参数估计和假设检验习题解答

合集下载

参数估计、假设检验例子

参数估计、假设检验例子
某橡胶厂生产汽车轮胎根据历史资料统计果平均里程为25000公里标准差为1900公里现采用一种新的工艺制作流程从新批量的轮胎中随机抽取400个作实验求得样本平均里程为25300公里试按5的显著性水平判断新批量轮胎的平均耐用里程与以前生产的轮胎的耐用里程有没有显著的差异或者它们属于同一总体的假设是否成立例2某公司宣称有75以上的消费者满意其产的质量一家市场调查公司受委托调查该公司此项声明是否属实随机抽样调査625位消费者表示满意该公司产品质量者有500人试问在005的显著性水平下该公司的声明是否属实
例2: 某公司宣称有75%以上的消费者满意其产品 某公司宣称有75%以上的消费者满意其产品 的质量,一家市场调查公司受委托调查该公司此 项声明是否属实,随机抽样调查625位消费者, 项声明是否属实,随机抽样调查625位消费者, 表示满意该公司产品质量者有500人,试问在 表示满意该公司产品质量者有500人,试问在 0.05的显著性水平下,该公司的声明是否属实。 0.05的显著性水平下,该公司的声明是否属实。
例2: 在一项新广告活动的跟踪调查中,在被调查 的400人中有240人会记起广告的标语,试求会 400人中有240人会记起广告的标语,试求会 记起广告标语占总体比率的95%置信度的估计区 记起广告标语占总体比率的95%置信度的估计区 间。
假设检验: 1:某橡胶厂生产汽车轮胎,根据历史资料统计结 果,平均里程为25000公里,标准差为1900公里。 果,平均里程为25000公里,标准差为1900公里。 现采用一种新的工艺制作流程,从新批量的轮胎 中随机抽取400个作实验,求得样本平均里程为 中随机抽取400个作实验,求得样本平均里程为 25300公里,试按5%的显著性水平判断新批量 25300公里,试按5%的显著性水平判断新批量 轮胎的平均耐用里程与以前生产的轮胎的耐用里 程有没有显著的差异,或者它们属于同一总体的 假设是否成立。

统计基础试题——参数估计和假设检验

统计基础试题——参数估计和假设检验

第七章参数估计和假设检验一、填空题1.在抽样推断中,常用的总体指标有、和。

2.在抽样推断中,按随机原则从总体中抽取的部分单位叫,这部分单位的数量叫。

3.整群抽样是对总体中群内的进行的抽样组织形式。

4.若总体单位的标志值不呈正态分布,只要,全部可能样本指标也会接近于正态分布。

5.抽样估计的方法有和两种。

6.扩大误差范围,可以推断的可靠程度,缩小误差范围则会推断的可靠程度。

7.对总体的指标提出的假设可以分为和。

8.如果提出的原假设是总体参数等于某一数值,这种假设检验称为,若提出的原假设是总体参数大于或小于某一数值,这种假设检验称为。

二、单项选择题1.所谓大样本是指样本单位数在()及以上。

A.50个B.30个C.80个D.100个2.总体平均数和样本平均数的关系是()。

A.总体平均数是确定值,样本平均数是随机变量B.总体平均数是随机变量,样本平均数是确定值C.总体平均数和样本平均数都是随机变量D.总体平均数和样本平均数都是随机变量3.先对总体按某一标志分组,然后再在各组中按随机原则抽取一部分单位构成样本,这种抽样组织方式称为()。

A.简单随机抽样B.机械抽样C.类型抽样D.整群抽样4.用样本指标对总体指标作点估计时,应满足4点要求,其中无偏性是指()。

A.样本平均数等于总体平均数B.样本成数等于总体成数C.样本指标的平均数等于总体的平均数 D.样本指标等于总体指标5.在其它条件不变的情况下,提高抽样估计的可靠程度,其精确度将()。

A.保持不变B.随之扩大C.随之缩小D.无法确定6.在抽样估计中,样本容量()。

A.越小越好B.越大越好C.有统一的抽样比例D.取决于抽样估计的可靠性要求。

7.假设检验中的临界区域是指()。

A.接受域B.拒绝域C.检验域D.置信区间三、多项选择题1.在抽样推断中,抽取样本单位的具体方法有()。

A.重复抽样B.不重复抽样C.分类抽样D.等距抽样E.多阶段抽样2.在抽样推断中,抽取样本的组织形式有()。

参数估计和假设检验练习题

参数估计和假设检验练习题

作业二(一)单项选择题1.标准误的英文缩写为:A.S B.SE C.S D.SDX2.通常可采用以下那种方法来减小抽样误差:A.减小样本标准差B.减小样本含量C.扩大样本含量D.以上都不对3.配对设计的目的:A.提高测量精度B.操作方便C.为了可以使用t检验D.提高组间可比性4.以下关于参数估计的说法正确的是:A.区间估计优于点估计B.样本含量越大,参数估计准确的可能性越大C.样本含量越大,参数估计越精确D.对于一个参数只能有一个估计值5.关于假设检验,下列那一项说法是正确的A.单侧检验优于双侧检验B.采用配对t检验还是成组t检验是由实验设计方法决定的C.检验结果若P值大于0.05,则接受H0犯错误的可能性很小D.用u检验进行两样本总体均数比较时,要求方差齐性6.两样本比较时,分别取以下检验水准,下列何者所取第二类错误最小A.α=0.05 B.α=0.01 C.α=0.10 D.α=0.207.统计推断的内容是A.用样本指标推断总体指标B.检验统计上的“假设”C.A、B均不是D.A、B均是8.当两总体方差不齐时,以下哪种方法不适用于两样本总体均数比较A.t检验B.t’检验C.u 检验(假设是大样本时)D.F检验A.1X=2X,1S=2SB.作两样本t检验,必然得出无差别的结论C.作两方差齐性的F检验,必然方差齐D.分别由甲、乙两样本求出的总体均数的95%可信区间,很可能有重叠10.以下关于参数点估计的说法正确的是A.CV越小,表示用该样本估计总体均数越可靠B.σ越小,表示用该样本估计总体均数越准确XC.σ越大,表示用该样本估计总体均数的可靠性越差XD.S越小,表示用该样本估计总体均数越可靠(二)名词解释(三)是非题1.若两样本均数比较的假设检验结果P值远远小于0.01,则说明差异非常大。

