离子聚合包括阴离子聚合
合集下载
高分子科学-第6章 阴阳离子聚合详解
![高分子科学-第6章 阴阳离子聚合详解](https://img.taocdn.com/s3/m/298ca23910a6f524ccbf858d.png)
(iii)有机金属化合物:
ቤተ መጻሕፍቲ ባይዱ
有机金属化合物是最常用的阴离子聚合引发剂。多为 碱金属的有机金属化合物(如丁基锂),Ca和Ba的有机金 属化合物也具引发活性,但不常用。
BuLi + H2C CH X
Bu CH2 CH Li+ X
有机金属化合物的活性与其金属的电负性有关,金属的电 负性越小,活性越高。 活性次序: RK>RNa>Rli>RMg>RAl (iv)格氏试剂: 烷基镁由于其C-Mg键极性弱,不能直接引发阴离子聚合, 但制成格氏试剂后使C-Mg键的极性增大,可以引发活性较大 的单体聚合。
3
离子聚合的特点
单体选择性高;
聚合条件苛刻;
聚合速率快,需在低温下进行;
反应介质对聚合有很大影响。
聚合机理和动力学研究不够成熟
一些重要的聚合物,如丁基橡胶、异戊橡胶、聚甲 醛、聚氯醚等只能通过离子聚合得到。
4
离子聚合的应用:
理论上,有较强的控制大分子链结构的能力, 通过离子聚合可获得“活性聚合物”,可以有目 的的分子设计,合成具有预想结构和性能的聚合 物;
以KNH2 -液氨体系为例:
自由阴离子方式引 发聚合反应
形成单阴离子
14
(ii)醇盐、酚盐:
醇(酚)盐一般先让金属与醇(酚)反应制得醇(酚) 盐,然后再加入聚合体系引发聚合反应。如:
2 Na + 2 CH3OH → 2 CH3ONa + H2
CH3O-Na+ + H2C CH X H3CO CH2 CH Na+ X
第六章
离子聚合
1
6.1 引言
高分子化学6-离子聚合-阴离子聚合
![高分子化学6-离子聚合-阴离子聚合](https://img.taocdn.com/s3/m/14065e15fe4733687e21aa71.png)
二、阴离子聚合引发剂
对于吸电子取代基的烯类单体,按其反应能力, 可以排为四组:
CN A 组 CH2 C(CN)2 > CH2 C COOC2H5 > CH2 CHNO2 >>
B 组 CH2 CHCN > CH2 C(CH3)CN > CH2 CHCCH3 >>
CH3
O
C 组 CH2 CH
> CH2 C
Na + CH2 CH
CH2 CH
CH2 CH Na+
自由基末端偶合二聚后形成双阴离子:
2 CH2 CH
CH2 CH Na+
Na+
CH CH2 CH2 CH Na+
双向引发聚合
1.链引发(3)碱金属络合引发--电子间接转移引发
钠—萘体系:利用碱金属在某些溶剂中能够生成 有机络合物并降低其电子转移活化能的特点。
>>
COOCH3 D 组 CH2 CHCH CH2
COOCH3 > CH2 CH
CH3 > CH2 C
C6H5
C6H5
二、阴离子聚合引发剂
表 常见阴离子聚合单体和引发剂的反应活性
单体活性类别
单体
高活性A 次高活性B 中活性C 低活性D
硝基乙烯 偏二氰基乙烯
丙烯腈 甲基丙烯腈
丙烯酸甲酯 甲基丙烯酸甲酯
A
苯乙烯
非极性共轭烯烃
丁二烯
B
甲基丙烯酸甲酯 丙烯酸甲酯
丙烯腈
C 甲基丙烯腈
极性单体
活 性
甲基乙烯酮
硝基乙烯
高活性单体
亚甲基丙二酸二乙酯 D - 氰基丙烯酸乙酯
高分子化学第三章
![高分子化学第三章](https://img.taocdn.com/s3/m/da0ccb647275a417866fb84ae45c3b3567ecddd2.png)
阳离子聚合的特点: 快引发,快增长,难终止和易转移。
(二)阴离子聚合
在链式聚合反应中,活性中心为阴离子的聚 合反应。常用的引发剂有碱金属、丁基锂等亲核 试剂。
阴离子聚合反应的通式可表示如下:
A B M BM A M M n
其中B-为阴离子活性中心,A+为反离子,一般 为金属离子。与阳离子聚合不同,阴离子聚合中 ,活性中心可以是自由离子、离子对,以及处于 缔合状态的阴离子。
酸根的亲核性不能太强,否则会与活性中心结合成 共价键而终止,如HCl
CH3 CH A X
A CH3 CH
X
不同质子酸的酸根的亲核性不同
氢卤酸的X-亲核性太强,不能作为阳离子聚合引发剂, 如HCl引发异丁烯
(CH3)3C Cl
(CH3)3C Cl
HSO4- H2PO4-的亲核性稍差,可得到低聚体。 HClO4,CF3COOH,CCl3COOH的酸根较弱,可生成高聚 物。
Lewis酸引 发
傅-克(俗称Friedel-Grafts催化剂)反应中的各种
金属卤化物,都是电子的接受体,称为Lewis酸。
从工业角度看,是阳离子聚合最重要的引发剂。
Lewis酸包括: 金属卤化物:
BF3 , AlCl3, SnCl4 , TiCl4, SbCl5, PCl5, ZnCl2 金属卤氧化物:
离子聚合:活性中心是离子的聚合。
根据中心离子电荷性质的不同 阳离子聚合 阴离子聚合
离子聚合的理论研究开始于五十年代:
1953年,Ziegler在常温低压下制得PE 1956年,Szwarc发现了“活性聚合物”
多数烯烃单体都能进行自由基聚合,但是 离子聚合却有极高的选择性。 原因: 离子聚合对阳离子和阴离子的稳定性要求 比较严格。
(二)阴离子聚合
在链式聚合反应中,活性中心为阴离子的聚 合反应。常用的引发剂有碱金属、丁基锂等亲核 试剂。
阴离子聚合反应的通式可表示如下:
A B M BM A M M n
其中B-为阴离子活性中心,A+为反离子,一般 为金属离子。与阳离子聚合不同,阴离子聚合中 ,活性中心可以是自由离子、离子对,以及处于 缔合状态的阴离子。
酸根的亲核性不能太强,否则会与活性中心结合成 共价键而终止,如HCl
CH3 CH A X
A CH3 CH
X
不同质子酸的酸根的亲核性不同
氢卤酸的X-亲核性太强,不能作为阳离子聚合引发剂, 如HCl引发异丁烯
(CH3)3C Cl
(CH3)3C Cl
HSO4- H2PO4-的亲核性稍差,可得到低聚体。 HClO4,CF3COOH,CCl3COOH的酸根较弱,可生成高聚 物。
Lewis酸引 发
傅-克(俗称Friedel-Grafts催化剂)反应中的各种
金属卤化物,都是电子的接受体,称为Lewis酸。
从工业角度看,是阳离子聚合最重要的引发剂。
Lewis酸包括: 金属卤化物:
BF3 , AlCl3, SnCl4 , TiCl4, SbCl5, PCl5, ZnCl2 金属卤氧化物:
离子聚合:活性中心是离子的聚合。
根据中心离子电荷性质的不同 阳离子聚合 阴离子聚合
离子聚合的理论研究开始于五十年代:
1953年,Ziegler在常温低压下制得PE 1956年,Szwarc发现了“活性聚合物”
多数烯烃单体都能进行自由基聚合,但是 离子聚合却有极高的选择性。 原因: 离子聚合对阳离子和阴离子的稳定性要求 比较严格。
阴离子聚合
![阴离子聚合](https://img.taocdn.com/s3/m/4180876158fafab069dc02a8.png)
丙烯腈 甲基丙烯腈 甲基丙烯酮
偏二氰乙烯
a-氰基丙烯酸乙酯
硝基乙烯
单体活性
低
中
较高
高
苯乙烯在自由基聚合是活性单体,在阴离子聚合成低活性单体?
