SPSS软件-正态性检验教程文件

合集下载

spss数据正态分布检验Word版

spss数据正态分布检验Word版

spss 数据正态分布检验一、Z检验二、相关系数检验三、独立样本T检验四、相依样本T检验五、χ²独立性检验一、Z检验第一步:录入数据。

1.命名“变量视图”;2.“数据视图”中输入数据;第二步:进行分析。

第三步:设置变量;第四步:得到结果:二、相关系数检验在一项研究中,一个学生想检查生活意义和心理健康是否相关。

同意参与这项研究的30个学生测量了生活意义和心理健康。

生活意义的得分范围是10-70分(更高的得分表示更强的生活意义),心理健康的得分范围是5-35分(更高的得分表示更健康的心理状态)。

在研究中基本的兴趣问题也可以用研究问题的方式表示,例如例题:生活意义和心理健康相关吗?相关系数数据的例子Participant Meaning in Life Well-being Participant Meaning in Life Well-being1 35 192 65 273 14 194 35 355 65 346 33 347 54 358 20 289 25 1210 58 2111 30 1812 37 2513 51 1914 50 2515 30 2916 70 3117 25 1218 55 2019 61 3120 53 2521 60 3222 35 1223 35 2824 50 2025 39 2426 68 3427 56 2828 19 1229 56 3530 60 35说明:变量participant包含在数据中,但不用输入SPSS。

在spss中输入数据及分析步骤1:生成变量1.打开spss。

2.点击“变量视图”标签。

在spss中将生成两个变量,一个是生活意义,另一个是心理健康。

变量分别被命名为meaning和wellbeing。

3.在“变量视图”窗口前两行分别输入变量名称meaning和wellbeing。

步骤2:输入数据1.点击“数据视图”,变量meaning和wellbeing出现在数据视图前两列。

SPSS检验正态分布

SPSS检验正态分布

下面我们来看一组数据,并检验“期初平均分”数据是否呈正态分布(此数据已在SPSS里输入好)在SPSS里执行“分析—>描述统计—>频数统计表”(菜单见下图,英文版的可以找到相应位置),然后弹出左边的对话框,变量选择左边的“期初平均分”,再点下面的“图表”按钮,弹出图中右边的对话框,选择“直方图”,并选中“包括正态曲线”设置完后点“确定”,就后会出来一系列结果,包括2个表格和一个图,我们先来看看最下面的图,见下图,上图中横坐标为期初平均分,纵坐标为分数出现的频数。

从图中可以看出根据直方图绘出的曲线是很像正态分布曲线。

如何证明这些数据符合正态分布呢,光看曲线还不够,还需要检验:检验方法一:看偏度系数和峰度系数我们把SPSS结果最上面的一个表格拿出来看看(见下图):偏度系数Skewness=-0.333;峰度系数Kurtosis=0.886;两个系数都小于1,可认为近似于正态分布。

检验方法二:单个样本K-S检验在SPSS里执行“分析—>非参数检验—>单个样本K-S检验,弹出对话框,检验变量选择“期初平均分”,检验分布选择“正态分布”,然后点“确定”。

检验结果为:从结果可以看出,K-S检验中,Z值为0.493,P值 (sig 2-tailed)=0.968>0.05,因此数据呈近似正态分布检验方法三:Q-Q图检验在SPSS里执行“图表—>Q-Q图”,弹出对话框,见下图:变量选择“期初平均分”,检验分布选择“正态”,其他选择默认,然后点“确定”,最后可以得到Q-Q图检验结果,结果很多,我们只需要看最后一个图,见下图。

QQ Plot 中,各点近似围绕着直线,说明数据呈近似正态分布。

欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。

spss正态分布检验方法

spss正态分布检验方法

spss正态分布检验方法SPSS正态分布检验方法。

SPSS(Statistical Package for the Social Sciences)是一款广泛应用于统计分析领域的软件,它提供了丰富的统计分析工具和功能,其中包括对数据正态分布进行检验的方法。

正态分布检验是统计学中常用的一种方法,用于检验数据是否符合正态分布。

本文将介绍在SPSS软件中如何进行正态分布检验,并对其结果进行解释。

在SPSS中,进行正态分布检验需要借助于数据分布的直方图和正态Q-Q图。

首先,我们需要导入待检验的数据,并打开“分析”菜单下的“描述统计”选项。

在弹出的对话框中选择“统计”选项,并勾选“正态分布曲线”和“Q-Q图”选项,然后点击“确定”按钮进行分析。

分析完成后,我们会得到数据的直方图和正态Q-Q图。

直方图可以直观地展示数据的分布情况,而正态Q-Q图则可以用来检验数据是否符合正态分布。

在正态Q-Q图中,数据点如果分布在一条直线附近,则表明数据符合正态分布;反之,如果数据点偏离直线较远,则表明数据不符合正态分布。

通过观察直方图和正态Q-Q图,我们可以初步判断数据是否符合正态分布。

但为了更加准确地进行判断,我们还可以借助于SPSS提供的正态性检验方法。

在SPSS中,可以使用Shapiro-Wilk检验、Kolmogorov-Smirnov检验或者Anderson-Darling检验来检验数据的正态性。

这些方法都可以帮助我们对数据的正态分布进行更加严谨的检验。

在进行正态性检验时,我们需要注意以下几点。

首先,对于Shapiro-Wilk检验和Kolmogorov-Smirnov检验,如果显著性水平小于0.05,则可以拒绝原假设,即数据不符合正态分布;反之,如果显著性水平大于0.05,则接受原假设,即数据符合正态分布。

而对于Anderson-Darling检验,我们需要关注统计量的大小和临界值的比较,如果统计量小于临界值,则可以认为数据符合正态分布。

spss正态分布检验方法

spss正态分布检验方法

spss正态分布检验方法SPSS正态分布检验方法。

SPSS(Statistical Package for the Social Sciences)是一种统计分析软件,广泛应用于社会科学、生物医学、教育研究等领域。