P小于0.01只能说明两样本均数有差异,但并不能说明差异的大小。

2.对同一参数的估计,99%可信区间比90%可信区间好。

本科《医学统计学》第6版单选题

本科《医学统计学》第6版单选题

《医学统计学》单项选择题摘自:李康,贺佳主编.医学统计学.第6版.北京:人民卫生出版社,2013第一章绪论1. 医学统计学研究的对象是()A. 医学中的小概率事件B. 各种类型的数据C. 动物和人的本质D. 有变异的医学事物E.疾病的预防与治疗2. 用样本推论总体,具有代表性的样本通常指的是()A.总体中最容易获得的部分个体B.在总体中随意抽取任意个体C.挑选总体中的有代表性的部分个体D.用方法抽取的部分个体E.依照随机原则抽取总体中的部分个体3. 下列观测结果属于有序数据的是()A.收缩压测量值B.脉搏数C.住院天数D.病情程度E.四种血型4. 随机误差指的是()A. 由某些固定因素引起的误差B. 由不可预知的偶然因素引起的误差C. 选择样本不当引起的误差D. 选择总体不当引起的误差E. 由操作失误引起的误差5. 系统误差指的是()A. 由某些固定因素引起的误差B. 由操作失误引起的误差C. 选择样本不当引起的误差D. 样本统计量与总体参数间的误差E. 由不可预知的偶然因素引起的误差6. 抽样误差指的是()A. 由某些固定因素引起的误差B. 由操作失误引起的误差C. 选择样本不当引起的误差D. 样本统计量与总体参数间的误差E. 由不可预知的偶然因素引起的误差7. 收集资料不可避免的误差是()A. 随机误差B. 系统误差C. 过失误差D. 记录误差E.仪器故障误差8. 统计学中所谓的总体通常指的是()A. 自然界中的所有研究对象B. 概括性的研究结果C. 同质观察单位的全体D. 所有的观察数据E.具有代表性意义的数据9. 医学统计学中所谓的样本通常指的是A. 可测量的生物样品B. 统计量C. 某一变量的测量值D. 数据中有代表性的一部分E.总体中有代表性的部分观察单位10. 医学研究中抽样误差的主要来源是()A. 测量仪器不够准确B. 检测出现错误C. 统计设计不够合理D. 生物个体的变异E.样本量不够答案:1.D 2.E 3.D 4.B 5.A 6.D 7.A 8.C 9.E 10.D第二章定量数据的统计描述1. 某医学资料数据大的一端没有确定数值,描述其集中趋势适用的统计指标是()A. 中位数B. 几何均数C. 均数D. P95百分位数E. 频数分布2. 算术均数与中位数相比,其特点是()A.不易受极端值的影响B.能充分利用数据的信息C.抽样误差较大D.更适用于偏态分布资料E.更适用于分布不明确资料3. 将一组计量资料整理成频数表的主要目的是A.化为计数资料 B. 便于计算C. 提供原始数据D. 为了能够更精确地检验E. 描述数据的分布特征4. 6人接种流感疫苗一个月后测定抗体滴度为1:20、1:40、1:80、1:80、1:160、1:320,求平均滴度应选用的指标是A. 均数B. 几何均数C. 中位数D. 百分位数E. 倒数的均数5. 变异系数主要用于()A. 比较不同计量指标的变异程度B. 衡量正态分布的变异程度C. 衡量测量的准确度D. 衡量偏态分布的变异程度E. 衡量样本抽样误差的大小6. 对于正态或近似正态分布的资料,描述其变异程度应选用的指标是()A. 变异系数B. 离均差平方和C. 极差D. 四分位数间距E. 标准差7.已知动脉硬化患者载脂蛋白B的含量(mg/dl)呈明显偏态分布,描述其个体差异的统计指标应使用()A.全距B.标准差C.变异系数D.方差E.四分位数间距8. 一组原始数据呈正偏态分布,其数据的特点是A. 数值离散度较小B. 数值离散度较大C. 数值分布偏向较大一侧D. 数值分布偏向较小一侧E. 数值分布不均匀9. 对于正偏态分布总体,其均数与中位数的关系是()A. 均数与中位数相同B. 均数大于中位数C. 均数小于中位数D. 两者有一定的数量关系E. 两者数量关系不定10. 在衡量数据的变异度时,标准差与方差相比,其主要特点是()A. 标准差小于方差B. 标准差大于方差C. 标准差更容易计算D. 标准差更为准确E. 标准差的计量单位与原始数据相同答案 1. A 2. B 3. E 4. B 5. A 6. E 7. E 8. D 9. B 10. E第三章正态分布与医学参考值范围1. 正态曲线下,横轴上从均数到+∞的面积为()A.50% B.95% C. 97.5% D.99% E.不能确定(与标准差的大小有关)2. 标准正态分布的形态参数和位置参数分别为()A.0,1 B. 1,0 C. µ,σ D. σ,µ E. S,X3. 正态分布的均数、中位数和几何均数之间的关系为()A. 均数与几何均数相等B. 均数与中位数相等C. 中位数与几何均数相等D. 均数、中位数、几何均数均不相等E. 均数、中位数、几何均数均相等4.正常成年男子的红细胞计数近似服从正态分布,已知X =4.78×1012/L ,S=0.38×1012/L ,z=(4.00-4.78)/0.38=-2.05,1-Φ (z)= 1-Φ (-2.05)=0.9798,则理论上红细胞计数为( )A .高于4.78×1012/L 的成年男子占97.98%B .低于4.78×1012/L 的成年男子占97.98%C .高于4.00×1012/L 的成年男子占97.98%D .低于4.00×1012/L 的成年男子占97.98%E .在4.00×1012/L 至4.78×1012/L 的成年男子占97.98%5. 某项指标95%医学参考值范围表示的是( )A. 在此范围 “异常”的概率大于或等于95%B. 在此范围 “正常”的概率大于或等于95%C. 在“异常”总体中有95%的人在此范围之外D. 在“正常”总体中有95%的人在此范围E. 在人群中检测指标有5%的可能超出此范围6. 确定某项指标的医学参考值范围时,“正常人”指的是( )A. 从未患过疾病的人B. 患过疾病但不影响研究指标的人C. 排除了患过某种疾病的人D. 排除了影响研究指标的疾病或因素的人E. 健康状况良好的人7. 确定某项指标的医学参考值范围时,“正常人”指的是( )A. 从未患过疾病的人B. 患过疾病但不影响研究指标的人C. 排除了患过某种疾病的人D. 排除了影响研究指标的疾病或因素的人E. 健康状况良好的人8. 要评价某地区一名5岁男孩的身高是否偏高,其统计学方法是( )A. 用均数来评价B. 用中位数来评价C. 用几何均数来评价D. 用变异系数来评价E. 用参考值范围来评价9.应用百分位数法估计参考值范围的条件是( )A .数据服从正态分布B .数据服从偏态分布C .有大样本数据D .数据服从对称分布E .数据变异不能太大10.某市1974年238名居民的发汞含量(µmol/kg )如下,则该地居民发汞值的95%医学参考值范围是( )发汞值(µmol/kg )15~ 35~ 55~ 75~ 95~ 115~ 135~ 155~ 175~ 195~215 人数 20 66 60 48 18 16 6 1 0 3A .<P 95B .>P 5C .(P 2.5,P 97.5)D .S X 96.1±E .S X 96.1±答案 1. A 2. B 3. B 4. C 5. D 6. D 7. C 8. E 9. B 10. A第四章定性数据的统计描述1. 如果一种新的治疗方法能够使不能治愈的疾病得到缓解并延长生命,则应发生的情况是()A. 该病患病率增加B. 该病患病率减少C. 该病的发病率增加D. 该病的发病率减少E. 该疾病的死因构成比增加2. 计算乙肝疫苗接种后血清学检查的阳转率,分母为()A. 乙肝易感人数B. 平均人口数C. 乙肝疫苗接种人数D. 乙肝患者人数E. 乙肝疫苗接种后的阳转人数3. 计算标准化死亡率的目的是A. 减少死亡率估计的偏倚B. 减少死亡率估计的抽样误差C. 便于进行不同地区死亡率的比较D. 消除各地区内部构成不同的影响E. 便于进行不同时间死亡率的比较4. 已知男性的钩虫感染率高于女性,今欲比较甲乙两乡居民的钩虫感染率,但甲乡女性居民多,而乙乡男性居多,适当的比较方法是()A. 两个率直接比较B. 两个率间接比较C. 直接对感染人数进行比较D. 计算标准化率比较E. 不具备可比性5. 甲县恶性肿瘤粗死亡率比乙县高,经标准化后甲县恶性肿瘤标化死亡率比乙县低,其原因最有可能是()A. 甲县的诊断水平高B. 甲县的肿瘤防治工作比乙县好C. 甲县的人口健康水平高D. 甲县的老年人口在总人口中所占比例更小E. 甲县的老年人口在总人口中所占比例更大6. 相对危险度RR的计算方法是()A. 两个标准化率之比B. 两种不同疾病的发病人数之比C. 两种不同疾病患病率之比D. 两种不同疾病的发病率之比E. 两种不同条件下某疾病发生的概率之比7. 比数比OR值表示的是()A. 两个标准化率的差别大小B. 两种不同疾病的发病率差别程度C. 两种不同疾病患病率差别程度D. 两种不同疾病的严重程度E. 两种不同条件下某疾病发生的危险性程度8. 计算患病率时的平均人口数的计算方法是()A. 年初人口数和年末人口数的平均值B. 全年年初的人口数C. 全年年末人口数D. 生活满一年的总人口数E. 生活至少在半年以上的总人口数9. 死因构成比反映的是()A. 各种疾病发生的严重程度B. 疾病发生的主要原因C. 疾病在人群的分布情况D. 各种死因的相对重要性E. 各种疾病的死亡风险大小10. 患病率与发病率的区别是()A. 患病率高于发病率B. 患病率低于发病率C. 计算患病率不包括新发病例D. 发病率更容易获得E. 患病率与病程有关答案 1. A 2. C 3. D 4. D 5. E 6. E 7. E 8. A 9. D 10. E第五章统计表与统计图1.统计表的主要作用是()A. 便于形象描述和表达结果B. 客观表达实验的原始数据C. 减少论文篇幅D. 容易进行统计描述和推断E. 代替冗长的文字叙述和便于分析对比2.描述某疾病患者年龄(岁)的分布,应采用的统计图是()A.线图B.直条图C.百分条图D.直方图E.箱式图3.高血压临床试验分为试验组和对照组,分析考虑治疗0周、2周、4周、6周、8周血压的动态变化和改善情况,为了直观显示出两组血压平均变动情况,宜选用的统计图是()A.半对数线图B.线图C.直条图D.直方图E.百分条图4.研究三种不同麻醉剂在麻醉后的镇痛效果,采用计量评分法,分数呈偏态分布,比较终点时分数的平均水平及个体的变异程度,应使用的图形是()A. 复式条图B. 复式线图C. 散点图D. 直方图E. 箱式图5. 研究血清低密度脂蛋白LDL与载脂蛋白B-100的数量依存关系,应绘制的图形是()A. 直方图B. 箱式图C. 线图D. 散点图E. 直条图6.下列统计图适用于表示构成比关系的是()A. 直方图B. 箱式图C. 误差条图、条图D. 散点图、线图E. 圆图、百分条图7. 有些资料构成统计表时,下列哪一项可以省略()A. 标题B. 标目C. 线条D. 数字E. 备注8.绘制下列统计图纵轴坐标刻度必须从“0”开始的有()A. 圆图B. 百分条图C. 线图D. 半对数线图E. 直方图9.描述某现象频数分布情况可选择()A. 圆图B. 百分条图C. 箱式图D. 误差条图E. 直方图10.对比某种清热解毒药物和对照药物的疗效,其单项指标为口渴、身痛、头痛、咳嗽、流涕、鼻塞、咽痛和发热的有效率,应选用的统计图是()A. 圆图B. 百分条图C. 箱式图D. 复式条图E. 直方图答案 1. E 2. D 3. B 4. E 5. D 6. E 7. E 8. E 9. E 10. D第六章参数估计与假设检验1. 样本均数的标准误越小说明()A. 观察个体的变异越小B. 观察个体的变异越大C. 抽样误差越大D. 由样本均数估计总体均数的可靠性越小E. 由样本均数估计总体均数的可靠性越大2. 抽样误差产生的原因是()A. 样本不是随机抽取B. 测量不准确C. 资料不是正态分布D. 个体差异E. 统计指标选择不当3. 要减少抽样误差,通常的做法是()A. 减少系统误差B. 将个体变异控制在一定范围内C. 减小标准差D. 控制偏倚E. 适当增加样本含量4. 对于正偏态分布的的总体, 当样本含量足够大时, 样本均数的分布近似为()A. 正偏态分布B. 负偏态分布C. 正态分布D. t分布E. 标准正态分布5. 用某种中成药治疗高血压患者100名,总有效率为80.2%,标准误为0.038,则总有效率的95%可信区间估计为()A. 0.082±1.64×0.083B. 0.082±1.96×0.083C. 0.082±2.58×0.083D. > (0.082-1.64×0.083)E. <(0.082+1.64×0.083)6. 根据样本资料算得健康成人白细胞计数的95%可信区间为7.2×109/L ~9.1×109/L ,其含义是( )A. 估计总体中有95%的观察值在此范围内B. 总体均数在该区间的概率为95%C. 样本中有95%的观察值在此范围内D. 该区间包含样本均数的可能性为95%E. 该区间包含总体均数的可能性为95%7. 某地抽取正常成年人200名,测得其血清胆固醇的均数为3.64mmol/L ,标准差为1.20 mmol/L ,则该地正常成年人血清胆固醇均数的95%可信区间是( )A. 3.64±1.96×1.20B. 3.64±1.20C. 200/20.196.164.3×±D. 200/20.158.264.3×±E. 3.64±2.58×1.208. 假设检验的目的是A. 检验参数估计的准确度B. 检验样本统计量是否不同C. 检验样本统计量与总体参数是否不同D. 检验总体参数是否不同E. 检验样本的P 值是否为小概率9. 假设检验差别有统计学意义时,P 值越小,说明( )A. 样本均数差别越大B. 总体均数差别越大C. 认为样本之间有差别的统计学证据越充分D. 认为总体之间有差别的统计学证据越充分E. 