数学史与数学文化学习体会
浅谈自己对数学史和数学的认识
浅谈自己对数学史和数学的认识1,我对数学的发展史的认识数学,根据现代的很多地方的高校的数学教材的定义:“数学是研究数量、结构、变化以与空间模型等概念的一门学科。
透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状与运动的观察中产生。
数学家们拓展这些概念,为了公式化新的猜想以与从合适选定的公理与定义中建立起严谨推导出的真理。
〞想想,数学这门来自生活,科学进而影响我们的生活,并且从一个人一开始就伴随我们一生的学科,它对个人,社会的重要性便可想而知。
美国著名文学家克莱因在他的《西方文化中的数学》中曾经说过:“数学是一种精神,一种理性的精神。
正是这种精神,激发、促进、鼓舞并驱使人类的思维得以运用到最完善的程度,亦正是这种精神,试图决定性地影响人类的物质、道德和社会生活;试图回答有关人类自身存在提出的问题;努力去理解和控制自然;尽力去探求和确立已经获得知识的最深刻的和最完美的内涵。
〞我想这句话在对我们有这相当答的启示作用,数学本来是一门很抽象的学科,他说研究的东西就是抽象现实中的物理,化学,生物等各方面的问题,然后建立相关的解决模型,以这样的方式来改变我们的生活和历史的进程;并且以它需要的精神:严谨和理性来处理世间的好多的问题都成了历史的绝唱:像阿基米德的测试密度的模型,伽利略的日心说,甚至曹冲称象......哪一件事情没有涉与到数学知识的运用?就是因为这门学科的无比重要性,从人类文明的开始,就开始简单的研究这门科学,并且用它解决一些简单的生活问题,像人类刚开始自己的文明的时候用石子计数,用手指来数自己的羊,这些东西看起来是非常简单的事情,但是这样的东西对我们一无所知的祖先而言却是一个非常大的进步,这意味着我们的祖先开始自己的抽象的思维,用无关的东西来记录已有东西的数量。
步入奴隶社会后人类开始有自己的语言,这时候数学有了跟进一步的发展:古埃与,古巴比伦,中国等文明源地开始有自己的语言,数字。
这就是代表数学跟进一步的开始抽象了。
数学史与数学文化论文
数学史与数学文化论文篇一:数学史与数学文化学习体会重庆三峡学院现代数学进展课程论文数学史与数学文化学习体会院系数学与统计学院专业数学与应用数学(师范)姓名年级 2021级学号指导教师2021年5月数学史与数学文化学习体会姓名:张力丹(重庆三峡学院数学与统计学院2021级数本2班)摘要:通过实例叙述了中外数学发展进程中凝练出的数学哲学思想的变革和相互联系,概括了数学哲学思想的重要性、实用性以及数学和哲学水乳交融相辅相成的紧密联系。
最后分五个方面对数学史和数学文化课程学习的感悟体会和学习意义进行了总结提炼。
关键词:数学史;哲学;思想;数学文化;感悟.引言我认为:数学史与数学文化作为一门课程一门学科,教授给我的绝不仅仅只停留在数学作为一门科学在不断发展演变的历程中不胜枚举的中外数学家以及数学发展史中具体事例和思想运动,更内涵而又丰满地是教授我一种数学的哲学思想、事物的发展规律、唯物理性客观的世界观和方法论,是对我们今后人生的指引和极大丰富。
同时也是对身为理工科大学生人文情操和文化素养的磨练及沉淀,这才是我认为学习完数学史数学文化这门课程的精神内核。
数学史的离不开数学哲学,否则,就不能达到应有的深度。
法国伟大的数学家亨利·庞加莱曾说:“如果我们想要预测数学的未来,那么适当的途径是研究这们学科的历史和现状”在谈到数学史对数学的重要性时,英国数学家格莱舍有一段经典名言:“任何一种企图将一个学科和它的历史割裂开来,我确信,没有哪一个学科比数学的损失更大。
”无独有偶,德国数学家汉克尔也形象地指出过数学的这一特点:“在大多数学科里,一代人的建筑被下一代人所摧毁,一个人的创造被另一个人所破坏。
惟独数学,每一代人都在古老的大厦上添加一层楼。
”数学是历史的科学,是由历史成果积累而成的。
经过数学史课程的学习,我被数学文化中深刻的哲学思想而深深吸引。
通过老师课堂上的丰富举例;通过一个个生动、紧张、严肃、活泼的数学家形象和事例;通过数学史上一次次的猜想、命题、假设、证明,一次次地发展变革,更是引发了我对数学的发展规律和其本质哲学思想变革的不断思索。
数学史学习总结报告5篇范文
数学史学习总结报告5篇范文第一篇:数学史学习总结报告数学史学习总结报告1知识的总结数学史,在古代实际上是指各个地区的数学史,例如古巴比伦数学、古埃及数学、古希腊数学、古印度数学、阿拉伯数学等;在中世纪,是指欧洲数学史;在近代,才是世界数学史。
【埃及古代数学】以金字塔闻名于世的埃及,很早就在数学上取得了引人注目的成就。
我们了解埃及古代数学的主要依据,是大约公元前1850-前1650年间的两份纸草书:莫斯科纸草书与阿默斯纸草书。
前者因收藏于莫斯科美术博物馆而得名,后者则得名于原件的书写者,人们还认为,阿默斯纸草书是一部更为古老的数学著作的抄写本。
【中世纪数学】文艺复兴时期,由于艺术家所创建的透视法,逐步形成了射影几何学;在斐波纳契《算盘书》之后,欧洲也出现了一些数学著作,从而促进了十进分数的理论及运算的发展;16世纪初期,最出色的数学成就,是意大利数学家发现了三次、四次方程的代数解法,有的使用了虚数,还改进了当时的数学符号;在三角学发展方面,欧洲人也把三角学从天文学独立出来,使之成为一门独立的学科,并重新定义了各种三角函数的概念,还编制了非常精密的三角函数表。
中世纪,欧洲数学是在吸收并消化希腊、阿拉伯的数学知识之后才逐渐得到了发展的。
【近代数学】指17-19世纪的数学发展概况。