在数据分析过程中,正态分布检验是一项重要的统计方法,用于检验数据是否符合正态分布。

本文将介绍在SPSS中进行正态分布检验的方法及步骤。

SPSS正态分布检验方法主要包括两种统计检验,Shapiro-Wilk 检验和Kolmogorov-Smirnov检验。

Shapiro-Wilk检验是一种较为常用的正态性检验方法,适用于样本量较小(通常小于50)的情况。

在SPSS中,进行Shapiro-Wilk检验的步骤如下:1. 打开SPSS软件,导入需要进行正态分布检验的数据文件。

2. 选择“分析”菜单中的“描述统计”选项,然后在弹出的对话框中选择“探索性数据分析”。

3. 在“探索性数据分析”对话框中,将需要进行正态性检验的变量移动到“因子”框中。

4. 点击“统计”按钮,在弹出的对话框中勾选“Shapiro-Wil k”复选框。

5. 点击“确定”按钮,SPSS将输出Shapiro-Wilk检验的结果,包括统计量W和显著性水平。

Kolmogorov-Smirnov检验适用于样本量较大的情况,其原理是通过比较累积分布函数来检验数据是否符合正态分布。

在SPSS中进行Kolmogorov-Smirnov检验的步骤如下:1. 打开SPSS软件,导入需要进行正态分布检验的数据文件。

2. 选择“分析”菜单中的“非参数检验”选项,然后在弹出的对话框中选择“单样本K-S检验”。

3. 在“单样本K-S检验”对话框中,将需要进行正态性检验的变量移动到“测试变量列表”框中。

4. 点击“确定”按钮,SPSS将输出Kolmogorov-Smirnov检验的结果,包括统计量D和显著性水平。

在进行正态分布检验时,需要注意以下几点:1. 正态性检验是基于样本数据进行的统计推断,结果受样本量的影响。

科学网—如何在SPSS中进行正态分布检验?

科学网—如何在SPSS中进行正态分布检验?

科学网—如何在SPSS中进行正态分布检验?一、图示法1、P-P图以样本的累计频率作为横坐标,以安装正态分布计算的相应累计概率作为纵坐标,把样本值表现为直角坐标系中的散点。

如果资料服从整体分布,则样本点应围绕第一象限的对角线分布。

2、Q-Q图以样本的分位数作为横坐标,以按照正态分布计算的相应分位点作为纵坐标,把样本表现为指教坐标系的散点。

如果资料服从正态分布,则样本点应该呈一条围绕第一象限对角线的直线。

以上两种方法以Q-Q图为佳,效率较高。

3、直方图判断方法:是否以钟形分布,同时可以选择输出正态性曲线。

4、箱式图判断方法:观测离群值和中位数。

5、茎叶图类似与直方图,但实质不同。

二、计算法1、偏度系数(Skewness)和峰度系数(Kurtosis)计算公式:g1表示偏度,g2表示峰度,通过计算g1和g2及其标准误σg1及σg2然后作U检验。

两种检验同时得出U<U0.05=1.96,即p>0.05的结论时,才可以认为该组资料服从正态分布。

由公式可见,部分文献中所说的“偏度和峰度都接近0……可以认为……近似服从正态分布”并不严谨。

2、非参数检验方法非参数检验方法包括Kolmogorov-Smirnov检验(D检验)和Shapiro- Wilk(W 检验)。

SAS中规定:当样本含量n≤2000时,结果以Shapiro –Wilk (W 检验)为准,当样本含量n >2000时,结果以Kolmogorov –Smirnov(D 检验)为准。

SPSS中则这样规定:(1)如果指定的是非整数权重,则在加权样本大小位于3和50之间时,计算Shapiro-Wilk统计量。

对于无权重或整数权重,在加权样本大小位于3 和5000 之间时,计算该统计量。

由此可见,部分SPSS教材里面关于“Shapiro –Wilk适用于样本量3-50之间的数据”的说法是在是理解片面,误人子弟。

(2)单样本Kolmogorov-Smirnov检验可用于检验变量(例如income)是否为正态分布。

spss统计学正态性检验教程

spss统计学正态性检验教程

正态分布的检验数据的正态分布是通过Analyze -> Descriptive Statistics -> Explore来实现的,同时该命令也可以检查异常值和极值,和进行方差齐性检验(方差齐性,本节不介绍)。

打开文件data0201-protein.sav,如下图,50种树叶中粗蛋白占干重的比例,如果检验变量protein的正态性,按Analyze -> Descriptive Statistics -> Explore打开如下对话框,把要检验的变量送入Dependent List框(可同时检验多个变量),Factor List框是分组变量(本例中无分组变量),Label Cases by框指定一个变量作为标识变量(可忽略),Display栏指定要输出的是统计量或统计图,或同时输出。

点击Statistics按钮,打开如下左对话框,选择要输出的统计量,选项Descriptives:描述统计量,选项M-estimators:集中趋势最大似然比(可忽略),选项outliers:5个最大值和最小值,选项Percentiles:第5、10、25、50、75、90、95百分位数,点击continue回到Explore对话框,点击Plots,打开如上右对话框,Boxplots框选择箱状图的格式,选项None:不输出箱状图,选项Factor levels together:变量按分组生成箱状图,并列输出(本例未分组),选项Dependents together:在一个图形中生成所有变量箱状图(本例只有一个变量),Descriptive框选择输出图形的类型;选项stem-and-leaf:茎叶图,选项Histogram:直方图;Normality plots with tests栏,输出正态概率和无趋势概率图,以及统计检验结果;Spread vs Level with Levene Test栏各选项与方差齐性检验有关,本节不介绍(只有选择分组变量时,才被激活)。

用Spss进行正态分布检验(图)

用Spss进行正态分布检验(图)