认为总体之间有差别的统计学证据越不充分10. 关于假设检验,正确的说法( )A. 检验水准必须设为0.05B. 必须采用双侧检验C. 必须根据样本大小选择检验水准D. 必须建立无效假设E. 要说明无效假设正确,必须计算P 值答案 1. E 2. D 3. E 4. C 5. B 6. E 7. C 8. D 9. D 10. D第七章 t 检验1. 两样本均数之差的标准误反映的是( )A. 两样本数据集中趋势的差别B. 两样本数据的变异程度C. t 分布的不同形状D. 数据的分布特征E. 两样本均数之差的变异程度2. 两样本均数比较,检验结果05.0>P 说明( )A. 两总体均数的差别较小B. 两总体均数的差别较大C. 支持两总体无差别的结论D. 不支持两总体有差别的结论E. 可以确认两总体无差别3. 由两样本均数的差别推断两总体均数的差别, 其差别有统计学意义是指( )A. 两样本均数的差别具有实际意义B. 两总体均数的差别具有实际意义C. 两样本和两总体均数的差别都具有实际意义D. 有理由认为两样本均数有差别E. 有理由认为两总体均数有差别4. 两样本均数比较,差别具有统计学意义时,P 值越小说明( )A. 两样本均数差别越大B. 两总体均数差别越大C. 越有理由认为两样本均数不同D. 越有理由认为两总体均数不同E. 越有理由认为两样本均数相同5. 假设检验中的Ⅱ类错误指的是( )A. 可能出现的误判错误B. 可能出现的假阳性错误C. 可能出现的假阴性错误D. 可能出现的无效假设错误E. 可能出现的备择假设错误6. 减少假设检验的Ⅱ类错误,应该使用的方法是( )A. 减少Ⅰ类错误B. 减少测量的系统误差C. 减少测量的随机误差D. 提高检验界值E. 增加样本含量7. 以下不能用配对检验方法的是( )A. 比较15名肝癌患者癌组织和癌旁组织中的Sirt1基因的表达量B. 比较两种检测方法测量15名肝癌患者组织中Sirt1基因的表达量C. 比较早期和晚期肝癌患者各15例癌组织中的Sirt1基因的表达量D. 比较糖尿病患者经某种药物治疗前后糖化血红蛋白的变化E. 比较15名受试者针刺檀中穴前后的痛阈值8. 两独立样本均数 t 检验,其前提条件是( )A. 两总体均数相等B. 两总体均数不等C. 两总体方差相等D. 两总体方差不等E. 两总体均数和两总体方差都相等9. 若将配对设计的数据进行两独立样本均数 t 检验,容易出现的问题是( )A. 增加出现I 类错误的概率B. 增加出现II 类错误的概率C. 检验结果的P 值不准D. 方差齐性检验的结果不准E. 不满足t 检验的应用条件10.两组定量资料比较,当方差不齐时,应该使用的检验方法是( )A. 配对 t 检验B. Satterthwaite t ′ 检验C. 两独立样本均数t 检验D. 方差齐性检验E. z 检验答案 1. E 2. D 3. E 4. D 5. C 6. E 7. C 8. C 9. B 10. B第八章 方差分析1. 方差分析的基本思想是( )A .组间均方大于组内均方B .组内均方大于组间均方C .不同来源的方差必须相等D .两方差之比服从F 分布E .总变异及其自由度可按不同来源分解2. 方差分析的应用条件之一是方差齐性,它是指( )A. 各比较组相应的样本方差相等B. 各比较组相应的总体方差相等C. 组内方差=组间方差D. 总方差=各组方差之和E. 总方差=组内方差 + 组间方差3. 完全随机设计方差分析中的组间均方反映的是( )A. 随机测量误差大小B. 某因素效应大小C. 处理因素效应与随机误差综合结果D. 全部数据的离散度E. 各组方差的平均水平4. 对于两组资料的比较,方差分析与t 检验的关系是( )A. t 检验结果更准确B. 方差分析结果更准确C. t 检验对数据的要求更为严格D. 近似等价E. 完全等价5.多组均数比较的方差分析,如果0.05P <,则应该进一步做的是( )A .两均数的t 检验B .区组方差分析C .方差齐性检验D .SNK-q 检验E .确定单独效应6.完全随机设计的多个样本均数比较,经方差分析,如果0.05P <,则结论为( )A .各样本均数全相等B .各样本均数全不相等C .至少有两个样本均数不等D .至少有两个总体均数不等E .各总体均数全相等7.完全随机设计资料的多个样本均数的比较,若处理无作用,则方差分析的F 值在理论上应接近于( )A .()21,F νναB .误差处理SS SS / C. 0 D. 1 E. 任意值8.对于多个方差的齐性检验,若P < α,可认为( )A .多个样本方差全不相等B .多个总体方差全不相等C .多个样本方差不全相等D .多个总体方差不全相等E .多个总体方差相等9.析因设计的方差分析中,两因素X 与Y 具有交互作用指的是( )A .X 和Y 的主效应相互影响B .X 与Y 对观察指标的影响相差较大C .X 与Y 有叠加作用D .X 对观察指标的作用受Y 水平的影响E .X 与Y 的联合作用较大10.某职业病防治院测定了年龄相近的45名男性用力肺活量,其中石棉肺患者、石棉肺可疑患者和正常人各15名,其中用力肺活量分别为(1.79±0.74)L 、(2.31±0.87)L 和(3.08±0.65)L ,拟推断石棉肺患者、石棉肺可疑患者和正常人的用力肺活量是否不同,宜采用的假设检验方法是( )A .两组均数比较的 t 检验B .方差齐性检验C .完全随机设计方差分析D .随机区组设计方差分析E .析因设计方差分析答案: 1. E 2. B 3. C 4. E 5. D 6. D 7. D 8. D 9. D 10. C第九章 χ2 检验1. 两样本率比较,差别有统计学意义时,P 值越小说明( )A. 两样本率差别越大B. 两总体率差别越大C. 越有理由认为两样本率不同D. 越有理由认为两总体率不同E. 越有理由认为两样本率相同2.欲比较两组阳性反应率, 在样本量非常小的情况下(如1210,10n n <<), 应采用的假设检验方法是( )A. 四格表χ2检验B. 校正四格表χ2检验C. Fisher 确切概率法D. 配对χ2检验E. 校正配对χ2检验3.进行四组样本率比较的χ2检验,如220.01,3χχ>,可认为( )A. 四组样本率均不相同B. 四组总体率均不相同C. 四组样本率相差较大D. 至少有两组样本率不相同E. 至少有两组总体率不相同4. 从甲、乙两文中,查到同类研究的两个率比较的χ2检验,甲文220.01,1χχ>,乙文220.05,1χχ>,可认为( ) A. 两文结果有矛盾 B. 两文结果完全相同C. 甲文结果更为可信D. 乙文结果更为可信E. 甲文说明总体的差异较大5. 两组有效率比较的检验功效相关因素是( )A. 检验水准和样本率B. 总体率差别和样本含量C. 样本含量和样本率D. 总体率差别和理论频数E. 容许误差和检验水准6. 通常分析四格表需用连续性校正χ2检验的情况是( )A. T < 5B. T < 1或 n < 40C. T < 5且n < 40D. 1≤T< 5且n > 40E. T < 5或n < 407. 当四格表的周边合计数不变时,如果某格的实际频数有变化,则其理论频数是( )A. 增大B. 减小C. 不变D. 不确定E. 随该格实际频数的增加而增减8. 对四种药物进行临床试验,计算有效率,规定检验水准α=0.05,若需要进行多重比较,用Bonferroni 方法校正后的检验水准(进行了6次多重比较,校正后的检验水准为0.05/6)应该是( )A. 0.017B. 0.008C. 0.025D. 0.005E. 0.0139. 对药物的四种剂量(0剂量、低剂量、中剂量和高剂量)进行临床试验,计算有效率,规定检验水准α=0.05,若需要进行多重比较(多个实验组与对照组比较),用Bonferroni 方法校正后的检验水准(进行了3次多重比较,校正后的检验水准为0.05/3)应该是( )A. 0.050B. 0.010C. 0.025D. 0.005E. 0.01710. 利用χ2检验公式不适合解决的实际问题是( )A. 比较两种药物的有效率B. 检验某种疾病与基因多态性的关系C. 两组有序试验结果的药物疗效D. 药物三种不同剂量显效率有无差别E. 两组病情“轻、中、重”的构成比例答案: 1. D 2. C 3. E 4. C 5. B 6. D 7. C 8. B 9. E 10. C第十章非参数检验1.对医学计量资料成组比较, 相对参数检验来说,非参数秩和检验的优点是()A. 适用范围广B. 检验效能高C.检验结果更准确 D. 充分利用资料信息E. 不易出现假阴性错误2. 对于计量资料的比较,在满足参数法条件下用非参方法分析,可能产生的结果是()A. 增加Ⅰ类错误B. 增加Ⅱ类错误C. 减少Ⅰ类错误D. 减少Ⅱ类错误E. 两类错误都增加3. 两样本比较的秩和检验,如果样本含量一定,两组秩和的差别越大说明A. 两总体的差别越大B. 两总体的差别越小C. 两样本的差别可能越大D. 越有理由说明两总体有差别E. 越有理由说明两总体无差别4. 多个计量资料的比较,当分布类型未知时,应选择的统计方法是()A. 方差分析B.Wilcoxon T检验C. Kruskal-Wallis H检验D. u检验E. 列联表χ2检验5. 两组数据的秩和检验和t检验相比,其优点是()A. 计算简便B. 检验假设合理C. 检验效能高D. 抽样误差更小E. 对数据分布不做限制6. 两样本比较的秩和检验,其检验统计量T是()A. 例数较小的秩和B. 例数较大的秩和C. 较小的秩和D. 较大的秩和E. 任意一组数据的秩和7. 两样本比较的秩和检验,其无效假设是()A. 两样本有相同的秩和B. 两总体有相同的秩和C. 两样本分布相同D. 两总体分布相同E. 两总体分布的位置相同8. 两样本比较的Wilcoxon秩和检验结果为P值小于0.05,判断孰优孰劣的根据是()A. 比较两样本的秩和大小B. P值大小C. 检验统计量T值大小D. 两样本秩和的差别大小E. 比较两样本平均秩(Mean Rank)的大小9.在一项临床试验研究中,疗效分为“痊愈、显效、有效、无效”四个等级,现欲比较试验组与对照组治疗效果有无差别,宜采用的统计方法是A. Wilcoxon 秩和检验B. 24×列联表χ2检验C. 四格表χ2检验D. Fisher 确切概率法E. 计算标准化率10. 两样本比较的秩和检验中,甲组中最小数据有2个0.2,乙组中最小数据有3个0.2,则数据0.2对应的秩次是( )A. 0.2B. 1.0C. 5.0D. 2.5E. 3.0答案 1. A 2. B 3. D 4. C 5. E 6. A 7. E 8. E 9. A 10. E第十一章 线性相关与回归1. 两数值变量相关关系越强,对应的是( )A. 相关系数越大B. 相关系数的绝对值越大B. 回归系数越大C. 回归系数的绝对值越大E. 相关系数检验统计量的t 值越大2. 回归分析的决定系数2R 越接近于1,说明( )A. 相关系数越大B. 回归方程的显著程度越高C. 应变量的变异越大D. 应变量的变异越小E. 自变量对应变量的影响越大3. 对两变量X 和Y 作简单线性相关分析,要求的条件是( )A. X 和Y 服从双变量正态分布B. X 服从正态分布C. Y 服从正态分布D. X 和Y 有回归关系E. X 和Y 至少有一个服从正态分布4. 两组资料作回归分析,直线回归系数b 较大的一组,表示( )A .相关系数r 也较大较大B .假设检验的P 值较小C .决定系数R 2较大D .决定系数R 2较小E .Y 随X 变化其数量关系有更大的变化5. 1~7岁儿童可以用年龄(岁)估计体重(市斤),回归方程为ˆ144YX =+,若将体重换成国际单位kg ,则此方程( )A .常数项改变B .回归系数改变C .常数项和回归系数都改变D .常数项和回归系数都不改变E .决定系数改变6. 对同一资料进行线性回归与相关分析时,下列正确的情形是( )A .ρ=0时,r=0B .ρ>0时,r>0C .r>0时,b<0D .r<0时,b<0E .ρ<0时,r>07. 下列双变量中,适用于进行线性相关分析的是( )A .年龄与体重B .民族与血型C .体重与体表面积D .母亲文化水平与子女智商E .工龄与患病率8. 若直线回归系数的假设检验结果P<0.05,则可认为两变量间( )A .有密切的关系B .有一定的因果关系C .相关关系密切D .存在数量依存关系E .有较强的回归关系9. 作线性相关分析时,当n=12,r=0.767,查r 界值表823.010,2/001.0=r ,795.010,2/002.0=r ,750.010,2/005.0=r ,则P 值范围为( )A .0.001<P<0.002B .P<0.001C .P<0.002D .P>0.005E .0.002<P<0.00510. 通过线性回归分析(n =48),得决定系数R 2=0.49,则下列说法中错误的是( )A .两个变量具有回归关系B .一定有相关系数r=0.70或r= - 0.70C .假设检验的自由度ν=46D .回归平方和大于剩余平方和E .Y 的总变异有49%可以由X 的变化解释答案 1. B 2. E 3. A 4. E 5. C 6. D 7. C 8. D 9. E 10. D第十二章 多元线性回归1. 在疾病发生危险因素的研究中,采用多变量回归分析的主要目的是( )A .节省样本B .提高分析效率C .克服共线影响D .减少异常值的影响E .减少混杂的影响2. 多元线性回归分析中,反映回归平方和在应变量Y 的总离均差平方和中所占比重的统计量是( )A. 简单相关系数 B .复相关系数C. 偏回归系数D. 回归均方E. 决定系数R 23. 对同一资料作多变量线性回归分析,若对两个具有不同个数自变量的回归方程进行比较,应选用的指标是( )A .决定系数 B. 相关系数C. 偏回归平方和D. 校正决定系数E. 复相关系数。