四. 阴离子聚合机理
1.机理:引发、增长、終止。
链引发:I
链增长: 链終止:
极快
M-
慢 M nM M n1M
M n1M 难終止
烷基卤化镁RMgX由于其C-Mg键极性弱,不能直 接引发阴离子聚合,但制成格氏试剂后使C-Mg键的 极性增大,可以引发活性较大的单体聚合。
以丁基锂和萘钠最为重要也最为常用的引用剂。
三. 阴离子聚合引发剂和单体的匹配
阴离子聚合与自由基聚合相比,单体对引发剂 有较强的选择性,只有当引发剂与单体活性相 匹配才能得到所需的聚合物。
甲基丙烯酸甲酯
CH3
H2C CH CH CH2
H2C C
CH CH2
苯乙烯
甲基苯乙烯
丁二烯
异戊二烯
乙烯基单体,取代基的吸电子能力越强,双键上的电子云密度 越低,越易与阴离子活性中心加成,聚合反应活性越高。
二. 阴离子聚合引发体系和引发 阴离子聚合引发剂——电子给体,即亲核 试剂,属于碱类。
直接转移引发
一. 阴离子聚合的单体 (1)带吸电子取代基的乙烯基单体
一方面,吸电子性能能使双基上电子云密度降低,有利 于阴离子的进攻,另一方面,形成的碳阴离子活性中心由于 取代基的共轭效应而稳定,因而易阴离子聚合:
H2C CH X
降低电子云密度,易 与富电性活性种结合
H2C CH X
H R CH2 C X
分散负电性,稳定活性中心
强碱性高活性引发剂能引发各种活性的单体,而弱碱 性低活性引发剂只能引发高活性的单体。
离子聚合
![离子聚合](https://img.taocdn.com/s3/m/3443c92d453610661ed9f460.png)
CH3 CH2 CH CH CH3 CH2 CH CH CH3 CH3
二级碳阳离子(仲碳阳离子) 三级碳阳离子(叔碳阳离子)
CH3 CH2 CH2 C CH3
阳离子聚合
3. 链转移和链终止
离子聚合的活性种带有电荷,无法双基终止,因此只能 通过单基终止和链转移终止,也可人为添加终止剂终止。 自由基聚合的链转移一般不终止动力学链,而阳离子聚 合的链转移则有可能终止动力学链。因此阳离子聚合的链终 止只可分为动力学链不终止的链终止反应和动力学链终止的 链终止反应两类。
+ XA
ktr,s kp
HMnMA + XCR HMnM NR3(CR)
+
NR3
阳离子聚合
CH3 CH3 (BF3OH) + H2O CH3 CH3 OH + H (BF3OH) H 2O H [ CH2 C ] n CH2 C CH3 CH3 H [ CH2 C ] n CH2 C CH3 CH3
离子聚合
引言
离子聚合是又一类连锁聚合。它的活性中心为离子。根 据活性中心的电荷性质,可分为阳离子聚合和阴离子聚合。 多数烯烃单体都能进行自由基聚合,但是离子聚合却有 极高的选择性。原因是离子聚合对阳离子和阴离子的稳定性 要求比较严格。例如只有带有1,1—二烷基、烷氧基等强推 电子的单体才能进行阳离子聚合;带有腈基、羰基等强吸电 子基的单体才能进行阴离子聚合。但含有共轭体系的单体, 如苯乙烯、丁二烯等,则由于电子流动性大,既可进行阳离 子聚合,也能进行阴离子聚合。
离子聚合
离子聚合的发展导致了活性聚合的诞生。这是高分子发 展史上的重大转折点。通过阴离子活性聚合,可实现高分子 的分子设计,制备预定结构和分子量的聚合物。 阴离子活性聚合在制备特殊结构的嵌段共聚物、接枝共 聚物、星状聚合物等方面有十分重要的作用。 目前,活性聚合领域已扩展到阳离子聚合、自由基聚合 和基团转移聚合。 配位聚合在本质上属于阴离子聚合。
二级碳阳离子(仲碳阳离子) 三级碳阳离子(叔碳阳离子)
CH3 CH2 CH2 C CH3
阳离子聚合
3. 链转移和链终止
离子聚合的活性种带有电荷,无法双基终止,因此只能 通过单基终止和链转移终止,也可人为添加终止剂终止。 自由基聚合的链转移一般不终止动力学链,而阳离子聚 合的链转移则有可能终止动力学链。因此阳离子聚合的链终 止只可分为动力学链不终止的链终止反应和动力学链终止的 链终止反应两类。
+ XA
ktr,s kp
HMnMA + XCR HMnM NR3(CR)
+
NR3
阳离子聚合
CH3 CH3 (BF3OH) + H2O CH3 CH3 OH + H (BF3OH) H 2O H [ CH2 C ] n CH2 C CH3 CH3 H [ CH2 C ] n CH2 C CH3 CH3
离子聚合
引言
离子聚合是又一类连锁聚合。它的活性中心为离子。根 据活性中心的电荷性质,可分为阳离子聚合和阴离子聚合。 多数烯烃单体都能进行自由基聚合,但是离子聚合却有 极高的选择性。原因是离子聚合对阳离子和阴离子的稳定性 要求比较严格。例如只有带有1,1—二烷基、烷氧基等强推 电子的单体才能进行阳离子聚合;带有腈基、羰基等强吸电 子基的单体才能进行阴离子聚合。但含有共轭体系的单体, 如苯乙烯、丁二烯等,则由于电子流动性大,既可进行阳离 子聚合,也能进行阴离子聚合。
离子聚合
离子聚合的发展导致了活性聚合的诞生。这是高分子发 展史上的重大转折点。通过阴离子活性聚合,可实现高分子 的分子设计,制备预定结构和分子量的聚合物。 阴离子活性聚合在制备特殊结构的嵌段共聚物、接枝共 聚物、星状聚合物等方面有十分重要的作用。 目前,活性聚合领域已扩展到阳离子聚合、自由基聚合 和基团转移聚合。 配位聚合在本质上属于阴离子聚合。
高分子化学—离子聚合
![高分子化学—离子聚合](https://img.taocdn.com/s3/m/3f329189a0116c175f0e48e9.png)
- Na + Na+ 苯 乙烯 ? + H2C CH Na+
H2C CH Na+ 2
