB GF BE ==, ∴14DG GF =①,412DG GF +=②, 由①②得,167GF =,7AB BE AE+>,BC BE AE ∴+>,即CE AE>,综上所述:85DF=或167.【点睛】本题考查了菱形性质,正方形的判定和性质,相似三角形的判定和性质,面积法等知识,解题的关键是作辅助线,构造相似三角形.3、 (1)4 tan3A=【解析】【分析】(1)根据直径所对的圆周角是90°可判断∠ACB=90º,再根据勾股定理求得BC的长度,从而可求得tanA的值;(2)过点B作BE⊥CD于E,根据相等的弧对应圆周角相等可得∠ACD=∠BCD=45º,从而可得Rt△BCE 为直角三角形,求得BE的值,再根据同弧所对的圆周角相等可得∠A=∠D,利用(1)中所求正切值即可求得DE的值,从而求得CD的值.(1)解:∵AB为⊙O的直径,∴∠ACB=90º,∵AB=5,AC=3,∴BC=4,3(2) 解:过点B 作BE ⊥CD 于E ,∵D 为AB 的中点,∴ AD BD =,∴ ∠ACD =∠BCD =45º,∵BC =4,在Rt △BCE 中,BE CE ==∵∠A=∠D , ∴4tan tan 3D A ==, 在Rt △BDE 中,tan 3BE DE D ===∴CD =CE +DE=2. 【点睛】本题考查圆周角定理,三角函数的应用,勾股定理等.(1)中能根据直径所对的圆周角是90°得出∠ACB =90º是解题关键;(2)中正确构造辅助线,构造直角三角形是解题关键.4、 (1)见解析(2)见解析(3)△ABC 的面积最大值为【解析】【分析】(1)连接OC ,根据BD AC ⊥,得出90BAC ABD ︒∠+∠=,根据,OB OC =得出,OBC OCB ∠=∠可得1902OBC BOC ︒∠+∠=,可得∠BAC =12BOC ∠,得出90BAC OBC ︒∠+∠=即可; (2)连接AD ,BG .根据点D ,点F 关于AC 对称,得出AC 垂直平分DF ,可得AD AF =,根据同弧所对圆周角性质D AFD ∠=∠,∠FAC =∠DAC ,得出DC GC =,∠DBC =∠GBC ,根据∠ADB =∠AGB ,∠AFD =∠BFG ,得出BF =BG ,根据∠CAG =∠CBG ,得出BC ⊥FG 即可;(3)连结OG ,CG 延长BO ,交⊙O 于H ,连结GH ,设AG 与BC 交于M ,由(2)得BF =BG =2,可证△OBG 为等边三角形,得出∠BOG =60°,根据OH =OG ,得出∠OHG =∠OGH =1302BOG ∠=︒,可得∠BAG =∠BCG =∠H =30°,利用30°直角三角形性质可得BA =2BM ,根据勾股定理在Rt △ABG 中,AG ⊥BC 于M ,AM=,设BM =x ,AM ,GM函数CM =MGx ABC 的面积最大,求出x(1)证明:如图①,连接OC ,BD AC ⊥,90AEB︒∴∠=,90BAC ABD︒∴∠+∠=,OB OC=,OBC OCB∴∠=∠,2180OBC BOC︒∴∠+∠=,∴1902OBC BOC︒∠+∠=,∵∠BAC=12BOC ∠,90BAC OBC︒∴∠+∠=,ABD OBC∴∠=∠;(2)证明:如图②,连接AD,BG.∵点D,点F关于AC对称,∴AC垂直平分DF,AD AF=,D AFD∴∠=∠,∠FAC=∠DAC,∴DC GC=,∴∠DBC=∠GBC,∵∠ADB =∠AGB ,∠AFD =∠BFG ,∴BF =BG ,∵∠CAG =∠CBG ,∵BC ⊥FG ,∴点F ,点G 关于BC 对称;(3)(3)连结OG ,CG 延长BO ,交⊙O 于H ,连结GH ,设AG 与BC 交于M ,由(2)得BF =BG =2,∵BO =GO =2=BG ,∴△OBG 为等边三角形,∴∠BOG =60°,∵OH =OG ,∴∠OHG =∠OGH =1302BOG ∠=︒, ∴∠BAG =∠BCG =∠H =30°,∴BA =2BM ,在Rt △ABG 中,AG ⊥BC 于M ,AM,设BM =x ,∴AM ,GM ,∴CM =MG∴S △ABC =S △ABM +S △ACM =111222BM AM CM AM x ⨯+⨯=,∴当x ABC 的面积最大,∴解得xS △ABC 最大=2S △ABM =2212x ⨯⨯==【点睛】本题考查直线垂直性质,互余性质,等腰三角形内角和性质,轴对称性质,线段垂直平分线性质,等腰三角形性质,同和所对圆周角性质,等边三角形判定与性质,30°直角三角形性质,勾股定理,三角形面积公式,锐角三角函数,函数最值等知识,通过辅助线画出准确图形是解题关键.5、 (1)作图见解析(2)OC ,同弧所对的圆周角相等【解析】【分析】(1)按照步骤作图即可(2)由垂直平分线性质,以及圆周角性质补全证明过程即可. (1)如图所示(2)证明:连接OA、OC.∵AB=BC,BD平分∠ABC,∴BD⊥AC且AD=CD.∴OA=OC.∵EF是线段BC的垂直平分线,∴OB=OC.∴OB=OA.∴⊙O为△ABC的外接圆.∵点P在⊙O上,∴∠BPC=∠BAC(同弧所对的圆周角相等).【点睛】本题考查了尺规作图、线段垂直平分线性质、圆周角性质,线段垂直平分线性质:线段垂直平分线上的点到这条线段两个端点的距离相等,圆周角性质推论:同弧或等弧所对的圆周角相等.。