参数估计假设检验练习题

参数估计假设检验练习题

第三章 假设检验例子例1:某糖厂用自动打包机装糖。

已知每袋糖的重量(单位:千克)服从正态分布()2~,X N μσ。

今随机抽查9袋,称出它们的重量并计算得到*48.5, 2.5x s ==。

取显著性水平0.05α=。

在下列两种情形下分别检验()01:50 :50H H μμ=≠22(1) 4 (2)σσ=未知解:()()2*01220.97512~,48.5, 2.5,9,0.05:50 :50(1) 4 (2)(1) 2.251.962.25 1.96X N x s n H H u uu αμσαμμσσ-=====≠======>糖的重量,现在已知显著性水平,在两种情形下检验:未知解:计算检验统计量的观测值 临界值,因为,所以拒绝原假设即不能认为糖的重量50的平均值是千克,即打包机工作不正常。

()()()()2*0120.97512~,48.5, 2.5,9,0.05:50 :50(2) 1.818 2.306 1.8 2.306X N x s n H H t t n t αμσαμμσ-=====≠===-==<糖的重量,现在已知显著性水平,在两种情形下检验:未知解:计算检验统计量的观测值 临界值,因为,所以不能拒绝原假设,即不能认为打包机工作不正常。

例2:在上题中,试在显著性水平0.1α=下检验()2201: 4 :4H H σσ=>()()()()*2201*22202210.948.5, 2.5,9,0.1: 4 :4112.51813.36212.513.362.x s n H H n s n αασσχσχχ-=====>-==-==<显著性水平,解:计算检验统计量的观测值 临界值,因为,所以不能拒绝原假设,即不能认为打包机工作不正常例3:监测站对某条河流每日的溶解氧(DO )质量浓度记录了30个数据,并由此算得 2.52, 2.05x s ==。

已知这条河流的每日DO 质量浓度服从()2,N μσ,试在显著性水平0.05α=下检验()01: 2.7 : 2.7H H μμ=≠。

医学统计学-高级统计学课后部分习题答案第四版孙振球主编

医学统计学-高级统计学课后部分习题答案第四版孙振球主编

11-多因素实验资料的方差分析11-3(1)本题为4个处理组的2×2析因涉及,因分成3天进行,若将每天的实验结果设为一个区组,先进行随机区组的方差分析:方差分析表1变异来源df SS MS F Sig.总变异11 818.369区组间 2 3.762 1.881 .230 .801处理组间 3 765.529 255.176 31.196 .000误差 6 49.078 8.180从上表可以看出,各区组间差异无统计学意义,即各天的实验结果间无差异。

