大学物理实验-空气比热容比的测量(原始数据与分析)
测定空气比热容比实验报告
测定空气比热容比实验报告测定空气比热容比实验报告引言:热力学是物理学的一个重要分支,研究能量转化和传递的规律。
而空气作为我们日常生活中常接触的物质之一,其热力学性质的研究对于我们理解自然界的能量转化过程具有重要意义。
本实验旨在通过测定空气的比热容比,探究空气在不同条件下的热力学特性,并对实验结果进行分析和讨论。
实验装置和步骤:实验装置主要包括恒温水槽、热容器、温度计、电磁阀和压力计等。
实验步骤如下:1. 将空气容器放入恒温水槽中,使其与水槽内的水达到相同温度。
2. 打开电磁阀,使空气容器与外界相通,并记录初始状态下的压力和温度。
3. 关闭电磁阀,将空气容器与外界隔绝。
4. 通过加热或冷却水槽中的水,使水槽内的温度发生变化。
5. 当水槽内的温度稳定后,再次记录空气容器内的压力和温度。
实验结果和数据处理:根据实验记录的压力和温度数据,可以计算出空气的比热容比。
比热容比是指在恒定容积下,单位质量的气体温度升高1度所需要的热量与单位质量的气体温度升高1度所需要的热量之比。
计算公式为:γ = Cp / Cv其中,γ为比热容比,Cp为定压比热容,Cv为定容比热容。
根据实验数据和计算公式,我们可以绘制出比热容比γ随温度的变化曲线。
通过曲线的形状和趋势,我们可以分析空气的热力学性质。
讨论与分析:根据实验结果,我们可以看出比热容比γ随温度的变化呈现一定的规律。
在低温下,γ的值较小,随着温度的升高,γ逐渐增大,直至达到一个稳定的值。
这说明在低温下,空气的热力学性质与高温下有所不同。
这一结果可以用分子动理论来解释。
在低温下,气体分子的平均动能较小,分子间的相互作用力较大,因此气体的比热容比较小。
而随着温度的升高,气体分子的平均动能增大,分子间的相互作用力减小,导致比热容比增大。
此外,实验结果还与空气的成分有关。
空气主要由氮气和氧气组成,而这两种气体的比热容比不同,因此空气的比热容比也会受到其成分的影响。
实验中可能存在的误差主要包括温度测量误差、压力测量误差以及实验装置的热量损失等。
大学物理空气比热容的测量实验报告
大物实验报告撰写模板2空气比热容比的测定在热学中比热容比是一个基本物理量。
过去,由于实验测量手段的原因使得对它的测量误差较大。
现在通过先进的传感器技术使得测量便得简单而准确。
本实验通过压力传感器和温度传感器来测量空气的比热容比。
一、实验目的1. 用绝热膨胀法测定空气的比热容。
2. 观察热力学过程中状态变化及基本物理规律。
3. 学习气体压力传感器和电流型集成温度传感器的原理及使用方法。
二、实验原理理想气体定压摩尔热容量和定体摩尔热容量之间的关系由下式表示R C C v p =- (4-6-1)其中, R 为普适气体常数。
气体的比热容比γ定义为vp C C =γ(4-6-2)气体的比热容比也称气体的绝热系数,它是一个重要的物理量,其值经常出现在热力学方程中。
测量仪器如图4-6-1所示。
1为进气活塞C 1,2 为放气活塞C 2,3为电流型集成温度传感器,4为气体压力传感器探头。
实验时先关闭活塞C 2,将原处于环境大气压强为P 0、室温为T 0的空气经活塞C 1送入贮气瓶B 内,这时瓶内空气压强增大,温度升高。
关闭活塞C 1,待瓶内空气稳定后,瓶内空气达到状态Ⅰ(101,,V T P ),V 1为贮气瓶容积。
然后突然打开阀门C 2,使瓶内空气与周围大气相通,到达状态Ⅱ(),,220V T P 后,迅速关闭活塞C 2。
由于放气过程很短,可认为气体经历了一个绝热膨胀过程,瓶内气体压强减小,温度降低。
绝热膨胀过程应满足下述方程γγ2011V P V P =(4-6-3)在关闭活塞C 2之后,贮气瓶内气体温度将升高,当升到温度T 0时,原气体的状态为Ⅰ(101,,V T P )改变为状态Ⅲ(202,,V T P ),两个状态应满足如下关系:2211V P V P =(4-6-4)由(4-6-3)式和(4-6-4)式,可得)lg /(lg )lg (lg 1210P P P P --=γ(4-6-5)利用(4-6-5)式可以通过测量P 0、P 1和P 2值,求得空气的比热容比γ值。
气体比热容比的测定实验报告及数据