⽤Spss进⾏正态分布检验(图)⼀、图⽰法1、P-P图以样本的累计频率作为横坐标,以安装正态分布计算的相应累计概率作为纵坐标,把样本值表现为直⾓坐标系中的散点。

如果资料服从整体分布,则样本点应围绕第⼀象限的对⾓线分布。

2、Q-Q图以样本的分位数作为横坐标,以按照正态分布计算的相应分位点作为纵坐标,把样本表现为指教坐标系的散点。

如果资料服从正态分布,则样本点应该呈⼀条围绕第⼀象限对⾓线的直线。

以上两种⽅法以Q-Q图为佳,效率较⾼。

3、直⽅图判断⽅法:是否以钟形分布,同时可以选择输出正态性曲线。

4、箱式图判断⽅法:观测离群值和中位数。

5、茎叶图类似与直⽅图,但实质不同。

⼆、计算法1、偏度系数(Skewness)和峰度系数(Kurtosis)计算公式:g1表⽰偏度,g2表⽰峰度,通过计算g1和g2及其标准误σg1及σg2然后作U检验。

两种检验同时得出U<U0.05=1.96,即p>0.05的结论时,才可以认为该组资料服从正态分布。

由公式可见,部分⽂献中所说的“偏度和峰度都接近0……可以认为……近似服从正态分布”并不严谨。

2、⾮参数检验⽅法⾮参数检验⽅法包括Kolmogorov-Smirnov检验(D检验)和Shapiro- Wilk (W 检验)。

SAS中规定:当样本含量n ≤2000时,结果以Shapiro – Wilk(W 检验)为准,当样本含量n>2000 时,结果以Kolmogorov – Smirnov(D 检验)为准。

SPSS中则这样规定:(1)如果指定的是⾮整数权重,则在加权样本⼤⼩位于3和50之间时,计算 Shapiro-Wilk 统计量。

对于⽆权重或整数权重,在加权样本⼤⼩位于3 和 5000 之间时,计算该统计量。

由此可见,部分SPSS教材⾥⾯关于“Shapiro – Wilk适⽤于样本量3-50之间的数据”的说法是在是理解⽚⾯,误⼈⼦弟。

(2)单样本 Kolmogorov-Smirnov 检验可⽤于检验变量(例如income)是否为正态分布。

SPSS统计分析1:正态分布检验.doc

SPSS统计分析1:正态分布检验.doc

正态分布检验一、正态检验的必要性[1]当对样本是否服从正态分布存在疑虑时,应先进行正态检验;如果有充分的理论依据或根据以往积累的信息可以确认总体服从正态分布时,不必进行正态检验。

当然,在正态分布存疑的情况下,也就不能采用基于正态分布前提的参数检验方法,而应采用非参数检验。

二、图示法1、P-P图以样本的累计频率作为横坐标,以安装正态分布计算的相应累计概率作为纵坐标,把样本值表现为直角坐标系中的散点。

如果资料服从整体分布,则样本点应围绕第一象限的对角线分布。

2、Q-Q图以样本的分位数作为横坐标,以按照正态分布计算的相应分位点作为纵坐标,把样本表现为指教坐标系的散点。

如果资料服从正态分布,则样本点应该呈一条围绕第一象限对角线的直线。

以上两种方法以Q-Q图为佳,效率较高。

3、直方图判断方法:是否以钟形分布,同时可以选择输出正态性曲线。

4、箱式图判断方法:观测离群值和中位数。

5、茎叶图类似与直方图,但实质不同。

三、计算法1、峰度(Kurtosis)和偏度(Skewness)(1)概念解释峰度是描述总体中所有取值分布形态陡缓程度的统计量。

这个统计量需要与正态分布相比较,峰度为0表示该总体数据分布与正态分布的陡缓程度相同;峰度大于0表示该总体数据分布与正态分布相比较为陡峭,为尖顶峰;峰度小于0表示该总体数据分布与正态分布相比较为平坦,为平顶峰。

峰度的绝对值数值越大表示其分布形态的陡缓程度与正态分布的差异程度越大。

峰度的具体计算公式为:注:SD就是标准差σ。

峰度原始定义不减3,在SPSS中为分析方便减3后与0作比较。

偏度与峰度类似,它也是描述数据分布形态的统计量,其描述的是某总体取值分布的对称性。

这个统计量同样需要与正态分布相比较,偏度为0表示其数据分布形态与正态分布的偏斜程度相同;偏度大于0表示其数据分布形态与正态分布相比为正偏或右偏,即有一条长尾巴拖在右边,数据右端有较多的极端值;偏度小于0表示其数据分布形态与正态分布相比为负偏或左偏,即有一条长尾拖在左边,数据左端有较多的极端值。

S P S S软件正态性检验ppt课件

S P S S软件正态性检验ppt课件
正态P-P图是以样本的累计频率作为横坐标, 以按照正态分布计算的相应累计概率作为纵坐 标,把样本值表现为直角坐标系的散点,所描绘 的图形。
如果资料服从正态分布,则样本点应呈一条围 绕第一象限对角线的直线。
SPSS统计分析
正态去势P-P图(累计概率残差图)是以样 本 的实际累计频率作为横坐标,以样本的实际累计 频率与按照正态分布计算的相应累计概率差(称 为累计概率的残差)作为纵坐标,把样本表现为 直角坐标系的散点,所描绘的图形。 如果资料服从正态分布,残差散点基本在Y=0 上下均匀分布。
SPSS统计分析
单击Statistics取消所有基本统计量。
单击Charts设置选项。
SPSS统计分析
2、结果解释
SPSS统计分析
2.6 多指标的描述分析 例2-7 对data2-1中的数据分别计算各学校参与 调查学生的性别构成比 。
1、操作提示: 单击Analyze/Descriptive Statistics/ Crosstabs打开相关分析对话框,选择分析。
0.00
-.02
-.04
0.0
.2
.4
.6
.8
1.0
Observed Cum Prob
SPSS统计分析
练习3-1 对数据文件data2-1,中的体重、身高 和肺活量的资料利用P-P图法进行正态性检验 。
3.2 Q-Q图法
SPSS统计分析
正态Q-Q 概率图:是以样本的分位数(Px)
为 横坐标,以按照正态分布计算的相应理论分位数 为纵坐标,把样本表现为直角坐标系的散点,所 描绘的图形。