(3)依据完全随机设计析因试验方法进行方差分析方差齐性检验表F df1 df2 Sig.1.429 3 8 0.304P值大于0.05,尚不能认为方差不齐。

方差分析表2变异来源df SS MS F Sig.总变异11 818.37试样处理方式(A) 1 716.11 716.11 108.42 0.000试样重量(B) 1 36.40 36.40 5.51 0.047AB 1 13.02 13.02 1.97 0.198误差8 52.84 6.605结局:可以认为高锰酸盐处理及试样重量均会对甘蓝叶核黄素浓度测定产生影响,尚不能认为高猛酸盐及试样重量的交互作用会对甘蓝叶核黄素浓度测量有影响。

11-4假定不存在高阶交互作用,仅对A、B、C、D、E5个因素的主效应进行分析,采用正交设计的方差分析法:正交设计的方差分析变异来源df SS MS F Sig.总变异15 3495.366A 1 540.911 540.911 21.714 .001B 1 1743.689 1743.689 69.998 .000C 1 787.223 787.223 31.602 .000D 1 82.038 82.038 3.293 .100E 1 92.400 92.400 3.709 .083误差10 249.104 24.910从上表可以看出,A、B、C三个因素的主效应有统计学意义(P<0.05),即A、B、C三个参数对高频呼吸机的通气量有影响。

mba参数估计假设检验参考答案

mba参数估计假设检验参考答案

mba参数估计假设检验参考答案1.某公司雇⽤2 000名推销员,并希望估计其平均每年的乘车⾥程。

从过去的经验可知,通常每位推销员⾏程的标准差为5 000公⾥。

随机选取的25辆汽车样本的均值为14 000公⾥。

1)求出总体均值µ所需要的估计量;14 0002)确定总体均值µ95%的置信区间;(14000±1.96*5000/5)。

虽是⼩样本,但“从过去的经验可知,通常每位推销员⾏程的标准差为5 000公⾥”这句话,表明总体服从正太分布且标准差已知,所以⽤最基本的公式。

3)公司经理们认为均值介于13 000到15 000公⾥之间,那么该估计的置信度是多少?对应的Z在-1-+1之间,所以置信度为68.26%。

这⾥要注意的是应⽤均值的分布。

4)如果在3)的估计中希望有95%的置信⽔平,那么所要求的样本容量是多少。

96=1.962*50002/100022.⽣产隐形眼镜的某公司⽣产⼀种新的型号,据说其寿命⽐旧型号的寿命长。

请6个⼈对该新型眼镜做实验,得出平均寿命为4.6年,标准差为0.49年。

构造该新型眼镜的平均寿命90%的置信区间。

⼩样本且总体标准差未知,⽤t公式。

4.6±2.015*0.49/2.453.假设某⼚家⽣产的可充电的电池式螺丝⼑的使⽤寿命近似于正态分布。

对15个螺丝⼑进⾏测试,并发现其平均寿命为8 900⼩时,样本标准差为500⼩时。

1)构造总体均值置信⽔平为95%的区间估计;8900±2.145*500/3.872)构造总体均值置信⽔平为90%的区间估计;8900±1.761*500/3.874.电话咨询服务部门在每次通话结束时都要记录下通话的时间。

从⼀个由16个记录组成的简单随机样本得出⼀次通话的平均时间为1.6分钟。

试求总体平均值的置信度为90%的置信区间。

已知总体服从标准差为0.7分钟的正态分布。

1.6±1.645*0.7/45.某仓库中有200箱⾷品,每箱⾷品均装100个。

参数估计习题答案

参数估计习题答案

参数估计习题答案参数估计是指在统计学中,根据样本数据来估计总体参数的过程。

以下是一些参数估计习题的答案示例:1. 简单随机抽样的均值估计:假设我们有一个总体,其均值未知,我们从这个总体中随机抽取了一个样本,样本均值(\(\bar{x}\))可以用来估计总体均值(\(\mu\))。

如果样本量足够大,根据中心极限定理,样本均值的分布接近正态分布。

样本均值的估计值为:\[\hat{\mu} = \bar{x}\]2. 总体比例的点估计:如果我们要估计一个二项分布的总体比例(\(p\)),我们可以使用样本比例(\(\hat{p}\))作为点估计。

样本比例的计算公式为:\[\hat{p} = \frac{\text{样本中具有特定特征的个体数}}{\text{样本总数}}\]3. 总体方差的估计:总体方差(\(\sigma^2\))可以通过样本方差(\(s^2\))来估计。

样本方差的计算公式为:\[s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2\]其中,\(n\) 是样本大小,\(x_i\) 是第 \(i\) 个样本值。

4. 总体标准差的估计:总体标准差(\(\sigma\))可以通过样本标准差(\(s\))来估计。

样本标准差的计算公式为:\[s = \sqrt{s^2}\]5. 置信区间的计算:如果我们想要得到总体均值的95%置信区间,我们可以使用以下公式:\[\text{置信区间} = \bar{x} \pm z_{\alpha/2} \times\frac{s}{\sqrt{n}}\]其中,\(z_{\alpha/2}\) 是标准正态分布的临界值,对应于置信水平(例如,对于95%置信水平,\(z_{\alpha/2} = 1.96\))。

6. 假设检验:在假设检验中,我们通常使用样本统计量来检验关于总体参数的假设。

例如,如果我们想要检验总体均值是否等于某个特定值(\(\mu_0\)),我们可以使用以下检验统计量:\[t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}\]然后,我们可以根据自由度(\(df = n - 1\))和显著性水平(\(\alpha\))来确定拒绝域,并做出决策。

统计学第七章、第八章课后题答案

统计学第七章、第八章课后题答案

统计学复习笔记第七章 参数估计一、 思考题1. 解释估计量和估计值在参数估计中,用来估计总体参数的统计量称为估计量。

估计量也是随机变量。

如样本均值,样本比例、样本方差等。

根据一个具体的样本计算出来的估计量的数值称为估计值。

2. 简述评价估计量好坏的标准(1)无偏性:是指估计量抽样分布的期望值等于被估计的总体参数。

(2)有效性:是指估计量的方差尽可能小。

对同一总体参数的两个无偏估计量,有更小方差的估计量更有效。

(3)一致性:是指随着样本量的增大,点估计量的值越来越接近被估总体的参数。

3. 怎样理解置信区间在区间估计中,由样本统计量所构造的总体参数的估计区间称为置信区间。

置信区间的论述是由区间和置信度两部分组成。

有些新闻媒体报道一些调查结果只给出百分比和误差(即置信区间),并不说明置信度,也不给出被调查的人数,这是不负责的表现。

因为降低置信度可以使置信区间变窄(显得“精确”),有误导读者之嫌。

在公布调查结果时给出被调查人数是负责任的表现。

这样则可以由此推算出置信度(由后面给出的公式),反之亦然。

4. 解释95%的置信区间的含义是什么置信区间95%仅仅描述用来构造该区间上下界的统计量(是随机的)覆盖总体参数的概率。

也就是说,无穷次重复抽样所得到的所有区间中有95%(的区间)包含参数。

不要认为由某一样本数据得到总体参数的某一个95%置信区间,就以为该区间以的概率覆盖总体参数。

5. 简述样本量与置信水平、总体方差、估计误差的关系。

1. 估计总体均值时样本量n 为2. 样本量n 与置信水平1-α、总体方差、估计误差E 之间的关系为与置信水平成正比,在其他条件不变的情况下,置信水平越大,所其中: 2222α2222)(E z n σα=n z E σα2=需要的样本量越大;与总体方差成正比,总体的差异越大,所要求的样本量也越大;与与总体方差成正比,样本量与估计误差的平方成反比,即可以接受的估计误差的平方越大,所需的样本量越小。

考研数学一(参数估计和假设检验)模拟试卷2(题后含答案及解析)

考研数学一(参数估计和假设检验)模拟试卷2(题后含答案及解析)

考研数学一(参数估计和假设检验)模拟试卷2(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.设为未知参数θ的无偏一致估计,且是θ2的( )A.无偏一致估计。

B.无偏非一致估计。

C.非无偏一致估计。

D.非无偏非一致估计。

正确答案:C解析:根据无偏估计和一致估计的概念可得的非无偏一致估计,故选C。

知识模块:参数估计2.设是取自总体X中的简单随机样本X1,X2,…,Xn的样本均值,则是μ的矩估计,如果( )A.X~N(μ,σ2)。

B.X服从参数为μ的指数分布。

C.P{X=m}=μ(1—μ)m—1,m=1,2,…。

D.X服从[0,μ]上均匀分布。

正确答案:A解析:若X~N(μ,σ2),则E(X)=μ,μ的矩估计为,故选A。

对于选项B,X服从参数为μ的指数分布,则E(X)=,μ的矩估计,对于选项C,X服从参数为μ的几何分布,E(X)=,μ的矩估计,对于选项D,E(X)=,μ的矩估计。