配套K12华师大版九年级数学下册课后练习:相似三角形的应用+课后练习一及详解

配套K12华师大版九年级数学下册课后练习:相似三角形的应用+课后练习一及详解

学科:数学专题:相似三角形的应用重难点易错点解析题一:题面:如图,在一场羽毛球比赛中,站在场内M处的运动员林丹把球从N点击到了对方内的B点,已知网高OA=1.52米,OB=4米,OM=5米,则林丹起跳后击球点N离地面的距离NM=_______米.金题精讲题面:已知正方形ABCD的边长为1,以边BC为直径,在正方形内作半圆O,AE切⊙O于F,交CD于E,求DE:AE的值.满分冲刺题一:题面:如图,柳明发现在小丘上种植着一棵香樟树AB,它的影子恰好落在丘顶平地BC和斜坡的坡面CD上.柳明测量得BC=4米,斜坡的坡面CD的坡度为1:43,CD=2.5米.如果柳明同时还测得附近一根垂直于地面的2米高的木柱MN的影长NP=1.5米.求这棵香樟树AB 的高度.题二:题面:如图,正方形OABC 与正方形ODEF 是位似图形,O 为位似中心,相似比为1∶2,点A 的坐标为(1,0),则E 点的坐标为( ).A .(2,0)B .(23,23)C .(2,2)D .(2,2)题三:题面:如图,已知锐角△ABC 的面积为1,正方形DEFG 是△ABC 的一个内接三角形,DG ∥BC ,求正方形DEFG 面积的最大值.课后练习详解重难点易错点解析题一:答案:3.42.详解:根据题意得:AO⊥BM,NM⊥BM,∴AO∥NM.∴△ABO∽△NBM.∴OA OB NM BM=.∵OA=1.52米,OB=4米,OM=5米,∴BM=OB+OM=4+5=9米.∴1.5249NM=,解得NM=3.42.∴林丹起跳后击球点N离地面的距离NM为3.42米.金题精讲答案:DE:AE=3: 5.详解:连接OA,OF,OE;∵由于∠BOA=∠FOA,∠FOE=∠COE,∠BOC=180°,∴∠AOF+∠FOE=90°,∵∠AOF+∠OAF=90°,∠FOE+∠FEO=90°,∴△AOF∽△OEF,∴12 EF OF OBFO FA BA===,CE=EF=14,DE:AE=3:5.满分冲刺题一:答案:6.5米.详解:如图所示,过点B ,C 作BE ,CF 垂直EF 于F ,斜坡的坡面CD 的坡度为1:43,CD =2.5米, ∴DF =2米,CF米,∴ED =BC +DF =4+2=6米附近一根垂直于地面的2米高的木柱MN 的影长NP =1.5米 即1.562AE=,解得AE =8. ∴AB =AE -BE =AE -CF =8-1.5=6.5米.题二:答案:C .详解:∵正方形OABC 与正方形ODEF 是位似图形,O 为位似中心,相似比为1:2, ∴OA :OD =1:2.∵点A 的坐标为(1,0),即OA =1,∴OD =2.∵四边形ODEF 是正方形,∴DE =OD =2.∴E 点的坐标为:(2, 2).故选C . 题三: 答案:12. 详解:∵过点A 作AN ⊥BC 交DG 于点N ,交BC 于点N ,设AN =h ,DE =x =MN =DG , ∴12BC •h =1, ∵DG ∥BC ,∴△ADG ∽△ABC ,故DG AM BC AN=, 即2x h x hh-=,∴x =222h h + 设正方形的面积为S ,则S=x 2=(222h h +)2= (22h h +)2]212≤=.。

九年级数学下册 29.1 几何问题的处理方法(第1课时)精练习精析 华东师大版

九年级数学下册 29.1 几何问题的处理方法(第1课时)精练习精析 华东师大版

几何问题的处理方法(第1课时)(30分钟 50分)一、选择题(每小题4分,共12分)1.如图,射线BA,CA交于点A,连结BC,已知AB=AC,∠B=40°,那么x的值是( )A.80B.60C.40D.1002.(2013·枣庄中考)如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连结DE,则△CDE的周长为( )A.20B.12C.14D.133.如图,△ABC中,∠B=60°,AB=AC,BC=3,则△ABC的周长为( )A.9B.8C.6D.12二、填空题(每小题4分,共12分)4. (2013·南昌中考)如图,在△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为____________.5.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线交AC于点E,垂足为点D,连结BE,则∠EBC的度数为________.6.(2013·乐山中考)如图,在四边形ABCD中,∠A=45°,直线l与边AB,AD分别相交于点M,N,则∠1+∠2=____________.三、解答题(共26分)7.(8分) (2013·邵阳中考)将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB.(2)求∠DFC的度数.8. (8分)如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF∥AC交DE的延长线于点F,连结CF.(1)求证:AD⊥CF.(2)连结AF,试判断△ACF的形状,并说明理由.【拓展延伸】9.(10分)八(1)班同学上数学活动课,利用角尺平分一个角(如图).设计了如下方案:(Ⅰ)∠AOB是一个任意角,在边OA,OB上分别任取一点M,N,将角尺的直角顶点P介于射线OA,OB之间,移动角尺使角尺两边相同的刻度与M,N重合,即PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线.(Ⅱ)∠AOB是一个任意角,在边OA,OB上分别取OM=ON,将角尺的直角顶点P介于射线OA,OB之间,移动角尺使角尺两边相同的刻度与M,N重合,即PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线.(1)方案(Ⅰ)、方案(Ⅱ)是否可行?若可行,请证明;若不可行,请说明理由.(2)在方案(Ⅰ)PM=PN的情况下,继续移动角尺,同时使PM⊥OA,PN⊥OB.此方案是否可行?请说明理由.答案解析1.【解析】选A.∵AB=AC,∴∠C=∠B=40°,∴x°=∠C+∠B=80°.2.【解析】选C.∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=BC=4.∵点E为AC的中点,∴DE=CE=AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.3.【解析】选A.在△ABC中,∵∠B=60°,AB=AC,∴∠B=∠C=60°,∴∠A=180°-60°-60°=60°,∴△ABC为等边三角形,∵BC=3,∴△ABC的周长为3BC=9.4.【解析】因为∠1=155°,所以∠EDC=180°-155°=25°.又DE∥BC,所以∠C=∠EDC=25°,因为∠A=90°,所以∠B=90°-25°=65°.答案:65°5.【解析】由AB=AC,∠A=36°,得∠ABC=∠C=72°,由DE垂直平分AB,得EA=EB,∴∠EBA=∠A=36°, ∴∠EBC=∠ABC-∠EBA=72°-36°=36°.答案:36°6.【解析】∵∠ANM+∠AMN=180°-∠A=180°-45°=135°,∴∠1+∠2=(180°-∠ANM)+(180°-∠AMN)=360°-(∠ANM+∠AMN)=360°-135°=225°.答案:225°7.【解析】(1)∵∠DCE=90°,CF平分∠DCE,∴∠DCF=45°.∵△ABC是等腰直角三角形,∴∠BAC=45°,∴∠BAC=∠DCF,∴CF∥AB.(2)∵∠D=30°,∴∠DFC=180°-30°-45°=105°.8.【解析】(1)在等腰直角三角形ABC中,∵∠ACB=90°,∴∠CBA=∠CAB=45°.又∵DE⊥AB,∴∠DEB=90°.∴∠BDE=45°.又∵BF∥AC,∴∠CBF=90°.∴∠BFD=45°=∠BDE.∴BF=DB.又∵D为BC的中点,∴CD=DB.即BF=CD.在△CBF和△ACD中,∴△CBF≌△ACD(S.A.S.).∴∠BCF=∠CAD.又∵∠BCF+∠GCA=90°,∴∠CAD+∠GCA=90°.即AD⊥CF.(2)△ACF是等腰三角形,理由为:连结AF,如图所示,由(1)知:CF=AD,△DBF是等腰直角三角形,且BE是∠DBF的平分线, ∴BE垂直平分DF,∴AF=AD,∵CF=AD,∴CF=AF,∴△ACF是等腰三角形.9.【解析】(1)方案(Ⅰ)不可行.缺少证明三角形全等的条件,∵只有OP=OP,PM=PN不能判断△OPM≌△OPN,∴就不能判定OP就是∠AOB的平分线.方案(Ⅱ)可行.证明:在△OPM和△OPN中,∴△OPM≌△OPN(S.S.S.),∴∠AOP=∠BOP(全等三角形对应角相等),∴OP就是∠AOB的平分线.(2)当∠AOB是直角时,此方案可行.∵四边形内角和为360°,∠OMP=∠ONP=90°,∠MPN=90°,∴∠AOB=90°,∵PM=PN,∴OP为∠AOB的平分线(到角的两边距离相等的点在这个角的角平分线上). 当∠AOB不为直角时,此方案不可行,∵∠AOB必为90°,如果不是90°,则不能找到同时使PM⊥OA,PN⊥OB的点P的位置.。

