九年级上学期数学测试题

合集下载

九年级上册数学测试题(含答案)

九年级上册数学测试题(含答案)

九年级上册数学测试题(考试时间: 120 分钟分数: 120 )一、选择题(本大题共10 小题,共 30 分)1.某钢铁厂一月份生产钢铁 560 吨,从二月份起 ,由于改进操作技术 ,使得第一季度共生产钢铁1850 吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为 x,则可得方程A. B.C. D.2.若一元二次方程的常数项是 0,则 m 等于 ( )A. B. 3 C. D. 93.如图 ,AB 是的一条弦 ,于点 C,交于点 D,连接若,,则的半径为 ()A. 5B.C. 3D.4.若抛物线与 x 轴有交点 ,则 m 的取值X围是( )A. B. C. D.5.如图 ,A,B,C 是上三个点 ,,则下列说法中正确的是()A. B. 四边形 OABC 内接于C. D.6.中,于 C,AE 过点 O,连接 EC,若,,则 EC长度为( )A. B. 8 C. D.7.下列判断中正确的是 ( )A.长度相等的弧是等弧B.平分弦的直线也必平分弦所对的两条弧C.弦的垂直平分线必平分弦所对的两条弧D.平分一条弧的直线必平分这条弧所对的弦8. 如图 ,已知与坐标轴交于点A,O,B,点C在上,且,若点 B 的坐标为,则弧 OA 的长为 ( )A.B.C.D.9.将含有角的直角三角板 OAB 如图放置在平面直角坐标中 ,OB 在 x 轴上 ,若,将三角板绕原点 O 顺时针旋转,则点 A 的对应点的坐标为( )A.B.C.D.10.如图 ,在中 ,,,以点 C 为圆心 ,CB 的长为半径画弧 ,与 AB 边交于点 D,将绕点 D旋转后点 B 与点 A 恰好重合 ,则图中阴影部分的面积为 ()A. B.C. D.二、填空题(本大题共8 小题,共 24分)11.m 是方程的一个根 ,则代数式的值是______.12.已知,,是二次函数上的点 ,则, , 从小到大用“”排列是 ______.13.如图 ,在中 ,直径,弦于 E,若,则______.14.如图是一座抛物形拱桥 ,当水面的宽为 12m时,拱顶离水面 4m,当水面下降3m 时 ,水面的宽为 ______15.如图 ,正的边长为 4,将正绕点 B顺时针旋转得到,若点 D 为直线上的一动点 ,则的最小值是 ______.16.如图 ,在平面内将绕着直角顶点 C 逆时针旋转,得到,若,,则阴影部分的面积为 ______.17.如图,A、B、C、D 均在上 ,E 为 BC 延长线上的一点 ,若,则______.18.如图 ,内接于,于点 D,若的半径,则 AC 的长为 ______.三、解答题(本大题共7 小题,共66分)19. 已知关于 x 的一元二次方程有实数根.求 m 的取值X围;( 3+3=6分)若方程有一个根为,求 m 的值及另一个根.20. 如图 ,E 与 F 分别在正方形 ABCD 边 BC 与 CD 上,.以A 为旋转中心 ,将按顺时针方向旋转 ,画出旋转后得到的图形.( 4+4=8分)已知,,求 EF 的长.21. 平面上有 3 个点的坐标:,,.在 A,B,C 三个点中任取一个点 ,这个点既在直线上又在抛物线上的概率是多少?从A,B,C 三个点中任取两个点 ,求两点都落在抛物线上的概率.( 4+4=8分)22. 如图 ,抛物线与x轴交于A、B两点点A在点B的左侧,点 A 的坐标为,与 y 轴交于点,作直线动点P在x轴上运动,过点 P 作轴,交抛物线于点M,交直线BC于点N,设点P的横坐标为m.( 4+4+4=12)Ⅰ求抛物线的解析式和直线 BC 的解析式;Ⅱ当点 P 在线段 OB 上运动时 ,求线段 MN 的最大值;Ⅲ当以 C、O、M、N 为顶点的四边形是平行四边形时,直接写出 m 的值.23. 如图,内接于,,CD 是的直径 ,点 P 是 CD 延长线上的一点 ,且.( 5+5=10分)求证: PA 是的切线;若,,求的半径.24. 如图 ,AB 是的直径,四边形ABCD内接于,延长 AD,BC 交于点 E,且.求证:;若,,求的长.25. 如图 ,A、B、C 是圆 O 上三点 ,,点 D 是圆上一动点且,过点 D 作 BC 的平行线 DE,过点 A 作 AB 的垂线 AE,两线交于点 E.(1)求证: AB 是圆 O 的直径。

2024年北京初三九年级上学期数学期末考《新定义》

2024年北京初三九年级上学期数学期末考《新定义》

2024年1月九上期末——新定义1.【东城】28.在平面直角坐标系xOy 中,已知点P 和直线1l ,2l ,点P 关于直线1l ,2l “和距离”的定义如下:若点P 到直线1l ,2l 的距离分别为1d ,2d ,则称1d +2d 为点P 关于直线1l ,2l 的“和距离”,记作d .特别地,当点P 在直线1l 上时,1d =0;当点P 在直线2l 上时,2d =0.(1)在点1P (3,0),2P (-1,2),3P (4,-1)中,关于x 轴和y 轴的“和距离”为3的点是________;(2)若P 是直线3y x =-+上的动点,则点P 关于x 轴和y 轴的“和距离”d 的最小值为________;(3)已知点A (0,3),⊙A 的半径为1,点P 是⊙A 上的动点,直接写出点P 关于x 轴和直线y =3x +6的“和距离”d 的取值范围.2.【西城】28.如图,在平面直角坐标系xOy 中,点()1,0S -,()1,0T .对于一个角α(0180α︒<≤︒),将一个图形先绕点S 顺时针旋转α,再绕点T 逆时针旋转α,称为一次“α对称旋转”.备用图(1)点R 在线段ST 上,则在点()1,1A -,()3,2B -,()2,2C -,()0,2D -中,有可能是由点R 经过一次“90°对称旋转”后得到的点是________;(2)x 轴上的一点P 经过一次“α对称旋转”得到点Q .①当60α=︒时,PQ =________;②当30α=︒时,若QT x ⊥轴,求点P 的坐标;(3)以点O 为圆心作半径为1的圆.若在O 上存在点M ,使得点M 经过一次“α对称旋转”后得到的点在x 轴上,直接写出α的取值范围.3.【海淀】28.在平面直角坐标系xOy 中,将中心为T 的正方形记作正方形T ,对于正方形T 和点P (不与O 重合)给出如下定义:若正方形T 的边上存在点Q ,使得直线OP 与以TQ 为半径的T 相切于点P ,则称点P 为正方形T 的“伴随切点”.(1)如图、正方形T 的顶点分别为点O ,()2,2A ,()4,0B ,()2,2C -.①在点()12,1P ,()21,1P ,()31,1P -中,正方形T 的“伴随切点”是________;②若直线y x b =+上存在正方形T 的“伴随切点”,求b 的取值范围;(2)已知点(),1T t t +,正方形T 的边长为2.若存在正方形T 的两个“伴随切点”M ,N ,使得OMN △为等边三角形,直接写出t 的取值范围.4.【朝阳】28.在平面直角坐标系xOy 中,已知A (t -2,0),B (t +2,0).对于点P 给出如下定义:若∠APB=45°,则称P 为线段AB 的“等直点”.(1)当t =0时,①在点),(22201+P ,),(042-P ,)-,(2223-P ,),(524P 中,线段AB 的“等直点”是________;②点Q 在直线y =x 上,若点Q 为线段AB 的“等直点”,直接写出点Q 的横坐标.(2)当直线t x y +=上存在线段AB 的两个“等直点”时,直接写出t 取值范围.5.【石景山】28.在平面直角坐标系xOy 中,⊙O 的半径为1.对于⊙O 的弦AB 和点C 给出如下定义:若点C 在弦AB 的垂直平分线上,且点C 关于直线AB 的对称点在⊙O 上,则称点C 是弦AB 的“关联点”.(1)如图,点13(22A ,,13(22B -,.在点1(00)C ,,2(10)C ,,3(11)C ,,4(20)C ,中,弦AB 的“关联点”是;(2)若点1(0)2C ,是弦AB 的“关联点”,直接写出AB 的长;(3)已知点(02)M ,,(0)15N ,.对于线段MN 上一点S ,存在⊙O 的弦PQ ,使得点S 是弦PQ 的“关联点”.记PQ 的长为t ,当点S 在线段MN 上运动时,直接写出t 的取值范围.6.【丰台】28.在平面直角坐标系xOy中,⊙O的半径为1,对于线段AB和x轴上的点P,给出如下定义:将线段AB绕点P旋转180°可以得到⊙O的弦A'B'(A',B'分别为A,B的对应点),则称线段AB为⊙O以点P 为中心的“关联线段”.(1)如图,已知点A(-2,-1),B(-2,0),C(-2,1),D(-1,1),在线段AC,BD,CD中,⊙O以点P 为中心的“关联线段”是;x的取值范围;(2)已知点E(-4,1),线段EF是⊙O以点P为中心的“关联线段”,求点F的横坐标F (3)已知点E(m,1),若直线y=-x+2m上存在点F,使得线段EF是⊙O以点P为中心的“关联线段”,直接写出m的取值范围.备用图7.【昌平】28.对于在平面直角坐标系xOy 中⊙T 和⊙T 外的点P ,给出如下定义:已知⊙T 的半径为1,若⊙T 上存在点Q ,满足PQ ≤2,则称点P 为⊙T 的关联点.(1)如图1,若点T 的坐标为(0,0),28题图1①在点1P (3,0),2P (3,-2),3P (-2,2)中,是⊙T 的关联点的是____________;②直线2y x b =+分别交x 轴,y 轴于点A ,B ,若线段AB 存在⊙T 的关联点,求b 的取值范围;(2)已知点C (0,D (1,0),T (m ,1),△COD 上的每一个点都是⊙T 的关联点,直接写出m 的取值范围.28题图28.【通州】28.在平面直角坐标系xOy 中,O 的半径为1.给出如下定义:过O 外一点P 做直线与O 交于点M 、N ,若M 为线段PN 的中点,则称线段PN 是O 的“外倍线”。