Na+ - HC CH2 CH2 CH - Na+
引 发聚 合
电子间接转移引发
高分子化学
N
H
C
S
阴 离 子 聚 合 反 应
O
实施聚合反应时,先将金属钠与萘在惰性溶剂中反应后 实施聚合反应时, 再加入聚合体系引发聚合反应,属均相引发体系。 再加入聚合体系引发聚合反应,属均相引发体系。 (2)阴离子加成引发: )阴离子加成引发: 引发剂离解产生的阴离子与单体加成引发聚合反应: 引发剂离解产生的阴离子与单体加成引发聚合反应:
O
Na+ - HC CH2 CH2 CH - Na+ + CO2
+ Na+ OOC HC CH2 CH2 CH COO Na
高分子化学
N
H
C
S
阴 离 子 聚 合 反 应
O
4.2 链转移与链终止 链转移:阴离子聚合从增长链上脱去氢阴离子 链转移:阴离子聚合从增长链上脱去氢阴离子H-发生链 转移的活化能相当高,一般难以进行; 转移的活化能相当高,一般难以进行;
高分子化学
N
H
C
S
阴 离 子 聚 合 反 应
Bu CH2 CH Li+ X
O
BuLi + H2C CH X
有机金属化合物的活性与其金属的电负性有关, 有机金属化合物的活性与其金属的电负性有关,金属的电 负性越小,活性越高。 负性越小,活性越高。
(iv)格氏试剂: )格氏试剂: 烷基镁由于其C-Mg键极性弱,不能直接引发阴离子聚合, 键极性弱,不能直接引发阴离子聚合, 烷基镁由于其 键极性弱 但制成格氏试剂后使C-Mg键的极性增大,可以引发活性较大 但制成格氏试剂后使 键的极性增大, 键的极性增大 的单体聚合。 的单体聚合。
H2C CH Na+ 2
Na+ - HC CH2 CH2 CH - Na+
引 发聚 合
电子间接转移引发
高分子化学
N
H
C
S
阴 离 子 聚 合 反 应
O
实施聚合反应时,先将金属钠与萘在惰性溶剂中反应后 实施聚合反应时, 再加入聚合体系引发聚合反应,属均相引发体系。 再加入聚合体系引发聚合反应,属均相引发体系。 (2)阴离子加成引发: )阴离子加成引发: 引发剂离解产生的阴离子与单体加成引发聚合反应: 引发剂离解产生的阴离子与单体加成引发聚合反应:
O
Na+ - HC CH2 CH2 CH - Na+ + CO2
+ Na+ OOC HC CH2 CH2 CH COO Na
高分子化学
N
H
C
S
阴 离 子 聚 合 反 应
O
4.2 链转移与链终止 链转移:阴离子聚合从增长链上脱去氢阴离子 链转移:阴离子聚合从增长链上脱去氢阴离子H-发生链 转移的活化能相当高,一般难以进行; 转移的活化能相当高,一般难以进行;
高分子化学
N
H
C
S
阴 离 子 聚 合 反 应
Bu CH2 CH Li+ X
O
BuLi + H2C CH X
有机金属化合物的活性与其金属的电负性有关, 有机金属化合物的活性与其金属的电负性有关,金属的电 负性越小,活性越高。 负性越小,活性越高。
(iv)格氏试剂: )格氏试剂: 烷基镁由于其C-Mg键极性弱,不能直接引发阴离子聚合, 键极性弱,不能直接引发阴离子聚合, 烷基镁由于其 键极性弱 但制成格氏试剂后使C-Mg键的极性增大,可以引发活性较大 但制成格氏试剂后使 键的极性增大, 键的极性增大 的单体聚合。 的单体聚合。
高分子化学第四章(离子聚合)
![高分子化学第四章(离子聚合)](https://img.taocdn.com/s3/m/9cc7c03979563c1ec5da71aa.png)
(2)Lewis酸
这类引发剂包括AlCl3、BF3、SnCl4、SnCl5、ZnCl2和TiCl4 等金属卤化物,以及 RAlCl2,R2AlCl 等有机金属化合物,其中 以铝、硼 、钛、锡的卤化物应用最广。
Lewis 酸引发阳离子聚合时,可在高收率下获得较高分子量 的聚合物,因此从工业上看,它们是阳离子聚合的主要引发剂。
(5)聚合方法
自由基聚合可以在水介质中进行,但水对离子聚合的引发剂和 链增长活性中心有失活作用,因此离子聚合一般采用溶液聚合, 偶有本体聚合,而不能进行乳液聚合和悬浮聚合。
4.2 阳 离 子 聚 合
4.2.1 阳离子聚合单体
阳离子聚合单体必须是有利形成阳离子的亲核性烯类单体,包 括以下三大类:
(1)带给电子取代基的烯烃如:
Lewis 酸引发时常需要在质子给体(又称质子源)或正碳离 子给体(又称正碳离子源)的存在下才能有效。
质子给体或正碳离子给体是引发剂,而 Lewis 酸是助引发剂 (或称活化剂),二者一起称为引发体系。
质子给体 一类在 Lewis 酸存在下能析出质子的物质,如水、卤 化氢、醇、有机酸等;以 BF3 和 H2O引发体系为例:
阳离子聚合反应过程中的异构化反应
碳阳离子可进行重排形成更稳定的碳阳离子,在阳离子聚合 中也存在这种重排反应,如 β-蒎烯的阳离子聚合:
4.2.2.3 链转移和链终止 链转移反应 链转移反应是阳离子聚合中常见的副反应,有以下几种形式:
(1)向单体链转移: 增长链碳阳离子以 H+ 形式脱去 β-氢给单体,这是阳离子聚
(Ph)3C+ClO4- + OR
Ph Ph
Ph
CH2 CH ClO4OR
(4)卤素 卤素 I2 也可引发乙烯基醚、苯乙烯等的聚合,其引发反应被认
高分子化学第四版6-离子聚合
![高分子化学第四版6-离子聚合](https://img.taocdn.com/s3/m/67e6eedebb4cf7ec4afed0f5.png)
6.2.6 活性阴离子聚合动力学
阴离子聚合的特征:聚合前引发剂全部转变成
活性中心,各活性中心活性相同,以相同的
速度同时引发单体增长,增长过程中无引发