华师大版九年级数学下册同步练习试卷带答案:圆周角

华师大版九年级数学下册同步练习试卷带答案:圆周角

精品基础教育教学资料,仅供参考,需要可下载使用!华师大版九年级数学下册同步练习试卷带答案27.1.3圆周角一.选择题(共8小题)1.如图,已知⊙O的直径CD垂直于弦AB,垂足为点E,∠ACD=22.5°,若CD=6cm,则AB的长为()A.4cm B.3cm C.2cm D.2cm2.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A.30°B.45°C.60°D.70°3.如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为()A.B. C.D.4.如图,在⊙O中,AB是直径,BC是弦,点P是上任意一点.若AB=5,BC=3,则AP的长不可能为()A.3 B.4 C.D.55.如图,已知A,B,C在⊙O上,为优弧,下列选项中与∠AOB相等的是()A.2∠C B.4∠B C.4∠A D.∠B+∠C6.如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为()A.40°B.45°C.50°D.55°7.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°8.如图,⊙O的直径AB=2,弦AC=1,点D在⊙O上,则∠D的度数是()A.30°B.45°C.60°D.75°二.填空题(共6小题)9.如图,点A,B,C在⊙O上,若∠ABC=40°,则∠AOC的度数为_________.10.如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=度.11.如图,A、B、C是⊙O上的三点,∠AOB=100°,则∠ACB=_________度.12.如图,OB是⊙O的半径,弦AB=OB,直径CD⊥AB.若点P是线段OD上的动点,连接PA,则∠PAB的度数可以是_________(写出一个即可)13.如图,已知A、B、C三点在⊙O上,AC⊥BO于D,∠B=55°,则∠BOC的度数是_________.14.如图,点A、B、C都在圆O上,如果∠AOB+∠ACB=84°,那么∠ACB的大小是_________.三.解答题(共6小题)15.如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.16.已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;(Ⅱ)如图②,若∠CAB=60°,求BD的长.17.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,∠1=∠BCD.(1)求证:CB∥PD;(2)若BC=3,sin∠BPD=,求⊙O的直径.18.如图,△ABC内接于半圆,AB是直径,过A作直线MN,∠MAC=∠ABC,D是弧AC的中点,连接BD交AC于G,过D作DE⊥AB于E,交AC于F.(1)求证:MN是半圆的切线;(2)求证:FD=FG.(3)若△DFG的面积为4.5,且DG=3,GC=4,试求△BCG的面积.19.如图,已知△ABC中,以AB为直径的半⊙O交AC于D,交BC于E,BE=CE,∠C=70°,求∠DOE的度数.20.如图,在半径为5cm的⊙O中,直径AB与弦CD相交于点P,∠CAB=50°,∠APD=80°.(1)求∠ABD的大小;(2)求弦BD的长.27.1.3圆周角福冈黄蜂回复参考答案与试题解析一.选择题(共8小题)1.如图,已知⊙O的直径CD垂直于弦AB,垂足为点E,∠ACD=22.5°,若CD=6cm,则AB的长为()A.4cm B.3cm C 2cm D.2cm考点:圆周角定理;等腰直角三角形;垂径定理.专题:计算题.分析:连结OA,根据圆周角定理得∠AOD=2∠ACD=45°,由于3⊙O的直径CD垂直于弦AB,根据垂径定理得AE=BE,且可判断△OAE为等腰直角三角形,所以AE=OA=,然后利用AB=2AE进行计算.解答:解:连结OA,如图,∵∠ACD=22.5°,∴∠AOD=2∠ACD=45°,∵⊙O的直径CD垂直于弦AB,∴AE=BE,△OAE为等腰直角三角形,∴AE=OA,∵CD=6,∴OA=3,∴AE=,∴AB=2AE=3(cm).故选:B.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰直角三角形的性质和垂径定理.2.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A.30°B.45°C.60°D.70°考点:圆周角定理.专题:计算题.分析:先根据圆周角定理得到∠ABC=∠AOC,由于∠ABC+∠AOC=90°,所以∠AOC+∠AOC=90°,然后解方程即可.解答:解:∵∠ABC=∠AOC,而∠ABC+∠AOC=90°,∴∠AOC+∠AOC=90°,∴∠AOC=60°.故选:C.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为()A.B.C.D.考点:圆周角定理;勾股定理;锐角三角函数的定义.分析:首先过点A作AD⊥OB于点D,由在Rt△AOD中,∠AOB=45°,可求得AD与OD的长,继而可得BD的长,然后由勾股定理求得AB的长,继而可求得sinC的值.解答:解:过点A作AD⊥OB于点D,∵在Rt△AOD中,∠AOB=45°,∴OD=AD=OA•cos45°=×1=,∴BD=OB﹣OD=1﹣,∴AB==,∵AC是⊙O的直径,∴∠ABC=90°,AC=2,∴sinC=.故选:B.点评:此题考查了圆周角定理、三角函数以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.4.如图,在⊙O中,AB是直径,BC是弦,点P是上任意一点.若AB=5,BC=3,则AP的长不可能为()A. 3 B.4 C.D. 5考点:圆周角定理;勾股定理;圆心角、弧、弦的关系.专题:几何图形问题.分析:首先连接AC,由圆周角定理可得,可得∠C=90°,继而求得AC的长,然后可求得AP的长的取值范围,继而求得答案.解答:解:连接AC,∵在⊙O中,AB是直径,∴∠C=90°,∵AB=5,BC=3,∴AC==4,∵点P是上任意一点.∴4≤AP≤5.故选:A.点评:此题考查了圆周角定理以及勾股定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.5.