具体来说,就是自笛卡儿、费马创立了解析几何之后,把变量引入到数学中,使数学拓展了新的领域;而牛顿、莱布尼茨创立了微积分学;纳白尔、比尔吉发明了对数;巴斯卡、费马、惠更斯兴起了概率论;使得17世纪欧洲数学由定量数学发展成为变量数学,并达到了一定的高峰,称为古典高等数学。
到18世纪,在数学里,逐渐形成几何学、代数学、分析学的三大分支;尤其是欧拉把以曲线为主要研究对象的微积分学拓广成以函数为主要对象,使微积分学提到极高的层次,又由于实际的需要,出现了微分方程,不久使得微分方程成为一支重要的学科。
到19世纪,由于非欧几何的诞生,射影几何的复兴,分析学的严格化,数学的公理化,成为当时的主要研究对象;并为20世纪的数学发展,作了必要而充分的准备。
数学史与数学文化浅谈
数学史与数学文化浅谈数学是人类的一门重要学科,它具有深厚的历史积淀和独特的文化内涵。
数学史是研究数学学科发展的历史过程和对数学家及其成就的考证、记述与评价,数学文化则是通过对数学活动与思维方式的分析,揭示数学思想与人文精神的互动关系。
本文将浅谈数学史与数学文化的关系和意义。
数学史是人类文明发展的重要组成部分,它的研究不仅可以帮助我们了解数学本身的发展历程,还可以揭示人类文明的脉络和演变过程。
在早期的人类社会,人们通过观察自然现象和解决实际问题,逐渐产生了一些初步的数学概念和方法。
比如,早在古埃及和古巴比伦时期,人们就使用了基本的算术运算,掌握了简单的几何知识。
而在古希腊时代,数学开始成为一门独立的学科,并产生了许多伟大的数学家和数学成果,如毕达哥拉斯定理、欧几里得几何、无理数等。
这些数学成果不仅对后来的数学发展起到了重要的推动作用,而且成为了人类文明的重要标志。
数学史的研究可以让我们了解到数学的发展是一个渐进的过程,数学科学从最初的实用和几何,到代数、分析以及现代数学等不同的分支逐渐发展演化。
数学的发展离不开数学家们的努力与创造,数学史的研究也可以帮助我们了解到许多伟大的数学家和数学思想。
例如,古希腊数学家阿基米德的数学成就不仅在数学史上有重要地位,而且对现代科学和技术的发展也起到了巨大的影响。
另外,数学史的研究还可以帮助我们认识到数学的普适性和客观性。
虽然数学的发展是在不同的历史阶段和文化背景下进行的,但是数学的基本理论和原则是普遍适用的,不受时间和空间的限制。
数学文化是数学与人文精神的有机结合,它涉及到数学的应用、教育、美学等方面的问题。
数学文化的研究可以帮助我们认识到数学作为一门学科具有的广泛影响和重要地位。
首先,数学是一门普遍存在于人类社会的学科,它是人类文化的一部分。
数学的发展与人类的思维方式、认知能力、审美观念等密切相关,通过对数学文化的研究,我们可以了解到数学如何影响和反映着人们的思维方式和文化传统。
《数学简史》心得体会(优秀模板6篇)
《数学简史》心得体会(优秀模板6篇)《数学简史》心得体会第1篇读《数学简史》有感数学经历了历史的积淀,给我们的世界展现出来一个不一样的画卷,我看了一本书《数学简史》,书里讲的是数学的发展历史,并且对国内外的数学都进行了介绍。
我想在时间的慢慢长河里,这是多么传奇的历史啊!那么接下来我带大家走进我所见到的数学世界。
数学是有自己独特魅力的科学,《数学简史》一共有十四个大的章节,每一个章节都凝聚了数学的“理”性思维脉络,让我们清楚的领略数的价值和意义所在。
首先谈谈数学早期的萌芽,事物的发展总是一步一步慢慢向前的,数学当然也不例外。
早期的数学主要是介绍数与形概念的起源,美索不达米亚、古埃及和中国等早期数学的萌芽,不同的文明,数学的产生与演变也有很多区别和联系,数的概念产生于原始人的生活和生产,中国早期用结绳、刻划等方式计数,并产生抽象过程从“结绳”到“书契”;美索不达米亚则是由楔形文字对数学内容进行了记载,一是“表格课本”也就是古代的“应用数学”,二是“问题课本”也称“理论数学”;古埃及数学知识的象征是至今蔚为奇观的金字塔,金字塔大多呈正四棱锥形,据对最大的胡夫金字塔的测算,发现它基地是正方形,各边误差仅仅是1。
6厘米。
这些早期的数学象征物的出现,给数学带来了一个基本的框架,让我们更好的了解的数学的发展。
其次,我们不得不说的便是古希腊数学,数学的发展和我们历史发展的是有很大相似之处的,它们都会经历兴盛和衰落,古希腊数学从雅典开始到亚历山大时期达到了全盛,但是物盛极必衰,在亚历山大后期就逐渐衰落,在此期间,数学史出现了几位十分重要的人物,论证数学开创者泰勒斯,他是古希腊“七贤之首”,据记载泰勒斯是第一个将埃及人的几何学带回到希腊。
据说他本人发现了许多几何命题,并创立了对几何命题的逻辑推理,因此泰勒斯是论证数学发端第一位代表人物。
有关几何的研究还出现了不少学派,毕达哥拉斯学派、埃利亚学派、柏拉图学派和亚里士多德学派等,这些学派活跃了数学世界。
2023年数学文化读后感
2023年数学文化读后感2023年数学文化读后感1在大学初学《数学史》时,我便对数学史产生了浓厚的兴趣,并由此爱上了数学这一学科。
工作后,我成为了一名数学教师。
我常常在想,如果能够把数学文化融入到课堂中来,那是一件多么有意思的事。
于是,我仔细研读了《数学文化》一书,获益颇多。
众所周知,数学是人类文明的一个重要组成部分。
最初牙牙学语地创造丰富多彩的记数制度,然后在花季雨季之中为数学建立越来越多、越来越详尽的分支,到如今,展现它花样年华之时耀眼夺目的数学成果。
与其他文化一样,数学科学也是集齐了几千年人类智慧的结晶。
读完《数学文化》,心底不由得一阵感动。
那是一种什么感觉呢?是一个对数学有着宗教般虔诚的仰望者的心动,是一个对历史有着无尽探索欲望的追求者的向往。
每一代人都在数学这座古老的大厦上添加一层楼。