重庆实验外国语学校2024-2025学年九年级上学期入学考试数学试题+答案

重庆实验外国语学校2024-2025学年九年级上学期入学考试数学试题+答案

初2025届九上开学数学定时作业(全卷共三个大题,满分150分,考试时间120分钟)参考公式:抛物线()20y ax bx c a ++≠的顶点坐标为24,24b ac b a a −− ,对称轴为2b x a =−. 一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.1.下列四个实数中,是无理数的是( )A .1.010010001B .237C .πD .2.下列四种图案是2024年巴黎奥运会中部分运动项目的示意图,其中是轴对称图形的是( )A .B .C .D .3.如果单项式42a x y −与单项式533b x y −−的和仍是一个单项式,则点(),a b −在( )A .第一象限B .第二象限C .第三象限D .第四象限4.估计 ) A .2到3之间B .3到4之间C .4到5之间D .5到6之间 5.一组图形按下列规律排序,其中第①个图形有5个圆球,第②个图形有8个圆球,第③个图形有13个圆球,…,按此规律排列下去,则第⑧个图形的圆球的个数是( )A .53B .55C .68D .696.如图,AB CD ,50EFB ∠=°,FM 平分BFG ∠,过点G 作GH FM ⊥于点H ,则HGM ∠的度数是( )A .25°B .30°C .40°D .20°7.为了让大家都能用上实惠药,医保局与药商多次谈判,将一种原价每盒100元的药品,经过两次降价后每盒64元,两次降价的百分率相同,则每次降价的百分率为( )A .20%B .22%C .25%D .80%8.如图,A 、B 、C 是O 的圆周上三点,DE 与O 相切于点C ,连接AB 、BC 、AC ,若AB AC =,40BCD ∠=°,则ACE ∠的度数为( )A .40°B .60°C .70°D .80°9.如图,在正方形ABCD 中,点E 在边BC 上,点F 在边CD 上,连接AE 、AF 、EF ,有EF BE DF =+,BAE EFC ∠=∠,若2DF =,求AB 的长为( )A .8B .4+C .4D .12−10.在多项式a b c d e −+−−(其中0a b c d e >>>>>)中,任选两个字母,在两侧加绝对值后再去掉绝对值化简可能得到的式子,称为第一轮“绝对操作”.例如,选择d ,e 进行“绝对操作”,得到a b c d e a b c d e −+−−=−+−+,…在第一轮“绝对操作”后的式子进行同样的操作,称为第二轮“绝对操作”,如:a b c d e a b c d e −+−+=−−+−,…按此方法,进行第()1n n ≥轮“绝对操作”.以下说法:①存在某种第一轮“绝对操作”的结果与原多项式相等;②对原多项式进行第一轮“绝对操作”后,共有8种不同结果;③存在第()1k k ≥轮“绝对操作”,使得结果与原多项式的和为0. 其中正确的个数为( )A .0个B .1个C .2个D .3个二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡...中对应的横线上.11.计算:22024112− −−=______________. 12.如果一个多边形的每一个外角都是30°,那么这个多边形的边数为______________.13x 的取值范围是______________. 14.2024年暑假重庆各旅游景区持续火热,小明和小亮相约来到重庆旅游,两人分别从洪崖洞,磁器口,解放碑,李子坝四个景点中随机选择一个景点游览,小明和小亮选择不同景点的概率为______________.15.如图,ABC △的面积为4,将ABC △沿AD 方向平移,使A 的对应点A ′满足14AA AD ′=,则平移前后两三角形重叠部分的面积是______________. 16.若关于x 的一元一次不等式组113232x x x a− +> +≥ 恰有2个偶数解,且关于y 的分式方程23122a y y y −−=+−−的解为非负整数,则所有满足条件的整数a 的值之和是______________.17.如图,AB 是O 的直径,BC 是O 的切线,连接AC 交O 于点D ,点E 为O 上一点,满足 DEDB =,连接BE 交AC 于点F ,若1CD=,BC =,则BF=______________,EF =______________.18.若一个四位自然数M 的千位数字、百位数字与十位数字的和恰好等于个位数字的平方,则称这个四位数M 为“方和数”.若“方和数”M abcd =且(19a b c d ≤≤、、、),将“方和数”M 的千位数字与十位数字对调、百位数字与个位数字对调得到新数N ,规定()()()2129d b c d a G M +−++−=,若()G M 为整数,M N +除以13余7,则b c +的值为______________,满足条件的M 的值为______________.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线)请将解答过程书写在答题卡...中对应的位置上. 19.计算:(1)()()222x y x x y −−+; (2)()22214424m m m m m m +−+−−−÷−. 20.为了解学生的暑期每日学习时间情况,学校开学进行了问卷调查.现从高二、高三的学生中各随机抽取20名学生的问卷调查进行收集、整理、描述、分析.所有学生的学习时长均高于2小时(时间用x 表示,共分成四组:A.25x <≤;B.58x <≤;C.811x <≤;D.11x <),下面给出了部分信息:高二年级20名学生的学习时长为:2.1,2.2,3,3,,5.2,7,8,8,8,8,8.5,9,10,12,12,12.5,13,13,14. 高三年级20名学生的学习时长在C 组的数据是:8.2,8.6,9,9.4,9.6,10. 高二、高三所抽取学生的学习时长统计表年级高二年级 高三年级 平均数 8.15 8.15 中位数8 b 众数 a7.5 高三所抽取学生的学习时长统计图根据以上信息,解答下列问题:(1)上述图表中a =_____________,b =_____________,m =_____________;(2)根据以上数据分析,你认为该校高二、高三年级中哪个年级学生的学习时长较好?请说明理由(写出一条理由即可)(3)该校高二年级有2000名学生、高三年级有1800名学生参加了此次问卷调查,估计该校高二、高三年级参加此次问卷调查学习时长8x >的学生人数是多少?21.在学习了矩形与菱形的相关知识后,重外数学兴趣小组进行了更深入的研究,他们发现,过菱形的一条对角线的两个端点分别作一组对边的垂线,与菱形两边相交的两点和这条对角线的两个端点构成的四边形是矩形,可先证得到的图形是平行四边形继而得到此结论.根据他们的想法与思路,完成以下作图..和填空..: (1)如图,在菱形ABCD 中,DE AB ⊥于点E .用尺规过点B 作CD 的垂线交于点F (不写作法,保留作图痕迹).(2)已知:菱形ABCD 中,DE AB ⊥于点E ,BF CD ⊥于点F .求证:四边形DEBF 是矩形.证明: 四边形ABCD 是菱形,AD BC ∴=,AB CD =,___①_____又180BCF BCD DAE DAB ∠+∠=∠+∠=°BCF DAE ∴∠=∠.DE AB ⊥ ,___②_____90BFC DEA ∴∠=∠=°,()CFB AED AAS ∴≌△△∴____③____DF BE ∴=,又AB CD ,∴四边形DEBF 是平行四边形.DE AB ⊥ ,∴四边形DEBF 是矩形.进一步思考,如果“菱形ABCD ”改为“平行四边形ABCD ”还有相同的结论么?请你写出你猜想的结论: ______________________________④__________________________________22.经重庆市发改委统筹考虑重庆电力供需状况、电网负荷特性、居民用电习惯等,在保持价格总水平基本稳定的前提下,现制定分时电价标准,分成三个时段计费,即高峰时段、低谷时段和平段.1.高峰时段:11:00一17:00、20:00一22:00,在平段电价基础上提高0.10元/千瓦时.2.低谷时段:00:00一08:00,在平段电价基础上降低0.18元/千瓦时.3.平段:08:00一11:00、17:00-20:00、22:00一24:00,平段电价为国家规定的销售电价.(1)某家庭8月份总电量400千瓦时,其中平段电量为总电量30%.低谷电量占总电量14,根据相关政策,使用新方案计算电费与原来全部按照平段电价费用一样,则平段电价为多少元/千瓦时?(2)电力公司采用新能源节约成本,9月份将所有时段电费单价在(1)中的费用的情况下均降低相同费用,若该家庭9月份高峰时段费用与低谷时段费用一样,而低谷时段电量为高峰时段电量的2倍,则降价后高峰时段电价为多少元/千瓦时?23.如图1,在菱形ABCD 中,对角线AC 与BD 交于点O ,点P 沿着A B O A →→→的方向每秒1个单位运动,点Q 沿着A D O C →→→的方向每秒1个单位运动,连接PQ ,点P ,Q 的距离为y ,两动点同时出发,设运动时间为x 秒,当两动点到达终点时即12x =时,8y =.(1)请直接写出y 关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中,画出函数y 的图象,并写出函数y 的一条性质;(3)结合函数图象,请直接写出23y k =+有3个解时k 的取值范围.24.小明和小玲游览一处景点,如图,两人同时从景区大门A 出发,小明沿正东方向步行60米到一处小山B 处,再沿着BC 前往寺庙C 处,在B 处测得亭台D 在北偏东15°方向上,而寺庙C 在B 的北偏东30°方向上,小玲沿着A 的东北方向上步行一段时间到达亭台D 处,再步行至正东方向的寺庙C 处.(1)求小山B 与亭台D 之间的距离;(结果保留根号)(2)若两人步行速度一样,则谁先到达寺庙C 处.(结果精确到个位, 1.41≈ 1.73≈,2.45≈)25.如图1,已知抛物线2142y x x =+−的图象与x 轴交于A ,B 两点(A 在B 左侧),与y 轴交于点C . (1)抛物线顶点为D ,连接AD 、AC 、CD ,求点D 到AC 的距离;(2)如图2,在y 轴正半轴有一点E 满足2OC OE =,点P 为直线AC 下方抛物线上的一个动点,连接PA 、AE ,过点E 作EF AP 交x 轴于点F ,M 为y 轴上一个动点,N 为x 轴上一个动点,平面内有一点75,28G −−,连接PM 、MN 、NG ,当APF S △最大时,求PM MN NG ++的最小值;(3)如图3,连接AC 、BC ,将抛物线沿着射线BC 平移y ′,y ′上是否存在一点R ,使得45RAC BCO ∠+∠=°?若存在,直接写出点R 的坐标,若不存在,请说明理由.26.如图,在ABC △中,90BAC ∠=°,D 在AB 边上,E 在AC 边上,连接EB 、CD ,点G 为BE 上一点且满足GA GB =.(1)如图1,若BE 平分ABC ∠,10BC =,AG =,5CE =,求ABC △的面积;(2)如图2,若BD CE =,取CD 中点为F ,连接FG ,求证:CE =;(3)如图3,在(1)的条件下,点F 为直线AC 上一点,连接BF ,若2CF BD =,则12CD BF +最小时,直接写出ADG S △的值.重庆实验外国语学校2024-2025学年度(上)初2025届九上开学定时作业参考答案(全卷共三个大题,满分150分,考试时间120分钟)参考公式:抛物线()20y ax bx c a ++≠的顶点坐标为24,24b ac b a a −− ,对称轴为直线2b x a =−. 一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答卷上对应的方框涂黑.1.C 2.D 3.B 4.B 5.C 6.A 7.A 8.C 9.C 10.D10答案:①对ab “绝对操作”后结果与原多项式一样,所以①对;②依次取ab ,ac ,ad …结果有8种;③先对ac “绝对操作”后得到a b c d e a b c d e −+−−=−+−−−,再对刚刚式子进行ce “绝对操作”后得到a b c d e a b c d e −+−−−=−+−++,所以③对. 二、填空题:(本大题共8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.5 12.十二 13.1x > 14.3415.94 16.4− 17 18.10 655416.不等式解得243a x −≤<解得42a −<≤,解得302a y +=≥且2≠,解得3a =−,1−,整数a 的值之和4−.17.导角得BFC C ∠=∠,BF BC ∴==,连接AE ,则AEF BDF △△∽,3AF =,EF =18.解:由题意可得:2a b c d ++=, ()()()()2212121222999d b c d a b c d d d b c a G M +−++−−+++−−−−∴===,15b ≤≤ ,16c ≤≤,()G M 为整数,10b c ∴+=;210d a b c a =++=+ ,故4d =,6a =;设100010010M a b c d =+++,100010010N c d a b =+++,()71010101010111710110107M N a c b d a c b d ∴+−=+++−=+++−, ()()()()10110107101749710172919590957151313131313a c b d c c c M N +++−+−++++−∴====+,故5c =,5b =,6a ∴=,5b =,5c =,4d =;故答案为:10;6554.三、解答题:(本大题8个小题,19小题8分,20-26题每小题10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡...中对应的位置上. 19.(1)222442x xy y x xy −+−−264xy y =−+ 4分(2)21m m− 8分 20.(1)8,8.8,30;(2)高三年级学生学习时长较好,高三年级的中位数8.8高于高二年级的中位数8,整体上看高三年级学生学习时长较好;(3)96200030%180019802020 ×++×=(人), 答:该校高二、高三年级参加此次问卷调查学习时长8x >的学生人数是1980人. 10分21.(1)如图所示,即为所求作; 6分(2)①BCD DAB ∠=∠;②BF CD ⊥;③CF AE =;④过平行四边形的一条对角线的两端点分别作一组对边的垂线,与平行四边形两边相交的两点和这条对角线的两个端点构成的四边形是矩形. 10分22.(1)设平段电价为x 元/千瓦时,则高峰电价为()0.1x +元/千瓦时,低谷电价为()0.18x −元/千瓦时,则()()()114000.18400130%0.1400130%44x x x ×⋅−+×−−⋅+=×−解得0.5x = 答:平段电价为0.5元/千瓦时. 4分(2)高峰电价()0.10.6x +=元/千瓦时,低谷电价为()0.180.32x −=元/千瓦时, 设降价a 元/千瓦时,9月份高峰时段费用,费用为y 万元 则20.60.32y y a a×=−− 7分 解得0.04a = 经检验0.04a =是原方程的解 9分降价后高峰电价0.60.60.040.56a −=−=元/千瓦时,答:降价后高峰电价0.60.60.040.56a −=−=元/千瓦时, 10分23.解:(1)6,055162,58216,812x x y x x x x ≤≤ =−<< −≤≤;(y 解析式及范围均正确给1分) 3分 2.如图所示,即为所求: 6分 性质:05x <<时,y 随x 58x <<时,y 随x 增大而减小,812x <<时,y 随x 增大而增大;(y 的图象3分,性质2分,有1处错扣1分,全错0分) 8分 3. 1.5 1.5k −<<. 10分24.解:(1)作BE AD ⊥于点E ,60AB =,45A ∠=°,9015105ABD ∠=°+°=°,9030120CBA ∠=°+°=°,1801054530ADB ∠=°−°−°=°在Rt ABE △中,BE AE ==在Rt BDE △中,ED =DF =米 ∴小山B 与亭台D之间的距离米 4分(2)延长AB ,作DF BA ⊥于点F ,作CG BA ⊥于点G ,则18060CBG CBA ∠=°−∠=°, 则在Rt AFD △中,30DF AF ==+,30CG DF ==+米,在Rt BCG △中,30BG =+,260BC BG ==60CD FG AB BG AF ∴==+−=−60141.2S AD CD ∴+++−≈玲米,6060154.6S AB BC =+=++≈明米,141.2154.6< 且两人速度一致,∴小玲先到.答:小玲先到达寺庙C 处. 10分25.(1)当0x =时,4y =−,故()0,4C −,当0y =时,4x =−或2x =,故()4,0A −,()2,0B , 对称轴1x =−,当1x =−时,92y =−,故91,2D −−,易求得3ACD S =△,AC =, 132BCD S AC h ==⋅⋅△,得h =D ∴到AC2分 (2)设AE 解析式为y kx m =+,代入()0,2E ,()4,0A −,得042k m m =−+ = ,解得122k m = = , AE ∴的解析式为122y x =+; 连接PE ,作PQ y 轴交AE 于QEF AP12APF APE E A S S PQ x x ∴==⋅⋅−△△设21,42P m m m+− ,则1,22Q m m + ,即211622PQ m m =−−+, 21122APF APE E A S S PQ x x m m ==⋅⋅−=−−+△△ 当12m =−时,max 494APF S =△,此时P 的坐标为135,28 −− 6分 将P 的关于y 轴对称得到P ′坐标为135,28 − ,将G 的关于x 轴对称得到G ′坐标为75,28 − 连接P G ′′交于y 轴于点M ,交于x 轴于点N,则PM MN NG P M MN NG P G ′′′′++=++≥=(3)平移后的新抛物线21342y x x ′=+−,在y 轴上找点S 满足OS OB =,则OSA OBC ≌△△, 1122AS y x =−−,联立21221342y x y x x =−− =+−,解得x y = =x y = = (舍) 228AS y x =−−,联立2281342y x y x x =−− =+−,解得52x y =− =−或52x y =− =+ (舍)所以R(22R −− 26.(1)GA GB =12∴∠=∠90BAC ∠=°142390∴∠+∠=∠+∠=°43∴∠=∠GA GB GE ∴=== 设AB x =,AE y =在Rt ABE △中,222BE AB AE =+,(222x y ∴=+ 在Rt ABC △中,222BC AB AC =+,()()222105x y ∴=++3x ∴=,6y =即8AC AE EC =+=,6AB =11862422ABC S AC AB ∴=⋅=××=△ 3分 法二:过E 作EF BC ⊥于点F ,则ABC FEC △△∽,故设2AB a =,AE EF a ==在Rt ABE △中,222BE AB AE =+,(()2222a a ∴=+,3a ∴=下同(2)CE =简证如下: 倍长CG 至点Q ,连接DQ ,由(1)得GB GE =, BQG ECG ∴≌△△QB EC ∴=,ECG BQG ∠=∠ EC QB ∴90QBD BAC ∴∠=∠=°, BD CE =BD BQ ∴=BQD ∴△为等腰直角三角形QD ∴==CD 中点为F ,GB GE =2QD FF ∴=2FF =CE ∴(3)1211ADG S =△ 10分。