1 2 ( x4

x5 )
53 54 53.5 2

最新数据正态性检验及正态转化在spss中的实现资料

最新数据正态性检验及正态转化在spss中的实现资料

数据正态性检验及正态转换在spss中的实现1数据正态性检验1.1观察分布,预先判断主要观察直方图,以及根据峰度和偏度粗略估计研究变量的分布。

采用spss中描述统计中的频率分析来实现,具体操作如下:(1)在spss中打开数据资料文件,依次点击“分析—描述统计—频率”,如下图:(2)在弹出的对话框中,选择左边方框中要研究的变量,点击中间的箭头,将其选入右边的对话框,本文选择“胫围”作示例分析,如下图:(3)之后,选择最右边五个选项卡中的“统计”选项卡,在弹出的对话框中的右下角勾选“偏度”和“峰度”选项,点击“继续”,如下图:(4)再点击“图表”选项卡,在弹出的对话框中勾选“直方图”和“在直方图中显示正态曲线”选项,点击“继续”,如下图:(5)然后点击“确定”选项,得出如下结果:统计一栏中包括有偏度及其标准误差、峰度及其标准误差。

由结果可知:2.486(偏度)>1.96*0.061(偏度标准误差);23.951(峰度)>1.96*0.126(峰度标准误差),推测该胫围数据不符合正态分布。

1.2正态分布显著性检验采用spss中非参数分析方法对数据资料进行正态性检验,具体步骤如下:(1)在spss中打开数据资料文件,依次点击“分析—非参数检验—单样本k-s”,如下图:(2)在弹出的对话框中,选择左边方框中要研究的变量,点击中间的箭头,将其选入右边的对话框,本文选择“胫围”作示例分析,如下图:(3)之后,点击最右边的“精确”选项卡,在弹出的对话框中有三个选项,1、“仅渐进法”:是基于渐进分布的显著性水平的检验指标,适用于大样本,如果样本过小或者分布不好,就会影响检验的效力;2、“蒙特卡洛法”:适用于精确显著性水平的无偏估计,如果样本过大,数据处理过程太长,就应该使用这个选项;3、“精确”:精确计算概率值,可以设定数据处理的时间,如果数据处理时间超过了所设定时间30分钟,就应该使用“蒙特卡洛法”。

SPSS软件正态性检验

SPSS软件正态性检验

行变量输出格式 行变量数据值升序排序 行变量数据值降序排序
2、结果解释
SPSS统计分析
练习2-9 某药厂观察9只小鼠口服高山红景天醇 提物(RSAE)后在乏氧条件下的生存时间(分钟) 如下:49.1,60.8,63.3,63.6,63.6,65.6, 65.8,68.6,69.0 求其均值、中位数和众数。
Q-Q作图对话框设置
SPSS统计分析
检验分布类型
定义所检验的分布参数 根据样本数据估计总体参数
转换 自然对数变换 标准化值 差分变换 季节差分变换
2、结果解释
Normal Q-Q Plot of 血清总胆固醇
7
6
5
Deviation from Normal
4
3
2
2
3
4
5
6
7
Observed Value
选择汇总方式 以某个分类变量分组汇总 分别对各变量进行汇总
SPSS统计分析
单击Define按钮,打开单式箱式图定义对话框, 选择作图。
观察单位标记 (标记极端值、离群值)
SPSS统计分析
单击Define按钮,打开复式箱式图定义对话框, 选择作图。
分类变量
观察单位标记 (标记极端值、离群离)
SPSS统计分析
535453.5 2
SPSS统计分析
第三讲 正态性检验
主要内容
3.1 P-P图法 3.2 Q-Q图法 3.3 直方图、箱式图与茎叶图法 3.4 计算法
SPSS统计分析
3.1 P-P图法
两种P-P图:正态P-P图和正态去势P-P图(累 计概率残差图)
正态P-P图是以样本的累计频率作为横坐标, 以按照正态分布计算的相应累计概率作为纵坐 标,把样本值表现为直角坐标系的散点,所描绘 的图形。