气体比热容比的测定实验报告及数据课气体比热容比的测定1、学习测定空气比热容比的方法。
题教学目2、熟练掌握物理天平和螺旋测微器的使用方的法。
3、熟练掌握直接测量值和间接测量值不确定度重难 1、物理天平的调节和使用。
的计算。
点 2、各物理量不确定度的计算。
教学方讲授、演示、提问、讨论、操作相结合。
学 3学时。
法时一、前言气体的定压比热容和定体比热容的比值称为比热容比。
气体的值在许多热力学过程特别是绝热过程中是一个很重要的参数。
由气体动理论可知,理想气体的值为:(1)式中为气体分子的自由度,对于单原子分子 ;对于双原子刚性分子, ;对于多原子刚性分子,。
实验中气体的比热容比常通过绝热膨胀法、绝热压缩法等方法来测定。
本实验将采用一种比较新颖的方法,即通过测定小球在储气瓶玻璃管中的振动周期来计算空气的值。
二、实验仪器FB212型气体比热容比测定仪、支撑架、小型气泵、TW-1型物理天平、0-25mm 外径千分尺等。
三、实验原理如图1所示,钢球A位于精密细玻璃管B中,其直径仅仅比玻璃管直径小0.01-0.02mm,使之能在玻璃管中上下移动,瓶上有一小孔C,可以通过导管将待测气体注入到玻璃瓶中。
图1 设小球质量为m,半径为r,当瓶内气压P满足下式时,小球处于平衡位置:(2)设小球从平衡位置出发,向上产生微小正位移x,则瓶内气体的体积有一微小增量:(3)与此同时瓶内气体压强将降低一微小值,此时小球所受合外力为:(4)小球在玻璃管中运动时,瓶内气体将进行一准静态绝热过程,有绝热方程:(5)两边微分,得(6)将(3)、(4)两式代入(6)式,得:(7)由牛顿第二定律,可得小球的运动方程为:(8)可知小球在玻璃管中作简谐振动,其振动周期为:(9)最后得气体的值为:(10)(10)式中右边各量可以方便测出,故可以计算出气体的值。
实验中为了补偿由于空气阻力以及少量漏气引起的小球振幅的衰减,通过C管一直向玻璃瓶中注入一小气压的气流,在玻璃管B的中部开有一小孔,当小球处于孔下方时,注入气体压强增大,使得小球往上运动;当小球越过小孔后,容器内气体经小孔流出,气体压强减少,小球将往下运动,如此循环往复进行以上过程,只要适当控制注入气体的流量,小球就能在玻璃管中小孔附近作简谐振动,其振动周期可用光电计时装置测得。
实验报告空气比热容比的测定
1. 实验名称空气比热容比的测定 2. 实验目的(1)了解绝热、等容的热力学过程及有关状态方程。
(2)测定空气的比热容比。
3. 实验原理:主要原理公式及简要说明、原理图(1)热力学第一定律及定容比热容和定压比热容 热力学第一定律:系统从外界吸收的热量等于系统内能的增加和系统对外做功之和。
考虑在准静态情况下气体由于膨胀对外做功为PdV dA =,所以热力学第一定律的微分形式为PdV dE dA dE dQ +=+= (1)定容比热容C v 是指1mol 的理想气体在保持体积不变的情况下,温度升高1K 所吸收的热量。
由于体积不变,那么由(1)式可知,这吸收的热量也就是内能的增加(d Q =d E ),所以dTdE dT dQ C v v =⎪⎪⎭⎫⎝⎛=(2) 由于理想气体的内能只是温度的函数,所以上述定义虽然是在等容过程中给出,实际上任何过程中内能的变化都可以写成d E =C v dT定压比热容是指1mol 的理想气体在保持压强不变的情况下,温度升高1K 所吸收的热量。
即pp dT dQ C ⎪⎪⎭⎫⎝⎛=(3) 由热力学第一定律(3)式,考虑在定压过,就有dT dV pdT dE dT dQ pp +⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛(4) 由理想气体的状态方程PV =RT 可知,在定压过程中P R dT dV =,又利用v C dTdE=代入(4)式,就得到定压比热容与定容比热容的关系R C C v p +=(5)R 是气体普适常数,为8.31 J / mol· K ,引入比热容比γ为v p C C /=γ(6)在热力学中,比热容比是一个重要的物理量,它与温度无关。
气体运动理论告诉我们,γ与气体分子的自由度f 有关ff 2+=γ(7) 例如,对单原子气体(Ar 、He),3=f 67.1=γ对双原子气体(N 2、H 2、O 2)5=f40.1=γ,对多原子气体(CO 2、CH 4),6=f 33.1=γ(2)绝热过程系统如果与外界没有热交换,这种过程称为绝热过程,因此,在绝热过程中,d Q =0。