知识模块:参数估计3.总体均值μ置信度为95%的置信区间为,其含义是( )A.总体均值μ的真值以95%的概率落入区间。

B.样本均值以95%的概率落入区间。

C.区间含总体均值μ的真值的概率为95%。

D.区间含样本均值的概率为95%。

正确答案:C解析:根据置信区间的概念,故选C。

均值μ是一个客观存在的数,说“μ以95%的概率落入区间”是不妥的,所以不选A,而B、D两项均与μ无关,无法由它确定μ的置信区间。

知识模块:参数估计4.下列关于总体X的统计假设H0属于简单假设的是( )A.X服从正态分布,H0:E(X)=0。

B.X服从指数分布,H0:E(X)≥1。

C.X服从二项分布,H0:D(X)=5。

D.X服从泊松分布,H0:D(X)=3。

正确答案:D解析:A、B、C三项的假设都不能完全确定总体的分布,所以是复合假设,而D选项的假设可以完全确定总体分布,因而是简单假设,故选D。

概率论与数理统计实验实验3参数估计假设检验

概率论与数理统计实验实验3参数估计假设检验

概率论与数理统计实验实验3 参数估计假设检验实验目的实验内容直观了解统计描述的基本内容。

2、假设检验1、参数估计3、实例4、作业一、参数估计参数估计问题的一般提法X1, X2,…, Xn要依据该样本对参数作出估计,或估计的某个已知函数.现从该总体抽样,得样本设有一个统计总体,总体的分布函数向量). 为F(x, ),其中为未知参数( 可以是参数估计点估计区间估计点估计——估计未知参数的值区间估计——根据样本构造出适当的区间,使他以一定的概率包含未知参数或未知参数的已知函数的真?(一)、点估计的求法1、矩估计法基本思想是用样本矩估计总体矩.令设总体分布含有个m未知参数??1 ,…,??m解此方程组得其根为分别估计参数??i ,i=1,...,m,并称其为??i 的矩估计。

2、最大似然估计法(二)、区间估计的求法反复抽取容量为n的样本,都可得到一个区间,这个区间可能包含未知参数的真值,也可能不包含未知参数的真值,包含真值的区间占置信区间的意义1、数学期望的置信区间设样本来自正态母体X(1) 方差?? 2已知, ?? 的置信区间(2) 方差?? 2 未知, ?? 的置信区间2、方差的区间估计未知时, 方差?? 2 的置信区间为(三)参数估计的命令1、正态总体的参数估计设总体服从正态分布,则其点估计和区间估计可同时由以下命令获得:[muhat,sigmahat,muci,sigmaci] = normfit(X,alpha)此命令以alpha 为显著性水平,在数据X下,对参数进行估计。

(alpha缺省时设定为0.05),返回值muhat是X的均值的点估计值,sigmahat是标准差的点估计值, muci是均值的区间估计,sigmaci是标准差的区间估计.例1、给出两列参数?? =10, ??=2正态分布随机数,并以此为样本值,给出?? 和?? 的点估计和区间估计命令:r=normrnd(10,2,100,2);[mu,sigm,muci,sigmci]=normfit(r);[mu1,sigm1,muci1,si gmci1]=normfit(r,0.01);mu=9.8437 9.9803sigm=1.91381.9955muci=9.4639 9.584310.2234 10.3762sigmci=1.68031.75202.2232 2.3181mu1=9.8437 9.9803sigm1=1.91381.9955muci1=9.3410 9.456210.3463 10.5043sigmci1=1.6152 1.68412.3349 2.4346例2、产生正态分布随机数作为样本值,计算区间估计的覆盖率。

习题八假设检验答案

习题八假设检验答案

习题八假设检验答案(总13页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--习题八 假设检验一、填空题1.设12,,...,n X X X 是来自正态总体的样本,其中参数2,μσ未知,则 检验假设0:0H μ=的t -t -检验使用统计量tX2.设12,,...,n X X X 是来自正态总体的样本,其中参数μ未知,2σ已知。

要检验假设0μμ=应用 U 检验法,检验的统计量是X U =0H 成立时该统计量服从N (0,1) 。

3.要使犯两类错误的概率同时减小,只有 增加样本容量 ;4 . 设12,,...,n X X X 和12,,...,m Y Y Y 分别来自正态总体2~(,)X X X N μσ和2~(,)Y Y Y N μσ,两总体相互独立。

(1)当X σ和Y σ已知时,检验假设0:X Y H μμ=所用的统计量为X YU =0H 成立时该统计量服从 N (0,1) 。

(2)若X σ和Y σ未知,但X Y σσ= ,检验假设0:X Y H μμ=所用的统计量 为X YT =0H 成立时该统计量服从(2)t m n +- 。

5.设12,,...,n X X X 是来自正态总体的样本,其中参数μ未知,要检验假设 2200:H σσ=,应用 2χ 检验法,检验的统计量是 2220(1)n S χσ-=;当0H 成立时,该统计量服从 2(1)n χ- 。

6.设12,,...,n X X X 和12,,...,m Y Y Y 分别来自正态总体2~(,)X X X N μσ和2~(,)Y Y Y N μσ,两总体相互独立。

要检验假设220:X YH σσ=,应用 F 检验法,检验的统计量为 22XYS F S = 。

7.设总体22~(,),,X N μσμσ 都是未知参数,把从X 中抽取的容量为n 的 样本均值记为X ,样本标准差记为S (修正),在显著性水平α下,检验假设 01:80;:80;H H μμ=≠的拒绝域为 2||(1)T t n α≥- 在显著性水平α下,检验假设22220010:;:;H H σσσσ=≠的拒绝域为 222(1)n αχχ≥-或222(1)n αχχ≤- ;8.设总体22~(,),,X N μσμσ都是未知参数,把从X 中抽取的容量为n 的样本均值记为X ,样本标准差记为S (修正),当2σ已知时,在显著性水平α下,检验假设0010:;:H H μμμμ≥<的统计量为 X U ={}U u α≤- 。

Matlab参数估计和假设检验:详解+实例

Matlab参数估计和假设检验:详解+实例
优点:简单易行 缺点:精度不高
(3)极大似然估计:
原理:一个随机试验如有若干个可能的结果A,B,
C,...。若在一次试验中,结果A发生了,则有理由认为试 验条件对A出现有利,也即A出现的概率很大。
定义 给定样本观测值 挑选使似然函数 即选取 ,使
,在 的可能取值范围内 达到最大值的 作为 的估计值,
思想:用样本矩来替换总体矩 理论基础:大数定律
做法
1=1(1,2 ,,k )
2 =2 (1,2 ,,k )
k =k (1,2 ,,k )
ˆ1=1( A1, A2 ,, Ak ) ˆ2 =2 ( A1, A2 ,, Ak ) ˆk =k ( A1, A2 ,, Ak )
12==12((11,,22,,,,kk)) k =k (1, 2 ,, k )
这就要用到参数估计和假设检验的知识
一、参数估计
一、参数估计 1.点估计 (1)点估计的概念
总体X F(x; ),
未知参数 (1,2 ,,k )
利用样本( X1, X 2,, X n )来估计
估计量ˆ g( X1, X 2 ,, X n )
估计值ˆ g(x1, x2 ,, xn )
(2).矩估计
166.2 173.5 167.9 171.7 168.7 175.6 179.6 171.6 168.1 172.2
(1)试观察17岁城市男生身高属于那种分布,如何对其平均身高做出 估计? (2)又查到20年前同一所学校同龄男生的平均身高为168cm,根据 上面的数据回答,20年来17岁男生的身高是否发生了变化 ?
0 0 0
0 0 0
拒绝域
z z z z z z / 2 t t (n 1) t t (n 1) t t /2 (n 1)

参数估计和假设检验习题解答

参数估计和假设检验习题解答

参数估计和假设检验习题解答(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--参数估计和假设检验习题1.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。

问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600解: 01:1600, :1600,H H μμ=≠标准差σ已知,拒绝域为2Z z α>,取0.05,α=26,n =0.0250.97521.96z z z α===,由检验统计量1.25 1.96Z ===<,接受0:1600H μ=,即,以95%的把握认为这批产品的指标的期望值μ为1600.2.某纺织厂在正常的运转条件下,平均每台布机每小时经纱断头数为根,各台布机断头数的标准差为根,该厂进行工艺改进,减少经纱上浆率,在200台布机上进行试验,结果平均每台每小时经纱断头数为根,标准差为根。

问,新工艺上浆率能否推广(α=解: 012112:, :,H H μμμμ≥<3.某电器零件的平均电阻一直保持在Ω,改变加工工艺后,测得100个零件的平均电阻为Ω,如改变工艺前后电阻的标准差保持在Ω,问新工艺对此零件的电阻有无显著影响(α=解: 01: 2.64, : 2.64,H H μμ=≠已知标准差σ=,拒绝域为2Z z α>,取0.02520.05, 1.96z z αα===,100,n =由检验统计量 3.33 1.96Z ===>,接受1: 2.64H μ≠,即, 以95%的把握认为新工艺对此零件的电阻有显著影响.4.有一批产品,取50个样品,其中含有4个次品。