如图,已知A,B,C在⊙O上,为优弧,下列选项中与∠AOB相等的是()A.2∠C B.4∠B C.4∠A D.∠B+∠C考点:圆周角定理.分析:根据圆周角定理,可得∠AOB=2∠C.解答:解:如图,由圆周角定理可得:∠AOB=2∠C.故选:A.点评:此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.6.如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为()A.40°B.45°C.50°D.55°考点:圆周角定理;平行线的性质.分析:连接OC,由AO∥DC,得出∠ODC=∠AOD=70°,再由OD=OC,得出∠ODC=∠OCD=70°,求得∠COD=40°,进一步得出∠AOC,进一步利用圆周角定理得出∠B的度数即可.解答:解:如图,连接OC,∵AO∥DC,∴∠ODC=∠AOD=70°,∵OD=OC,∴∠ODC=∠OCD=70°,∴∠COD=40°,∴∠AOC=110°,∴∠B=∠AOC=55°.故选:D.点评:此题考查平行线的性质,等腰三角形的性质,三角形的内角和,圆周角定理,正确作出辅助线是解决问题的关键.7.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°考点:圆周角定理;垂径定理.专题:压轴题.分析:利用垂径定理得出=,进而求出∠BOD=40°,再利用邻补角的性质得出答案.解答:解:∵线段AB是⊙O的直径,弦CD丄AB,∴=,∵∠CAB=20°,∴∠BOD=40°,∴∠AOD=140°.故选:C.点评:此题主要考查了圆周角定理以及垂径定理等知识,得出∠BOD的度数是解题关键.8.如图,⊙O的直径AB=2,弦AC=1,点D在⊙O上,则∠D的度数是()A.30°B.45°C.60°D.75°考点:圆周角定理;含30度角的直角三角形.专题:几何图形问题.分析:由⊙O的直径是AB,得到∠ACB=90°,根据特殊三角函数值可以求得∠B的值,继而求得∠A和∠D 的值.解答:解:∵⊙O的直径是AB,∴∠ACB=90°,又∵AB=2,弦AC=1,∴sin∠CBA=,∴∠CBA=30°,∴∠A=∠D=60°,故选:C.点评:本题考查的是圆周角定理及直角三角形的性质,比较简单,但在解答时要注意特殊三角函数的取值.二.填空题(共6小题)9.如图,点A,B,C在⊙O上,若∠ABC=40°,则∠AOC的度数为80°.考点:圆周角定理.分析:直接根据圆周角定理求解.解答:解:∵∠ABC=40°,∴∠AOC=2∠ABC=80°.故答案为80°.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=60度.考点:圆周角定理;平行四边形的性质.专题:计算题.分析:由四边形OABC为平行四边形,根据平行四边形对角相等,即可得∠B=∠AOC,由圆周角定理,可得∠AOC=2∠ADC,又由内接四边形的性质,可得∠B+∠ADC=180°,即可求得∠B=∠AOC=120°,∠ADC=60°,然后又三角形外角的性质,即可求得∠OAD+∠OCD的度数.解答:解:连接DO并延长,∵四边形OABC为平行四边形,∴∠B=∠AOC,∵∠AOC=2∠ADC,∴∠B=2∠ADC,∵四边形ABCD是⊙O的内接四边形,∴∠B+∠ADC=180°,∴3∠ADC=180°,∴∠ADC=60°,∴∠B=∠AOC=120°,∵∠1=∠OAD+∠ADO,∠2=∠OCD+∠CDO,∴∠OAD+∠OCD=(∠1+∠2)﹣(∠ADO+∠CDO)=∠AOC﹣∠ADC=120°﹣60°=60°.故答案为:60.点评:此题考查了圆周角定理、圆的内接四边形的性质、平行四边形的性质以及三角形外角的性质.此题难度适中,注意数形结合思想的应用,注意辅助线的作法.11.如图,A、B、C是⊙O上的三点,∠AOB=100°,则∠ACB=50度.考点:圆周角定理.分析:根据圆周角定理即可直接求解.解答:解:∠ACB=∠AOB=×100°=50°.故答案是:50.点评:此题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.12.如图,OB是⊙O的半径,弦AB=OB,直径CD⊥AB.若点P是线段OD上的动点,连接PA,则∠PAB的度数可以是70°(写出一个即可)考点:圆周角定理;等腰三角形的性质;垂径定理.专题:开放型.分析:当P点与D点重合是∠DAB=75°,与O重合则OAB=60°,∠OAB≤∠PAB≤∠DAB,所以∠PAB的度数可以是60°﹣﹣75°之间的任意数.解答:解:连接DA,OA,则△OAB是等边三角形,∴∠OAB=∠AOB=60°,∵DC是直径,DC⊥AB,∴∠AOC=∠AOB=30°,∴∠ADC=15°,∴∠DAB=75°,∵,∠OAB≤∠PAB≤∠DAB,∴∠PAB的度数可以是60°﹣75°之间的任意数.故答案为:70°点评:本题考查了垂径定理,等边三角形的判定及性质,等腰三角形的判定及性质.13.如图,已知A、B、C三点在⊙O上,AC⊥BO于D,∠B=55°,则∠BOC的度数是70°.考点:圆周角定理.专题:计算题.分析:根据垂直的定义得到∠ADB=90°,再利用互余的定义计算出∠A=90°﹣∠B=35°,然后根据圆周角定理求解.解答:解:∵AC⊥BO,∴∠ADB=90°,∴∠A=90°﹣∠B=90°﹣55°=35°,∴∠BOC=2∠A=70°.故答案为:70°.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.14.如图,点A、B、C都在圆O上,如果∠AOB+∠ACB=84°,那么∠ACB的大小是28°.考点:圆周角定理.专题:计算题.分析:根据圆周角定理即可推出∠AOB=2∠ACB,再代入∠AOB+∠ACB=84°通过计算即可得出结果.解答:解:∵∠AOB=2∠ACB,∠AOB+∠ACB=84°∴3∠ACB=84°∴∠ACB=28°.故答案为:28°.点评:此题主要考查圆周角定理,关键在于找出两个角之间的关系,利用代换的方法结论.三.解答题(共6小题)15.如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.考点:圆周角定理;平行线的性质;三角形中位线定理.专题:几何图形问题.分析:(1)根据圆周角定理可得∠A CB=90°,则∠CAB的度数即可求得,在等腰△AOD中,根据等边对等角求得∠DAO的度数,则∠CAD即可求得;(2)易证OE是△ABC的中位线,利用中位线定理求得OE的长,则DE即可求得.