大学物理空气比热容的测量实验报告
大物实验报告撰写模板2空气比热容比的测定在热学中比热容比是一个基本物理量。
过去,由于实验测量手段的原因使得对它的测量误差较大。
现在通过先进的传感器技术使得测量便得简单而准确。
本实验通过压力传感器和温度传感器来测量空气的比热容比。
一、实验目的1. 用绝热膨胀法测定空气的比热容。
2. 观察热力学过程中状态变化及基本物理规律。
3. 学习气体压力传感器和电流型集成温度传感器的原理及使用方法。
二、实验原理理想气体定压摩尔热容量和定体摩尔热容量之间的关系由下式表示R C C v p =- (4-6-1)其中, R 为普适气体常数。
气体的比热容比γ定义为vp C C =γ(4-6-2)气体的比热容比也称气体的绝热系数,它是一个重要的物理量,其值经常出现在热力学方程中。
测量仪器如图4-6-1所示。
1为进气活塞C 1,2 为放气活塞C 2,3为电流型集成温度传感器,4为气体压力传感器探头。
实验时先关闭活塞C 2,将原处于环境大气压强为P 0、室温为T 0的空气经活塞C 1送入贮气瓶B 内,这时瓶内空气压强增大,温度升高。
关闭活塞C 1,待瓶内空气稳定后,瓶内空气达到状态Ⅰ(101,,V T P ),V 1为贮气瓶容积。
然后突然打开阀门C 2,使瓶内空气与周围大气相通,到达状态Ⅱ(),,220V T P 后,迅速关闭活塞C 2。
由于放气过程很短,可认为气体经历了一个绝热膨胀过程,瓶内气体压强减小,温度降低。
绝热膨胀过程应满足下述方程γγ2011V P V P =(4-6-3)在关闭活塞C 2之后,贮气瓶内气体温度将升高,当升到温度T 0时,原气体的状态为Ⅰ(101,,V T P )改变为状态Ⅲ(202,,V T P ),两个状态应满足如下关系:2211V P V P =(4-6-4)由(4-6-3)式和(4-6-4)式,可得)lg /(lg )lg (lg 1210P P P P --=γ (4-6-5)利用(4-6-5)式可以通过测量P 0、P 1和P 2值,求得空气的比热容比γ值。
实验报告-空气比热容比的测量
大学物理实验报告实验3-5 空气比热容比的测量一、实验目的:测量室温下的空气比热容比二、实验原理:理想气体的定压摩尔热容为pC ,定容摩尔热容为vC ,气体的比热容比γ值为:v pC C =γ,γ又称摩尔热容比。
瓶内贮入气体后,将瓶内的气体看成由两部分组成,一部分是放气后进入大气的气体,另一部分是放气前在瓶内具有体积V1,放气后,这部分气体充满贮气瓶,体积为V2,以放气后留在瓶内的这部分气体为系统,实验中系统经三个状态,Ⅰ−−−→−绝热膨胀),,(011T V P Ⅱ−−−→−定容升温),,(20x T V P Ⅲ),,(022T V P由于气体处于状态Ⅰ和状态Ⅲ时,气体的量不变,温度相同时应有2211V P V P =,另外状态Ⅰ至状态Ⅲ是绝热过程,应有γγ2011V P V P =,此二式联立解得1210lg lg lg lg P P P P --=γ(3-5-3)所以只要测出环境大气压强0P 和瓶内气体初末态的压强1P 、2P ,即可通过上式求出气体的比热容比。
三、实验器材:储气瓶一套(包括玻璃瓶、活塞两只、橡皮球、打气球)、两只传感器(扩散硅压力传感器和电流型集成温度传感器AD590各一只)、测量空气压强的三位半数字电压表、测空气温度的四位半数字电压表、连接电缆以及电阻。
四、实验步骤:(1)按图3-5-2接线,注意AD590的正负极。
用Forton 式气压计测定大气压强,P 用水银温度计测环境温度T 。
(2)开启电源,将电子仪器部分预热20min ,然后用调零电位钮调节零点,把三位半数字电压表示值调到0。
(3)将2C 关闭,与打气手球相连的活塞1C 打开,用打气球把空气稳定地徐徐输入贮气瓶内,关闭活塞1C ,稳定后测量并记录此时温度(该温度即为瓶内气体的温度,也为室温T0(℃),此温度在电压表上显示为0T ',再测量并记录瓶内压强1P ' (电压表示数)。
(4)突然打开活塞2C ,当贮气瓶的空气压强降低至环境大气压强0P 时(这时放气声消失),迅速关闭2C 。
空气比热容比的测定实验报告