反应和终止反应,活性中心数保持不变。 活性阴离子聚合是: 快引发、慢增长、无终止和无转移。
⑴. 聚合速率
测定t 时的 残留[M], 可求kp
⑵. 聚合度和聚合度分布
6.3.3 阳离子聚合机理
阳离子聚合机理:
快引发、快增长、易转移、难终止。
1. 链引发
其它络合物离子对: BF3 H 2O H BF3OH SnCl4 RCl R SnCl5
AlCl3 HCl H AlCl4
BF3 C2 H 5 2 O C2 H 5 BF3OC2 H 5
6.2.4 活性阴离子聚合的机理和应用 1. 活性阴离子聚合机理
2. 活性聚合的应用
①合成均一分子量的聚合物
②制备嵌段聚合物
在利用阴离子聚合,先制得一种单体的活的聚合物,然 后加入另一种单体聚合时,并非所有活的聚合物都可 以引发另一种单体聚合,反应能否进行,取决于 M1
和 M2 的相对碱性,即 M1 的给电子能力和 M 2的亲电
2. 链增长
阳离子聚合增长反应的特点:
⑴. 离子与分子间的反应,速度快,活化能低,几乎与引发同时完成;
⑵. 单体按头尾结构插入离子对,对构型有一定控制能力; ⑶. 增长过程中有时伴有分子内重排反应。
例如:3甲基1丁 烯的阳离子聚 合产物。
3. 链转移
离子聚合的增长活性中心带有相同的电荷,不能
4 9 4 9
C H Mn Li K C H Mn Li
高分子化学第五章
![高分子化学第五章](https://img.taocdn.com/s3/m/315b2ef404a1b0717fd5ddc7.png)
是紧靠活性中心的引发剂碎片,与活性中心 所带电荷相反,称反离子或抗衡离子。
B
A B
是阳离子聚合的引发剂,其中 A 为引发剂 的活性中心
5.2.2 阳离子聚合的单体与催化剂 1. 具有推电子基的烯类单体原则上可进行阳离 子聚合
5.2.2 阳离子聚合的单体与催化剂
1. 1 α-烯烃
乙烯(Ethylene): 无侧基,C=C电子云密度低,对质子亲和力小,难以 阳离子聚合。 丙烯(Propylene)、丁烯(Butylene): 烷基供电性弱,生成的二级碳阳离子较活泼,易发生 重排等副反应,生成更稳定的三级碳阳离子。
5.2.3 阳离子聚合的机理
HMnM
kt (CR)
Mn+1 +
H (CR)
2、链终止:
(1)与反离子加成终止(反离子有足够的亲
CH3 CH 3 C + BF3OH CH3 + CH2 CH3 C CH3 CH3 CH3 C + CH3
CH2
BF 3OH CH3 C
+
-
CH3 CH3 C CH 2 CH3 M CH3 CH3 C CH2 CH3
CH3 C + BF 3OH CH3 CH 3 C CH 3
n
* CH2
-
CH3
CH3 CH2 C CH3 97% r1 =2.5 3% r2=0.4 CH2 CH3 C CH3 98.5% 1.5% n
* 2 CH
CH3 + CH2 C CH CH2
-100℃
CHCl3溶剂
AlCl3 +H2O引发
CH3 C CH CH2 m
5.2.1 研究现况
3、
离子聚合知识点总结
![离子聚合知识点总结](https://img.taocdn.com/s3/m/7a22127db80d6c85ec3a87c24028915f804d84d1.png)
离子聚合知识点总结离子聚合的原理主要是通过离子化合物之间的静电相互作用来进行高分子化合物的合成。
一般来说,离子聚合可以分为两种类型:阴离子聚合和阳离子聚合。
阴离子聚合是指一种以带负电荷的离子为单体进行的聚合反应,而阳离子聚合是指一种以带正电荷的离子为单体进行的聚合反应。
这两种类型的离子聚合反应在原理上有一些相似之处,但在反应过程和条件上有一些不同之处。
一般来说,离子聚合的反应过程可以分为以下几个步骤:首先是单体的离子化,将单体分子转化成带电荷的离子;然后是离子的相互作用,使带电的单体离子之间发生静电吸引;最后是链的生长,通过构建链状结构将离子单体连接起来形成高分子化合物。
在这个过程中,离子聚合反应需要考虑一些重要的因素。
首先是单体的选择和制备,选择合适的带电荷的单体对于反应的成功至关重要。
其次是反应条件的选择,温度、溶剂、催化剂等因素都对反应的效果有重要影响。
此外,反应过程中也需要考虑离子的稳定性和聚合物的结构控制等问题。
离子聚合在许多领域中有广泛的应用。
在生物医学领域,离子聚合可以用来制备生物可降解的高分子材料,用于药物释放、组织修复等方面。
在材料科学领域,离子聚合可以用来制备具有特殊性能的聚合物材料,例如离子交换膜、离子凝胶等。
在化学工程领域,离子聚合也可以用来制备各种功能性高分子化合物,为工业生产提供新的材料和技术。
总的来说,离子聚合是一种重要的高分子化学反应方法,它可以产生具有特殊结构和性能的高分子化合物,对于许多领域的研究和应用都具有重要意义。
随着化学和材料科学的发展,离子聚合技术也将进一步得到发展和应用,为人类的生产和生活带来新的进步和改善。
离子聚合
![离子聚合](https://img.taocdn.com/s3/m/33f1a42bccbff121dd368363.png)
特点:
增长活化能与引发活化能一样低,速率快
增长活性中心为自由离子或一离子对,而离子对
又分紧密离子对和疏松离子对,结合的紧密程度 对聚合速率和分子量有一定影响
链增长活性中心与抗衡阴离子的离解平衡:
离解程度增加
单体插入聚合,对链节构型有一定的控制能力
反应活性增加
离解程度的影响因素
不同活性中心具有不同的活性,而活性中心的存在形式在很 大程度上取决于反离子的性质和反应介质(溶剂的种类): (1)反离子效应