江苏省泰州市兴化市下圩中心校2024--2025学年上学期九年级数学阶段测试题

江苏省泰州市兴化市下圩中心校2024--2025学年上学期九年级数学阶段测试题

江苏省泰州市兴化市下圩中心校2024--2025学年上学期九年级数学阶段测试题一、单选题1.下列2024年巴黎奥运会的运动图标中,不是中心对称图形的是( )A .B .C .D .2.若关于x 的方程()23210k x x -+-=是一元二次方程,则k 的取值范围是( )A .3k >B .3k ≠C .2k >D .2k ≥且3k ≠3.已知点P 在半径为r 的O e 内,且4OP =,则r 的值可能为( ) A .2B .3C .4D .54.如图,DAE ∠是O e 的内接四边形ABCD 的一个外角,若»BD的度数为112︒,则DAE ∠的度数是( )A .68︒B .66︒C .56︒D .112︒5.已知点F 是ABC V 的重心,连接AF 并延长交BC 于G 点,过点F 作BC 的平行线分别交AB 、AC 于D 点、E 点,则下列说法不正确的是( )A .DF EF =B .2AF FG =C .BG CG =D .:2:1ADE BDEC S S =V 四边形6.如图,等边三角形MNP 的边长为1,点M ,N 在O e 上,点P 在O e 内,O e 将MNP △绕点M 顺时针旋转,在旋转过程中得到两个结论:①当点P 第一次落在O e 上时,旋转角为30°;②当MP 第一次与O e 相切时,旋转角为60°,则结论正确的是( )A .①B .②C .①②D .均不正确二、填空题 7.若23x y =,则xy=. 8.已知一元二次方程260x kx ++=有一个根为1-,则方程的另一根为.9.在比例尺为1:5000的地图上,A 、B 两地间的图上距离为6cm ,则A ,B 两地间的实际距离是m .10.当m =时,代数式281m m -+有最大值.11.鹦鹉螺曲线的每个半径和后一个半径的比都是黄金比例,是自然界最美的鬼斧神工.如图,P 是AB 的黄金分割点()AP BP >,若线段AB 的长为10cm ,则AP 的长为cm .12.如图,45AOB ∠=︒,点M 是射线OB 上一点,2OM =,以点M 为圆心,r 为半径作M e ,若M e 与射线OA 有两个公共点,则半径r 的取值范围是.13.某农场去年种植南瓜10亩,总产量为20000kg ,今年该农场扩大了种植面积,并引进新品,使产量增长到60000kg .已知今年种植面积的增长率是今年平均亩产量增长率的2倍,设今年平均亩产量的增长率为x ,则可列方程.(无需化简)14.如图,点D 、E 分别位于ABC V 边BC 、AB 上,AD 与CE 交于点F .已知点F 是AD 的中点,:1:4EF FC =,若3AE =,则BE 的长为.15.如图,一下水管道横截面为圆形,直径为20dm ,下雨前水面宽AB 为12dm .一场雨过后,水面宽变为16dm ,则水位上升dm .16.如图,在ABCD Y 中,3AB =,6BC =,60ABC ∠=︒.点P 沿着折线段B C D B ---运动,若点P 在运动的过程中,PAB V 的外心O 在ABCD Y 的边上,则符合条件的点P 有个.三、解答题 17.解下列方程: (1)()2252x x x -=-; (2)22670x x +-=. 18. 先化简,再求值:22323()21x x x x x x x x+--÷--+,其中x 满足2210x x --=. 19.已知关于x 的方程2221x mx m n -++=有两个不相等的实数根. (1)求n 的取值范围;(2)若n 为符合条件的最小整数,设方程的两根分别为1x 和2x ,求证:不论m 取何实数,12x x -是一个定值.20.如图,在平面直角坐标系中,OAB △的顶点坐标分别为()0,0O ,(2,1)A ,()1,2B .(1)画出将OAB △向左平移2个单位,再向上平移1个单位后得到的111O A B △;(2)以原点O 为位似中心,在y 轴的右侧画出OAB △的一个位似22OA B △,使它与OAB △的相似比为2:1;(3)判断111O A B △和22OA B △是否是位似图形(直接写结果),若是,请在图中标出位似中心点M ,并写出点M 的坐标.21.如图,在正方形ABCD 中,点E 在AD 上,点F 是CD 上,给出以下三个信息:①E 是AD 的中点,②ABE DEF △△∽,③点F 是CD 的四等分点.从以上信息中选择两个作为条件,另一个作为结论,组成一个真命题.(1)你选择的条件是;结论是;(填序号) (2)证明你构造的真命题.22. 某宾馆有100间标准房,当每间标准房房价为200元时,每天都客满.十一国庆期间,宾馆老板计划进行适当的提价.根据市场调查,当每间标准房房价在200280~元之间(含200元,280元)浮动时,每提高10元,日均入住房间数减少10间.在不考虑其他因素的前提下,设每间标准房价为x 元,日入住标准房房间数为y 间. (1)求y 与x 之间的函数关系式;(2)当标准房价定为多少元时,标准房日营业额为10400元. 23. 如图,AB 为O e 的直径,弦CD AB ⊥于点H ,(1)用没有刻度的直尺和圆规在射线BC 上确定一点E ,使得AEB DAB ∠=∠.(保留作图痕迹,不写作法).(2)在(1)的条件下,若O e2AD =,求CE 的长. 24.根据以下素材,探索解决问题.,说明:小陈同学PQ 离地面的距离测得在同一直25. 已知关于x 的方程()200x ax b b +=≠+与()200x cx d d ++=≠都有实数根,若这两个方程有且只有一个相同的根,且ab cd =,则称它们互为“友好方程”.如2320x x -+=与260x x +-=互为“友好方程”.(1)判断方程2210x x -+=与220x x -+=是否是互为“友好方程”?并说明理由; (2)若关于x 的方程2320x x m ++=与2230x m x -+=互为“友好方程”,求m 的值;(3)材料:关于x 的一元二次方程()200ax bx c a ++=≠的两个实数根1x ,2x 和系数a ,b ,c ,有如下关系: 12b x x a+=-, 12cx x a =.已知关于x 的方程①:220x ax b ++=和关于x 的方程②:220x ax b ++=,p 、q 分别是方程①和方程②的一个实数根,且p q ≠,0b ≠.若方程①和方程②是互为“友好方程”,且以p 为两个方程的相同的根,请用含a 的代数式分别表示p 和q . 26.【问题背景】已知点A 是半径为r 的O e 上的定点,连接OA ,将线段OA 绕点O 按逆时针方向旋转9(0)0αα︒<<︒得到OE ,连接AE ,过点A 作O e 的切线l ,在直线l 上取点C ,使得CAE∠为锐角.【初步感知】(1)如图1,当20CAE∠=︒时,α=°;【问题探究】(2)以线段AC为对角线作矩形ABCD,使得边AD过点E,连接CE,对角线AC,BD相交于点F.①如图2,若AE DC=,求证:2AC r=②如图3,当43=AC r,23CE r=时,请仿照图2补全图形.(a)判断过点O、E、C三点能不能作一个圆,并说明理由;(b)探究AB与BC之间的数量关系,并写出探究过程.。