解答:解:(1)∵AB是半圆O的直径,∴∠ACB=90°,又∵OD∥BC,∴∠AEO=90°,即OE⊥AC,∠CAB=90°﹣∠B=90°﹣70°=20°,∠AOD=∠B=70°.∵OA=OD,∴∠DAO=∠ADO===55°∴∠CAD=∠DAO﹣∠CAB=55°﹣20°=35°;(2)在直角△ABC中,BC===.∵OE⊥AC,∴AE=EC,又∵OA=OB,∴OE=BC=.又∵OD=AB=2,∴DE=OD﹣OE=2﹣.点评:本题考查了圆周角定理以及三角形的中位线定理,正确证明OE是△ABC的中位线是关键.16.已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;(Ⅱ)如图②,若∠CAB=60°,求BD的长.考点:圆周角定理;等边三角形的判定与性质;勾股定理.专题:证明题.分析:(Ⅰ)利用圆周角定理可以判定△CAB和△DCB是直角三角形,利用勾股定理可以求得AC的长度;利用圆心角、弧、弦的关系推知△DCB也是等腰三角形,所以利用勾股定理同样得到BD=CD=5;(Ⅱ)如图②,连接OB,OD.由圆周角定理、角平分线的性质以及等边三角形的判定推知△OBD是等边三角形,则BD=OB=OD=5.解答:解:(Ⅰ)如图①,∵BC是⊙O的直径,∴∠CAB=∠BDC=90°.∵在直角△CAB中,BC=10,AB=6,∴由勾股定理得到:AC===8.∵AD平分∠CAB,∴CD=BD.在直角△BDC中,BC=10,CD2+BD2=BC2,∴易求BD=CD=5;(Ⅱ)如图②,连接OB,OD.∵AD平分∠CAB,且∠CAB=60°,∴∠DAB=∠CAB=30°,∴∠DOB=2∠DAB=60°.又∵OB=OD,∴△OBD是等边三角形,∴BD=OB=OD.∵⊙O的直径为10,则OB=5,∴BD=5.点评:本题综合考查了圆周角定理,勾股定理以及等边三角形的判定与性质.此题利用了圆的定义、有一内角为60度的等腰三角形为等边三角形证得△OBD是等边三角形.17.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,∠1=∠BCD.(1)求证:CB∥PD;(2)若BC=3,sin∠BPD=,求⊙O的直径.考点:圆周角定理;平行线的判定与性质;垂径定理;解直角三角形.专题:几何图形问题.分析:(1)根据圆周角定理和已知求出∠D=∠BCD,根据平行线的判定推出即可;(2)根据垂径定理求出弧BC=弧BD,推出∠A=∠P,解直角三角形求出即可.解答:(1)证明:∵∠D=∠1,∠1=∠BCD,∴∠D=∠BCD,∴CB∥PD;(2)解:连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∵CD⊥AB,∴∠BPD=∠CAB,∴sin∠CAB=sin∠BPD=,即=,∵BC=3,∴AB=5,即⊙O的直径是5.点评:本题考查了圆周角定理,解直角三角形,垂径定理,平行线的判定的应用,主要考查学生的推理能力.18.如图,△ABC内接于半圆,AB是直径,过A作直线MN,∠MAC=∠ABC,D是弧AC的中点,连接BD交AC于G,过D作DE⊥AB于E,交AC于F.(1)求证:MN是半圆的切线;(2)求证:FD=FG.(3)若△DFG的面积为4.5,且DG=3,GC=4,试求△BCG的面积.考点:圆周角定理;三角形内角和定理;等腰三角形的判定与性质;切线的判定与性质;相似三角形的判定与性质.专题:证明题.分析:(1)由AB是直径得出∠ACB=90°,推出∠CAB+∠MAC=90°即可;(2)根据三角形的内角和定理求出∠EDB+∠ABD=90°,∠CBG+∠BGC=90°,推出∠EDB=∠DGF即可;(3)根据等腰三角形的性质推出∠DAF=∠ADF,求出AF=DF=FG,推出S△DGF=S△ADG,证△BCG∽△ADG,根据相似三角形的性质求出即可.解答:解:(1)如右图所示,∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°,∵∠MAC=∠ABC,∴∠CAB+∠MAC=90°,即∠MAB=90°,∴MN是半圆的切线.(2)证明:∵DE⊥AB,∴∠EDB+∠ABD=90°,∵AB是直径,∴∠ACB=90°,∴∠CBG+∠BGC=90°∵D是弧AC的中点,∴∠CBD=∠ABD,∴∠EDB=∠BGC,∵∠DGF=∠BGC,∴∠EDB=∠DGF,∴DF=FG.(3)如图,连接AD、OD,∵DF=FG,∴∠DGF=∠FDG,∵∠DGF+∠DAG=90°,∠FDG+∠ADF=90°,∴∠DAF=∠ADF,∴AF=DF=GF,∴S△ADG=2S△DGF=9,∵△BCG∽△ADG,∴=,∵△ADG的面积为9,且DG=3,GC=4,∴S△BCG=16.答:△BCG的面积是16.点评:本题主要考查对等腰三角形的性质和判定,三角形的内角和定理,相似三角形的性质和判定,圆周角定理,切线的性质和判定等知识点的理解和掌握,能综合运用这些性质进行推理是解此题的关键.19.如图,已知△ABC中,以AB为直径的半⊙O交AC于D,交BC于E,BE=CE,∠C=70°,求∠DOE的度数.考点:圆周角定理;等腰三角形的性质.分析:连接AE,判断出AB=AC,根据∠B=∠C=70°求出∠BAC=40°,再根据同弧所对的圆周角等于圆心角的一半,求出∠DOE的度数.解答:解:连接AE,∵AB是⊙O的直径,∴∠AEB=90°,∴AE⊥BC,∵BE=CE,∴AB=AC,∴∠B=∠C=70°,∠BAC=2∠CAE,∴∠BAC=40°,∴∠DOE=2∠CAE=∠BAC=40°.点评:本题考查了等腰三角形的性质和圆周角定理,把圆周角转化为圆心角是解题的关键.20.如图,在半径为5cm的⊙O中,直径AB与弦CD相交于点P,∠CAB=50°,∠APD=80°.(1)求∠ABD的大小;(2)求弦BD的长.考点:圆周角定理;垂径定理.分析:(1)先根据三角形外角的性质求出∠C的度数,由圆周角定理即可得出结论;(2)过点O作OE⊥BD于点E,由垂径定理可知BD=2BE,再根据直角三角形的性质可求出BE的长,进而得出结论.解答:解:(1)∵∠APD是△APC的外角,∠CAB=50°,∠APD=80°,∴∠C=80°﹣50°=30°,∴∠ABD=∠C=30°;(2)过点O作OE⊥BD于点E,则BD=2BE,∵∠ABD=30°,OB=5cm,∴BE=OB•cos30°=5×=cm,∴BD=2BE=5cm.点评:本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等是解答此题的关键.。