离 子 聚 合
1 离子型聚合反应的特点
离子聚合与自由基聚合一样,同属链式聚合反应,但链增长 反应活性中心是带电荷的离子。根据活性中心所带电荷的不同, 可分为阳离子和阴离子聚合。对于烯烃单体而言,活性中心就是 碳正离子或碳负离子,它们的聚合反应可分别用下式表示:
除了活性中心的性质不同之外,离子聚合与自由基聚合明显
CH2 CH OR
p- 共轭
诱导效应使双键电子云密度降低,氧的电负性较大 共轭效应使双键电子云密度增加,占主导地位 +C > -I 共振结构使形成的碳阳离子上的正电荷分散而稳定:
H CH2 C O R CH2 H C O R
能够进行阳离子聚合
③环氧化合物:
O O O O O O CH3
四氢呋喃
三氧六环
不同,主要表现在以下几个方面: (1)单体结构(对单体的选择性高)
自由基聚合对单体选择性较低,多数烯烃单体可以进行自由
基聚合。但离子聚合对单体有较高的选择性,只适合于带有能稳 定存在的碳阳离子或碳负离子取代基的单体,具有推电子基团的 则容易进行阴离子聚合。带有共轭基团或共轭二烯类单体技能进
乙烯基单体,有利于阳离子聚合,具有吸电子基团的乙烯基单体,
高分子物理与化学 第5章 离子聚合
![高分子物理与化学 第5章 离子聚合](https://img.taocdn.com/s3/m/873d0f4dc850ad02de8041a6.png)
②羟基硅油乳液,分子链二端有羟基的甲 基硅氧烷 八甲基环四硅氧烷(D4),在水介质中, 乳化剂保护,用氢氧化钾为催化剂,开环聚 合。 用作纺织品的柔软处理剂
③聚氧乙烯、聚氧丙烯 在水介质中,乳化剂保护,用氢氧化钾为催化 剂,开环聚合。 聚氧乙烯是水溶性聚合物, 用于制药作软膏基质、药片辅料; 化妆品的添加料,如牙膏、洗涤液、护发品、面 膜、唇膏等; 陶瓷加工中陶瓷基材增塑和粘合; 油墨和陶瓷玻璃颜料添加剂、润滑剂、化纤油剂、 金属切削加工助剂,木材尺寸稳定剂、木制古董防 腐剂等。 聚氧乙烯和聚氧丙烯共聚物有水溶的和不水溶的, 作各种聚氧乙烯、聚氧丙烯。
第五章 离子聚合 离子聚合也是属于连锁聚合, 和自由基聚合不同的是离子聚合的 活性中心是离子或离子对。根据中 心离子的电荷性质,可分为阳离子 聚合和阴离子聚合。以络合引发体 系引发的配位聚合,虽属于离子聚 合,但发展迅速,机理上又有独特 之处,另归一类。
进行离子聚合的烯类单体必须有极性取代基
或共轭双键。 有-OR,-CH3等斥电子基团,使双键电子云 密度增加有利于阳离子聚合。 A﹢B﹣+ CH2=CHX → A-CH2-CHX﹢ B﹣ A-CH2-CHX﹢ B﹣+ CH2=CHX→ A-CH2CHX-CH2-CHX﹢ B﹣
1、单体 可进行配位聚合的单体:α-烯烃,二烯烃 和环烯烃 2、催化剂 分主催化剂、助催化剂、第三组分和载体 主催化剂是周期表中Ⅳ~Ⅷ副族的过渡金 属元素的卤化物和氧卤化物。其中主要钛、 钒、钼、铬、锆的化合物。
助催化剂是周期表中Ⅰ~Ⅲ族的金属的有 机金属化合物,主要有铝、锂、镁、锌的烷 基=芳基化合物活它们的氢化物。 第三组分是具有给电子能力的Lewis碱, 如含N、O、P等的有机化合物。 工业上常用的主催化剂是四氯化钛,真正 使用的是β-三氯化钛,一般由三乙基铝还原 四氯化钛得到;助催化剂为三乙基铝。根据 聚合度的不同一般钛/铝的摩尔比1.0~5.0范 围。用量一般10~70克/升。
第2章离子聚合阴离子聚合
![第2章离子聚合阴离子聚合](https://img.taocdn.com/s3/m/8c0b6803842458fb770bf78a6529647d2628347c.png)
由于阴离子聚合反应活性中心具有与活泼氢(质子) 反应的强烈倾向,因此凡是含有活泼氢的物质如醇、 酸、水等均能够使活性阴离子链发生转移反应而终止 。向质子性物质转移终止,例如:
12
生成活性低于原来使用的引发剂(如LiBu)的醇锂 或氢氧化锂,起阻聚剂的作用而使反应停止。
因此,对于理想的阴离子聚合体系如果不外加链终止剂 或链转移剂,一般不存在链转移反应与链终止反应。
阻聚剂种类
自由基聚合:氧、DPPH、苯醌 阳离子聚合:极性物质水、醇,碱性物质,苯醌 阴离子聚合:极性物质水、醇,酸性物质,CO2
20
. CH2 CH- Na + 苯乙烯自由
基-阴离子
dimerize Na + -CH radical couple
CH2
CH2
CH - Na +
双阴离子 活性中心
5
(2) 电子间接转移引发
碱金属将电子转移给中间体,形成自由基-阴离子,再将
活性中心转移给单体,例如:萘钠在四氢呋喃(THF)
中引发苯乙烯(St)
聚合机理
自由基聚合:多为双基终止 双基偶合 Rp [I] 1/2
双基歧化
离子聚合:具有相同电荷,不能双基终止 阳:向单体、反离子、链转移剂终止
无自加速现象 Rp [C]
阴:往往无终止,活性聚合物,添加其它试剂终止
19
机理特征:
自由基聚合:慢引发、快增长、速终止、可转移 阳离子聚合:快引发、快增长、易转移、难终止 阴离子聚合:快引发、慢增长、无终止
2个苯乙烯自由基-阴离子 再偶合成苯乙烯双阴离子
萘和钠在THF溶剂中反应生成萘钠;萘钠在极性
溶剂中是均相体系,碱金属的利用率高。
6
2. 有机金属化合物引发
12
生成活性低于原来使用的引发剂(如LiBu)的醇锂 或氢氧化锂,起阻聚剂的作用而使反应停止。
因此,对于理想的阴离子聚合体系如果不外加链终止剂 或链转移剂,一般不存在链转移反应与链终止反应。
阻聚剂种类
自由基聚合:氧、DPPH、苯醌 阳离子聚合:极性物质水、醇,碱性物质,苯醌 阴离子聚合:极性物质水、醇,酸性物质,CO2