四川省成都市武侯区2024届九年级上学期期末考试数学试卷(含答案)

四川省成都市武侯区2024届九年级上学期期末考试数学试卷(含答案)

2023~2024学年度上期期末考试试题九年级数学注意事项:1.全卷分A卷和B卷,A卷满分100分,B卷满分50分;考试时间120分钟。

2.考生使用答题卡作答。

3.在作答前,考生务必将自己的姓名、考生号和座位号填写在答题卡规定的地方。

考试结束,监考人员只将答题卡收回。

4.选择题部分请使用2B铅笔填涂;非选择题部分请使用0.5毫米黑色签字笔书写,字体工整、笔迹清楚。

5.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

6.保持答题卡清洁,不得折叠、污染、破损等。

A卷(共100分)第Ⅰ卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分)1.某几何体的三视图如图所示,则这个几何体是()A.圆锥B.正方体C.圆柱D.球2.若方程是关于的一元二次方程,则“□”中可以是()A.B.C.D.3.已知四条线段成比例,则下列结论正确的是()A.B.C.D.4.若表示平行四边形,表示矩形,表示菱形,表示正方形,它们之间的关系用下列图形来表示,正确的是()A.B.C.D.5.若关于的方程有实数根,则的取值范围是()A.B.C.D.6.如图,在平面直角坐标系中,矩形的顶点坐标分别是,.已知矩形与矩形位似,位似中心是原点,且矩形的面积等于矩形的面积的,则点的坐标是()A.B.C.或D.或7.王丽同学在一次用频率估计概率的试验中,统计了某一结果出现的频率,绘出的统计图如图所示,则该试验可能是()A.关于“从装有2张红桃和1张黑桃的扑克牌盒子中,随机摸出一张(这些扑克牌除花色外都相同),这张扑克牌是黑桃”的试验B.关于“50个同学中,有2个同学生日相同”的试验C.关于“抛一枚质地均匀的硬币,正面朝上”的试验D.关于“掷一枚质地均匀的正方体骰子,出现的点数是1”的试验8.已知反比例函数的图象如图所示,关于下列说法:①常数;②的值随值的增大而减小;③若点为轴上一点,点为反比例函数图象上一点,则;④若点在反比例函数的图象上,则点也在该反比例函数的图象上.其中说法正确的是()A.①②③B.③④C.①④D.②③④第Ⅱ卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9.将方程化成一元二次方程的一般形式为_________.10.一个口袋中装有红球、白球共10个,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有69次摸到红球,则可估计这个口袋中红球的数量是_________.11.如图,小强自制了一个小孔成像的纸筒装置,其中纸筒的长度为,他准备了一支长为的蜡烛,想要得到高度为的像,蜡烛应放在水平距离纸筒点处_________的地方.12.在平面直角坐标系中,一次函数的图象与反比例函数的图象如图所示,则当时,自变量的取值范围是_________.13.如图,先将一张正方形纸向上对折、再向左对折,然后沿着图中的虚线剪开,得到①②两部分,将①展开后得到的平面图形是_________.三、解答题(本大题共5个小题,共48分)14.解方程(本小题满分12分,每题6分)(1);(2).15.(本小题满分8分)如图,在正方形中,延长至点,使得,连接交于点.(1)试探究的形状;(2)求的度数.16.(本小题满分8分)2023年9月21日,“天宫课堂”第四课在中国空间站开讲,“太空教师”景海鹏、朱杨柱、桂海潮为广大青少年带来一场精彩的太空科普课,航天员们演示了“球形火焰”“奇妙乒乓球”“动量守恒”和“又见陀螺”四个实验.本次授课活动分别在北京、内蒙古阿拉善盟、陕西延安、安徽桐城及浙江宁波设置了5个地面课堂。

江苏省南京市秦淮区2023-2024学年上学期期末检测九年级数学试卷(含解析)

江苏省南京市秦淮区2023-2024学年上学期期末检测九年级数学试卷(含解析)