数学九年级下华东师大版29.1几何问题的处理方法(1)复习课件

数学九年级下华东师大版29.1几何问题的处理方法(1)复习课件
∠2+∠ABC=90°(直角三角形 两个锐角互余)
▪ ∴∠1=∠2(等角的余角相等) ▪ ∴BM=CM(等角对等边)
E
MD
1 B
2 C
说明:本题易习惯性地 用全等来证明,虽然也 可以证明,但过程较复 杂,应当多加强等腰三 角形的性质和判定定理 的应用。
例11.已知:如图,∠A=90°,∠B=15°,BD=DC.
△ABC的周长=___1_7____
此例题的重点是运用等腰三角形的定义 ,以及等腰三角形腰和底边的关系。仔细比 较以上两个例题,并强调在没有明确腰和底 边之前,应该分两种情况讨论。而且在讨论 后还应该思考一个问题:
就是这样的三条边能否够成三角形!
例 例7: 题 1 、 在 等 腰 △ ABC 中 , AB=AC, ∠B=50°, 则 精 ∠A=_8_0°,∠C =_5_0° 选 2、在等腰△ABC中,∠A =100°, 则∠B=_4_0°_,
C

题 精
此题是一道陷阱题,可以先让学生进行分析
选 ,和例二的2小题比较,估计会出一些状况,
大多数学生会按照“两种情况”讨论,得到
“两个答案”。
A
C
B
B
CA
BA
C
此时∠ B=70° 此时∠ B=40° 此时∠ B=100°
给学生画出图形进行分析,分“两种情况” 讨论,得到却的是“三个答案”。强调需要自己 画图解题时,一定要三思而后行!
1 2 求证:AC= BD.
▪ 证明:
▪ ∵BD=DC,∠B=15°
▪ ∴∠DCB=∠B=15°(等角对等边)
▪ ∴∠ADC=∠B+∠DCB=30°
▪ (三角形的外角等于和它不相邻的两个内角的和)

华师大版九年级数学下册课后练习:三角函数综合问题+课后练习一及详解

华师大版九年级数学下册课后练习:三角函数综合问题+课后练习一及详解

13
3
重难点易错点解析 答案: 12- 4 3 .
课后练习详解
详解:过点 B 作 BM⊥FD于点 M,
在△ ACB中,∠ ACB=90°,∠ A=45°, AC=12 2 ,
∴BC=AC=12 2 ,∠ ABC=45°.
∵AB∥ CF,∴∠ BCM=∠ ABC=45°.
∴BM=BC×sin45 °=12 2
CD= BD,∠CDE=∠ BDE=90°, DE= DE
∴△ CDE≌△ BDE(SAS) ,
∴∠ DCE=∠ DBE,
∴∠ DBO+∠ DBE=90°,即 BE与圆 O相切;
(2) 过 D作 DG⊥ AB,可得∠ DGB=90°,即∠ GDB+∠ABC=90°,
∵∠ ODB=90°,
∴∠ ODG+∠ GDB=90°,
x 1x
2
2
5- 1 ∴x= 2 .
11 如图,过点 D作 DE⊥AB于点 E,∵ AD= BD,∴ E 为 AB中点,即 AE= AB= .
22
AE
在 Rt△ AED中, cos A=

AD
1 2
= 5- 1 2
5+ 1 4.
满分冲刺 题一: 答案:①②③④ 详解:∵在 Rt△ ABC中,∠ A=90°, AD⊥BC于点 D, ∴△ ABD∽△ CBA,△ ADC∽△ BAC,△ ABD∽△ CAD, ∴AB: BD=BC: AB, AC: BC=CD: AC, AD: BD=DC:AD, AB: AD=BC: AC. ∴得到:① AB2=BD?BC;② AC2=BC?CD;③ AD2=BD?DC;④ AB?AC=AD?BC. ∴正确的有①②③④. 题二: 答案: 3. 详解:过 A作 AM⊥ DC于 M, EN∥ CD交 AB于 N, ∵AD=AC,

九年级数学下册第29章几何的回顾29.1几何问题的处理方法第1课时习题课件华东师大版

九年级数学下册第29章几何的回顾29.1几何问题的处理方法第1课时习题课件华东师大版
∴∠A,C,B三点共线,
∴∠DCN=60°,在△ACM与△DCN中,
MAC NDC,
∵ AC DC,
ACM DCN,
∴△ACM≌△DCN,∴MC=NC,
∵∠MCN=60°,∴△MCN为等边三角形,
∴∠NMC=∠DCN=60°,∴∠NMC=∠DCA,∴MN∥AB.
5.三角形的内角和定理及推论: 定理:三角形的内角和等于_1_8_0_°__. 推论:①三角形的一个外角等于和它_不__相__邻__的两个内角的和; ②三角形的一个外角_大__于__和它不相邻的任何一个内角; ③n边形的内角和等于__(_n_-_2_)_·1_8_0_°___; ④直角三角形的两个锐角_互__余__.
【想一想错在哪?】如图所示,AD是∠BAC的平分线,且BD= DC,∠B=∠C,求证:AB=AC.
5. 如图,在 △ABC 中, 点D ,E 分 别在边 AC , AB 上,BD=CE , ∠DBC=∠ECB. 求证:AB=AC. 【证明】∵BD=CE,∠DBC=∠ECB,BC=CB, ∴△BCE≌△CBD, ∴∠ACB=∠ABC,∴AB=AC.
6.已知,如图,在△ABC中,AB=BC,∠ABC=90°.F为AB延长线 上一点,点E在BC上,BE=BF,连结AE,EF和CF. (1)求证:AE=CF. (2)若∠CAE=30°,求∠EFC的度数.
①两条直线被第三条直线所截,如果_内__错__角__相等,那么这两条 直线平行; ②两条直线被第三条直线所截,如果_同__旁__内__角__互补,那么这两 条直线平行. (3)如果两个三角形的_两__边__及其夹角(或两角及其夹边,或三边) 分别对应_相__等__,那么这两个三角形全等. (4)全等三角形的_对__应__边__、_对__应__角__分别相等.