spss数据正态分布检验

spss数据正态分布检验

spss数据正态分布检验一、Z检验第一步:录入数据;1.命名“变量视图”;2.“数据视图”中输入数据;第二步:进行分析;第三步:设置变量;第四步:得到结果:二、相关系数检验在一项研究中,一个学生想检查生活意义和心理健康是否相关;同意参与这项研究的30个学生测量了生活意义和心理健康;生活意义的得分范围是10-70分更高的得分表示更强的生活意义,心理健康的得分范围是5-35分更高的得分表示更健康的心理状态;在研究中基本的兴趣问题也可以用研究问题的方式表示,例如例题:生活意义和心理健康相关吗相关系数数据的例子ParticipantMeaninginLifeWell-being ParticipantMeaninginLifeWell-being13519 26527 31419 43535 56534 63334 75435 82028 92512 105821 113018 123725 135119 145025 153029 167031 172512 185520 196131 205325 216032 223512 233528 245020 253924 266834 275628 281912 295635 306035说明:变量participant包含在数据中,但不用输入SPSS;在spss中输入数据及分析步骤1:生成变量1.打开spss;2.点击“变量视图”标签;在spss中将生成两个变量,一个是生活意义,另一个是心理健康;变量分别被命名为meaning和wellbeing;3.在“变量视图”窗口前两行分别输入变量名称meaning 和wellbeing;步骤2:输入数据1.点击“数据视图”,变量meaning 和wellbeing 出现在数据视图前两列;2.将两个变量的数据分别输入;如图;步骤3:分析数据1.从菜单栏中选择“分析>相关>双变量>……”打开“双变量”对话框,变量meaning 和wellbeing 出现在对话框的左边;2.选择变量meaning 和wellbeing,点击向右箭头按钮,把变量移到“变量”框中;3.点击“确定”;步骤4:解释结果二元相关性的输出结果显示如下:相关性 wellbei ng meaningwellbei ng Pearson 相关性1 .549 显着性双侧.002N3030 meaning Pearson 相关性.549 1显着性双侧.002同样的结果在相关生活意义和相关性显SPSS生成了一个输出表,标记为“相关性”,其中包括我们研究问题的答案,即变量meaning和wellbeing之间是否相关;注意在表格中meaning和wellbeing出现了两次,一次在行,一次在列这表明SPSS生成的表格中出现了冗余;相关系数值和原假设检验的p值位于变量meaning和wellbeing相交处;表格中显示meaning和wellbeing的相关性是,相应的p值是小于,原假设被拒绝,在meaning和wellbeing的总体中存在正相关相关系数右边的两个星号暗示了在水平上相关性是统计显着的,因为p值为小于;剩下的两个单元格显示了1的相关性,一个完美的正相关;即变量meaning和wellbeing自身与自身的相关性;三、独立样本T检验例题:临床心理学家想调查认知行为治疗和精神分析治疗对抑郁症的相对有效性;30名患有抑郁症的病人随机分配接受两个疗法;其中15人接受行为治疗,另外15人接受精神分析治疗,经过两个月的治疗后,记录下每个病人抑郁症得分;在本研究中,自变量是治疗方法认知行为治疗与精神分析治疗,因变量是抑郁症,较高的分数表示更高的抑郁水平抑郁水平的分数变化范围为10~70;在研究中基本的兴趣问题也可以用研究问题的方式表示,例如:“在接受认知行为治疗与精神分析治疗的病人中,抑郁症水平的均值是否存在差异呢”T检验用来检验两组数据的均值;所以,零假设假设两组数据的均值相等:原假设指出两组的抑郁症分数均值在总体上是相等的:H0:μ精神分析=μ认知行为对立假设指出两组的抑郁症分数均值在总体上是不等的:H1:μ精神分析≠μ认知行为数据在下表列出了30个参与者的数据;接受精神分析治疗的参与者标记为“1”,接受认知行为治疗的标记为“2”;独立样本t检验例子的数据Participan Therap Depressio Participan Therap Depressiot y n t y n1 1 57 162 472 1 61 17 2 423 1 67 18 2 594 1 63 19 2 375 l 51 20 2 356 1 55 21 2 427 1 45 22 2 388 1 62 23 2 499 1 41 24 2 6110 l 36 25 2 4311 1 55 26 2 4712 1 57 27 2 4913 1 70 28 2 3714 l 62 29 2 4115 1 58 30 2 48说明:变量participant包含在数据中,但不用输入SPSS;步骤1:生成变量1.打开SPSS;2.点击变量视图标签;在SPSS中将生成两个变最,一个是不同治疗方法的组别自变量,另一个是抑郁症分数因变量;这些变量将各自被命名为therapy治疗方法和depression抑郁症;3.在变量视图窗口前两行分别输入变量名称therapy和depression详见图表4.为变量therapy建立变量值标签,1=“精神分析治疗”,2=“认知行为治疗”;步骤2:输入数据1.点击数据视图标签;变量therapy和depression出现在数据视图窗口的前两列;2.参照图表6-1,为每个参与者输入两个变量的数据;对第一个参与者,为变量therapy和depression分别输人数值1和57;依次输入全部30个参与者的数据;对therapy,注意到前15个参与者为1精神分析治疗,后15个参步骤3:分析数据1.从菜单栏中选择分析>比较均值>独立样本T检验见图;打开独立样本T检验对话框,变量therapy和depression出现在对话框的左边;2.选择因变量depression,点击向右箭头按钮把变量移到检验变量框;3.选择自变量therapy,点击向右箭头按钮把变量移到分组变量框中;在分组变量框中,两个在括号内的问号出现在therapy的右边见图;这些问号表示原先的数字分配到两个治疗样本中也就是l、2;这些数字需要通过点击定义组来输入;4.点击定义组;5.定义组对话框被打开,在组1表示精神分析治疗样本的数字的右边输入“1”,并且在“组2”表示认知行为治疗样本的数字的右边输入“2”;6.点击继续;7.点击确定;结果显示在查看窗口中;步骤4:解释结果组统计量表输出的第一个表格显示每个治疗组的描述统计量,包括样本量、平均值、标准差和标准误差;注意到认知行为治疗样本的抑郁分数均值均值=比精神分析治疗样本均值=的低;我们稍后将会考虑这两组之间的差异对具有统计显着性而言是否足够大;独立样本检验表第二个表格“独立样本检验表”显示在“均值相等的t检验”之后的“假设方差相等”栏中的结果;方差方程的Levene检验“方差方程的Levene检验”检验两个治疗组的总体方差是否相等,这是独立样本t检验的一个假设;SPSS使用个由Levene开发的方法来检验总体相等的假设;Levene检验的原假设和对立假设是:H0:σ2精神分析=σ2认知行为两组的总体方差相等H1:σ2精神分析≠σ2认知行为两组的总体方差不相等T检验四、相依样本T检验在对某种程度上相关的两个样本的均值进行比较时,我们可以使用相依样本t检验也称为配对样本t检验,重复测量t检验,匹配样本t检验等;在相依样本t检验中.两个样本可能包含同一个人在两个不同时刻进行侧量或者两个有联系的人分别测量的结果例如,双胞胎的IQ,妻子与丈夫的沟通质量;准确定义相依样本t检验的关健在于记住两样本间要在某方面存在自然联系.下面给出一个相依样本t检验的例子;一个国家选举机构的工作人员负责通过民意调查来决定经济和国家安全哪个议题对于选民更重要;有25个选民被调查以确定两个议题的重要性等级,每个议题用1-7的等级表示1=一点也不重要,7=极其重要;自变量是投票议题经济、国家安全,因变量是重要性等级;在研究中,基本的兴趣问题也可以用研究问题的方式表示,例如,“对选民来说经济重要性等级和国家安全是否存在不同”数据步骤1:生成变量1.打开spss;2.点击变量视图标签;在spss中将生成的两个变量,分别用于经济等级和国家安全;两个变量分别命名为economy和security;3.在变量视图窗口前两行分别输入变量名称economy和security;见图;步骤2:输入数据1.点击数据视图标签;变量economy和security出现在数据视图窗口的两列;2.为每个参与者输入两个变量的数据;对第一个参与者,为变量economy和security分别输入等级5和7;依次输入全部25个参与者的数据;步骤3:分析数据1.