当我们为这个大厦添砖加瓦时,有必要了解它的历史。
通过这本书,我对数学发展的概况有了一个较为全面的了解。
书中通过生动具体的事例,介绍了数学发展过程中的若干重要事件、重要人物与重要成果,让我初步了解了数学这门科学产生与发展的历史过程,体会了数学对人类文明发展的作用,感受到了数学家严谨的治学态度和锲而不舍的探索精神。
数学是人类创造活动的过程,而不单纯是一种形式化的结果;运用辨证唯物主义的观点看待数学科学及数学教育,在他们的形成和发展过程中,不但表现出矛盾运动的特点,而且它们与社会、政治、经济以及一般人类的文化有着密切的联系。
数学的历史源远流长。
我了解到,在早期的人类社会中,是数学与语言、艺术以及宗教一并构成了最早的人类文明。
数学是最抽象的科学,而最抽象的数学却能催生出人类文明的绚烂的花朵。
这使数学成为人类文化中最基础的学科。
对此恩格斯指出:“数学在一门科学中的应用程度,标志着这门科学的成熟程度。
”在现代社会中,数学正在对科学和社会的发展提供着不可或缺的理论和技术支持。
数学史不仅仅是单纯的数学成就的编年记录。
数学的发展决不是一帆风顺的,在跟读的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至会面临困难和战盛危机的斗争记录。
数学与文化心得体会5篇
数学与文化心得体会5篇数学与文化心得体会篇1作为一名一线数学老师,就必须对数学的课程标准完全了解。
在现在的教学整改背景下,小学数学的新课标有了巨大的变化,对于学生来说,到底是一门怎样的课程呢?在这一轮小学数学远程培训中,通过学习小学数学新课标,再结合具体的教学实践,我有了如下几点体会:一、教师要成为终身学习者。
教师要走进新课程,实现课程目标,其自身必须有先进的、与新课程相适应的教育理念。
为达成这一目标,教师首先要把自己定位成一个“学习者”。
教师要在掌握扎实的专业知识基础上,学习自然科学、社会科学。
研究前沿的最新成果最新知识,还要学习与提高对人的认识,现代教育技术手段的运用以及教育研究等方面的知识,构建多元化的知识结构,使自己不仅会教,而且有自己的教育追求与风格。
二、注重生活数学,切实提高数学素养。
在应试教育面前,我们的数学教育工不同程度地存在着抓尖子生,忽视“学困生”的现象,这即不符合素质教育的要求,也严重影响着整体数学素养提高,在平时的教学中,一定要面向全体学生,重心下移,从最后一名学生抓起,才能做到“水涨船高”,学生智力存在着差异这是客观的,我们要分层要求,使每位学生都能在他的原有的基础上提高,获得成功。
新课标提出“人人学有价值的数学,人人都能获得必须的数学。
”强调了大众数学学习的内容的应用价值——能适应未来社会生活的需要。
学习数学的最终目的是应用。
数学来源于生活,又服务生产实践,所以数学教学除了系统的数学知识的教学外,还应密切联系生活实际,调整相应的数学内容,做到生活需要什么样的数学内容,就教学什么样的数学知识,让生活中学生所必须的知识与技能成为数学教学的目标与追求,使学生感悟到数学就在日常生活中。
总之,面对新课程整改的挑战,我们必须转变教育观念,多动脑筋,多想办法,密切数学与实际生活的联系,使学生从生活经验和客观事实出发,在研究现实问题的过程中用数学、理解数学和发展数学。
数学与文化心得体会篇2学习数学很难吗?至今仍然有诸多的志士仁人仍陷入其中而不能自拔,虽然本人数学并不出众,但论水平还说的过去,下面是本人的一点小小的经验,希望能够助你有所提高。
数学史学习总结报告
数学史学习总结报告数学作为人类智慧的结晶之一,具有悠久的历史。
自从人类有文字记载以来,就可以看到关于数学的论述,数学的发展逐渐成为人类文明发展的重要组成部分。
数学的发展是一种源远流长的文化遗产,它不仅具有科学价值,更有文化价值和历史价值。
在我的数学史学习中,我主要了解了古代数学的发展历程与思想,以及现代数学的重要发现等方面。
古代数学古代数学起源于数的计数与记数,例如古埃及人可以用手指计数,古希腊人发明了一种记数法“爪形计数法”,将各自的数字以不同方式排列起来,依靠这种记数法对整数、分数进行加减乘除运算。
古代数学的发展在两个文明中进行,一个是古希腊文明,另一个是古中国文明。
古希腊数学家毕达哥拉斯是最早系统地研究数学的人,提出了毕达哥拉斯定理,并建立了“毕达哥拉斯学派”,使传统的几何学发生了革命性的变化。
同时,亚里士多德对逻辑学和自然哲学做出了巨大的贡献。
古中国的数学起源于异地文化遗产。
商代的甲骨文中,用一些零散的计数符号,如个、十、百,但没有小数的概念。
周代完善了计数法,并归纳出算术运算的基本规律。
到了汉朝,中国的数学基本上是成熟了的,成文的记数、计数、算术运算规律等记载了数学的基本体系。
现代数学的发展与广泛应用始于19世纪后期。
高斯、欧拉、牛顿、莱布尼茨等天才数学家为数学的发展作出了巨大的贡献。
近代数学的两个主要方向是代数学和几何学,现代数学的重要发现包括:黎曼几何、数学分析、拓扑学等。
其中黎曼几何开辟了一个新的领域,改变了欧几里德几何学的根本观念,成为现代物理学的重要工具。
数学史是一个非常深刻的领域,每位数学家背后都有奋斗、汗水和探索的故事。
数学的历史是一部琳琅满目的智慧之书,它不但记录了人类文明的进程,也是一份具有启示意义的财富。
总之,在数学史学习中,我深刻领悟到数学发展不是一蹴而就的,需要许多数学家历经千辛万苦的努力,以及数学与它背后所代表的思想、文化等众多方面密切相连。
在今后的数学学习中,更加深化理解历史的同时,敬畏数学之美,发掘出与前人不同的创意思路,创造出属于自己的数学成果。
数学与文化读后感(最终5篇)