华师大版九下几何问题处置方式2篇

华师大版九下几何问题处置方式2篇

用推理方式研究四边形(4)教学目标知识技术目标1.把握正方形的性质,会用推理的方式证明一个四边形是正方形;2.能运用正方形的性质定理和判定定理进行有关的证明和计算.进程性目标经历探讨正方形有关性质与判定条件的进程,在直观操作活动中进展学生的逻辑推理能力和主动探讨的适应.教学重点:知识技术目标一、2教学难点:经历探讨正方形有关性质与判定条件的进程,在直观操作活动中进展学生的逻辑推理能力和主动探讨的适应.教学进程:(一)情境导入1.展开活动的衣帽架(如图).图(1)的α在不断的地转变进程中.那个图形始终是如何的图形?生答:菱形.老师继续问当α=90°时,那个图形仍是菱形吗?如上图(2).有的生答:不是,是正方形.有的生答:是,仍是菱形,是一个特殊的菱形.最后老师进行评判,并指出:当α=90°时,那个四边形仍是菱形.因为它是邻边相等的平行四边形.但它是特殊的菱形是一个内角为直角的菱形也是正方形.2.展开一边固定对边活动的矩形.将活动的矩形架的CD边左右移动时,问:图中CD在移动时,那个图形始终是如何的图形?(CD在活动的进程中始终维持与AB平行)生答:矩形.当CD移动到C′D′位置,且AC′=AB时,现在的图形仍是矩形吗?这时生回答:是,是矩形,但它是特殊的矩形,也是正方形(二) 实践与探讨1咱们已经明白正方形既是矩形,又是菱形,因此,正方形具有矩形和菱形的所有性定理正方形的四个角都是直角,四条边都相等.正方形的两条对角线相等,且相互垂直平分,每一条对角线平分一组对角.反之,若是一个四边形既是矩形,又是菱形,那么那个四边形必然是正方形.于是可得:定理有一个角是直角的菱形是正方形.定理有一组邻边相等的矩形是正方形.(三)实践与探讨2例求证:依次连结正方形各边中点所成的四边形是正方形.已知:如图,在正方形ABCD中,点E、F、G、H别离是AB、BC、CD、DA的中点.求证:四边形EFGH是正方形.变式应用如图,已知点A′B′C′D′别离是正方形ABCD四条边上的点,而且AA′=BB′=CC′=DD′,求证:四边形A′B′C′D′是正方形(四)小结1.正方形具有平行四边形的一切性质:两组对边平行且相等,两组对角相等,对角线相互平分;2.正方形具有矩形的一切性质:四个角都是直角,对角线相等;3.正方形具有菱形的一切性质:四条边相等,对角线垂直;4.有一个角是直角的菱形是正方形;5.有一组邻边相等的矩形是正方形.用推理方式研究四边形(1)教学目标知识技术目标1.把握平行四边形的性质,会用推理的方式证明一个四边形是平行四边形;2.能运用平行四边形的性质定理和判定定理进行有关的证明和计算.进程性目标1.把握证明的一样步骤;2.会运用公理、定理、概念通过逻辑推理来证明以前通过实验操作取得的几何命题.教学重点:知识技术目标一、2教学难点:进程性目标2教学进程:(一)情境导入在第12章中,咱们已学过平行四边形的性质与判定,回忆有哪些性质与判定,你能用逻辑推理的方式来证明它们吗(二)实践与探讨1根据学生的回忆选择“一组对边平行且相等的四边形是平行四边形”吗?来证明知识回忆:要证明一个命题须分三步来完成:①画图;②结合图形写出已知、求证;③证明.已知:如图所示,在四边形ABCD中,AB∥CD,AB=CD.求证:四边形ABCD是平行四边形.分析要证明四边行ABCD是平行四边形,目前只能用平行四边形的概念来证明,即只要证明另一组对边平行即可,因此能够连结其中一条对角线,利用全等三角形对应角相等来证明内错角相等.于是得:平行四边形判定定理1 一组对边平行且相等的四边形是平行四边.利用全等三角形的性质,一样能够证明下列平行四边形判定定理.平行四边形判定定理2 两组对边别离相等的四边形是平行四边形.平行四边形判定定理3 两组对角别离相等的四边形是平行四边形.平行四边形判定定理4 对角线相互平分的四边形是平行四边形一样,咱们也可用逻辑推理的方式来证明平行四边形的性质.平行四边形性质定理1平行四边形的对边相等.已知:如图,四边形ABCD是平行四边形.求证:AB=CD,BC=DA.分析要证明平行四边形的对边相等,能够连结其中一条对角线,把平行四边形分成两个三角形,然后利用全等三角形对应边相等于是可得平行四边形性质定理2 平行四边形的对角相等.一样,咱们也可证明平行四边形性质定理3 平行四边形的对角线互相平分.例如图,在平行四边形ABCD中,E、F别离是边AB、CD上的点,且AE=CF.求证:BF∥DE.分析要证BF∥DE,只要证四边形EBFD是平行四边形即可变式应用:如图,在平行四边形ABCD中,E、F别离是对角线AC上的两点,且AE=CF,那么BF∥DE成立吗?(四)小结与作业1.学习平行四边形的性质与判定,可按边的关系,角的关系和对角线的关系进行分类经历;2.在证明有关平行四边形问题时,要依照已知条件的特点,正确合理地利用平行四边形的性质与判定;3.能够用有关平行四边形知识证明的问题,不要倒退到利用三角行的全等来证明.作业:如图,已知四边形ABCD是平行四边形,点E、F别离是边AB、DC的中点.求证:EF=BC。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