2023-2024学年江苏省南京市秦淮区九年级(上)期末数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卷相应位置上)1.(2分)下列函数中,y与x之间的关系是二次函数的是( )A.y=1﹣3x3B.y=x2﹣5xC.y=x4+2x2﹣1D.2.(2分)若⊙O的半径为2,在同一平面内,点P与圆心O的距离为1,则点P与⊙O的位置关系是( )A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法确定3.(2分)某班5名学生的体重(单位:kg)分别为:51,53,47,51,60,则这组数据的众数与中位数分别是( )A.60kg,51kg B.51kg,47kg C.60kg,47kg D.51kg,51kg 4.(2分)下列图形中,既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.正八边形5.(2分)一元二次方程﹣2(2x+1)2+a2=0(a是常数,a≠0)的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定有没有实数根6.(2分)如图,在平面直角坐标系中,A,B两点的坐标分别为(2,0),(0,2),二次函数y=x2﹣2ax+b(a,b是常数)的图象的顶点在线段AB上,则b的最小值为( )A.0B.C.D.2二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请7.(2分)一元二次方程x2﹣x=0的根是 .8.(2分)若x1,x2是一元二次方程2x2﹣7x+5=0的两根,则x1+x2的值是 .9.(2分)若△ABC内接于⊙O,∠AOB=120°,则圆周角∠ACB的度数 .10.(2分)如图,四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=80°,则∠DCE = °.11.(2分)某产品原来每件成本是36元,连续两次降低成本后,现在成本是25元.设平均每次降低成本的百分率为x,可得方程 .12.(2分)圆锥的底面半径为3cm,母线长为5cm,则圆锥的表面积为 cm2.13.(2分)杭州亚运会射箭比赛中,某运动员6箭的成绩(单位:环)依次是x1,x2,x3,x1+1,x2+2,x3+3.若前3箭的平均成绩为7环,则这6箭的平均成绩为 环.14.(2分)如图,点B,C在⊙O上,D为的中点,直径AD交BC于点E,AD=6,,则DE的长为 .15.(2分)在平面直角坐标系中,函数y=x2﹣2x﹣3的图象与x轴交于点A,B,将函数y =x2﹣2x﹣3的图象向上平移,平移后的图象与x轴交于点C,D.若AB=2CD,则平移后的图象对应的函数表达式为 .16.(2分)如图,在△ABC中,∠ACB=90°,点D,E分别在BC,AC上,DE与△ABC 的内切圆O相切.若△ABC的面积是30,△CDE的周长是4,则AB的长为 .三、解答题(本大题共11小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)解下列方程:(1)x2+2x﹣4=0;(2)x(x﹣3)=3﹣x.18.(6分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x…0123…y…5212…(1)求该二次函数的表达式;(2)若点A(﹣1,y1),B(4,y2)在这个函数的图象上,则y1 y2.(填“>”“<”或“=”)19.(8分)如图,用篱笆围成一块矩形花圃,该花圃一侧靠墙,而且有一道隔栏(隔栏也用篱笆制作),已知所用篱笆的总长为24m,花圃的面积为45m2,墙的最大可用长度为10m,求边AB的长.20.(8分)如图,已知△ABC内接于⊙O,AD是⊙O的直径,连接BD,CD,BC平分∠ABD.(1)求证∠CAD=∠ABC;(2)若AD=6,则AC的长为 .21.(8分)一只不透明的袋子中装有1个白球和a个红球,这些球除颜色外都相同.已知从袋中任意摸出1个球是白球的概率是.(1)a的值是 ;(2)先从袋中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球,求2次摸到的球颜色不同的概率.22.(8分)已知P是⊙O上一点,在⊙O上作两点A,B,使得∠APB分别满足以下条件:(1)在图①中,∠APB=90°;(2)在图②中,∠APB=30°.(说明:第(1)题只用无刻度的直尺作图,第(2)题只用圆规作图;保留作图痕迹,不写作法.)23.(8分)已知关于x的方程x2﹣(2m+2)x+m2+2m=0.(1)求证:无论m取何值,方程总有两个不相等的实数根;(2)若方程有一个根为1,求m的值.24.(7分)2023年12月14日,一股冷空气开始影响我市,我市连续7天的天气情况如下:上述天气情况包括了每天的天气状况(如阴转小雨,小雨转多云等)、气温(如“5/17℃”指当天最低和最高气温分别是5℃和17℃)、风向和风级.(1)计算这7天最低气温的平均数和方差.(2)阅读冷空气等级标准表:序号等级冷空气来临的48小时内日最低气温变化情况①弱冷空气降温幅度小于6℃②中等强度冷空气降温幅度大于或等于6℃,但小于8℃③较强冷空气降温幅度大于或等于8℃且日最低气温超过8℃④强冷空气降温幅度大于或等于8℃,且日最低气温不超过8℃⑤寒潮降温幅度大于或等于10℃且日最低气温不超过4℃本次来临的冷空气的等级是 .(填序号)(3)本次冷空气来临后,除导致气温下降外,还带来哪些天气情况的变化?请写出一个结论.25.(8分)2023年12月18日晚,甘肃省积石山县发生6.2级地震.“一方有难,八方支援”,某商家决定将后续一个月销售某商品获得的利润全部捐赠给灾区.已知购进该商品的成本为10元/件,当售价为12元时,平均每天可以卖出1200件.调查发现,该商品每涨价1元,平均每天少售出100件.当每件商品的售价是多少元时,该商家捐赠的金额最大?最大捐赠金额是多少?(一个月按30天计算)26.(9分)阅读下列内容:如果点P(a,b)在一次函数y=x+1的图象上,那么点(2a,2b)一定在哪个函数的图象上呢?下面是解决问题的一种途径.所以点(2a,2b)一定在函数y=x+2的图象上.根据阅读内容解决下列问题:(1)如果点P(a,b)在反比例函数的图象上,那么点(2a,2b)一定在哪个函数的图象上呢?填写下面的空格.(2)如果点P(a,b)在一次函数y=2x的图象上,判断点(a+b,ab)一定在哪个函数的图象上?说明理由.27.(10分)如图,已知A,B是⊙O的2个三等分点,C是优弧AB上的一个动点(点C不与A,B两点重合),连接AB,BC,AC.D,E分别是,的中点,连接DE,分别交AC,BC于点F,G.(1)当点C运动到优弧AB的中点时,直接写出DE与AB的关系.(2)求证FG+AB=AF+BG.(说明:第(2)题共5分,如果你觉得困难,可以在(1)的条件下证明,证明正确得2分.)(3)若I是AE,BD的交点,点O与点I的距离记为d.当AB=6时,d取值范围是 .2023-2024学年江苏省南京市秦淮区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卷相应位置上)1.(2分)下列函数中,y与x之间的关系是二次函数的是( )A.y=1﹣3x3B.y=x2﹣5xC.y=x4+2x2﹣1D.【分析】根据二次函数的定义判断即可.【解答】解:A、y=1﹣3x3,x的最高次数是3,不是二次函数,不符合题意;B、y=x2﹣5x,是二次函数,符合题意;C、y=x4+2x2﹣1,x的最高次数是4,不是二次函数,不符合题意;D、y=,不是二次函数,不符合题意.故选:B.2.(2分)若⊙O的半径为2,在同一平面内,点P与圆心O的距离为1,则点P与⊙O的位置关系是( )A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法确定【分析】根据点P到圆心的距离与圆的半径比较大小即可得出结论.【解答】解:∵⊙O的半径为2,在同一平面内,点P与圆心O的距离为1,1<2,∴点P与⊙O的位置关系是:点P在⊙O内,故选:C.3.(2分)某班5名学生的体重(单位:kg)分别为:51,53,47,51,60,则这组数据的众数与中位数分别是( )A.60kg,51kg B.51kg,47kg C.60kg,47kg D.51kg,51kg【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:众数是一组数据中出现次数最多的数,在这一组数据中51出现了1次,次数最多,故众数是51kg;将这组数据从小到大的顺序排列为:47,51,51,53,60,处于中间位置的那个数是51,那么由中位数的定义可知,这组数据的中位数是51kg.4.(2分)下列图形中,既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.正八边形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、既是轴对称图形,又是中心对称图形,符合题意.故选:D.5.(2分)一元二次方程﹣2(2x+1)2+a2=0(a是常数,a≠0)的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定有没有实数根【分析】根据一元二次方程根的判别式解答即可.【解答】解:一元二次方程﹣2(2x+1)2+a2=0可化为﹣8x2﹣8x+a2﹣2=0,∵a=﹣8,b=﹣8,c=a2﹣2,a≠0,∴Δ=(﹣8)2﹣4×(﹣8)×(a2﹣2)=64+32a2﹣64=32a2>0,∴方程有两个不相等的实数根.故选:A.6.(2分)如图,在平面直角坐标系中,A,B两点的坐标分别为(2,0),(0,2),二次函数y=x2﹣2ax+b(a,b是常数)的图象的顶点在线段AB上,则b的最小值为( )A.0B.C.D.2【分析】先用a,b表示出二次函数图象的顶点坐标,再结合该顶点在线段AB上即可解【解答】解:∵二次函数解析式为y=x2﹣2ax+b(a,b是常数),∴顶点坐标为(a,﹣a2+b).又∵A(2,0),B(0,2),∴直线AB的函数解析式为y=﹣x+2.∵二次函数图象的顶点在线段AB上,∴﹣a2+b=﹣a+2,且0≤a≤2,则b=a2﹣a+2=()2+,∴当a=时,b有最小值为.故选:C.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请7.(2分)一元二次方程x2﹣x=0的根是 x1=0,x2=1 .【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=1.8.(2分)若x1,x2是一元二次方程2x2﹣7x+5=0的两根,则x1+x2的值是 .【分析】直接利用根与系数的关系求解.【解答】解:根据根与系数的关系得x1+x2=﹣=.故答案为:.9.(2分)若△ABC内接于⊙O,∠AOB=120°,则圆周角∠ACB的度数 60°或120° .【分析】分点C在优弧和劣弧上两种情况,当点C在优弧上时,可直接利用圆周角定理得到∠ACB是∠AOB的一半,当点C在劣弧上时,可以优弧上找点D,则可求得∠ADB 是∠AOB的一半,再利用圆内接四边形的性质可求得∠ACB【解答】解:如图1,当点C在优弧上时,则∠ACB=∠AOB=60°;如图2,当点C在劣弧上时,在优弧上找点D,连接DA、DB,则可得∠ADB=∠AOB=60°,又∵四边形ACBD为圆的内接四边形,∴∠ADB+∠ACB=180°,∴∠ACB=180°﹣60°=120°,∴∠ACB的度数是60°或120°;故答案为:60°或120°.10.(2分)如图,四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=80°,则∠DCE = 80 °.【分析】利用圆内接四边形的对角互补和邻补角的性质求解.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠A+∠DCB=180°,又∵∠DCE+∠DCB=180°∴∠DCE=∠A=80°故答案为:80.11.(2分)某产品原来每件成本是36元,连续两次降低成本后,现在成本是25元.设平均每次降低成本的百分率为x,可得方程 36(1﹣x)2=25 .【分析】根据某产品原来每件成本是36元,连续两次降低成本后,现在成本是25元,可以列出相应的方程.【解答】解:由题意可得,36(1﹣x)2=25,故答案为:36(1﹣x)2=25.12.(2分)圆锥的底面半径为3cm,母线长为5cm,则圆锥的表面积为 15π cm2.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=×6π×5=15π(cm2).故答案为:15π.13.(2分)杭州亚运会射箭比赛中,某运动员6箭的成绩(单位:环)依次是x1,x2,x3,x1+1,x2+2,x3+3.若前3箭的平均成绩为7环,则这6箭的平均成绩为 8 环.【分析】根据前3箭的平均成绩为7环,可以得到前三箭的总环数,从而可以得到这六箭的总环数,从而可以得到平均成绩.【解答】解:由题意可得,x1+x2+x3=3×7=21,∴(x1+x2+x3+x1+1+x2+2+x3+3)÷6=48÷6=8(环),即这6箭的平均成绩为8环,故答案为:8.14.(2分)如图,点B,C在⊙O上,D为的中点,直径AD交BC于点E,AD=6,,则DE的长为 3﹣ .【分析】连接OB,根据圆心角、弦、弧的关系推出AD⊥BC,根据垂径定理求出BE=BC=,再根据勾股定理求解即可.【解答】解:如图,连接OB,∵D为的中点,直径AD交BC于点E,∴AD⊥BC,∴BE=BC=,∵AD=6,∴OB=OD=3,在Rt△BOE中,OB2=OE2+BE2,∴32=OE2+,∴OE=或OE=﹣(舍去),∴DE=OD﹣OE=3﹣,故答案为:3﹣.15.(2分)在平面直角坐标系中,函数y=x2﹣2x﹣3的图象与x轴交于点A,B,将函数y =x2﹣2x﹣3的图象向上平移,平移后的图象与x轴交于点C,D.若AB=2CD,则平移后的图象对应的函数表达式为 y=x2﹣2x .【分析】先解方程x2﹣2x﹣3=0得到A(﹣1,0),B(3,0),则AB=4,所以CD=2,由于函数y=x2﹣2x﹣3的图象向上平移时对称轴不变,对称轴为直线x=1,而C、D关于直线x=1对称,所以C(0,0),D(2,0),然后利用交点式写出平移后抛物线的解析式.【解答】解:当y=0时,x2﹣2x﹣3=0,解得x1=3,x2=﹣1,∴A(﹣1,0),B(3,0),∴AB=3﹣(﹣1)=4,∵AB=2CD,∴CD=2,∵函数y=x2﹣2x﹣3的图象向上平移时对称轴不变,仍然为直线x=1,∴C(0,0),D(2,0),∴平移后抛物线的解析式为y=x(x﹣2),即y=x2﹣2x.故答案为:y=x2﹣2x.16.(2分)如图,在△ABC中,∠ACB=90°,点D,E分别在BC,AC上,DE与△ABC 的内切圆O相切.若△ABC的面积是30,△CDE的周长是4,则AB的长为 13 .【分析】过点分别作OF⊥AB于点F,OG⊥BC于点G,OH⊥AC于点H,根据切线长定理得到AF=AH,BF=BG,CG=CH,ME=HE,MD=GD,由△CDE的周长是4求出CG=CH=2,设BG=BF=x,AF=AH=y,则AB=x+y,BC=x+2,AC=y+2,根据勾股定理得到xy=2(x+y)+4①,根据三角形的面积公式得到xy=60﹣2(x+y)②,①②求得x+y即可.【解答】解:过点分别作OF⊥AB于点F,OG⊥BC于点G,OH⊥AC于点H,∵⊙O是△ABC的内切圆,∴AF=AH,BF=BG,CG=CH,∵DE与⊙O相切,设切点为M,∴ME=HE,MD=GD,∵△CDE的周长是4,CG+CH=4,∴CG=CH=2,设BG=BF=x,AF=AH=y,则AB=x+y,BC=x+2,AC=y+2,∵∠ACB=90°,∴AB2=BC2+AC2,∴(x+y)2=(x+2)2+(y+2)2,化简得xy=2(x+y)+4①,∵△ABC的面积是30,∴BC•AC=30,∴(x+2)(y+2)=60,∴xy=60﹣2(x+y)②,由①②得x+y=13,∴AB=13.故答案为:13.三、解答题(本大题共11小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)解下列方程:(1)x2+2x﹣4=0;(2)x(x﹣3)=3﹣x.【分析】(1)利用配方法得到(x+1)2=5,然后利用直接开平方法解方程;(2)先移项,再利用因式分解法把方程转化为x﹣3=0或x+1=0,然后解两个一次方程即可.【解答】解:(1)x2+2x﹣4=0,x2+2x=4,x2+2x+1=5,(x+1)2=5,x+1=±,所以x1=﹣1+,x2=﹣1﹣;(2)x(x﹣3)=3﹣x,x(x﹣3)+x﹣3=0,(x﹣3)(x+1)=0,x﹣3=0或x+1=0,所以x1=3,x2=﹣1.18.(6分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x…0123…y…5212…(1)求该二次函数的表达式;(2)若点A(﹣1,y1),B(4,y2)在这个函数的图象上,则y1 > y2.(填“>”“<”或“=”)【分析】(1)用待定系数法即可解决问题.(2)分别求出y1和y2即可解决问题.【解答】解:(1)由题知,将点(0,5),(1,2),(2,1)分别代入函数表达式得,,解得,所以该二次函数表达式为y=x2﹣4x+5.(2)当x=﹣1时,;当x=4时,;∴y1>y2.故答案为:>.19.(8分)如图,用篱笆围成一块矩形花圃,该花圃一侧靠墙,而且有一道隔栏(隔栏也用篱笆制作),已知所用篱笆的总长为24m,花圃的面积为45m2,墙的最大可用长度为10m,求边AB的长.【分析】设边AB边的长为x m,根据花圃的面积为45m2,列出一元二次方程,解之取符合题意的值即可.【解答】解:设边AB边的长为x m,由题意得:x(24﹣3x)=45,整理得:x2﹣8x+15=0,解得:x1=3(不符合题意,舍去),x2=5,答:边AB的长为5m.20.(8分)如图,已知△ABC内接于⊙O,AD是⊙O的直径,连接BD,CD,BC平分∠ABD.(1)求证∠CAD=∠ABC;(2)若AD=6,则AC的长为 3 .【分析】(1)由角平分线的性质和圆周角定理可得∠DBC=∠ABC=∠CAD;(2)由圆周角定理可得,由弧长公式可求解.【解答】(1)证明:∵BC平分∠ABD,∴∠DBC=∠ABC,∵∠CAD=∠DBC,∴∠CAD=∠ABC;(2)解:∵∠CAD=∠ABC,∴=,∴AC=CD,∵AD是⊙O的直径,AD=6,∴∠ACD=90°,在Rt△ACD中,2AC2=AD2=62,解得:AC=3.故答案为:3.21.(8分)一只不透明的袋子中装有1个白球和a个红球,这些球除颜色外都相同.已知从袋中任意摸出1个球是白球的概率是.(1)a的值是 2 ;(2)先从袋中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球,求2次摸到的球颜色不同的概率.【分析】(1)直接利用概率公式可得答案.(2)列表可得出所有等可能的结果数以及2次摸到的球颜色不同的结果数,再利用概率公式可得出答案.【解答】解:∵从袋中任意摸出1个球是白球的概率是,∴,解得a=2,经检验,a=2是原方程的解且符合题意.故答案为:2.(2)列表如下:白红红白(白,白)(白,红)(白,红)红(红,白)(红,红)(红,红)红(红,(红,(红,白)红)红)共有9种等可能的结果,其中2次摸到的球颜色不同的结果有4种,∴2次摸到的球颜色不同的概率为.22.(8分)已知P是⊙O上一点,在⊙O上作两点A,B,使得∠APB分别满足以下条件:(1)在图①中,∠APB=90°;(2)在图②中,∠APB=30°.(说明:第(1)题只用无刻度的直尺作图,第(2)题只用圆规作图;保留作图痕迹,不写作法.)【分析】(1)过O点画直线交⊙O于点A、B,则根据圆周角定理得到∠APB满足条件;(2)任取点A,以A为圆心,AO为半径画弧交⊙O于点B,则△AOB为等边三角形,所以∠AOB=60°,然后根据圆周角定理得到∠APB满足条件.【解答】解:(1)如图①,∠APB为所作;(2)如图②,∠APB为所作;23.(8分)已知关于x的方程x2﹣(2m+2)x+m2+2m=0.(1)求证:无论m取何值,方程总有两个不相等的实数根;(2)若方程有一个根为1,求m的值.【分析】(1)先求出Δ的值,再判断出其符号即可;(2)把x=1代入方程,求出m的值即可.【解答】(1)证明:方程x2﹣(2m+2)x+m2+2m=0中,∵a=1,b=﹣(2m+2),c=m2+2m,∴Δ=[﹣(2m+2)]2﹣4×1×(m2+2m)=4>0,∴无论m取何值,方程总有两个不相等的实数根;(2)∵方程有一个根为1,∴12﹣(2m+2)×1+m2+2m=0,即m2﹣1=0,∴m=±1.24.(7分)2023年12月14日,一股冷空气开始影响我市,我市连续7天的天气情况如下:上述天气情况包括了每天的天气状况(如阴转小雨,小雨转多云等)、气温(如“5/17℃”指当天最低和最高气温分别是5℃和17℃)、风向和风级.(1)计算这7天最低气温的平均数和方差.(2)阅读冷空气等级标准表:序号等级冷空气来临的48小时内日最低气温变化情况①弱冷空气降温幅度小于6℃②中等强度冷空气降温幅度大于或等于6℃,但小于8℃③较强冷空气降温幅度大于或等于8℃且日最低气温超过8℃④强冷空气降温幅度大于或等于8℃,且日最低气温不超过8℃⑤寒潮降温幅度大于或等于10℃且日最低气温不超过4℃本次来临的冷空气的等级是 ⑤ .(填序号)(3)本次冷空气来临后,除导致气温下降外,还带来哪些天气情况的变化?请写出一个结论.【分析】(1)根据平均数和方差的定义列式计算即可;(2)对照表格可得答案;(3)参照天气情况图可得答案.【解答】解:(1)这7天最低气温的平均数=4(℃),方差为×[(17﹣4)2+(5﹣4)2+(0﹣4)2+(0﹣4)2+(2﹣4)2+(6﹣4)2+(﹣2﹣4)2]=;(2)由题意知,本次来临的冷空气的等级是⑤,故答案为:⑤;(3)本次冷空气来临后,除导致气温下降外,还带来雨雪.25.(8分)2023年12月18日晚,甘肃省积石山县发生6.2级地震.“一方有难,八方支援”,某商家决定将后续一个月销售某商品获得的利润全部捐赠给灾区.已知购进该商品的成本为10元/件,当售价为12元时,平均每天可以卖出1200件.调查发现,该商品每涨价1元,平均每天少售出100件.当每件商品的售价是多少元时,该商家捐赠的金额最大?最大捐赠金额是多少?(一个月按30天计算)【分析】依据题意,设每件商品的售价是x元,先求出每天的利润为w=(x﹣10)[1200﹣100(x﹣12)]=(x﹣10)(2400﹣100x)=﹣100(x﹣17)2+4900,再由二次函数的性质进行判断可以得解.【解答】解:由题意,设每件商品的售价是x元,∴每天的利润为w=(x﹣10)[1200﹣100(x﹣12)]=(x﹣10)(2400﹣100x)=﹣100x2+3400x﹣24000=﹣100(x﹣17)2+4900.∴当每件商品的售价是17元时,利润最大为4900元.∴每月最大利润为147000元.答:当每件商品的售价是17元时,该商家捐赠的金额最大,最大捐赠金额是147000元.26.(9分)阅读下列内容:如果点P(a,b)在一次函数y=x+1的图象上,那么点(2a,2b)一定在哪个函数的图象上呢?下面是解决问题的一种途径.所以点(2a,2b)一定在函数y=x+2的图象上.根据阅读内容解决下列问题:(1)如果点P(a,b)在反比例函数的图象上,那么点(2a,2b)一定在哪个函数的图象上呢?填写下面的空格.(2)如果点P(a,b)在一次函数y=2x的图象上,判断点(a+b,ab)一定在哪个函数的图象上?说明理由.【分析】(1)根据点P(a,b)在反比例函数的图象上,得ab=2,对于点(2a,2b),则x=2a,y=2b,则xy=4ab=8,由此可得出答案;(2)根据点P(a,b)在一次函数y=2x的图象上,得b=2a,对于(a+b,ab),则x=a+b=3a,y=ab=2a2,进而得得,由此可得出结论.【解答】解:(1)∵点P(a,b)在反比例函数的图象上,∴ab=2,对于点(2a,2b),则x=2a,y=2b,∴xy=4ab,将ab=2代入xy=4ab,得xy=8,即,∴点(2a,2b)一定在这个函数的图象上;如下图所示:(2)点(a+b,ab)一定在这个函数的图象上,理由如下:∵点P(a,b)在一次函数y=2x的图象上,∴b=2a,对于(a+b,ab),则x=a+b=3a,y=ab=2a2,∵x=3a,∴,∴.∴点(a+b,ab)一定在这个函数的图象上.27.(10分)如图,已知A,B是⊙O的2个三等分点,C是优弧AB上的一个动点(点C不与A,B两点重合),连接AB,BC,AC.D,E分别是,的中点,连接DE,分别交AC,BC于点F,G.(1)当点C运动到优弧AB的中点时,直接写出DE与AB的关系.(2)求证FG+AB=AF+BG.(说明:第(2)题共5分,如果你觉得困难,可以在(1)的条件下证明,证明正确得2分.)(3)若I是AE,BD的交点,点O与点I的距离记为d.当AB=6时,d取值范围是 0≤d<2 .【分析】(1)当点C运动到优弧AB的中点时,连接AD,AE,BE,利用同圆中等弧所对的圆周角相等可以推导出DE∥AB,再证明四边形ABED是矩形可以得出DE=AB;(2)在条件(1)下,连接CE,根据圆周角相等和等腰三角形可以推导出BG=2FG,最后推导出FG+AB=AF+BG;(3)根据点C的运动轨迹就可以推导出d的取值范围.【解答】解:(1)当点C运动到优弧AB的中点时,DE∥AB且DE=AB,连接AD,BE,AE,CE,∵A,B是⊙O的2个三等分点,∴==,∴AB=AC=BC,∴△ABC是等边三角形,又∵D,E分别是,的中点,∴===,∴∠DEA=∠EAB=∠DEC=∠CBE=∠DAC=∠CED=∠ECB=30°,∴DE∥AB,∴∠DAB=∠EBA=90°,∴DA⊥AB,EB⊥AB,∴四边形ABED是矩形,∴AB=DE;证明:(2)在(1)的条件下,∵∠ACB=60°,FG∥AB,∴∠CFG=∠CGF=60°,∴△CFG为等边三角形,∴CF=FG=CG,又∵∠CED=∠ECB=30°,∴CG=GE,∵在△GEB中,∠GBE=30°,∠GEB=90°,∴BG=2GE=2FG,∵AB=AF+CF,∴AB+FG=AF+CF+FG=AF+BG;解:(3)连接OB,作OM⊥AB,∵当点C运动到优弧AB的中点时,此时AE,BD的交点I与圆心O重回,∴点O与点I的距离d为0,∵A,B是⊙O的2个三等分点,∴劣弧对的圆心角为120°,∴∠OBM=30°,又∵AB=6,∴OB=2,∵OI≤OB+IB,∴当点C运动到点A或点B时,OI=OB=2,∵点C不与A,B两点重合,∴OI<2,∴0≤d<2,故答案为:0≤d<2.。