在这样情况下,判断假设H 0:p ≤是否成立(α=解: 01:0.05, :0.05,H p H p ≤>采用非正态大样本统计检验法,拒绝域为Z z α>,0.950.05, 1.65z α==,50,n =由检验统计量0.9733Z ===<,接受H 0:p ≤.即, 以95%的把握认为p ≤是成立的.5.某产品的次品率为,现对此产品进行新工艺试验,从中抽取4O0件检验,发现有次品56件,能否认为此项新工艺提高了产品的质量(α=解: 01:0.17, :0.17,H p H p ≥<采用非正态大样本统计检验法,拒绝域为Z z α<-,400,n =0.950.05, 1.65z α=-=-,由检验统计量4001.5973i x npZ -===-∑>, 接受0:0.17H p ≥,即, 以95%的把握认为此项新工艺没有显著地提高产品的质量.6.从某种试验物中取出24个样品,测量其发热量,计算得x =11958,样本标准差s =323,问以5%的显著水平是否可认为发热量的期望值是12100(假定发热量是服从正态分布的)解: 01:12100, :12100,H H μμ=≠总体标准差σ未知,拒绝域为2(1)t t n α>-,24,n = x =11958,s =323,0.0250.05,(23) 2.0687t α==, 由检验统计量2.1537t ===>,拒绝0:12100H μ=,接受1:12100,H μ≠ 即, 以95%的把握认为试验物的发热量的期望值不是12100.7.某食品厂用自动装罐机装罐头食品,每罐标准重量为500克,每隔一定时间需要检查机器工作情况。

统计学习题区间估计与假设检验

统计学习题区间估计与假设检验

统计学习题区间估计与假设检验第五章一、单项选择题抽样与参数估计1、某品牌袋装糖果重量的标准是(500±5)克。

为了检验该产品的重量是否符合标准,现从某日生产的这种糖果中随机抽查10袋,测得平均每袋重量为498克。

下列说法中错误的是(B)A、样本容量为10B、抽样误差为2C、样本平均每袋重量是估计量D、498是估计值2、设总体均值为100,总体方差为25,在大样本情况下,无论总体的分布形式如何,样本平均数的分布都服从或近似服从趋近于(D)A、N(100,25)B、N(100,5/n)C、N(100/n,25)D、N(100,25/n)3、在其他条件不变的情况下,要使置信区间的宽度缩小一半,样本量应增加(C)A、一半B、一倍C、三倍D、四倍4、在其他条件不变时,置信度(1–α)越大,则区间估计的(A)A、误差范围越大B、精确度越高C、置信区间越小D、可靠程度越低5、其他条件相同时,要使抽样误差减少1/4,样本量必须增加(C)A、1/4B、4倍C、7/9D、3倍6、在整群抽样中,影响抽样平均误差的一个重要因素是(C)A、总方差B、群内方差C、群间方差D、各群方差平均数7、在等比例分层抽样中,为了缩小抽样误差,在对总体进行分层时,应使(B)尽可能小A、总体层数B、层内方差C、层间方差D、总体方差8、一般说来,使样本单位在总体中分布最不均匀的抽样组织方式是(D)A、简单随机抽样B、分层抽样C、等距抽样D、整群抽样9、为了了解某地区职工的劳动强度和收入状况,并对该地区各行业职工的劳动强度和收入情况进行对比分析,有关部门需要进行一次抽样调查,应该采用(A)A、分层抽样B、简单随机抽样C、等距(系统)抽样D、整群抽样10、某企业最近几批产品的优质品率分别为88%,85%,91%,为了对下一批产品的优质品率进行抽样检验,确定必要的抽样数目时,P应选(A)A、85%B、87.7%C、88%D、90%二、多项选择题1、影响抽样误差大小的因素有(ADE)A、总体各单位标志值的差异程度B、调查人员的素质C、样本各单位标志值的差异程度D、抽样组织方式E、样本容量2、某批产品共计有4000件,为了了解这批产品的质量,从中随机抽取200件进行质量检验,发现其中有30件不合格。

考研数学一(参数估计和假设检验)模拟试卷3(题后含答案及解析)

考研数学一(参数估计和假设检验)模拟试卷3(题后含答案及解析)

考研数学一(参数估计和假设检验)模拟试卷3(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.设X1,X2,…,Xn是取自总体X的简单随机样本,记E(X)=μ,D(X)=σ2,,D(S)>0,则( )A.S是σ的无偏估计。

B.S2是σ2的无偏估计。

C.是μ2的无偏估计。

D.是E(X2)的无偏估计。

正确答案:B解析:根据排除法逐项分析。

D(S)=E(S2)—[E(S)]2>0[E(S)]2≠E(S2)=σ2E(S)≠σ,故选B。

知识模块:参数估计2.设X1,X2,…,Xn是取自X~P(λ)的简单随机样本,则可以构造参数λ2的无偏估计量( )A.&nbspB.&nbspC.&nbspD.&nbsp正确答案:A解析:当T=Xi(Xi—1)时,故选A。

知识模块:参数估计3.已知总体X服从正态分布N(μ,σ2)(σ2已知),X1,X2,…,Xn是取自总体X的简单随机样本,均值为,则由P{a<U<b}=1—α,可以求得μ置信度为1—α的置信区间,其中a、b是( )A.满足的唯一实数。

B.满足的唯一实数。

C.满足的唯一实数。

D.满足P{U>b}+P{U<a}=α的任意实数。

正确答案:D解析:a,b应使P{a<U<b}=1—αa,b应满足P{U≥b}+P{U≤a}=α,故选D。

知识模块:参数估计填空题4.设X1,X2,…,Xn是取自总体X的简单随机样本,X的概率密度函数为f(x)=,—∞<x<+∞,则λ的最大似然估计量= ________。

正确答案:解析:似然函数两端取对数,可得知识模块:参数估计5.已知总体X服从参数为λ的泊松分布,X1,X2,…,Xn是取自总体X 的简单随机样本,其样本均值和样本方差分别为,S2,如果+(2—3a)S2是λ的无偏估计,则a= _________。

正确答案:解析:根据=λ求a。

考研数学一(参数估计和假设检验)模拟试卷4(题后含答案及解析)

考研数学一(参数估计和假设检验)模拟试卷4(题后含答案及解析)

考研数学一(参数估计和假设检验)模拟试卷4(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.若总体X服从正态分布N(μ,1),X1,X2,X3是来自X的样本,则下列估计量是μ的有偏估计的是( )正确答案:C解析:根据期望的性质可得根据无偏估计的定义知,选项(A)、(B)、(D)都是无偏估计。

故选(C)。

知识模块:参数估计2.X1,X2,X3,X4是来自总体X的样本,若总体X的数学期望E(X)存在,则下列四个选项中不是总体X的数学期望E(X)的无偏估计的是( ) A.(X1+X2+X3)。

B.(X1+X2+X4)。

C.(X1+X4)。

D.X2正确答案:A解析:对于(A),E[(X1+X2+X3)]=[E(X1)+E(X2)+E(X3)]=E(X),故选项(A)不是数学期望E(X)的无偏估计。

对于(B)、(C)、(D),E[(X1+X2+X4)]=[E(X1)+E(X2)+E(X4)]=E(X),E[(X1+X4)]=[E(X1)+E(X4)]=E(X),E(X2)=E(X),故选项(B)、(C)、(D)都是数学期望E(X)的无偏估计。

故选(A)。

知识模块:参数估计3.已知总体X服从正态分布N(μ,σ2)(σ2已知),X1,X2,…,Xn是取自总体X的简单随机样本,均值为,如果记U=,则由P{a<U<b}=1一α,可以求得μ的置信水平为1一α的置信区间,其中a,b是( )A.满足P{U>b}=,P{U>a}=1一的唯一实数。

B.满足P{ U>b}=,P{U<a}=的唯一实数。

C.满足P{ U>b}=,P{U<a}=α的唯一实数。

D.满足P{U>b}+P{U<a}=α的任意实数。

正确答案:D解析:由于a、b需满足P{a<U<b}=1一α,即a、b应满足P{U≥b}+P{U ≤a}=α。

故选(D)。

知识模块:参数估计4.设n个随机变量X1,X2,…,Xn独立同分布,且D(Xi)=σ2(σ>0),,则( ) A.S是σ的无偏估计量。

06参数估计与假设检验(医学统计学)

06参数估计与假设检验(医学统计学)

三、总体均数的区间估计
(一) 已知
95%可信区间:
一般情况
其中 为标准正态分布的双侧界值。
(二) 未知
Confidence interval
通常未知,这时可以用其估计量S 代替,但
已不再服从标准正态分布,而是服从
著名的t 分布。
William Gosset
图6-1 不同自由度的 t 分布图
t分布
四、两总体均数差的区间估计
实际中,有时需要计算两个总体均数差值的可信 区间,例如通过计算两种降压药物平均降压的差 值比较两种药物的差别,其双侧 100(1 )%可信 区间的计算公式为 ( X1 X 2 ) t /2, SX1X2 其中, n1 n2 2 为自由度,SX1X2 为两样本均数之 差的标准误。
样本率来代替总体率,其估计值为:
p(1 p)
Sp
n
二、参数估计
点估计: 是使用单一的数值直接作为总体参数的估 计值,如用估计相应的,用估计相应的。该法表 达简单,但未考虑抽样误差的影响,无法评价参 数估计的准确程度。
区间估计(interval estimation)是指按预先给定的概 率,计算出一个区间,使它能够包含未知的总体 均数。事先给定的概率称为可信度,计算得到的 区间称为可信区间(confidence interval,CI)。
n
250
六、两总体率差值的区间估计
在大样本情况下,可采用正态近似法对两总体率 差值进行可信区间估计,其计算公式为:
( p1 p2 ) z S /2 )( n1
1 n2
),pc =
X1 n1
X2 n2
X1和X2分别表示两组中某事件发生的例数。
例6-7 某医院口腔科医生用极固宁治疗牙本质过 敏症,以双氟涂料作对照,进行了1年的追踪观察 ,结果见表6-1所示,试估计两组有效率差别95% 的可信区间。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