◆随堂检测
1、任何一个三角形的外角和都是__________度.
2、如图,∠A=50°,∠ABD=28°,∠ACO=32°, 则∠BDC=____度,∠BOC=___度.
3、在平行四边形ABCD 中,若∠A+∠C=160°,则∠A=________°,∠B=_________°.
4、已知平行四边形ABCD 的周长是30 cm ,AB :BC=3:2,则AB=_______cm ,BC=______cm .
5、如图,∠ABC=∠ACB ,BE 、CD 分别为∠ABC ,∠ACB 的平 分线,则∠ADC 与∠AEB 的大小关系是 ( ) A .∠ADC>∠AEB B .∠ADC=∠AEB C .∠ADC<∠AEB D .不确定
◆典例分析
如图,在□ABCD 中,AE 、BF 分别平分∠DAB 和∠ABC ,交CD 于点E 、F ,AE 、BF 相交于点M .
(1)试说明:AE ⊥BF ;
(2)判断线段DF 与CE 的大小关系,并予以说明.
分析:(1)利用“两直线平行,同旁内角互补”可知0
180DAB ABC ∠+∠=,再利用角平
分线的就可以很容易得证;
(2)平行线与角平分线搭配可以得到 等腰三角形是一种常见的配合,已知△ADE 和△BCF 是等腰三角形,易得DE=CF. 解:(1)∵在
ABCD 中,AD ∥BC
∴∠DAB +∠ABC =180°
∵AE 、BF 分别平分∠DAB 和∠ABC ∴∠DAB =2∠BAE ,∠ABC =2∠ABF
∴2∠BAE +2∠ABF =180° 即∠BAE +∠ABF =90°
∴∠AMB =90° ∴AE ⊥BF .
(2)线段DF 与CE 是相等关系,即DF =CE
∵在
ABCD 中,CD ∥AB
∴∠DEA =∠EAB
M
F E
D
C
B A
又∵AE平分∠DAB
∴∠DAE=∠EAB
∴∠DEA=∠DAE
∴DE=AD
同理可得,CF=BC
又∵在ABCD中,AD=BC
∴DE=CF
∴DE-EF=CF-EF
即DF=CE.
◆课下作业
●拓展提高
1、直角三角形斜边上的中线同时又是斜边上的高,则此直角三角形的两锐角关系是( )
A.相等B.一个角90°,一个角30°
C.互补D.互余但不等
2、如图,在平行四边形ABCD中,EF∥AD,MN∥AB,EF、MN相
交于点P,则除平行四边形ABCD外,图中共有平行四边形( )
A.4个B.6个C.8个D.10个
3、如图,在平行四边形ABCD中,∠A=60°,BE⊥AD,BF⊥CD,E、F是垂足,AB=8 cm,BC=4cm,则∠D=________°,∠EBF=________°,BE=_________cm,BF=_________cm,S=________cm2.
ABCD
4、如图,在平行四边形ABCD中,AB⊥BD,AB:BC=2:2,则∠A=_______,
∠ABC=____________.
5、已知:如图AB=CD,AD=BC,DE⊥AC于E,BF⊥AC于F,且DE=BF.求证:AF=CE.
6、已知:如图,在四边形ABCD中,点E、F分别在AB、CD上,且AE=CF ,BD、EF 互相平分.求证:四边形ABCD平行四边形.
7、已知:如图,△ABC中,D是AB的中点,BE⊥AC于点E,EF∥AB,DF∥BE.
(1)猜想:DF与AE有怎样的特殊关系? (2)证明你的猜想.
●体验中考
1、(2009年崇左)一个等腰三角形的两边长分别为2和5,则它的周长为()
A .7
B .9
C .12
D .9或12
2、(2009年湖南怀化)如图,在Rt ABC △中, 90=∠B ,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知 10=∠BAE ,则C ∠的度数
为( )
A . 30
B . 40
C . 50
D . 60
3、(2009年陕西省)如图,在□ABCD 中,点E 是AD 的中点,连接CE 并延长,交BA 的延长线于点F . 求证:FA =AB .
4、(2009年云南省)如图,在△ABC 和△DCB 中,AB = DC ,
AC = DB ,
AC 与DB 交于点M .
(1)求证:△ABC ≌△DCB ;
(2)过点C 作CN ∥BD ,过点B 作BN ∥AC ,CN 与BN 交于点N ,试判断线段BN 与CN 的
数量关系,并证明你的结论.
参考答案: ◆随堂检测
1、1800
2、780
,1100
(提示:三角形外角性质)
3、800
,1000
(提示:平行四边形的对角相等,邻角互补) 4、9,6 (提示:设AB=3x ,BC=2x ) 5、B (提示:利用三角形外角性质) ◆课下作业 ●拓展提高
1、A (等腰三角形的“三线合一”)
2、C
3、1200,600,43,23,163(提示:利用平行四边形的邻角互补可求得∠D=1200

4、450 ,1350
(提示:利用三角函数)
5、证明:∵AB=CD ,AD=BC ,∴四边形ABCD 是平行四边形,∴AB=DC ,
A
D
C
E
B B C
A D
M
N
∵DE⊥AC于E,BF⊥AC于F ∴∠AFB=∠CED=900
在△ABF和△CDE中,∵DE=BF,DC=AB,∴△ABF≌△CDE ∴AF=CE
6、证明:连接DE,BE
∵BD、EF互相平分
∴四边形BEDF是平行四边形
∴DF∥BE,DF=EB
∵AE=FC ∴AB=DC
∴四边形ABCD平行四边形
7、解:DF、AE互相垂直平分。

证明:∵EF∥AB,DF∥BE
∴四边形DBEF是平行四边形
∴EF∥AB 即EF∥AD ,BD=EF
∵D是AB的中点∴AD=BD
∴AD=EF
∴四边形ADEF是平行四边形
∵DF∥BE,BE⊥AC
∴DF⊥AC
∴平行四边形ADEF是菱形
∴AE、DF互相垂直平分
●体验中考
1、C 解:根据三角形的三边关系可知:等腰三角形的三边为5、5、2
2、B 解:∵ED是AC的垂直平分线∴AE=EC ∴∠C=∠EAC ,设∠C=x ∵∠B=900
∴2x+10=90 ∴x=40
3、证明:∵四边形ABCD是平行四边形,∴AB=DC、AB∥DC,
∴∠FAE,= ∠D,∠F=∠ECD 又∵EA=ED.
∴△AFE≌△DCE ∴AF=DC.∴AF=AB.
4、证明:(1)如图,在△ABC和△DCB中,
∵AB= DC,AC=DB,BC=CB,∴△ABC≌△DCB.
(2)据已知有BN=CN.证明如下:
∵CN∥BD,BN∥AC,∴四边形BMCN是平行四边形.
由(1)知,∠MBC=∠MCB,∴BM=CM,∴四边形BMCN是菱形.∴BN=CN.。

相关文档
最新文档