数学与文化读后感(最终5篇)第一篇:数学与文化读后感《数学与文化》读书报告数学之光辉映历史星空穿越浩瀚的历史天空,一路上到处可见数学之光造就的辉煌。
在埃及的尼罗河畔,数学将金字塔“打造”成了横扫欧洲的拿破仑皇帝的铁炮狂轰滥炸亦不能损之分毫的人类建筑奇迹;在肥沃的两河流域,数学将人类领进了时间的范畴里,摆脱了“今夕不知是何年”的懵懂,跃入了历法的新纪元中;在静谧的爱情海岸边,数学中的天之娇女——黄金分割比“创造”了科学与艺术达到至善至美结合境界的巴特农神庙······数学,一路播撒的文化的种子已绽放出姹紫嫣红的花朵,惊艳绝伦!数学,这一科学中的皇后,是如何登上科学的殿堂呢?答案自然是无数前赴后继的数学家的呕心沥血的付出。
因此,在我看来,数学创造出的辉煌的文化诚然有埃及金字塔、巴特农神庙之类的令人亘古慨叹的世界奇迹,但最精华的部分应属于数学家为求真理而孜孜不倦的执着精神,那才是造就数学文化源远流长、璀璨辉煌、永葆活力的原动力!下面让我们在数学家史话中领略一下那最朴实无华的数学文化。
割圆不尽十指磨出血周率可限青史标美名祖冲之,出身官宦人家,少年好学,学问高深,年轻时便已名噪京师,但因在宴会上预告月食的降临而得罪权臣戴法兴,毁了仕途。
祖冲之闲赋在家,心里郁愤难平。
但他不甘于青春年华就此蹉跎,便研究数学——为《九章算术》作注。
《九章算术》成书于公元四五十年间,集我国数学之大成,历代均有人为它作注,但都碰到一个难题:那就是圆周率。
祖冲之一接触到圆周率问题,便被困扰得坐卧不安。
一天他终于想到了利用刘徽的隔圆术来解决这个问题。
虽然道理很简单,但算起来相当费劲,于是他请来了年仅十三岁但天资聪颖的儿子——祖暅的帮助。
因为那个时代既没有阿拉伯数字可以笔算,又没有算盘可以珠算,预算只能靠一种叫算筹的原始工具。
于是祖冲之搬来几个大竹子,操刀破成细条,又一一折成短截,堆起来一座竹棍的小山。
数学文化心得体会(通用5篇)
数学文化心得体会当我们受到启发,对生活有了新的感悟时,可以通过写心得体会的方式将其记录下来,它可以帮助我们了解自己的这段时间的学习、工作生活状态。
那么要如何写呢?下面是小编帮大家整理的数学文化心得体会(通用5篇),欢迎阅读与收藏。
数学具有科学价值和应用价值,若问数学有文化价值吗?数学能培养人的理性思维能力,数学的理性精神体现在哪些方面?只有真正理解数学文化的定义、内涵和特点,才能真正理解数学的教育价值,达到让数学文化贯穿高中数学教学始终的目的。
我主要从三方面谈谈对数学文化的理解:一、数学文化的定义在理解数学文化定义之前,首先了解什么是文化及文化的特点,简单地说,文化就是指人类在社会历史实践过程中所创造的物质文明和精神文明的总和。
一般来讲又特指精神文明。
文化有可识别性、传承性、扩展性的特点,除此之外,文化还具有地域性和民族性的特点。
传承性是文化最基本、最本质特征。
“数学一直是人类文明中的主要文化力量,它与人类文化休戚相关,在不同时代,不同文化中,这种力量的大小有所变化”。
认同了文化的定义,就不难理解《普通高中数学课程标准( 2017年版)》给出了数学文化定义:数学文化是指数学的思想、精神、语言、方法、观点,以及它们的形成和发展;还包括数学在人类生活、科学技术、社会发展中的贡献和意义,以及与数学相关的人文活动。
数学具有文化的所有特点,所以上述定义也可以表述为:数学文化是指人类在长期的数学实践过程中创造的物质文明和精神文明的总和。
数学文化的定义反映了数学的本质:数学是人类以其深刻而独特的思想不断地对现实世界进行的高层次抽象的一种创造活动。
从文化本质和数学的本质来看,数学就是一种文化。
这种文化推动了社会的进步和人类的发展。
二、数学文化的内涵我主要从以下几方面理解数学文化的内涵:(1)数学教育既能够培养人的严密的逻辑思维,又能培养人的直观形象思维;(2)数学问题往往富有挑战性,合理的数学学习有利于学生形成自我激励机制;(3)数学中的整体性思想、化归思想、在变化中把握不变的思想及优化思想,有利于人们树立合作意识、本质意识、联系意识、简约意识;(4)“美感和美的意识是数学直觉的本质”,数学美诱发人们对数学的兴趣,促进人们对数学的学习、发展和应用;(5)数学是人类最通用的语言,也是简洁而又精确的语言;不仅是人们交流的重要工具,而且越来越有力地支持着科技乃至整个人类文明的进步。
学习“数学文化”的心得体会
学习“数学文化”的心得体会数学文化是指人类在长期的实践中所积累的关于数学的知识、理论、方法和思维方式等方面的文化特征。
它是数学与文化的有机结合,是人们将数学融入到文化中并借助数学来反映和推动文化发展的结果。
学习数学文化对于我们深化对数学的理解、提高数学素养、拓展数学思维具有重要意义。
在学习数学文化的过程中,我深感数学文化的内涵十分丰富,给我带来了许多启示和收获。
首先,数学文化与人文精神相结合。
数学文化是人类智慧和创造力的结晶,蕴含着人文精神的深邃思考和价值追求。
在学习数学文化的过程中,我深感数学所具有的逻辑严谨、思辨性思维、抽象性思考等特点与人文精神是高度契合的。
例如,数学推理中的逻辑思维要求我们严谨、细致、严密,这与人文精神中追求真理的态度非常相似。
另外,数学文化中的数学史、数学哲学等方面的内容也让我深入了解到数学的发展历程和数学理论的深刻思考,这些都展现出了人们对于数学的热爱和对数学价值的追求。
因此,学习数学文化不仅仅是学习数学知识,更是一种对于人文精神的追求和呈现。
其次,数学文化与科学精神相呼应。
科学精神是追求真理、尊重知识、合理怀疑和批判精神等要素的统一体,而数学文化正是科学精神在数学领域的具体呈现。