13.990
13.992
13.990
= 1.398
实验结果分析
空气的比热容比约为1.398,与双原子气体(N2,H2,O2)f=5 接近。
教师评语
单原子气体(Ar,He)f=3
双原子气体(N2,H2,O2)f=5
多原子气体(CO2,CH4)f=6
且与温度无关。
本实验装置主要系玻璃制成,且对玻璃管的要求特别高,振动物体的直径仅比玻璃管内径小0.01mm左右,因此振动物体表面不允许擦伤。平时它停留在玻璃管的下方(用弹簧托住)。若要将其取出,只需在它振动时,用手指将玻璃管壁上的小孔堵住,稍稍加大气流量物体便会上浮到管子上方开口处,就可以方便地取出,或将此管由瓶上取下,将球倒出来。
钢球A的质量为m,半径为r(直径为d),当瓶子内压力P满足下面条件时钢球A处于力平衡状态。这时 ,式中PL为大气压力。为了补偿由于空气阻尼引起振动物体A振幅的衰减,通过C管一直注入一个小气压的气流,在精密玻璃管B的中央开设有一个小孔。当振动物体A处于小孔下方的半个振动周期时,注入气体使容器的内压力增大,引起物体A向上移动,而当物体A处于小孔上方的半个振动周期时,容器内的气体将通过小孔流出,使物体下沉。以后重复上述过程,只要适当控制注入气体的流量,物体A能在玻璃管B的小孔上下作简谐振动,振动周期可利用光电计时装置来测得。
振动周期采用可预置测量次数的数字计时仪(分50次,100次二档),采用重复多次测量。
振动物体直径采用螺旋测微计测出,质量用物理天平称量,烧瓶容积由实验室给出,大气压力由气压表自行读出,并换算N/m2 。
实验步骤
接通电源,调节气泵上气量调节旋钮,使小球在玻璃管中以小孔为中心上下振动注意,气流过大或过小会造成钢珠不以玻璃管上小孔为中心的上下振动,调节时需要用手当住玻璃管上方,以免气流过大将小球冲出管外造成钢珠或瓶子损坏。
空气比热容比的测量实验报告
一、实验名称: 空气比热容比的测量二、实验目的:测量室温下的空气比热容比;学习用绝热膨胀法测定空气的比热容比;观测热力学过程中状态变化及基本物理规律。
三、实验器材:储气瓶一套(包括玻璃瓶、活塞两只、橡皮塞、打气球)、两只传感器(扩散硅压力传感器和电流型集成温度传感器AD590各一只)、测空气压强的三位半数字电压表、测空气温度的四位半数字电压表、连接电缆及电阻。
四、实验原理:遵循两条基本原则:其一是保持系统为孤立系统;其二是测量一个系统的状态参量时,应保证系统处于平衡态。
气体的定压比热容和定容比热容之比称为气体的比热容比,用符号P C V C 表示(即),又称气体的绝热系数。
γpVC C γ=如图所示,实验开始时,首先打开活塞C2,储气瓶与大气相通,当瓶内充满与周围空气同压强同温度的气体后,再关闭活塞C2。
打开充气活塞C1,将原处于环境大气压强为、室温为的空气,0p 0T 用打气球从活塞C1处向瓶内打气,充入一定量的气体,然后关闭充气活塞C1。
此时瓶内空气被压缩而压强增大,温度升高,等待瓶内气体温度稳定,即达到与周围温度平衡。
此时的气体处于状态I(,,),1p 1V 0T 其中为储气瓶容积。
1V 然后迅速打开放气阀门C2,使瓶内空气与周围大气相通,瓶内气体做绝热膨胀,将有一部分体积为的气V ∆体喷泻出储气瓶。
当听不见气体冲出的声音,即瓶内压强为大气压强,瓶内0p 温度下降到(<),此时,立即关闭放气阀门C2,。
由于放气过程较快,1T 1T 0T 瓶内保留的气体由状态I(,,)转变为状态(,,)。
1p 1V 0T II 0p 2V 1T由于瓶内气体温度低于室温,所以瓶内气体慢慢从外界吸热,直至达1T 0T 到室温为止,此时瓶内气体压强也随之增大为。
稳定后的气体状态为(0T 1p III ,,),从状态到状态的过程可以看作是一个等容吸热的过程。
2p 2V 0T II III 总之,气体从状态I 到状态是绝热过程,由泊松公式得:II (1)110101p p T T γγγ-γ-=从状态到状态是等容过程,对同一系统,由盖吕萨克定律得II III 0210p p T T =(2)由以上两式子可以得到11200p p P P γγ-⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭ (3)两边取对数,化简得 (4)()()0121lg lg /lg lg p p p p γ=--利用 (4)式,通过测量、和的值就可求得空气的比热容比的值。