参数估计和假设检验习题1.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。

问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600?解: 01:1600, :1600,H H μμ=≠标准差σ已知,拒绝域为2Z z α>,取0.05,α=26,n =0.0250.97521.96z z z α===,由检验统计量1.25 1.96Z ===<,接受0:1600H μ=,即,以95%的把握认为这批产品的指标的期望值μ为1600.2.某纺织厂在正常的运转条件下,平均每台布机每小时经纱断头数为O.973根,各台布机断头数的标准差为O.162根,该厂进行工艺改进,减少经纱上浆率,在200台布机上进行试验,结果平均每台每小时经纱断头数为O.994根,标准差为0.16根。

问,新工艺上浆率能否推广(α=0.05)?解: 012112:, :,H H μμμμ≥<3.某电器零件的平均电阻一直保持在2.64Ω,改变加工工艺后,测得100个零件的平均电阻为2.62Ω,如改变工艺前后电阻的标准差保持在O.06Ω,问新工艺对此零件的电阻有无显著影响(α=0.05)?解: 01: 2.64, : 2.64,H H μμ=≠已知标准差σ=0.16,拒绝域为2Z z α>,取0.02520.05, 1.96z z αα===,100,n =由检验统计量 3.33 1.96Z ===>,接受1: 2.64H μ≠,即, 以95%的把握认为新工艺对此零件的电阻有显著影响.4.有一批产品,取50个样品,其中含有4个次品。

在这样情况下,判断假设H 0:p ≤0.05是否成立(α=0.05)?解: 01:0.05, :0.05,H p H p ≤>采用非正态大样本统计检验法,拒绝域为Z z α>,0.950.05, 1.65z α==,50,n =由检验统计量0.9733Z ===<1.65,接受H 0:p ≤0.05.即, 以95%的把握认为p ≤0.05是成立的.5.某产品的次品率为O.17,现对此产品进行新工艺试验,从中抽取4O0件检验,发现有次品56件,能否认为此项新工艺提高了产品的质量(α=0.05)?解: 01:0.17, :0.17,H p H p ≥<采用非正态大样本统计检验法,拒绝域为Z z α<-,400,n =0.950.05, 1.65z α=-=-,由检验统计量4001.5973i x npZ -===-∑>-1.65, 接受0:0.17H p ≥,即, 以95%的把握认为此项新工艺没有显著地提高产品的质量.6.从某种试验物中取出24个样品,测量其发热量,计算得x =11958,样本标准差s =323,问以5%的显著水平是否可认为发热量的期望值是12100(假定发热量是服从正态分布的)?解: 01:12100, :12100,H H μμ=≠总体标准差σ未知,拒绝域为2(1)t t n α>-,24,n = x =11958,s =323,0.0250.05,(23) 2.0687t α==, 由检验统计量2.1537t ===>2.0687,拒绝0:12100H μ=,接受1:12100,H μ≠ 即, 以95%的把握认为试验物的发热量的期望值不是12100.7.某食品厂用自动装罐机装罐头食品,每罐标准重量为500克,每隔一定时间需要检查机器工作情况。

现抽得10罐,测得其重量为(单位:克):195,510,505,498,503,492,ii02,612,407,506.假定重量服从正态分布,试问以95%的显著性检验机器工作是否正常?解: 01:500 :500H vs H μμ=≠,总体标准差σ未知,拒绝域为2(1)t t n α>-,10,n =经计算得到x =502, s =6.4979,取0.0250.05,(9) 2.2622t α==,由检验统计量0.9733t ===<2.2622, 接受0:500 H μ= 即, 以95%的把握认为机器工作是正常的.8.有一种新安眠药,据说在一定剂量下,能比某种旧安眠药平均增加睡眠时间3小时,根据资料用某种旧安眠药时,平均睡眠时间为20.8小时。

标准差为1.6小时,为了检验这个说法是否正确,收集到一组使用新安眠药的睡眠时间为26.7,22.O ,24.1,21.O ,27 .2,25.0,23.4。

试问:从这组数据能否说明新安眠药已达到新的疗效(假定睡眠时间服从正态分布,α=0.05)。

解: 01:23.8 :23.8H vs H μμ≥<,已知总体标准差σ =1.6,拒绝域为Z z α<-,7,n =经计算得到x =24.2,取0.950.05, 1.65z α=-=-,由检验统计量0.6614x Z ===>-1.65, 接受0:23.8H μ≥即, 以95%的把握认为新安眠药已达到新的疗效.9.测定某种溶液中的水份,它的l0个测定值给出x =0.452%,s =O.037%,设测定值总体服从正态分布,μ为总体均值,σ为总体的标准差,试在5%显著水平下,分别检验假(1)H 0: μ=O.5%; (2)H 0: σ=O.04%。

解:(1)H 01: μ=O.5%,11:0.5%H μ≠, 总体标准差σ未知,拒绝域为2(1)t t n α>-,10,n =x =0.452%,s =O.037%,取0.0250.05,(9) 2.2622t α==,由检验统计量4.102t ===>2.2622,拒绝H 0: μ=O.5%, (2) H 02:σ=0.04%, H 12:σ≠0.04%,拒绝域为2222122(1) (1)n n ααχχχχ-≤-≥-或,10,n =取α=0.05,2220.9750.025(9) =2.7 (9)19.023χχχ≥=,,由检验统计量22222(1)(101)0.000377.70060.0004n s χσ--===,即22.77.700619.023χ<=<,接受H 02:σ=0.04%.10.有甲、乙两个试验员,对同样的试样进行分析,各人试验分析结果见下表(分析结果服从正态分布解:(1)222201121112:, :,H H σσσσ=≠拒绝域为1212122(1,1) (1,1)F F n n F F n n αα-≤--≥--或,128,n n ==取α=0.05, 0.9750.0250.0251(7,7)0.2004 , (7,7) 4.99(7,7)F F F ===,经计算22120.2927,0.2927,s s == 由检验统计量2212/0.2927/0.29271F s s ===,接受220112:,H σσ=(2) 02121212:, :H H μμμμ=≠拒绝域为122(2)t t n n α>+-,128,n n == 0.0250.05,(14) 2.1448t α==,并样本得到222112212(1)(1)2wn s n s s n n -⨯+-⨯=+-=0.2927, w s =0.5410, 由检验统计量-0.6833t ===<2.1448, 接受0212:,H μμ=即, 以95%的把握认为甲、乙两试验员试验分析结果之间无显著性的差异.11.为确定肥料的效果,取1000株植物做试验。

在没有施肥的100株植物中,有53株长势良好;在已施肥的900株中,则有783株长势良好,问施肥的效果是否显著(α=O.01)?解:(1)222201121112:, :,H H σσσσ=≠拒绝域为1212122(1,1) (1,1)F F n n F F n n αα-≤--≥--或,取α=0.01,12100,900,n n ==0.9950.0050.0051(99,899)0.7843 , (99,899) 1.3(899,99)F F F ===,计算22125353783783(1)0.2491,(1)0.1131,100100900900s s =⨯-==⨯-= 由检验统计量 2212/0.2491/0.1131 2.2025F ss ===,拒绝220112:,H σσ=(2) 02121212:, :H H μμμμ≤>拒绝域为12(2)t t n n α>+-,12100,900,n n ==0.010.01,() 2.4121t α=∞≥并样本得到222112212(1)(1)2wn s n s s n n -⨯+-⨯=+-=0.1266, w s =0.3558, 由检验统计量-9.0656x y t ===<2.4121, 接受0212:,H μμ≤即, 以95%的把握认为施肥的效果有显著性的差异. (备注: 0.005(99,899)F =1.43+(1.43-1.69)*0.5=1.3, 0.025(899,99)F =1.36+(1.36-1.53)*0.5=1.275)12.在十块地上同时试种甲、乙两种品种作物,设每种作物的产量服从正态分布,并计算得x =30.97,y =21.79,x s =26.7,y s =12.1。

这两种品种的产量有无显著差别(α=O.01)?解:(1)222201121112:, :,H H σσσσ=≠拒绝域为1212122(1,1) (1,1)F F n n F F n n αα-≤--≥--或,1210,n n ==取α=0.01, 0.9950.0050.0051(9,9)0.1529 , (9,9) 6.54(9,9)F F F ===,有题设22712.89,146.41,x y s s ==由检验统计量2212/712.89/146.41 4.8691F s s ===, 接受220112:,H σσ=(2) 02121212:, :H H μμμμ≥<,拒绝域为12(2)t t n n α<-+-,0.010.01,(18) 2.5524t α==-,1210,n n ==并样本得到222112212(1)(1)2wn s n s s n n -⨯+-⨯=+-=(9×712.89+9×146.41)/18=429.6500, w s =20.7280, 由检验统计量0.9903x y t ===>-2.5524, 接受0212:,H μμ≥即, 以95%的把握认为此两品种作物产量有显著差别,并且是第一种作物的产量显著高于第二种作物的产量.13.从甲、乙两店备买同样重量的豆,在甲店买了10次,算得y =116.1颗,1021()i i y y =-∑=1442;在乙店买了13次,计算x =118颗,1321()i i x x =-∑=2825。

相关文档
最新文档