2024年北京朝阳区初三九年级上学期期末数学试题和答案

2024年北京朝阳区初三九年级上学期期末数学试题和答案

张卡片,除所标注文字不同外无其他差别.其中,写有“珍稀濒危植.随机摸出一张卡片写有“珍的扇形作圆锥的侧面,记扇形的半径为R,所在一定范围内变化时,l与S都随R的变第12题图第14题图试题13.某科技公司开展技术研发,在相同条件下,对运用新技术生产的一批产品的合格率进行检测,下表是检测过程中的一组统计数据:估计这批产品合格的产品的概率为.14.如图,AB 是半圆O 的直径,将半圆O 绕点A 逆时针旋转30°,点B 的对应点为B ',连接A B ',若AB =8,则图中阴影部分的面积是_______.15.对于向上抛的物体,在没有空气阻力的条件下,上升高度h ,初速度v ,抛出后所经历的时间t ,这三个量之间有如下关系:221gt vt h -=(其中 g 是重力加速度,g 取10m/s 2).将一物体以v=21m/s 的初速度v 向上抛,当物体处在离抛出点18m 高的地方时,t 的值为 .16.已知函数y 1=kx +4k -2(k 是常数,k ≠0),y 2=ax 2+4ax -5a (a 是常数,a ≠0),在同一平面直角坐标系中,若无论k 为何值,函数y 1和y 2的图象总有公共点,则a 的取值范围是_______.三、解答题(共68分,第17-22题,每题5分,第23-26题,每题6分,27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.解方程x 2-1 =6x .18.关于x 的一元二次方程x 2-(m +4)x +3(m +1)=0 .(1)求证:该方程总有两个实数根;(2)若该方程有一根小于0,求m 的取值范围.抽取的产品数n 5001000150020002500300035004000合格的产品数m 476967143119262395288333673836合格的产品频率nm0.9520.9670.9540.9630.9580.9610.9620.959图2图3图1图1 图2试题北京市朝阳区2023~2024学年度第一学期期末检测九年级数学试卷参考答案及评分标准(选用)2024.1一、选择题(共16分,每题2分)题号12345678答案DABCACAC二、填空题(共16分,每题2分)三、解答题(共68分,第17-22题,每题5分,第23-26题,每题6分,27-28题,每题7分)17.解:方程化为x 2 -6x =1.x 2 -6x+9 =10.1032=-)(x .103±=-x .1031+=x ,1032-=x .18.(1)证明:依题意,得=[-(m +4)]2-4×3(m +1) =(m -2)2.∵(m -2)2≥0,∴0≥∆∴该方程总有两个实数根.(2)解:解方程,得x =.∴x 1= m +1,x 2=3.依题意,得m +1<0.∴m <-1.19.解:(1)根据题意,设该二次函数的解析式为 y 2=a (x -1)2+4.当x =0时,y 2 =3∴a =-1.∴y 2=-x 2+2x +3.题号9101112答案x 1=3,x 2=-3相切(1,3)140题号13141516答案答案不唯一,如0.9593438+π1.2或3a <0或a ≥52线段垂直平分线上的点与这条线段两个端点的距离相等.三角形的外角等于与它不相邻的两个内角的和.由题意可知,抛物线顶点C ),(9254.设抛物线对应的函数解析式)4(2+-=x a y试题26. 解:(1)由题意知,a +b +c = 9a +3b +c .∴b = -4a .∴22=-=a b t . (2)∵a >0,∴当x ≥t 时,y 随x 的增大而增大;当x ≤t 时,y 随x 的增大而减小.设抛物线上的四个点的坐标为A (t -1,m A ) ,B (t ,m B ),C (2,n C ),D (3,n D ).点A 关于对称轴x =t 的对称点为A'(t +1,m A )∵抛物线开口向上,点B 是抛物线顶点,∴m A >m B .ⅰ 当t ≤1时,n C < n D∴t +1≤2.∴m A ≤n C ,∴不存在m >n ,不符合题意.ⅱ 当1<t ≤2时,n C < n D∴2<t +1≤3.∴m A >n C .∴存在m >n ,符合题意.ⅲ当2<t ≤3时,∴n 的最小值为m B .∵m A >m B .. ∴存在m >n ,符合题意.ⅳ 当3<t <4时,n D <n C .∴2<t -1<3.∴m A >n D .∴存在m >n ,符合题意.ⅴ 当t ≥4时,n D <n C .∴t -1≥3.∴m A ≤n D ,∴不存在m >n ,不符合题意.综上所述,t 的取值范围是1<t <4.)解:补全图1,如图.证明:延长AF到点G,使得GF=AF,连接,连接GE并延长,与AB的延长。