数学文化注重观察现象、发现规律、建立理论模型和进行证明等科学活动,要求人们具备仔细观察和分析问题的能力,善于总结、归纳和演绎推理,这与科学精神中追求真理、尊重实证、崇尚理性的要求高度契合。
学习数学文化有助于培养我们的科学思维方式,让我们在面对现实问题时能够客观冷静、理性思考,同时也提高了我们的分析问题和解决问题的能力。
再次,数学文化与创新意识相促进。
数学文化中的数学创新是不可忽视的重要组成部分。
在学习数学文化的过程中,我了解到数学家们为了解决实际问题或发展数学理论,经常需要进行创新性的思维和方法的探索。
这要求我们具备敢于发现和解决问题的精神,有勇于探索未知领域的勇气,同时也注重跨学科的融合和思维的开放性。
学习数学发展史课程的心得体会
学习数学发展史课程的心得体会篇一:学习数学史的感受篇一:学习数学史的感受学习《数学史》的心得体会学习《数学史》的心得体会你知道毕达哥拉斯何许人?你知道毕达哥拉斯何许人?你能列举《几何原本》与《九章算术》的不同风格?你能列举《几何原本》与《九章算术》的不同风格? 你能列举几位著名中国籍的数学家?你能列举几位著名中国籍的数学家?这些问题让我们学了十几年数学的学生不知所答,但随着上学期对《数学史》进行整合学习,对这些问题逐渐明朗与了解。
发现数学的发展伴随着人类的发展,上下五千年的人类文明蕴藏着十分丰富的数学史料。
通过学习让我们更加深入地了解数学的发展历程,历经数学萌芽期、初等数学时期、变量数学时期、近代数学时期、现代数学时期,这如同胎儿的发育过程,大体要经过从单细胞生物到人类的进化过程,要经过类似原生动物、腔肠动物、脊椎动物、灵长类等各阶段,最后才长成人类的样子。
作为人类智慧的结晶,数学不仅是人类文化的重要组成部分,而且始终是推动人类文明进步的重要力量。
明进步的重要力量。
在数学那漫漫长河中,三次数学危机掀起的巨浪,真正体现了数学长河般雄壮的气势。
体现了数学长河般雄壮的气势。
第一次危机发生在公元前580580~~568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派。
这个学派集宗教、科学和哲学于一体,该学派人数固定,知识保密,所有发明创造都归于学派领袖。
当时人们对有理数的认识还很有限,对于无理数的概念更是一无所知,毕达哥拉斯学派所说的数,原来是指整数,他们不把分数看成一种数,而仅看作两个整数之比,他们错误地认为,宇宙间的一切现象都归结为整数或整数之比。
该学派的成员希伯索斯根据勾股定理(西方称为毕达哥拉斯定理)通过逻辑推理发现,边长为1的正方形的对角线长度既不是整数,也不是整数的比所能表示。
希伯索斯的发现被认为是“荒谬”和违反常识的事。
它不仅严重地违背了毕达哥拉斯学派的信条,也冲击了当时希腊人的传统见解。
数学专业的数学史与数学文化
数学专业的数学史与数学文化数学是一门古老而充满智慧的学科。
它不仅仅是一种工具,更是一种文化,一种思维方式。
作为学习数学的专业,了解数学的历史与文化,可以更好地理解数学的精髓,培养数学思维能力,提高解决问题的能力。
本文将探讨数学专业的数学史与数学文化。
一、数学史的重要性了解数学的历史对于数学专业的学生来说是非常重要的。
首先,数学的发展与进步是一种连续的过程,前人的研究与成果为今天的数学奠定了基础。
通过学习历史,我们可以看到数学的发展脉络,深入理解数学的各个分支。
其次,数学史也包含了许多数学家的思想和成就,他们的贡献极大地推动了数学的进步。
了解数学家们的工作,可以激发学生的学习兴趣,增加对数学的热爱。
最后,数学史的学习也可以帮助学生认识到数学的普遍性和广泛应用的领域,从而更好地将数学知识应用到实际问题中。
二、数学史的主要内容数学史通常包括一系列的重要事件、人物、理论和应用等方面。
以下是数学史的一些主要内容:1. 古代数学的起源与发展:古埃及、古希腊、古印度和古中国等文明的数学发展,以及早期的几何学、代数学和三角学等方面的重大成就。
2. 中世纪与文艺复兴时期的数学:欧几里得几何学的系统化、代数学的发展以及数学符号的引入等方面的重要进展。
3. 近代数学的诞生与发展:微积分的发现、数论的突破、概率论的建立以及非欧几里得几何学的出现等方面。
4. 现代数学的兴起与繁荣:抽象代数、数学分析、几何学、拓扑学和逻辑学等不同分支的发展与重大成果。
除了以上主要内容,数学史还涉及到数学教育的发展、数学研究领域的扩展以及数学与其他学科的交叉等方面。
三、数学文化的意义数学文化是指在广大民众中形成的,关于数学的知识、观念、技能和习惯等方面的文化。
数学文化对于数学专业的学生来说,具有重要的意义和价值。
首先,数学文化可以帮助学生更好地理解数学的价值和意义。
数学不仅是一种工具,还是一种文化,体现了人类的智慧和思维方式。
通过数学文化的学习,学生可以培养数学思维能力,提高分析和解决问题的能力。
数学文化教学实践心得(3篇)
第1篇在我国基础教育阶段,数学作为一门重要的学科,其教学不仅在于培养学生的数学知识和技能,更在于传承数学文化,激发学生对数学的兴趣和热爱。
作为一名数学教师,我有幸参与了数学文化教学实践,现将我的心得体会分享如下。
一、数学文化教学的意义1. 传承数学文化,弘扬民族精神数学文化是中华民族优秀文化的重要组成部分,它承载着中华民族的智慧和精神。
通过数学文化教学,可以让学生了解我国古代数学家的成就,感受数学的魅力,从而传承数学文化,弘扬民族精神。
2. 激发学生学习兴趣,提高数学素养数学文化教学以生动、形象、有趣的方式呈现数学知识,使学生更容易理解和掌握。
同时,数学文化教学注重培养学生的数学思维能力和创新能力,提高学生的数学素养。