从菜单栏中选择分析>比较均值>配对样本T检验;打开配对样本T检验对话框,变量economy和security出现在对话框的左边;2.选择因变量economy和security,点击向右箭头按钮把变量移到成对变量框中;3.点击确定;在spss中运行相依样本t检验程序,结果显示在“查看”视窗中;步骤4:解释结果成对样本统计量输出的第一个表格“成对样本统计量”显示了economy和security的描述统计量、包括样本量、平均值、标准差和标准误差;请注意,经济的平均重要性等级均值=比国家安全均值=的高;我们稍后将会考虑这两个平均等级之间的差异对是否大到足以具有统计显着性;成对样本相关系数表格“成对样本相关系数”除了提到这个相关性等于25个参与者对于经济和国家安全的等级之间的皮尔逊相关系数外,对于解释配对样本t检验不是重要的;成对样本检验表格“成对样本检验”为我们的研究问题提供了答案,就是经济和国家安全的重要性等级间是否存在差异;原假设的检验是以t的形式显示的,这里五、χ2独立性检验一双因素卡方检验双因素卡方检验法常用来检验两个因素是否互相独立;如果不是互相独立,就是互相联系;做出零假设H0,两个因素互相独立,没有联系;备择假设H1两个因素不互相独立;如果p﹥或,接受原假设,互相独立;相反,如果p﹤或,拒绝原假设,说明两事件有联系;小拒绝大接受A2×2表卡方检验例子一位研究员想调查性格类型个性内向的人、个性外向的人和休闲运动的选择逛游乐园、休息一天是否有关系;他对100名答应参与这项研究的人做了性格测试,并且基于测试的分值把他们分为性格内向的人和性格外向的人,然后要求每个参与者在逛游乐园和休息一天两者之中选择更喜欢的休闲方式;图表5-1描述了每个参与者的性格类型和选择的休闲方式:因为性格类型和休闲方式都有两个水平,得到四个单元,当前的例子为2×2卡方表;分析:零假设为2×2列联表中列一“性格类型”与列二“休闲方式”之间独立;如果p<,则拒绝零假设;如果p>,则接受零假设;步骤1:生成变量1.打开spss;2.点击变量视图标签;在SPSS中将生成三个变量,一个是不同的性格类型,一个是休闲方式,一个是频数;这三个变量分别命名为personality,activity和frequency;3.在变量视图窗口前三行分别输入变量名称personality,activity和frequency;4.为分类变量personality和activity建立变量值标签,对于personality,l=“内向”,2=“外向”;对于activity,1=“逛游乐园”,2=“休息”;步骤2:输入数据接下来,我们在spss中输入数据;χ2独立性检验有两种不同的数据输入方法:加权方法和个体观测值方法;当数据在每个单元的频数统计出来时,应采用加权方法;由于在我们的例子中,单元中的频数已经被统计出来如图表1,我们将采用加权方法来输入数据;在我们的例子中,内向性格和外向性格的人可以进择逛游乐园和休息中的一个,于是产生了四种不同情况内向/逛游乐园、内向/休息、外向/逛游乐园、外向/休息;由于我们采用加权方法来输人数据,我们需要在数据视窗窗口为这四种情况的每一种创建单独的一行;用加权方法建立的数据文件结构如图表所示;输入数据1.点击数据视图标签;变量personality,activity和frequency出现在数据视图窗口的前三列;按照图表,第一种情况对应于内向1且选择逛游乐园1的人,总共有12个人,这些值应该被输入数据视图窗口的第一行;2.在数据视图窗口的第一行对personality,activity和frequency 分别输入l,1和12,在数据视图窗口的2~4行输入剩下的三种情况在第2行输入l,2和28,在第3行输入2,1和43,在第4行输入2,2和17;图表中给出了完整的数据文件;步骤3:分析数据在执行χ2检验之前,我们首先需要对frequency进行加权;加权表明给定变量的值表示观测总次数,而不仅仅是一个分数值;例如,对frequency 进行加权时,frequency取值为12代表12个人,而不是分数为12;对frequency进行加权1.在菜单栏中选择“数据>加权个案”;2.打开加权个案对话框;选择“加权个案”并选择变量frequency,点击向右箭头按钮,把frequency移到“频率变量”框中;3.点击“确定”;这表示在每个类别中频数的取值12,28,43和17对应于每个单元的所有参与者,而不仅仅是一个分数;通过对frequency进行加权,现在我们可以在SPSS中执行χ2独立性检验;执行χ2独立性检验1.在菜单栏中选择“分析>描述统计>交叉表”;打开交叉表对话框,变量personality,activity和frequency出现在对话框的左侧;2.选择personality,点击向右箭头按钮〔,把变量移到“行”框;3.选择activity,点击向右箭头按钮,把变量移到“列”框中;4.点击;打开“交叉表:统计量”对话框,选择“卡方”;5.点击“继续”;6.点击“单元格”;打开“交叉表:单元显示”对话框,在“计数”下选择“观察值”“期望值”;在“百分比”下选择“行”;7.点击“继续”;8.点击“确定”;步骤4:解释结果案例处理摘要案例有效的缺失合计N 百分比N 百分比N 百分比personalityactivity 100 % 0 .0% 100 %personalityactivity交叉制表B r×c列联表的卡方检验当列联表不是2×2交叉表的时候,要判断总体的变量是否彼此独立,这时候自由度:df=r-1c-1;列联表形式r×c如:应用语言学实验方法一书83页的例子;分析:零假设为:列一“第一语言背景”与列二“冠词错误频数”之间独立;如果p<,则拒绝零假设,反之,则接受零假设;小拒绝,大接受经过计算,结果如下:p=接受原假设,即:在spss中的计算方法;步骤1:建立变量变量视图中同样输入“错误类型”、“语言背景”和“频数”三行;然后,分别对“错误类型”和“语言背景”标签赋值;步骤2:输入数据在数据视图中输入数据;注意按照列联表的对应情况,分别为“错误类型”和“语言背景”中输入1~4、1~2的值;并将它们在列联表中的频数值,输入第三列“频数”中;步骤3:分析数据因为“频数”一列中的数值是频率数,所以先为它加权;执行χ2独立性检验1.在菜单栏中选择“分析>描述统计>交叉表”;2.选择“语言背景”,点击向右箭头按钮〔,把变量移到“行”框;3.选择“错误类型”,点击向右箭头按钮,把变量移到“列”框中;4.点击“确定”;步骤4:解释结果交叉表线性和线性组合 1 .174有效案例中的N 100单元格.0%的期望计数少于5;最小期望计数为;二单因素χ2检验法单因素χ2检验法是将收集到的数据按频数分组,然后检验频数的分布是否与某个概率分布模式拟合;例如,在某英语测验中,已测得各分数段的频数,要检验分数的频数分布是否与正态分布、均匀分布或其他分布拟合;我们以应用语言学实验方法一书中的例子79页,说明如何用spss进行单因素χ2分析;注意:单因素卡方检验的零假设不是“独立性”假设,我们可以将它变换成类似独立性问题的假设;在本例中,三组学生的选择问题如果是“独立”的,就是它们之间互不影响,选择方面均匀分布,各占1/3;即:“专业倾向没有差别”;统计结果中,如果p<,拒绝零假设=有差别;如果p>,接受原假设=无差别;Spss中的实现:步骤1:建立变量1.打开spss;2.点击变量视图标签;3.在变量视图窗口前三行分别输入变量名称“类别”,“人数”;4.为分类变量“类别”建立变量值标签,对于“类别”,l=“文学”,2=“语言学”,3=“外语”;结果如下:步骤2:输入数据1.点击数据视图标签;变量“类别”和“人数”出现在数据视图窗口中;2.在数据视图窗口的第一行“类别”中分别输入l,2和3,在“人数”输入48,42和30;步骤3:分析数据在执行χ2检验之前,我们首先需要对“人数”进行加权;加权表明给定变量的值表示观测总次数,而不仅仅是一个分数值;取值为48代表48个人,而不是分数为48;对“人数”进行加权1.在菜单栏中选择“数据>加权个案”;2.打开加权个案对话框;选择“加权个案”并选择变量“人数”,点击向右箭头按钮,把“人数”移到“频率变量”框中;3.点击“确定”;执行χ2检验1.在菜单栏中选择“分析>非参数检验>旧对话框>卡方”;打开卡方对话框,变量“类别”和“人数”出现在对话框的左侧;2.选择“人数”,点击向右箭头按钮〔,把变量移到“检验变量列表”框;3.选择“选项”,出现“卡方检验:选项”;勾选“描述性”,然后点;4.点击“确定”;步骤4:解释结果描述性统计量N 均值标准差极小值极大值人数120卡方检验频率人数观察数期望数残差304248总数120检验统计量人数卡方 4.200adf 2 渐近显着性.122个单元.0%具有小于5的期望频率;单元最小期望频率为;。