测定空气比热容比实验报告
测定空气比热容比实验报告实验目的:1.测定空气的比热容比;2.掌握热平衡的方法和实验技巧;3.掌握冷热水混合的热平衡方法。
实验器材:1.中空金属绝热杯2.温度计3.可调节加热器4.隔热垫5.实验用水实验原理:空气的比热容比是在恒压下单位质量空气温度升高1℃所需要的热量与单位质量空气温度升高1℃所需要的热量的比值,用γ表示。
热平衡指两个物体达到相同温度的状态。
根据热平衡原理及能量守恒定律,可得到热平衡的关系式:m1c1ΔT1=m2c2ΔT2,其中m为质量,c为比热容,ΔT为温度变化。
实验步骤:1.按实验器材准备好实验装置,将中空金属绝热杯放在隔热垫上;2.称取一定质量的水m1,通过温度计测量其初始温度T1;3.将水倒入中空金属绝热杯中,并再次测量水的质量m2;4.放入温度计,迅速记录下水的最高温度T2;5.加热器以适当的功率加热冷水,使水温随时间增长,并记录加热时间t;6.每隔一段时间t1,记录一次水的温度T3,并保持加热功率不变直到水的温度上升到T2;7.根据实验数据计算空气的比热容比γ。
实验数据:水的质量m1=100g水的初始温度T1=20℃最高温度T2=40℃水的质量m2=80g加热时间t=600s间隔时间t1=60s温度变化ΔT1=T2-T1数据处理:1.根据热平衡关系式可得到:m1c1ΔT1=m2c2ΔT2m1c1(T2-T1)=m2c2(T2-T3)根据上式可计算出c2:c2=c1(T2-T1)/(T2-T3)2.根据给定数据计算结果。
实验结果:根据实验数据和计算公式,可以得到计算出的空气比热容比γ的数值。
实验讨论与误差分析:1.实验过程中,可能存在温度计读数不准确、水温升高不均匀等误差因素;2.实验结果可能会受到环境温度的影响;3.实验中加热水的同时要保证绝热杯外部不受热,从而减小热量的损失。
实验结论:通过本实验测定得到空气的比热容比为γ。
实验结果可与已知的理论值进行比较。
如果两者相差较大,可能是由于实验误差及实验装置等因素造成的,需要进一步排除误差源,并改进实验方法和装置。
空气比热容比的测量实验报告
空气比热容比的测量实验报告
目录
1. 实验目的
1.1 实验原理
1.1.1 比热容的定义
1.2 实验器材
1.3 实验步骤
2. 实验结果分析
3. 实验结论
4. 实验中的注意事项
1. 实验目的
本实验旨在通过测量空气的比热容比,掌握比热容的测量方法,并熟悉实验器材的使用。
1.1 实验原理
1.1.1 比热容的定义
比热容是指单位质量物质升高(或降低)1摄氏度温度所需的热量。
1.2 实验器材
本实验所需的主要器材包括热容器、温度计、热水浴等。
1.3 实验步骤
1. 将一定质量的水注入热容器中,并记录水的初始温度。
2. 在热容器中通入一定体积的空气,并将空气加热至一定温度。
3. 测量空气和水的最终温度,并记录下来。
2. 实验结果分析
通过实验数据的记录和计算,得出空气的比热容比,并分析实验结果是否符合理论值。
3. 实验结论
根据实验结果和分析,得出空气的比热容比,并总结实验中的发现和不足之处。
4. 实验中的注意事项
在实验过程中,应注意保持实验器材的干净整洁,严格按照实验步骤进行操作,避免实验数据的误差。
大学物理实验空气比热容比的测定实验报告
空气比热容比的测定实验报告一.实验目的1.了解空气比热容比的概念;2.用FB212型气体比热容比测定仪测定空气的比热容比值。
二.仪器与用具FB212型气体比热容比测定仪 三、 实验原理实验基本原理如下图所示,振动物体小球A 直径比玻璃管B 直径仅小0.01~0.02mm 。
它能在此精密的玻璃管中上下移动,在瓶子的壁上有一小口,并插入一根细管,通过它各种气体可以注入到玻璃瓶中。
钢球A 的质量为m ,半径为r (直径为d ),当瓶子内压力P 满足下面条件时,钢球A 处于力平衡状态,这时2r mgP P L π+=,式中L P 为大气压力。