3. 促进学生全面发展,培养综合素质数学文化教学关注学生的全面发展,不仅关注学生的数学知识,还关注学生的品德、情感、态度等方面。
通过数学文化教学,可以培养学生的综合素质,使其成为具有国际视野的人才。
二、数学文化教学实践方法1. 丰富教学内容,拓展知识面在数学文化教学中,我们要丰富教学内容,拓展知识面。
例如,介绍我国古代数学家的生平事迹、数学成就;讲解数学与生活的联系,让学生了解数学在各个领域的应用;展示数学之美,让学生感受数学的魅力。
2. 创设情境,激发学习兴趣数学文化教学要创设生动、有趣的情境,激发学生的学习兴趣。
例如,通过讲述数学故事、开展数学游戏、组织数学竞赛等形式,让学生在轻松愉快的氛围中学习数学。
3. 引导学生探究,培养创新能力数学文化教学要引导学生探究,培养学生的创新能力。
例如,让学生参与数学实验、设计数学模型、解决实际问题等,让学生在实践中提高数学思维能力和创新能力。
4. 加强交流与合作,提高综合素质数学文化教学要注重学生之间的交流与合作,提高学生的综合素质。
例如,组织学生进行数学讨论、开展数学课题研究、参与数学社团活动等,让学生在团队中共同成长。
5. 融入信息技术,提高教学效果在数学文化教学中,我们要充分利用信息技术,提高教学效果。
《数学史》读后感(26篇)
《数学史》读后感(26篇)《数学史》读后感篇1本书上篇数学简史共12章节,以时间挨次讲解并描述。
从3.7万年到如今,人类在不断进步,而数学也随着人类的进步而进步。
在这本书中,强调了数学的抽象性与神奇性。
我们如今学习的学问都是先辈们经过漫长探究、讨论、商量总结出的。
书中消失的故事和公式使人眼前一新。
比方古埃及人求圆的面积时,事实上是求圆的近似值。
如今大家都知道π·r,古埃及人却是用(8/9·d)求S圆的近似值。
可以发觉古埃及人在这个公式里并没有使用到“π”,这样反而要便利些。
我留意到的一个故事是:21世纪开头,克莱学院确定在克莱的领导下,选择7个数学课题,并予每个课题100万美金的奖金,而那7个数学课题是关于“千禧年问题”书中并没有提到7个问题分别是什么,于是便上网查了查。
分别是:戴雅猜测、霍奇猜测、纳维尔-斯托克斯方程、P与NP问题、庞家莱猜测、黎曼假设、杨-米尔斯理论。
这7个问题是真的难,连题目都看不懂的那种难。
有一个问题与开普勒猜测有关:如何将最大数量的球体放置在最小的空间中,我认为这和奇点有些相像,但看起来不成立的样子。
但在那些数学家的眼里,这仿佛是一个非常好玩,又值得思索的问题。
托马斯·黑尔斯最终证明白它。
数学是抽象的,也是无限的,他们的消失也许是我们的祖先为了便利生活而创造出来的。
到如今,数学在不断的进步,但还是有很多非常困难的问题在等着我们去解答。
数学不仅在生活中扮演着重要的角色,还是世界通用的语言。
《数学史》读后感篇2在这个寒假,我阅读了一本名叫《这才是好读的数学史》这本书叫这个名字的确是名副其实,他为人们介绍了最全面的数学史,以及名人与数学之前的故事,还有各国数学的起源到进展。
数学的样子和名称以及关于计数和算数运算的基本概念好像是人类的遗产。
早在公元前500年,数学就消失了,随着社会的不断进展,就需要一些方法来统计拖款欠税的数额等等,这时候数学就开头消失了。
2024年数学史学习体会范文
2024年数学史学习体会范文数学作为一门古老而又神秘的学科,对于人类的发展产生了重要而深远的影响。
在2024年,数学史的学习让我体会到了数学的演变和发展过程,深刻认识到了数学的伟大和智慧。
在这篇文章中,我将分享我对于2024年数学史学习所得到的体会。
数学史学习的第一个收获是深入了解了数学的起源和发展。
通过学习数学史,我了解到数学最早的起源可以追溯到古代的埃及、美索不达米亚和古希腊等地。
古代人们通过实际问题的解决,逐渐形成了简单的计数和测量方法,并开始研究几何学、代数学和三角学等基础数学概念。
在中世纪,阿拉伯数学家的工作为数学的进一步发展奠定了基础,他们引入了阿拉伯数字和无穷小的概念,并广泛传播了古希腊和印度的数学知识。
随着文艺复兴时期的来临,欧洲的数学开始复苏,人们开始深入探索微积分学、代数学和几何学等数学分支。
到了现代,数学成为了一门独立的学科,并不断发展和创新。
借助数学史学习,我还更加深入地理解了数学的智慧和应用。
数学是一门严谨而逻辑性强的学科,它不仅仅是一种工具,更是一种智慧和思考方式。
数学帮助我们理解世界的本质,通过抽象和逻辑推理,我们可以发现数学背后的美丽和结构。
同时,数学在科学、技术和工程等领域的应用也是不可忽视的。
数学为我们提供了解决实际问题的方法和工具,它在各个领域都发挥着重要的作用,如物理学中的力学和电磁学,经济学中的优化问题,计算机科学中的算法和密码学等等。
在2024年的数学史学习过程中,我也意识到了数学的困难和挑战。
数学作为一门严谨的学科,需要我们具备扎实的基础和极高的逻辑思维能力。
在学习过程中,我常常遇到各种抽象的概念和复杂的证明,需要不断思考和努力才能理解和解决。
然而,正是这种困难和挑战,让我对数学充满了兴趣和热爱。
解决一个数学问题的过程,就如同一场奇妙的探险,让我感受到了思考和发现的乐趣。
最后,数学史学习也让我认识到数学的发展是一个永无止境的过程。
数学作为一门学科,始终在不断发展和演进。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆三峡学院现代数学进展课程论文数学史与数学文化学习体会院系数学与统计学院专业数学与应用数学(师范)姓名年级 2012级学号指导教师2015年5月数学史与数学文化学习体会姓名:张力丹(重庆三峡学院数学与统计学院2012级数本2班)摘要:通过实例叙述了中外数学发展进程中凝练出的数学哲学思想的变革和相互联系,概括了数学哲学思想的重要性、实用性以及数学和哲学水乳交融相辅相成的紧密联系。