SPSS应用检验及方差齐性检验正态性检验ppt课件

SPSS应用检验及方差齐性检验正态性检验ppt课件

Descriptives (描述性统计分析)
Explore(探索性分析)
Crosstabs (列联表资料分析)

ppt课件.
2
二.t检验:样本均数与总体均数的比较 analyze→compare means →one-sample t test
→test variable:分析变量 →test value:总体均数的值
→ok 例3-5:
ppt课件.
3
三.t检验:配对t检验 analyze→compare means →paried-samples t test
→paried variables:配对的两个变量
→ok 例3-6:
ppt课件.
4
四.t检验:两样本均数的比较 analyze→compare means →independent-samples t test
正态性检验
plots:normality test
untransformed →continue
→ok
正态性检验有两种结果: Shapiro-Wilk:W检验(小样本) Kolmogorov-Smirnov:D检验(大样本)
“Paste”按钮的使用
ppt课件.
6
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!

SPSS应用:t检验和正态性、方差齐性检验
ppt课件.
1
一、 统计描述:
Analyze → descriptive statistics → descriptives → variables: 分析变量→ok 例2-1:
descriptive statistics:
frequencies(频数分布分析)

正态性检验和正态转换的方法以及在SPSS中的实现【范本模板】

正态性检验和正态转换的方法以及在SPSS中的实现【范本模板】

正态性检验的方法以及在SPSS中的实现本文将汇总正态检验常用的方法以及各种方法的适用条件和在SPSS中的实现,此外,还将提及将非正态分布转化为正态分布的方法,以及选择转化方法的依据.一、正态检验方法1。

1观察分布,预先判断先做直方图看看是否大概符合正态分布,Graph—->legacy dialogs-->histogram-->选入变量—-》OK。

如果距离正态分布的样子太远了,就不要做以下工作了。

1.2计算偏度(Skewness)和峰度(Kurtosis),当它们接近0时,为正态这是一种比较直观的方法,用于初步判断。

1)在SPSS中通用菜单栏Analyze—Reports—Case Summaries分析过程Statistics的选择项中计算偏度(Skewness)和峰度(Kurtosis) ;2)通过Analyze—Reports-Report Summaies in Row s分析过程Report 的Summary 的选择项计算偏度、峰度;或者通过Reprts—Report Summaries in Columns 分析过程的Summary 选择项计算偏度和峰度;3)通过Analyze—Descriptive Statistics-Frequencies分析过程的Statistics的选择项Distribution中计算偏度、峰度;4)通过Analyze—Descriptive Statist ics-Descr iptives分析过程的Opt ions的选择项Distribution中计算偏度、峰度;5)通过Analyze—Compare means—means 分析过程的Options 的选择项Statistics 中选择统计量Skewness (偏度)、Kurto sis (峰度)来对数据资料进行正态性检验。