2023-2024学年九年级上学期期末考试数学试卷及答案解析

2023-2024学年九年级上学期期末考试数学试卷及答案解析

2023-2024学年九年级上期末数学试卷
一、填空题。

(本大题共6小题,每小题3分,共18分)
1.已知2是一元二次方程x2﹣3kx+2=0的根,则k的值是.
2.不透明袋子中装有8个球,其中有3个红球、5个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.
3.反比例函数 剜 剜媵 的图象在第二、四象限内,那么m的取值范围是.4.在平面直角坐标系中,把点P(3,﹣2)绕原点O顺时针旋转90°,所得到的对应点Q 的坐标为.
5.已知圆锥的底面半径为3,侧面积为15π,则这个圆锥的高为.
6.如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,
给出下列命题:
①abc<0;②b>2a;③a+b+c=0
④ax2+bx+c=0的两根分别为﹣3和1;

⑤8a+c>0.其中正确的命题是
二、选择题。

(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)7.下列图形中不是中心对称图形的是()
A .
B .
C .
D .
8.下列说法正确的是()
A.必然事件发生的概率为1B.随机事件发生的概率为0.5
C.概率很小的事件不可能发生
D.投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次
9.五个大小相同的正方体搭成的几何体如图所示,其左视图是()
第1页(共27页)。

九年级数学上册第一学期期末综合测试卷(沪科版 2024年秋)

九年级数学上册第一学期期末综合测试卷(沪科版 2024年秋)

九年级数学上册第一学期期末综合测试卷(沪科版2024年秋)一、选择题(本大题共10小题,每小题4分,满分40分)题序12345678910答案1.2cos45°的值等于()A.1 B.2 C.3D.22.下列函数中,一定是反比例函数的是()A.y=-2x-1B.y=kx-1C.y=4x D.y=1x-13.已知二次函数y=-3(x-2)2-3,下列说法正确的是()A.图象的对称轴为直线x=-2B.图象的顶点坐标为(2,3)C.函数的最大值是-3D.函数的最小值是-34.如图,在△ABC中,点D是AB边上一点,下列条件中,能使△ABC与△BDC 相似的是()A.∠B=∠ACD B.∠ACB=∠ADCC.AC2=AD·AB D.BC2=BD·AB(第4题)5.若点A(x1,2),B(x2,-1),C(x3,4)都在反比例函数y=8x的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x3<x1 C.x1<x3<x2D.x2<x1<x3 6.如图,△ABC∽△ADE,且BC=2DE,则S四边形BEDC:S△ABC的值为() A.1:4B.3:4C.2:3D.1:2(第6题)(第7题)7.如图,在△ABC中,∠C=45°,tan B=3,AD⊥BC于点D,AC=2 6.若E,F分别为AC,BC的中点,则EF的长为()A.233B.2C.3D.238.已知二次函数y=ax2+bx-2(a≠0)的图象的顶点在第三象限,且过点(1,0),设t=a-b-2,则t的取值范围是()A.-2<t<0B.-3<t<0C.-4<t<-2D.-4<t<0 9.如图,在x轴的正半轴上依次截取OP1=P1P2=P2P3=…=P n-1P n=1,过点P1,P2,P3,…,P n分别作x轴的垂线,与反比例函数y=2x(x>0)的图象交于点Q1,Q2,Q3,…,Q n,连接Q1Q2,Q2Q3,…,Q n-1Q n,过点Q2,Q3,…,Q n分别向P1Q1,P2Q2,…,P n-1Q n-1作垂线段,构成的一系列直角三角形(图中阴影部分)的面积和等于()(第9题)A.2n+1B.2n C.n-1n D.n+22n10.如图,正方形ABCD的边长为2cm,点O为正方形的中心,点P从点A出发沿A-O-D运动,同时点Q从点B出发沿BC运动,连接BP,PQ,在移动的过程中始终保持PQ⊥BC.已知点P的运动速度为2cm/s,设点P的运动时间为t(s),△BPQ的面积为S(cm2),下列图象能正确反映出S与t的函数关系的是()(第10题)二、填空题(本大题共4小题,每小题5分,满分20分)11.如果α是锐角,sin α=cos 30°,那么α=________°.12.已知3a =4b ,则3a +2b a -b=________.13.已知点C 是线段AB 的黄金分割点,且AB =5+1,则AC 的长是________.14.如图,抛物线y =-x 2+2x +c 交x 轴于A (-1,0),B 两点,交y 轴于点C ,D 为抛物线的顶点.(第14题)(1)点D 的坐标为________;(2)若点C 关于抛物线对称轴的对称点为点E ,M 是抛物线对称轴上一点,且△DMB和△BCE 相似,则点M 的坐标为________.三、(本大题共2小题,每小题8分,满分16分)15.计算:27+-122-3tan 60°+(π-2)0.16.已知:如图,△ABD ∽△ACE .求证:(1)∠DAE =∠BAC ;(2)△DAE ∽△BAC .(第16题)四、(本大题共2小题,每小题8分,满分16分)17.如图,在12×12的正方形网格中,△CAB的顶点坐标分别为点C(1,1),A(2,3),B(4,2).(1)以点C(1,1)为位似中心,按21在位似中心的同侧将△CAB放大为△CA′B′,放大后点A,B的对应点分别为A′,B′,画出△CA′B′,并写出点A′,B′的坐标;(2)在(1)中,若P(a,b)为线段AB上任意一点,请直接写出变化后点P的对应点P′的坐标.(第17题)18.《九章算术》中有一道这样的题,原文如下:“今有邑,东西七里,南北九里,各中开门,出东门一十五里有木,问:出南门几何步而见木?”大意为:今有一座长方形小城(如图),东西向城墙长7里,南北向城墙长9里,各城墙正中均开一城门,走出东门15里处有棵大树,问:走出南门多少步恰好能望见这棵树?(注:1里=300步)(第18题)五、(本大题共2小题,每小题10分,满分20分)19.已知二次函数y=ax2+bx+c与x的一些对应值如下表:x…-101234…y=ax2+bx+c…3-13…(1)根据表格中的数据,该二次函数的表达式为__________;(2)填写表格中空白处的对应值,并利用五点作图法在下面的网格图中画出该二次函数y=ax2+bx+c的图象(不必重新列表);(3)根据图象回答:①当1≤x≤4时,y的取值范围是________________;②当x取什么值时,y>0?(第19题)(m≠0,x>0)的图象20.如图,一次函数y=kx+2(k≠0)的图象与反比例函数y=mx交于点A(2,n),与y轴交于点B,与x轴交于点C(-4,0).(1)直接写出k,m的值;(2)若P(a,0)为x轴上的一动点,当△APB的面积为72时,求a的值.(第20题)六、(本题满分12分)21.“山地自行车速降赛”是一种新兴的极限运动,这项运动的赛道需全部是下坡骑行路段.如图是某一下坡赛道,由AB,BC,CD三段组成,在同一平面内,其中AB段的俯角是30°,长为2m,BC段与AB段,CD段都垂直,长为1m,CD段长为3m,求此下坡赛道的垂直高度.(结果保留根号)(第21题)七、(本题满分12分)22.某电子科技公司开发一种新产品,公司对经营的盈亏情况每月最后一天结算1次.在1~12月中,公司前x个月累计获得的总利润y(万元)与销售时间x(月)之间满足二次函数表达式y=a(x-h)2+k.二次函数y=a(x-h)2+k的一部分图象如图所示,点A为抛物线的顶点,且点A,B,C的横坐标分别为4,10,12,点A,B的纵坐标分别为-16,20.(1)该二次函数的表达式y=a(x-h)2+k为__________;(2)分别求出前9个月公司累计获得的利润以及10月一个月内所获得的利润;(3)在1~12月中,哪个月该公司一个月内所获得的利润最多?最多利润是多少万元?(第22题)八、(本题满分14分)23.【项目化学习】背景:小明是学校的一名升旗手,他在考虑如何能让国旗在国歌结束时,刚好升至旗杆顶端?要解决此问题就要知道学校旗杆的高度,为此他与同学们进行了专题项目研究.主题:测量学校旗杆的高度.分析探究:旗杆的高度不能直接测量,需要借助一些工具,比如小镜子、标杆、皮尺、小木棒、自制的直角三角形硬纸板……确定方案后,画出测量示意图,并进行实地测量,得到具体数据,从而计算出旗杆的高度.成果展示:下面是部分测量方案及测量数据.方案一方案二工具皮尺标杆,皮尺测量方案选一名同学直立于旗杆影子的顶端处,测量该同学的身高和影长及同一时刻旗杆的影长.选一名同学作为观测者,在观测者与旗杆之间的地面上直立一根高度适当的标杆,使旗杆的顶端、标杆的顶端与观测者的眼睛恰好在一条直线上,这时测出观测者的脚到旗杆底端的距离,以及观测者的脚到标杆底端的距离,然后测出标杆的高.测量示意图测量数据线段AB表示旗杆,这名同学的身高CD=1.8m,这名同学的影长DE=1.44m,同一时刻旗杆的影长BD=10.32m.线段AB表示旗杆,标杆EF=2.6m,观测者的眼睛到地面的距离CD=1.7m,观测者的脚到旗杆底端的距离DB=16.8m,观测者的脚到标杆底端的距离DF=1.35m.……请你继续完善上述成果展示.任务一:写出“方案一”中求旗杆高度时所利用的知识:____________________________;(写出一个即可)任务二:根据“方案二”的测量数据,求学校旗杆AB的高度;任务三:写出一条你在活动中的收获、反思或困惑.答案一、1.B 2.C3.C4.D5.B6.B7.B8.D 9.C10.D 点拨:如图①,当点P 在OA 上时,0≤t ≤1,延长QP 交AD 于点E ,则PE ⊥AD ,由题意得BQ =t cm ,AP =2t cm ,易得AE =PE =t cm ,QE =AB =2cm ,∴PQ =(2-t )cm ,∴S =12BQ ·PQ =12t (2-t )=-12t 2+t ;(第10题)如图②,当点P 在OD 上时,1<t ≤2,由题意得PQ =BQ =t cm ,∴S =12t 2.二、11.6012.-1713.2或5-114.(1)(1,4)(2)(1,-2)三、15.解:原式=33+4-33+1=5.16.证明:(1)∵△ABD ∽△ACE ,∴∠BAD =∠CAE ,∴∠BAD +∠BAE =∠CAE +∠BAE ,∴∠DAE =∠BAC .(2)∵△ABD ∽△ACE ,∴AD AE =AB AC ,∴AD AB =AE AC,而∠DAE =∠BAC ,∴△DAE ∽△BAC .四、17.解:(1)如图,△CA ′B ′即为所求.其中A ′(3,5),B ′(7,3).(第17题)(2)P ′(2a -1,2b -1).18.解:如图,由题意,得AB =15里,AC =4.5里,CD =3.5里.(第18题)∵DE ⊥CD ,AC ⊥CD ,∴AC ∥DE ,∴△ACB ∽△DEC ,∴DE AC =DC AB ,即DE 4.5=3.515,解得DE =1.05里=315步.答:走出南门315步恰好能望见这棵树.五、19.解:(1)y =x 2-4x +3(2)x …-101234…y =ax 2+bx +c…83-13…函数图象如图所示.(第19题)(3)①-1≤y ≤3②当x <1或x >3时,y >0.20.解:(1)k 的值为12,m 的值为6.(2)易知B (0,2).∵P (a ,0)为x 轴上的一动点,∴PC =|a +4|,∴S △CBP =12PC ·OB =12×|a +4|×2=|a +4|,S △CAP =12PC ·y A =12×|a +4|×3=32|a +4|.∵S △CP A =S △ABP +S △CBP ,∴32|a +4|=72+|a +4|,解得a =3或-11.六、21.解:如图,延长AB 与直线l 2交于点E ,过点D 作DF ⊥BE 于点F ,过点A 作AG ⊥l 2于点G ,易得DF =BC =1m ,BF =CD =3m ,∠FED =30°.在Rt △DEF 中,tan 30°=DF EF,∴EF =3m ,∴AE =AB +BF +EF =2+3+3=(5+3)m.在Rt △AGE 中,AG =12AE =5+32m.答:此下坡赛道的垂直高度为5+32m.(第21题)七、22.解:(1)y =(x -4)2-16(2)当x =9时,y =(9-4)2-16=9,答:前9个月公司累计获得的利润为9万元;当x =10时,y =20.20-9=11(万元).答:10月一个月内所获得的利润为11万元.(3)设在1~12月中,第n 个月该公司一个月内所获得的利润为s 万元,则有s =(n -4)2-16-[(n -1-4)2-16]=2n -9.∵2>0,∴s 随n 的增大而增大.又∵n 的最大值为12,∴当n =12时,s 取最大值,为15.答:12月该公司一个月内所获得的利润最多,最多利润是15万元.八、23.解:任务一:相似三角形的判定与性质(答案不唯一)任务二:如图,过点C 作CG ⊥AB 于点G ,交EF 于点H ,则易得四边形CDBG 与四边形CDFH 是矩形,(第23题)∴CH =DF =1.35m ,CG =BD =16.8m ,CD =HF =GB =1.7m ,∴EH =EF -HF =2.6-1.7=0.9(m).由题意得EF ∥AB ,∴△CEH ∽△CAG ,∴CH CG =EH AG ,∴1.3516.8=0.9AG,∴AG =11.2m.∴AB =AG +BG =11.2+1.7=12.9(m).答:学校旗杆AB 的高度为12.9m.任务三:在利用阳光下的影子测量时,如果没有太阳光,会影响测量;测量数据不准确,在测量过程中为了避免误差太大,可以多次测量,取平均值作为最后的测量结果;在项目研究中感受到了数学与生活的联系等.(答案不唯一,表述合理即可)。