20
. CH2 CH- Na + 苯乙烯自由
基-阴离子
dimerize Na + -CH radical couple
CH2
CH2
CH - Na +
双阴离子 活性中心
5
(2) 电子间接转移引发
碱金属将电子转移给中间体,形成自由基-阴离子,再将
活性中心转移给单体,例如:萘钠在四氢呋喃(THF)
中引发苯乙烯(St)
聚合机理
自由基聚合:多为双基终止 双基偶合 Rp [I] 1/2
双基歧化
离子聚合:具有相同电荷,不能双基终止 阳:向单体、反离子、链转移剂终止
无自加速现象 Rp [C]
阴:往往无终止,活性聚合物,添加其它试剂终止
19
机理特征:
自由基聚合:慢引发、快增长、速终止、可转移 阳离子聚合:快引发、快增长、易转移、难终止 阴离子聚合:快引发、慢增长、无终止
2个苯乙烯自由基-阴离子 再偶合成苯乙烯双阴离子
萘和钠在THF溶剂中反应生成萘钠;萘钠在极性
溶剂中是均相体系,碱金属的利用率高。
6
2. 有机金属化合物引发
离子聚合离子聚合
![离子聚合离子聚合](https://img.taocdn.com/s3/m/5248aa2e763231126edb11a9.png)
5
1)阴离子聚合的烯类单体 原则上:含吸电子基的烯类单体
吸电子基能使 C=C上的电子云
B
δ+
CH2=CH Y
密度降低,有利于阴离子的进攻;
吸电子基也使碳阴离子增长种
的电子云密度分散,能量降低而稳 定。
BCH2
C Y
6
具有π-π共轭体系的烯类单体才能进行阴离子聚
合,如苯乙烯、丙烯酸酯类等。
VC、VAc等单体,P-π共轭效应与诱导效应相
反,减弱了双键电子云密度下降的程度,不利于阴离 子聚合。
环氧乙烷、环氧丙烷、己内酰胺等杂环化合物,
可由阴离子催化剂开环聚合。 Q-e 概念中,e 的正值越大,取代基吸电子性 越强,则单体越易阴离子聚合。若e 值虽不大,但 Q值较大的共轭单体也易阴离子聚合。
32
6.3 阳离子聚合(Cation Polymerization) 反应通式:
A B + M AM B M Mn
A
:阳离子活性中心,通常为碳阳离子或氧翁离子 :紧靠中心离子的引发剂碎片,称反离子(Counterion)
B
阳离子活性中心难以孤立存在,在聚合过 程中,往往与反离子形成离子对。
33
1)阳离子聚合的烯类单体 原则上:取代基为供电基团的烯类单 体原则上有利于阳离子聚合
由萘钠-THF引发得的聚苯乙烯,接近单分散性,这 种聚苯乙烯可用作分子量及其分布测定的标样。
22
D. 活性聚合的应用
制备遥爪聚合物(Telechelic Polymer)
指分子链两端都带有活性官能团的聚合物,两个官 能团遥遥位居于分子链的两端,象两个爪子,故称为遥 爪聚合物。 制备方法:聚合末期在活性链上加入如 CO2、环 氧乙烷、二异氰酸酯等添加剂,使末端带羧基、羟基、 异氰酸根等基团的聚合物,合成遥爪聚合物。
高分子化学 第六章_阴离子聚合
![高分子化学 第六章_阴离子聚合](https://img.taocdn.com/s3/m/f7e7007c03d8ce2f006623e9.png)
6.2 阴离子聚合
阴离子聚合反应的通式:
B A
M
BM A
M
M
BM
n
A
其中:
B —阴离子活性中心,一般为亲核试剂(Nucleophile)
A —反离子,一般为金属离子(Metallic ion)。
单体插入离子对中进行聚合。
6.2 阴离子聚合
一、阴离子聚合的烯类单体
活性聚合的特点: (1)聚合物分子量均一,具有单分散性; (2)聚合度与引发剂及单体浓度有关,可定量计算,又称化学 计量聚合; (3)若反应体系内单体浓度、温度分布均匀,则所有增长链的 增长几率相同; (4)无终止反应,须加入水、醇等终止剂人为地终止聚合。
6.2 阴离子聚合
自发终止
如苯乙烯负离子在四氢呋喃溶剂中的异构化反应
CH2 CH Na
CH CH + NaH
H
氢化纳活性 较大,可再 度引发聚合
CH2 CH Na +
CH 2
CH
CH2
CH2
CH2
CH2 +
Na
CH2 C
CH CH
1, 3-二苯基烯丙基阴离子
原因:活性端基异构化,形成不活泼的烯丙基型端基阴离子。
碱金属一般不溶于单体和溶剂,属非均相引发体系,利用 率低。
6.2 阴离子聚合
(2)电子间接转移引发 碱金属-芳烃复合引发剂
典型:萘-钠引发体系在四氢呋喃溶液中
Na +
Na
THF
萘钠自由基-阴离子
(绿色)
四氢呋喃作用:将氧上的未共用电子对与钠离子形成较稳定的络 合阳离子,使萘钠结合疏松,更有利于萘自由基-阴离子引发。
离子聚合包括阴离子聚合
![离子聚合包括阴离子聚合](https://img.taocdn.com/s3/m/9482848684254b35eefd34e1.png)
体系变为两相:聚合物和溶液。 溶液中包括:溶剂正己烷、引发剂、未反应的单体、无 规聚丙烯。 ② 无规PP的去除 无规PP溶于正己烷中,聚合物与溶剂分离时,无规PP被 分离出来。再将溶有无规PP的正己烷精馏,无规PP从塔底流 出。 ③ 未反应的单体的去除
AlC2H5Cl2 K2TiF6 己烷
Z合成
不断增加,给搅拌和传热带来来困难。
对于聚合设备来讲有一个允许的溶液粘度,一般为 103 Pa.s。