若物体偏离平衡位置一个较小距离x ,则容器内的压力变化dP ,物体的运动方程为dP r dtxd m 222π= (1) 物体振动非常快,可看作绝热过程,满足绝热方程常数=γPV (2)将(2)式求导,,P 2x r dV VdVP d πγ=-=并代入方程(1)得: 04222=+x mV P r dt x d γπ (3)此即是小球作简谐振动的运动方程,振动角频率为TmVP r πγπω242==由此得424264Pr 4PdT mVT mV ==γ (4) 式中各量均可方便测得,因而可算出γ值。
空气是许多气体的混合,一般说其中99%以上是双原子气体氮和氧,因此经典理论得出空气的γ值接近1.40。
.振动周期采用可预置测量次数的数字计时仪,采用重复多次测量。
振动物体直径螺旋测微计测出,质量用物理天平称量,玻璃瓶容积大气压力由实验室给出。
四.实验内容 1.实验仪器的调整(1)将气泵、储气瓶用橡皮管连接好,装有钢球的玻璃管插入球形储气瓶。
将光电接收装置利用方形连接块固定在立杆上,固定位置于空心玻璃管小孔附近。
(2)调节底板上三个水平调节螺钉,使底板处于水平状态。
(3)接通气泵电源,缓慢调节气泵上的调节螺旋,数分钟后,待储气瓶内注入一定压力的气体后,玻璃管中的钢球离开弹簧,向管子上方移动,此时应调节好进气的大小,使钢球在玻璃管中以小孔为中心上下振动。
大学物理空气比热容的测量实验分析报告
大学物理空气比热容的测量实验报告————————————————————————————————作者:————————————————————————————————日期:大物实验报告撰写模板2空气比热容比的测定在热学中比热容比是一个基本物理量。
过去,由于实验测量手段的原因使得对它的测量误差较大。
现在通过先进的传感器技术使得测量便得简单而准确。
本实验通过压力传感器和温度传感器来测量空气的比热容比。
一、实验目的1. 用绝热膨胀法测定空气的比热容。
2. 观察热力学过程中状态变化及基本物理规律。
3. 学习气体压力传感器和电流型集成温度传感器的原理及使用方法。
二、实验原理理想气体定压摩尔热容量和定体摩尔热容量之间的关系由下式表示R C C v p =- (4-6-1)其中, R 为普适气体常数。
气体的比热容比γ定义为vp C C =γ(4-6-2)气体的比热容比也称气体的绝热系数,它是一个重要的物理量,其值经常出现在热力学方程中。
测量仪器如图4-6-1所示。
1为进气活塞C 1,2 为放气活塞C 2,3为电流型集成温度传感器,4为气体压力传感器探头。
实验时先关闭活塞C 2,将原处于环境大气压强为P 0、室温为T 0的空气经活塞C 1送入贮气瓶B 内,这时瓶内空气压强增大,温度升高。
关闭活塞C 1,待瓶内空气稳定后,瓶内空气达到状态Ⅰ(101,,V T P ),V 1为贮气瓶容积。
然后突然打开阀门C 2,使瓶内空气与周围大气相通,到达状态Ⅱ(),,220V T P 后,迅速关闭活塞C 2。
由于放气过程很短,可认为气体经历了一个绝热膨胀过程,瓶内气体压强减小,温度降低。
绝热膨胀过程应满足下述方程γγ2011V P V P = (4-6-3)在关闭活塞C 2之后,贮气瓶内气体温度将升高,当升到温度T 0时,原气体的状态为Ⅰ(101,,V T P )改变为状态Ⅲ(202,,V T P ),两个状态应满足如下关系:2211V P V P =(4-6-4)由(4-6-3)式和(4-6-4)式,可得)lg /(lg )lg (lg 1210P P P P --=γ(4-6-5)利用(4-6-5)式可以通过测量P 0、P 1和P 2值,求得空气的比热容比γ值。
【大学物理实验】空气比热容比测定实验
大学物理仿真实验报告软件 04姚伟10038046一.实验名称空气比热容比测定二.实验目的1.用绝热膨胀法测定空气的比热容比。
2.观测热力学过程中状态变化及基本物理规律。
3.学习气体压力传感器和电流型集成温度传感器的原理及使用方法。
三.实验原理对理想气体的定压比热容Cp 和定容比热容Cv之关系由下式表示:Cp —Cv=R (1)(1)式中,R为气体普适常数。
气体的比热容比r值为:r= Cp /Cv(2)气体的比热容比现称为气体的绝热系数,它是一个重要的物理量,r值经常出现在热力学方程中。
测量r值的仪器如图〈一〉所示。
实验时先关闭活塞C2,将原处于环境大气压强P0、室温θ的空气从活塞C1,处把空气送入贮气瓶B内,这时瓶内空气压强增大。
温度升高。
关闭活塞C1,待稳定后瓶内空气达到状态I(P,θ,V 1),V1为贮气瓶容积。