最后分五个方面对数学史和数学文化课程学习的感悟体会和学习意义进行了总结提炼。
关键词:数学史;哲学;思想;数学文化;感悟.引言我认为:数学史与数学文化作为一门课程一门学科,教授给我的绝不仅仅只停留在数学作为一门科学在不断发展演变的历程中不胜枚举的中外数学家以及数学发展史中具体事例和思想运动,更内涵而又丰满地是教授我一种数学的哲学思想、事物的发展规律、唯物理性客观的世界观和方法论,是对我们今后人生的指引和极大丰富。
同时也是对身为理工科大学生人文情操和文化素养的磨练及沉淀,这才是我认为学习完数学史数学文化这门课程的精神内核。
数学史的离不开数学哲学,否则,就不能达到应有的深度。
法国伟大的数学家亨利·庞加莱曾说:“如果我们想要预测数学的未来,那么适当的途径是研究这们学科的历史和现状”在谈到数学史对数学的重要性时,英国数学家格莱舍有一段经典名言:“任何一种企图将一个学科和它的历史割裂开来,我确信,没有哪一个学科比数学的损失更大。
”无独有偶,德国数学家汉克尔也形象地指出过数学的这一特点:“在大多数学科里,一代人的建筑被下一代人所摧毁,一个人的创造被另一个人所破坏。
惟独数学,每一代人都在古老的大厦上添加一层楼。
”数学是历史的科学,是由历史成果积累而成的。
经过数学史课程的学习,我被数学文化中深刻的哲学思想而深深吸引。
通过老师课堂上的丰富举例;通过一个个生动、紧张、严肃、活泼的数学家形象和事例;通过数学史上一次次的猜想、命题、假设、证明,一次次地发展变革,更是引发了我对数学的发展规律和其本质哲学思想变革的不断思索。
中国早期的数学哲学思想【1】《墨经》数学哲学思想的特点纵观墨家的数学成就,只是一些分散的数学知识积累。
既没有形成一个完整的公理体系,也没有使用任何数学符号、几何图形、公式方程来反映其数学思想,仅在文字上进行了高度抽象的概括,却没有妨碍墨家科学思想在数学上体现。
墨家科学思想的突出特点是将技术的应用与发展研究相结合,“巧传则求其故”。
巧指工艺技巧,传指世代相传,求就是探索寻找,故就是原因、道理.即在世代相传的手工技巧中找寻出规律并将其总结成科学真理,从而达到“以往知来,以知见隐”.思格斯说:“数学的无限是从现实中借来的⋯⋯,所以它不能从它自身、从数学的抽象来说明而只能从现实来说明.旧墨家的数学思想正是从社会生产与社会实践中产生的,“摹略万物之然,探究其所以然”的实证主义科学态度使得墨家的科学活动有了明确的指导思想,这种对待自然科学求真唯实的作风不但促进了战国时期科学技术的发展,而且逼近了近代科学发展的基础,为古代中国科学发展开辟出一条有可能走向近代科学的道路。
【2】《九章算术注》的数学哲学思想刘徽是我国古代伟大的数学家,所著《九章算术注》一书,是他毕生研究数学的结晶,在这本书里集中体现了刘徽对待数学的根本观点,即唯物数学观点唯物数学观点是刘徽数学哲学思想的重要方面.中国古代数学史上,对于数学来源和作用的认识,刘徽是持唯物观点的代表者.刘徽在思想上,作为算学的“九九之术”来源于观天察地的实践的思想是十分明确的。
刘徽序言中的“庖牺氏始画八卦”,意在表明八卦,从而表明“九九之术”产生之远古,而并非宣扬神秘主义事实上,1977年在我国发现的“裴李岗文化”遗址表明:“伏羲——女蜗”时代的晚期,正值新旧石器时代的“过渡时期”,这时,农业的发展推动了天文学的发展,古人从观天察地的实中建立起八卦体系,后来这种八卦体系在《周易》中被记述下来,实际乃是我国古代科学数学发展的历史见证.刘徽对于数学起源认识的唯物观点,更表现在他的“数学树”观念上他在《九章算术注原序》中论述数学是一棵大树的思想时指出:事类相推,各有所归故枝条虽多而同本干知,发其一端而已.即是说,《九章》所述的数学知识,犹如一株枝繁叶茂的大树,都发于空间形式的数量关系,故进一步说,刘数学树之端实际上乃是空间形式与数量关系的统一.且两者意义是相互联系的.例如,在用“矩”测物体时,就离不开“度”与“量”这种数形统一观向来在刘徽数学研究的实践中得到r充分体现例如,他用广、从两数乘积及广、袤、高三数乘积分别定义几何量——长方形面积和长方体体积,据此证明《九章》中一系列面积、体积公式.与此同时,几何的原理和方法叉成功地被应用于诸如整勾股数等代数公式的证明中.刘徽对数学的唯物观点还表现在他在具体工作中的求实精神和对数学研究中附会阴阳奇偶说的批判在《九章算术》成书后,在对数学作用的认识上,刘徽既肯定了数学在实践和理论上的作用.唯物地表达了数学在认识自然界方面的重要作用.虽然刘徽的唯物数学观相比同时期的西方数学哲学思想要先进得多.但是,由于中国传统文化是封建制度方法下的文化,而传统数学作为传统文化的一部分,也不免打上封建方法的烙印,表现出对圣贤的迷恋和膜拜.圣贤无所不能,无所不知,无论什么都要打出圣贤的招牌才最有力,几乎成为共识刘徽《九章算术注原序》中“周公制礼而九数”的说法,正是这种烙印的一种表现.因此,刘徽的唯物数学观具有时代的局限性.综上所述,刘徽虽然生活在封建制度方法下的古代晋朝,却能客观地总结前人的实践经验,唯物地创造性地发展我国的数学科学,不失为我国和世界同时期的伟大数学家,“刘徽”这个名字在数学科学史上必将光照千秋.西方数学哲学思想的演变历程及举例数学史上产生过三次数学危机,而三次危机的产生与解决,客观上揭示了数学内在矛盾运动的过程,也就是数学史的一个缩影.事物的辩证本性和辩证联系常常是以悖论的形式出现的。