而体系的粘度可能由两个因素造成: 固(聚合物)含量和聚合物的相对分子质量。 当PB的门尼粘度值为50时,可允许的固含量为14%,此时体 系的粘 度 为 103Pa.s,因此,PB生 产中起 始 单体浓 度 采用 10%~ 15%。 如果要获得门尼粘度为100的PB,起始单体浓度只能为7%以 下.若要生产门尼粘度为20的PB,则起始单体浓度可提高到20%。 ⑷ 挂胶 挂胶是PB生产中的另一个问题,也是溶液法生产橡胶的普 遍问题。 当聚合反应进行一段时间后,釜壁、釜底、搅拌浆叶、管道 及泵等会沉积一层结实的胶膜,这种现象称为挂胶。 胶膜如不及时清理,胶膜会逐渐加厚造成严重挂胶。 其后果是传热不良,搅拌困难,产品质量下降,甚至堵塞 管道。此时不得不停工清理,从而影响生产能力的提高。
为了聚合反应的正常进行,必须对单体和溶剂进行精制, 使杂质含量控制在允许的范围内。 使丁二烯-1,3的纯度>99.5%。 ⒉ 溶剂的选择 聚合用溶剂国外主要采用苯或甲苯或烷烃和芳烃的混合
物。 用苯作溶剂的优点是其对单体和聚合物的溶解性能好、
沸点低容易回收和分离;其缺点是聚合物溶液粘度大对传热 不利,且冰点低(5℃)要求管道保温,毒性大。 用甲苯作溶剂的优点是其对单体和聚合物的溶解性能好, 反应平稳;其缺点是由于沸点高(110℃)回收时蒸气消耗量 大,聚合物溶液粘度大传热和搅拌都有困难,毒性也大。
自由基、阴阳离子、配位聚合
![自由基、阴阳离子、配位聚合](https://img.taocdn.com/s3/m/39ba196a783e0912a2162aa4.png)
配位聚合:配位聚合反应的活性中心既不是 带独电子的游离基,也不是带正或负电荷的 离子,而是引发剂中含有烷基的过渡金属元 素的空的 d 轨道,单体能在空 d 轨道上配位 而被活化,随后烷基及双键上的Π 电子对发生 移位,使链增长,所以叫配位聚合。
配位聚合的特点
1、单体π电子进入亲电性金属空轨道,配位形成 π络合物; 2 、活性中心是阴离子性质的,故可称为配位阴 离子聚合; 3、反应经四元环过渡态的插入过程; 4 、通过一级插入或二级插入,可形成立构规整 聚合物; 5 、调节催化剂中配位体的数量,可以改变催化 性能达到调节聚合物立构规整性的目的。
温度对聚合速率的影响
K与温度T的关系遵循Arrhenius方程,即
自 由 基 聚 合
k Ae
E
RT
(3-39)
总速率常数k与各基元速率常数间的关系:
kd k kp k t
1
2
(3-40) (3-41)
E (E p Et / 2) Ed / 2
2014-12-19 9
k Ae
( Ep1\ 2 Et 1/ 2 Ed )
RT
Ed:125kJ/mol
EP:29kJ/mol
Et:17kJ/mol 则有 E=83kJ/mol
E为正值:温度升高,速率常数增大 E值越小,聚合速率越大
E值越大,温度对聚合速率影响就越显著
2014-12-19 10
温度对聚合度的影响
自由基不稳定 , 倾向于相互结合 电子配对稳定化;或夺取其它化 活性中心
碳阴离子:具有未成键的电子 对,仍占据sp3 轨道。其构型与 四价碳一样 , 为四面体的锥形 结构。未共享电子对占据四面 体的一个顶点,由于中心碳原 子含有未共享电子对,因此任 何使碳阴离子电子云密度降低 的结构均会使碳阴离子得稳定 性增加。从诱导效应看,吸电 子基团的增加有利于碳阴离子 的稳定。
聚合物工艺学第4章--离子聚合与配位聚合生产工艺
![聚合物工艺学第4章--离子聚合与配位聚合生产工艺](https://img.taocdn.com/s3/m/58d09fddb4daa58da1114ae3.png)
14
4. 活性阳离子聚合反应
合成可控制的分子量以及分子量分布的聚合物。 可以进行活性阳离子聚合反应的单体:乙烯基醚类单体、 异丁烯、苯乙烯及其衍生物、N-乙烯基咔唑等,其中以乙 烯基醚类单体最为重要。
利用活性阳离子聚合可以:
(1)合成分子量分布较窄,和可控制分子量的聚合物 (2)合成端基为某功能团的聚合物 (3)合成具有功能性悬挂基团的聚合物 (4)合成嵌段共聚物 (5)合成大分子单体
三氧化钼(MoO3)载于活性γ-AlO3上,常称为美浮法。 由以上两种引发剂体系制得的HDPE产率为5-50kgPE
/gTi(或Cr或Mo)。
2021/4/9
7
(2) 丙烯配位聚合的引发剂
最基本的组成:α-TiCl3-Al(C2H5)2Cl。加入第三组分,对 提高引发剂的引发活性,聚合物的立构规整度和表观密度
2021/4/9
19
4.3 离子聚合实施方法
在离子聚合中以溶液聚合方法为主,本体聚合法 中,只有低压(2MPa,85 ℃一100 ℃) HDPE或聚 丙烯以及这些单体的共聚物的生产。 溶液聚合方法分为均相溶液聚合(常称为溶液法)和 非均相溶液聚合(常称为淤浆法)。溶液聚合法主要 用于中压 (2MPa~10MPa、120 ℃一180 ℃)HDPE的生产、聚丁烯橡胶(PBR)、聚异戊二烯 橡胶 (PIPR)、乙丙橡胶(EPR)和溶液丁苯橡胶 (SSBR)等的生产。淤浆法主要用于聚丙烯 (PP)和 丁基橡胶(PIBR)的生产
2021/4/9
13
2. 聚甲醛 由三聚甲醛与少量二氧五环经阳离子引发剂BF3、
AlEt3等引发聚合而得。
3. 聚乙烯亚胺 环状胺主要是环乙胺、环丙胺等经阳离子聚合反应
生成聚乙烯亚胺均聚物或共聚物,它是高度分支的高聚物。 主要用作絮凝剂、纸张湿强剂、黏合剂、涂料以及表面活 性剂等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
体系变为两相:聚合物和溶液。 溶液中包括:溶剂正己烷、引发剂、未反应的单体、无 规聚丙烯。 ② 无规PP的去除 无规PP溶于正己烷中,聚合物与溶剂分离时,无规PP被 分离出来。再将溶有无规PP的正己烷精馏,无规PP从塔底流 出。 ③ 未反应的单体的去除