然后突然打开阀门C2,使瓶内空气与大气相通,到达状态II (P1,θ,V后,迅速关闭活塞C2,由于放气过程很短,可认为是一个绝热膨胀过程,瓶内气体压强减小,温度降低,绝热膨胀过程应满足方程:在关闭活塞C2之后,贮气瓶内气体温度将升高,当升到温度θ时,原状态为I(P1,θ,V1)体系改变为状态 III(P2,θ,V2),应满足:由(3)式和(4)式可得到:利用(5)式可以通过测量P0、P1和P2值,求得空气的比热容比r值。
四.实验装置图〈一〉实验装置中1为进气活塞塞C1,2为放气活塞C2,3为电流型集成温度传感器AD590,它是新型半导体温度传感器,温度测量灵敏度高,线性好,测温范围为-50℃至150℃。
AD590接6V直流电源后组成一个稳流源,见图〈二〉,它的测温灵敏度为1μA/℃,若串接5KΩ电阻后,可产生5mv/℃的信号电压,接0~2V量程四位半数字电压表,可检测到最小0.02℃温度变化。
4为气体压力传感器探头,由同轴电缆线输出信号,与仪器内的放大器及三位半数字电压表相接。
当待测气体压强为环境大气压P时,数字电压表显示为0;当待测气体压强为P+10.00KPa时,数字电压表显示为200mv;仪器测量气体压强灵敏度为20mv/KPa,测量精度为5Pa。
空气比热容比的测量实验报告
专业:应用物理题目:空气比热容比的测量[实验目的](1)用绝热膨胀法测量空气比热容比。
(2)观测热力学过程中系统状态变化及基本物理规律。
(3)学习压力传感器和电流型集成温度传感器(AD590)的原理及使用方法。
[实验仪器]FD-NCD-II 型空气比热容比测定仪,包括储气瓶(玻璃瓶,进气活塞,放气活塞,橡皮塞,打气球),压力传感器及电缆,温度传感器(AD590)及电缆,数字电压表等。
[实验原理]1.温度测量AD590 电流型集成温度传感器(热敏电阻)在本实验中,我们将AD590 与6V 直流电源连接组成一个稳流源,串接5KΩ电阻,从而可产生5mV/ºC 的电压信号,即测量灵敏度S为5mV/ºC,接0—1.999V 量程四位半数字电压表,可检测到最小0.02ºC 温度变化。
2.压强测量扩散硅压阻式差压传感器半导体压阻效应:半导体材料(如单晶硅)因受力而产生应变时,由于载流子的浓度和迁移率的变化而导致电阻率发生变化。
压力的变化将引起输出电压的变化,即当待测气体压强为环境大气压强P0时,调节调零旋钮,使三位半数字电压表示值U0为0 mV。
数字电压表显示的数值为U时,待测气体压强P为实验中要测量的P1、P2可表示为3.比热容比测量1)打开放气活塞C2,储气瓶与大气相通,再关闭C2,储气瓶内充满与周围外界空气同温同压的气体。
P0 为外界空气的压强,T0为外界空气的温度。
2)打开充气活塞C1,用充气球向瓶内快速充气。
充入一定量的气体后关闭充气活塞C1。
充气过程中,瓶内空气被压缩,压强增大,温度升高。
3)放热至瓶内气体温度稳定(与外界空气温度平衡),此时气体处于状态I(P1,V1,T0)。
4)绝热膨胀:迅速打开放气活塞C2,使瓶内气体与大气相通,立刻有部分气体喷出,当瓶内压强降至P0时,立刻关闭放气活塞C2。
在此过程后,瓶中保留的气体由状态I(P1,V1,T0)变为状态Ⅱ(P0,V2,T1)。
大学物理空气比热容的测量实验报告精品文档9页
大物实验报告撰写模板2 空气比热容比的测定在热学中比热容比是一个基本物理量。
过去,由于实验测量手段的原因使得对它的测量误差较大。
现在通过先进的传感器技术使得测量便得简单而准确。
本实验通过压力传感器和温度传感器来测量空气的比热容比。
一、实验目的1. 用绝热膨胀法测定空气的比热容。
2. 观察热力学过程中状态变化及基本物理规律。
3. 学习气体压力传感器和电流型集成温度传感器的原理及使用方法。
二、实验原理理想气体定压摩尔热容量和定体摩尔热容量之间的关系由下式表示R C C v p =- (4-6-1)其中, R 为普适气体常数。
气体的比热容比γ定义为vp C C =γ(4-6-2)气体的比热容比也称气体的绝热系数,它是一个重要的物理量,其值经常出现在热力学方程中。
测量仪器如图4-6-1所示。
1为进气活塞C 1,2 为放气活塞C 2,3为电流型集成温度传感器,4为气体压力传感器探头。