三次数学危机正是由悖论引起的.悖论是科学发展的一种强有力的内在的逻辑力量,思维虽然不能完整地把握客观事物的辩证矛盾,但由于悖论的出现,却使人看到了旧的理论同客观事物的辩证性质之问的尖锐矛盾,在这种情况下,必然产生出新概念、新思想、新方法和新理论,悖论一旦得到解决,科学便随之得到突破性的发展.【1】悖论,芝诺悖论——数学史中的第一次数学危机公元前五世纪的毕达哥拉斯学派相信“宇宙问的一切现象都能归结为整数和整数比”,希帕索斯发现的“正方形一边与对角线不可通约”即悖论,严重冲击了当时希腊人的普遍信条,在惊异不安之后,还是被迫努力寻求对“自然数及其比不能包括一切几何量”这一事实的理解。
毕氏学派提出单子论概念去解决这一悖论。
而单子论又受到芝诺悖论的否定.进一步促使人们从直觉、经验转向追求逻辑和理性,引导出柏拉图、亚里士多德、欧几里得的公理几何体系和逻辑学的出现和发展。
而无理数的理论直到十九世纪才完成。
【2】徽积分悖论——数学史中的第二次数学危机微积分这门学科的莫基人,人们公认是牛顿和莱布尼兹,但在微积分理论初创时期,不论是牛顿还是莱布尼兹,都无法越过从有限到无穷小量的鸿沟.他们的证明都要依靠一个模糊的原理,即一个无穷小量既可以是一个极其微小的量,同时又可以是零,这就直接违反了最基本的逻辑规则.“什么是无穷小”引出的微积分悖论造成了第二次数学危机.宣称“存在就是被感知”的主观唯心主义者贝克莱呼之为“逝去量的鬼魂”,旨在挽救宗教、宣扬唯心主义,所有的数学家、自然科学家、哲学家都在各抒己见。
在近两个世纪的争论、探讨中达朗贝尔、波尔查诺、柯西、阿贝尔、狄里克列、外尔斯特拉斯等人都做了大量的工作,建立了“一”的极限、连续定义,将导数、积分建立在严格的极限基础之上,最终以外尔斯特拉斯、戴德金、康托尔建立实数理论及由此的极限理论,消除了微积分理论中的悖论,克服了第二次数学危机。
极限理论是微积分理论的基础,它的建立体现了人们对无穷小量认识的深化过程,在微积分的历史上,这个过程虽然是曲折的,但是人们的思想终于突破了形而上学的框框,掌握了无穷小量的辨证本质,这是唯物辩证法的一个胜利。
徽积分悖论的消除还有重大的科学意义,它使得在微积分理论的基础上建设起来的高楼大厦,再也无需有基础下陷之忧虑了.进人二十世纪之后,它对社会生产和科学技术的许多领域都产生了更加巨大的推动作用.【3】罗素悖论——数学史中的第三次数学危机1900年正当庞加莱在国际数学家大会上宣称“数学已经被算术化了,现在的数学已经绝对严格”之时,罗素悖论导致了第三次数学危机,因为“集合的集合”究竟属于哪类集合的疑难,作为集合论基础的皮亚诺公理出现了漏洞,使现代数学大厦出现了一条裂缝。
为解决这场危机,逻辑主义、直观主义和形式主义三学派开展了长达半个世纪的争论,至今虽以统一“数学基础”而使罗素悖论的震波渐趋平息,但彻底消除基础的裂痕已无可能.不过,人们还是获得了重大进步,如类型论、公理集合论等,对数学、逻辑、语言,乃至科学、哲学理论等都有了更加冷静、本质的认识,这是作为“智慧的人”的一步重大的提高.【4】微积分中蕴涵的丰富哲学思想微积分中蕴涵着丰富的哲学思想,如“量变到质变”、“对立统一规律”、“特殊存在于一般之中”等。
1.积分概念中蕴涵的哲学思想定积分、重积分、曲线积分、曲面积分的产生是解决实际问题的需要,解决的基本方法是:①有限分割,②以直代曲或以匀代变的近似计算,③有限积累的求和,④极限转化比如定积分的概念是由求曲边梯形的面积引出的,和式ni=lΣfi)△xi表示n个矩形面积之和;当0时,lim,ni=lΣf(i)△xi 则是曲边梯形的面积。
马克思曾对微积分作过一番历史考察.他把这一时期称为“神秘的微积分”时期.并有这样的评论:“于是,人们自己相信了新发现的算法的神秘性。
这种算法肯定是通过不正确的数学途径得出了正确的(而且在几何应用上是惊人的)结果.【5】非欧几何的哲学思想认识论的变革法国哲学家、数学家彭加莱说过:非欧几何的发现,是认识论一次革命的根源简单讲,人们可以说,这一发现已经胜利的打破了那个为传统逻辑所要求的.束缚住任何理论的两难论题:即科学的原理耍么是必然真理(先验综合的逻辑结论);要么是断言的真理(感官观察的事实).他指出:原理可能是简单的任意约定.但是这些约定决不是同我们的心灵和自然界无关的,它们只能靠着一切人的默契才能存在,它们并且紧密地依赖着我们所生活的环境中的实际外界条件,事实上正是由于这一点。
对于探索未知或目前无法感知的事物.我们可以在哲学的领域里依靠我们对自然界的认识作某种“默契约定”,这是认识一切事物的开始和基础.另外,我们在理论评判中,放弃非彼即此的评判,爱时斯坦就说过:这种非彼即此的评判是不正确的.这些评判家、数学家的评判尤疑是非欧几何创立后,其对思想、理论建立.特别是对认识论有最为直接的影响;更进一步的近代的理论和技术的进步均离不开它的内在影响,像“相对论”的产生、特别是对时空的进一步认识,集合论、现代分析基础、数理逻辑、量子力学等学科建立与发展均可以看成是非欧几何的直接结果.非欧几何的创立所产生的震荡至今余波未消限.【5】潜无穷与实无穷中的辩证法任何事物的内部都包含着互相对立又互相统一的两个方面,徐利治教授在谈到“潜在无限”和“实在无限”时明确提出“两种无限只不过是对同一对象的两个侧面的反映.”实际上既不存在没有潜在无限的实无限,也不存在没有实无限的潜无限,实无限都必须是某一潜无限基础上飞跃而完成的无限过程,潜无限都是某一个实无限的初始片断.可见,无穷观的发展过程中也蕴含着丰富的辩证法内涵.显然,三次危机的产生和消除过程包含了丰富的哲学问题。