AlC2H5Cl2 K2TiF6 己烷
Z合成
TiCl3
己 烷
Z液体
己 烷
正烯 丁丙 醚基
B引发剂 A引发剂
Z固体
水
烧碱
分解槽
第一聚合釜
废料排出 己烷不合格槽
图5.9 引发剂制备示意图
❖ 四、丁二烯均相溶液聚合——溶液法聚丁二烯橡胶PBR的 生产 ❖ 聚丁二烯橡胶是丁二烯-1,3在Ziegler-Natta引发剂作用下 经配位阴离子聚合而得。
❖ ⒉ 溶剂精制 ❖ 聚合用的溶剂己烷也必须精制后使用。 ❖ ⒊ 引发剂的配制 ❖ 丙烯聚合采用的Ziegler-Natta络合引发剂,由四组分组成:
❖ TiCl3 / AlC2H5Cl2 / K2TiF6 / CH2 = CH-CH2OC4H9
❖ 引发剂、配制引发剂的系统和聚合反应系统也必须严格防止
❖ 二、乙烯气相本体聚合—— 低压法HDPE的生产
❖ 乙烯的气相本体聚合法首先由美国的U.C.C公司开发,年 产量为10×104 t 。目前,世界上已有六个国家采用这一新工艺, HDPE的总产量可达50 ×104 t 。 ❖ ⒈ 单体 ❖ 离子聚合对原料纯度要求很高。单体必须精制,以除去有 害杂质,乙烯的纯度>99%。杂质允许含量以10-6计。 ❖ 杂质的存在会使引发剂失活,易发生链转移反应或链终止 反应,使聚合物的相对分子质量降低,或结构发生变化。 ❖ 单体精制的方法工业上一般采用精馏。 ❖ 也可以采用净化剂如活性炭、硅胶、活性氧化铝或分子筛 来除去杂质和水分。 ❖ ⒉ 引发剂 ❖ HDPE的生产其引发剂采用特制的铬化合物: ❖ 比利时索尔维公司开发的高效Ziegler-Natta引发剂: ❖ CrO3载于脱水硅胶上或其它载体如MgO或MgCl2载体上。
❖ 三、丙烯非均相溶液聚合——淤浆法生产PP ❖ ⒈ 单体 ❖ 极性杂质,尤其是水会破坏引发剂的活性,极性杂质都必须从 系统中除去。 ❖ 此外,象丙二烯、丁二烯、甲基乙炔等对聚合反应和聚合 物的立构规整性都是有害的; ❖ 饱和烃如乙烷和丙烷如含量高会降低单体的分压,影响聚 合速率,如有积累需定期排除。 ❖ 因此,聚合用原料和助剂中杂质的含量必须减少到允许的 范围以下。 ❖ 聚合用丙烯的纯度>99.6% , 其它杂质允许含量以10-6计。
代的烯类单体和某些环状化合物。 ❖ 凡是可以进行聚合的烯类单体都可以在配位阴离子引发剂
的作用下进行配位聚合,形成立构规整性聚合物。
❖ ⒊ 离子聚合实施方法 ❖ 离子聚合所用的引发剂对水极为敏感。 ❖ 因此,离子聚合的实施方法中不能用以水为介质的聚合方
法,即不能采用悬浮聚合和乳液聚合,只能采用本体聚合和溶 液聚合。并且单体和其它原料中含水量应严格控制,其含水量 以10-6计。 ❖ 在离子聚合中溶液聚合方法为主。 ❖ 本体聚合法中只有低压法 HDPE的生产。 ❖ 在溶液聚合方法中常根据聚合物在溶剂中的溶解情况不同 分为均相溶液聚合(常称为溶液法)和非均相溶液聚合(常称 为淤浆法)。 ❖ 溶 液 聚 合 法 主 要 用 于 中 压 聚 乙 烯 PE 、 聚 丁 二 烯 橡 胶 (PBR)、聚异戊二烯橡胶(PIPR)、乙-丙橡胶(E-PR)和 溶液丁-苯橡胶(SSBR)等的生产。 ❖ 淤浆法主要用于聚丙烯(PP)和丁基橡胶(PIBR)的生产
⒊ 相对分子质量调节剂
❖ 相对分子质量调节剂采用氢气。 ❖ ⒋工艺条件 ❖ 操作压力:2MPa, ❖ 聚合温度:85℃~100℃ ❖ 转化率:2% 。 ❖ ⒌ 乙烯气相本体聚合优缺点 ❖ ⑴ 乙烯气相本体聚合所用的引发剂活性很高,产率很高 (60×104gPE/1gCr) ,所得PE的密度为0.94~0.96(g/cm3)。 ❖ PE相对分子质量大小可由H2调节。 ❖ ⑵ 乙烯气相本体聚合温度控制在85℃~100℃,在此温度 下PE粉末不会粘结,也不会粘附在聚合反应器壁上 。 ❖ ⑶ 气相本体聚合存在的主要问题是反应热的导出较困难。 ❖ 乙烯的单程转化率很低,只有2% 。 ❖ 98%的单体需循环,于是增加了乙烯循环、压缩的费用; ❖ 此外,引发剂的毒性也较大。
5.6 离子型聚合实施方法
❖ 一、 引言
❖ ⒈ 离子聚合 ❖ 增长活性中心为离子的连锁聚合。 ❖ 离子聚合包括阴离子聚合、阳离子聚合和配位阴离子聚合。 ❖ ⒉ 离子聚合的单体 ❖ ⑴ 阳离子聚合的单体 ❖ 含有强的推电子取代基或共轭取代基单取代、同碳二元取
代的烯类单体和某些环状化合物。 ❖ ⑵ 阴离子聚合的单体 ❖ 含有强的吸电子取代基或共轭取代基单取代、同碳二元取
❖ TiCl3的粒径愈小,聚合速率愈高。 ❖ ⑵ 聚合物的相对分子质量
❖ 聚合物的相对分子质量与反应温度和Al/Ti的比例有关。
❖ 聚合物的相对分子质量随反应温度的升高而降低,随引发剂
AlC2H5Cl2的用量的增加而降低。
⑶ 聚合物的立构规整性 PP的立构规整度与引发剂性质有关,当引发剂的组成相 同时,随反应温度的提高立构规整度降低。 要得到立构规整度80%~85%的PP一般聚合温度控制在 70℃以下。 立构规整度用X-射线谱或红外谱测定,或用在沸腾的己烷 或庚烷中不溶解的分数表示。 ⑷ 分离 丙烯聚合后产物的分离包括清除溶剂、未反应的单体、引 发剂和无规聚丙烯。 ① 清除引发剂 去除方法是加水、醇或酸等极性物质破坏引发剂,使引发 剂变为可溶性物质。
水和氧气的进入。
❖ 引发剂需现用现配,配制引发剂需经Z-合成、B引发剂的配
制和A引发剂的配制。
⒋ 丙烯淤浆法聚合的特点
❖ ⑴ 聚合速率
❖ 聚合反应的速率与引发剂用例、
❖ 丙烯的分压愈大、反应温度愈高聚合速率愈快;
❖用量聚无合关速;率还与引发剂TiCl3的用量成正比,而与AlC2H5Cl2的