附偏度和峰度统计意义:偏度主要是研究分布形状是否对称:约等于0 则可以认为分布是对称的;〉0 则可以认为右偏态,此时在均值右边的数据更为分散;<0 则可以认为左偏态,此时在均值左边的数据更为分散。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Normal P-P Plot of 血清总胆固醇
1.00
.75
Deviation from Normal
.50
.25
0.00
0.00
.25
.50
Observed Cum Prob
.75
1.00
SPSS统计分析
Detrended Normal P-P Plot of 血清总胆固醇
.08
.06
.04
.02
0.00
-.02
-.04
0.0
.2
.4
.6
.8
1.0
Observed Cum Prob
SPSS统计分析
练习3-1 对数据文件data2-1,中的体重、身高 和肺活量的资料利用P-P图法进行正态性检验 。
3.2 Q-Q图法
SPSS统计分析
正态Q-Q 概率图:是以样本的分位数(Px)为 横坐标,以按照正态分布计算的相应理论分位数 为纵坐标,把样本表现为直角坐标系的散点,所 描绘的图形。
SPSS统计分析
单击Statistics取消所有基本统计量。
单击Charts设置选项。
SPSS统计分析
2、结果解释
SPSS统计分析
2.6 多指标的描述分析 例2-7 对data2-1中的数据分别计算各学校参与 调查学生的性别构成比 。
1、操作提示: 单击Analyze/Descriptive Statistics/ Crosstabs打开相关分析对话框,选择分析。
如果资料服从正态分布,则样本点应呈一条围 绕第一象限对角线的直线。
3.2 Q-Q图法
SPSS统计分析
正态去势Q-Q图(分位数的残差图) :是以样 本的实际分位数作为横坐标,以样本的实际分位数 与按照正态分布计算的相应理论分布分位数的差 (称为分位数的残差)作为纵坐标,把样本表现为 直角坐标系的散点,所描绘的图形。
x5 )
53 54 53.5 2
SPSS统计分析
第三讲 正态性检验
主要内容
3.1 P-P图法 3.2 Q-Q图法 3.3 直方图、箱式图与茎叶图法 3.4 计算法
SPSS统计分析
3.1 P-P图法
两种P-P图:正态P-P图和正态去势P-P图(累 计概率残差图)
正态P-P图是以样本的累计频率作为横坐标, 以按照正态分布计算的相应累计概率作为纵坐 标,把样本值表现为直角坐标系的散点,所描绘 的图形。
SPSS统计分析
第二讲 统计描述(4)
主要内容
2.5 单个名义变量统计描述 2.6 多指标统计描述
SPSS统计分析
2.5 单个名义变量的描述分析 例2-6 对数据文件data2-1中的性别和学校两个 变量计算其构成比,并绘制直条图 。
1、操作提示: 单击Analyze/Descriptive Statistics/ Frequencies打开频率分析对话框,选择分析。
计算常用统计指标:极差、四分位数间距、方差、 标准差和变异系数。
SPSS统计分析
练习2-11 8名新生儿的身高(cm)为55,58,54, 50,53,51,54,52,求中位数。
解 数据排序得 50,51,52,53,54,54,55,58
n8
M
1 2
x
(
n 2
)
x1 2
( x4
中位数(n为奇数,M=63.6)
SPSS统计分析
练习2-10 设甲、乙、丙三人,采每人的耳垂血, 然后红细胞计数,每人数5个计数盘,得结果如下 (万/mm3)
盘编号 甲 乙 丙
1 440 480 490 2 460 490 495 3 500 500 500 4 540 510 505 5 560 520 510
SPSS统计分析
例3-1 某地40名30-49岁健康成年男子血清胆固 醇(mmol/l)的测定结果见数据文件data3-3,试 对该资料进行正态性检验 。 P-P 作图操作提示:
单击Craphs/p-p…打开p-p作图对话框; 将血清胆固醇变量选入分析变量框;
使用默认选项,单击确定,完成操作。
2、结果解释
相关分析对话框设置: 选择行变量 SPSS统计分析
前一层
选择列变量 后一层
绘制分组直条图 取消统计表输出
表内统计量
层变量 输出格式
表内统计量对话框设置:
百分比 行百分比 列百分比 总百分比
频数
实际频数 理论频数
SPSS统计分析
残差 实际值 标准化残差 调整标准化残差
输出格式对话框设置:
SPSS统计分析
如果资料服从正态分布,残差散点基本在Y=0 上下均匀分布。
SPSS统计分析
例3-2 某地40名30-49岁健康成年男子血清胆固 醇(mmol/l)的测定结果见数据文件data3-3,试 对该资料进行正态性检验 。
1、运用Q-Q图法操作提示: 单击Craphs/Q-Q…打开Q-Q作图对话框,选择 作图。
行变量输出格式 行变量数据值升序排序 行变量数据值降序排序
2、结果解释
SPSS统计分析
练习2-9 某药厂观察9只小鼠口服高山红景天醇 提物(RSAE)后在乏氧条件下的生存时间(分钟) 如下:49.1,60.8,63.3,63.6,63.6,65.6, 65.8,68.6,69.0 求其均值、中位数和众数。
检验分布类型
定义所检验的分布参数 根据样本数据估计总体参数
转换 自然对数变换 标准化值 差分变换 季节差分变换
SPSS统计分析
检验分布类型
对数分布 对数正态分布 正态分布 帕累托分布 t 分布 威布尔分布 均匀分布
P-P 作图对话框设置
SPSS统计分析
选择计算比例的计算公式
数值相同编秩方法
平均、最高、最低秩次 相同值在秩次范围内任 意分配
SPSS统计分析
3.1 P-P图法
例3-1 某地40名30-49岁健康成年男子血清胆固 醇(mmol/l)的测定结果见数据文件data3-3,试 对该资料进行正态性检验 。
1、运用P-P图法操作提示: 单击Craphs/p-p…打开p-p作图对话框,选择 作图。
P-P作图对话框设置
SPSS统计分析
如果资料服从正态分布,则样本点应呈一条围 绕第一象限对角线的直线。
SPSS统计分析
正态去势P-P图(累计概率残差图)是以样本 的实际累计频率作为横坐标,以样本的实际累计 频率与按照正态分布计算的相应累计概率差(称 为累计概率的残差)作为纵坐标,把样本表现为 直角坐标系的散点,所描绘的图形。
如果资料服从正态分布,残差散点基本在Y=0 上下均匀分布。
相关文档
最新文档