实验时先关闭活塞C 2,将原处于环境大气压强为P 0、室温为T 0的空气经活塞C 1送入贮气瓶B 内,这时瓶内空气压强增大,温度升高。
关闭活塞C 1,待瓶内空气稳定后,瓶内空气达到状态Ⅰ(101,,V T P ),V 1为贮气瓶容积。
然后突然打开阀门C 2,使瓶内空气与周围大气相通,到达状态Ⅱ(),,220V T P 后,迅速关闭活塞C 2。
由于放气过程很短,可认为气体经历了一个绝热膨胀过程,瓶内气体压强减小,温度降低。
绝热膨胀过程应满足下述方程γγ2011V P V P =(4-6-3)在关闭活塞C 2之后,贮气瓶内气体温度将升高,当升到温度T 0时,原气体的状态为Ⅰ(101,,V T P )改变为状态Ⅲ(202,,V T P ),两个状态应满足如下关系: 2211V P V P =(4-6-4)由(4-6-3)式和(4-6-4)式,可得)lg /(lg )lg (lg 1210P P P P --=γ (4-6-5)利用(4-6-5)式可以通过测量P 0、P 1和P 2值,求得空气的比热容比γ值。
空气比热容比的测定实验报告
打开周期计时装置,次数设置为50次,按下执行按钮后即可自动记录振动50次周期所需的时间。
若不计时或不停止计时,可能是光电门位置放置不正确,造成钢珠上下振动时未挡光,或者是外界光线过强,此时须适当挡光。
重复以上步骤五次(本实验仪器体积约为200ml)。
用螺旋测微计和物理天平分别测出钢珠的直径d和质量m,其中直径重复测量五次。
13.991
13.990
13.992
13.990
= 1.398
实验结果分析
空气的比热容比约为1.398,与双原子气体(N2,H2,O2)f=5 接近。
教师评语
振动物体直径采用螺旋测微计测出质量用物理天平称量烧瓶容积由实验室给出大气压力由气压表自行读出并换算nm10013接通电源调节气泵上气量调节旋钮使小球在玻璃管中以小孔为中心上下振动注意气流过大或过小会造成钢珠不以玻璃管上小孔为中心的上下振动调节时需要用手当住玻璃管上方以免气流过大将小球冲出管外造成钢珠或瓶子损坏
单原子气体(Ar,He)f=3
双原子气体(N2,H2,O2)f=5
多原子气体(CO2,CH4)f=6
且与温度无关。
空气比热容比实验报告
测定空气比热容比一、 实验目的1.学习测定空气比定压热容与比定容热容之比的一种方法。
2.观察热力学过程中状态变化及基本物理规律。
3.学习用传感器精确测定气体压强和温度的原理与方法。
二、 原理以比大气压p a 稍高的压力p 1,向玻璃容器压入适量空气,并以与外部环境温度T e 相等之时单位质量的气体体积(称为比体积或比容)作为V 1,用图2-7-1中的I (p 1,V 1,T e )表示这一状态。
而后,急速打开放气活塞“B ”,亦即使其绝热膨胀,使其压强降至大企业p a ,并以状态II (p a ,V 2,T 2)表示。
由于是绝热膨胀,T 2< T e ;所以,若在迅速关闭活塞“B ”,并放置一段时间,系统将从外界吸收热量,且温度重新升高至T e ;因为吸热过程中年各梯级V 2不变,所以,压力将随之增加为p 2,即系统又变至状态III (p 2,V 2,T e )。
因状态I->II 的变化是绝热的,故满足泊松公式p 1V 1y = p a V 2y(2-7-2)而状态III 与I 是等温的,所以波义耳定律成立,即p 1V 1= p 2V 2(2-7-3)由两式消去V 1及V 2,并求解得 γ=lnp1−lnpalnp1−lnp2=ln(p1pa⁄)ln(p1p2⁄)(2-7-4)可见,只要测得压强p1、pa 及p2与pa 的压力差,则有{ p1=pa+p1′p2=pa+p2′(2-7-5)现将式(2-7-5)代入式(2-7-4),并考虑到pa>>p1'>>p2',则lnp1−lnpa=lnp1pa=ln(1+p1′pa)≈p1′pa及lnp1−lnp2=lnp1−lnpa−(lnp2−lnpa)≈p1′pa−p2′pa所以γ=p1′p1′−p2′ (2-7-6)可见,只要测得p1'和 p2',即可通过式(2-7-6)求出空气的比热容比。
三、 仪器工具FD-NCD-II空气比热容比测定仪,由机箱(含数字电压表二只)、储气瓶、传感器两只(电流型继承温度传感器AD590和扩散硅压力传感器各一只)等组成。