江苏省徐州市2023-2024学年九年级上学期期末数学试题(含答案)

江苏省徐州市2023-2024学年九年级上学期期末数学试题(含答案)

2023-2024学年度第一学期期末抽测九年级数学试题一、选择题(每题3分,共24分)1.若⊙O的半径为8cm,点P到圆心的距离为7cm,则点P与⊙O的位置关系()A.P在⊙O内B.P在⊙O上C.P在⊙O外D.无法确定2.若△ABC∽△A’B’C’,且相似比为1:2,则△ABC与△A’B’C’的面积比为()A.1:2 B.1:4 C.2:1 D.4:13.已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据为A样本的每个数据都加2,则A,B两个样本具有相同的()A.平均数B.众数C.中位数D.方差4.若关于x的一元二次方程x²-3x+c=0有两个相等的实数根,则实数c的值为()A.―94B.94C.-9 D.95.在Rt△ABC中,∠C=90°,AC=4,BC=5,那么sinB的值是()A.43B.34C.45D.356.将函数y=x²的图象向右平移1个单位长度,所得抛物线对应的函数表达式为()A.y=(x-1)² B.y=x²-1 C.y=(x+1)² D.y=x²+17.二次函数y=ax²+bx+c的图象如图所示,下列结论错误的是()A.y有最小值B.当-1<x<2时,y<0 C.a+b+c>0 D.当x<-1时,y随x的增大而减小8.如图,A,B,C为圆形纸片圆周上的点,AC为直径,将该纸片沿AB折叠,使AB与AC交于点D,若BC 的度数为35°,则AD的度数为()A.108° B.110° C.120° D.145°二、填空题:(每题4分,共32分)9.若x2=y3,则xy=.10.两次抛掷同一枚质地均匀的硬币,均出现正面向上的概率是.11.二次函数y=(x-2)²+1的图象的顶点坐标是.12.《周髀算经》中记载了“偃矩以望高”的方法.“矩”指两条边呈直角的曲尺ABC,“偃矩以望高”的意思是用仰立放的“矩”可测量物体的高度,如图点A,B,Q在同一水平线上,∠ABC和∠AQP均为直角,AP与BC交于点D,若AB=40cm,BD=20cm,AQ=12m,则树高PQ= m.13.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若母线长l为3cm,扇形的圆心角θ为120°,则圆锥的底面半径r为cm.14.某招聘考试分笔试和面试两种,小明笔试成绩90分,面试成绩为80分,若笔试成绩、面试成绩按3:2计算,则小明的平均成绩为分.15.如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE-∠COD= °.16.如图,点E在正方形ABCD的对角线AC上,EF⊥AB于点F,连接DE并延长,交边BC于点M,交边AB 的延长线于点G,若AF=2,FB=1,则MG= .三、解答题:(本大题共9小题,共84分)17.(10分)(1)计算:20230―(―1)2024+12―tan60°(2)解方程:3x2―2x―1=0 18.(8分)如图,将下列4张扑克牌洗匀后数字朝下放在桌面上.(1)从中随机抽取1张,抽得扑克牌上的数字为2的概率为;(2)从中随机抽取2张,用列表或画树状图的方法,求抽得2张扑克牌上的数字相同的概率.19.(8分)某校舞蹈队共16名学生,将其身高(单位:cm)数据统计如下:A.16名学生身高:162,163,163,165,166,166,166,167,167,168,169,169,171,173,173,176;B.16名学生身高的平均数、中位数、众数:平均数中位数众数167.75m n(1)m= ,n= ;(2)对于不同组的学生,如果一组学生身高的方差越小,则认为改组舞台呈现效果越好,据此推断,下列两组学生中,舞台呈现效果更好的是;(填“甲组”后“乙组”)甲组身高163166166167167乙组身高162163165166176(3)该舞蹈队计划选五名学生参加比赛,已确定三名学生参赛,他们的身高分别为169,169,173,他们身高的方差为32.在选另外两名学生时,首先要求所选的两名学生与已确定的三名学生所组成的五名学生身高的方差9,其次要求所选的两名学生与已确定的三名学生所组成的五名学生身高的平均数尽可能大,则选出的另小于329外两名学生身高分别为和.20.(10分)已知函数y=―x2+bx+c的图象经过点A(-1,0),B(0,3).(1)求该函数的表达式;(2)在所给的方格纸中,画该函数的图象;(3)该函数图象上到x轴距离等于3的点,共有个.21.(10分)如图,学校计划围一个矩形花园,它的一边是墙(长度大于10m),其余三边利用长为10m的围栏,试确定其余三边的长度,使其分别满足下列条件:(1)花园的面积为12㎡;(2)花园的面积最大.22.(8分)如图,在△ABC中,AC=4,∠B=66°,以AC为直径的⊙O与BC交于点D,E为ACD上一点,且∠EDC=40°.(1)求CE的长;(2)若∠DCE=74°,判断直线AB与⊙O的位置关系,并说明理由.23.(10分)如图,位于大同街的钟鼓楼曾是民国时期徐州的最高建筑,某校综合实践小组利用测角仪测量钟鼓楼的高度AO,测角仪的目镜距离地面1m,他们在地面B处测得钟鼓楼顶部A的仰角为30°,然后沿地面前进28m至点D处,测得点A的仰角为75°,已知BC=DE=OH=1m.(1)求AC的长(结果保留根号);(2)求钟鼓楼的高度AO(结果精确到1m).(参考数据:2≈1.41,3≈1.73)24.(8分)如图,P是⊙O外一点,用两种不同的方法过P作⊙O的一条切线.要求:(1)用无刻度的直尺和圆规作图;(2)保留作图痕迹,不写作法.25.(12分)如图,在平面直角坐标系中,抛物线y=ax²+bx经过点A(3,-3),对称轴是直线x=2.(1)求a,b的值;(2)已知点B,C在抛物线上,点B的横坐标为t,点C的横坐标为t+1,过点B作x轴的垂线交直线OA于点D,过点C作x轴的垂线交直线OA于点E,在抛物线对称轴右侧,是否存在点B,使以B,C,D,E为顶点的四边形面积为3若存在,求出t的值;若不存在,请说明理由.22023~2024学年度第一学期期末抽测九年级数学参考答案题号12345678答案A B D B C A C B 9. 10. 11. 12.613.1 14.86 15.36 1617.(1)原式(4分). 5分(2)法一:..6分(7分)(8分).即. 10分法二:,(7分)或,(8分).10分18.(1); 3分(2)列表或画树状图(略). 6分共有12种等可能的结果(7分),其中2种符合题意.. 8分19.(1)167,166;(4分)(2)甲组;(6分)(3)171,173. 8分20.(1)将和代入,得 2分解得.(3分)∴函数表达式为. 4分(2)列表(略),(6分) 函数图象如图; 8分(3)4. 10分21.(1)设其余三边的长度分别为. 1分2314(2,1)11=-+-=3,2,1a b c ==-=-224(2)43(1)16b ac -=--⨯⨯-=x =246±==1211,3x x ==-(1)(31)0x x -+=(1)0x -=(31)0x +=1211,3x x ==-1221126P ∴==()1,0-()0,32y x bx c =-++10,3.b c c --+=⎧⎨=⎩2b =223y x x =-++m,m,(102)m x x x -由题意,得.3分解得. 4分答:其余三边的长度分别为或. 5分(2)设其余三边的长度分别为.花园的面积为. 6分由题意,得. 7分整理,得. 8分∴当时,y有最大值. 9分答:其余三边的长度分别为时,花园的面积最大. 10分22.(1)连接.. 1分∵直径,∴半径. 2分∴弧的长为. 3分(2)与相切. 4分.,. 5分,. 6分,. 7分,即.与相切. 8分23.(1)如图,过点E 作于点F . 1分在中,,..(102)12x x -=121,3x x ==2m,2m,6m 3m,3m,4m m,m,(102)m x x x -2m y (102)y x x =-2525222y x ⎛⎫=--+ ⎪⎝⎭52x =25255m,m,5m 22OE 280COE EDC ∠=∠=︒4AC =2OC OE ==CE 808223609ππ⨯⨯=AB O ,OC OE OCE OEC =∴∠=∠ 80COE ∠=︒ 50OCE ∴∠=︒74DCE ∠=︒ 24ACB DCE OCE ∴∠=∠-∠=︒66B ∠=︒ 90B ACB ∴∠+∠=︒90BAC ∴∠=︒OA AB ⊥AB ∴O EF AC ⊥Rt CFE △30FCE ∠=︒28CE BD ==sin 30,cos30EFCFCE CE ︒=︒=(2分),.3分在中,. 4分. 5分. 6分(2)在中,.. 7分(8分).9分答:钟鼓楼的高度为.10分24.(两种方法,各4分)参考解法:法一:如图①,利用“直径所对的圆周角等于”法二:如图②,利用“三角形全等的性质”法三:如图③,利用“三角形中位线的性质” 图① 图② 图③25.(1)由题意,得(2分) 解得 4分(2)由(1)得抛物线为.当时,;当时,.∴点. 5分设对应的函数表达式为,把代入得;对应的函数表达式为,∴点. 6分①当时,如图①,过点D 作于点F ,则.此时. 8分sin 3014EF CE ∴=⋅︒=cos30CF CE =⋅︒=Rt AFE △753045FAE AEH ACE ∠=∠-∠=︒-︒=︒45,14ACB DCE AF EF ∴∠=∠=︒∴==14AC CF AF ∴=+=Rt ACH△30,14ACH AC ∠=︒=sin 30,sin 307AH AH AC AC︒=∴=⋅︒=+8AO AH OH ∴=+=20≈20m 90︒933,2.2a b b a+=-⎧⎪⎨-=⎪⎩1,4.a b =⎧⎨=-⎩24y x x =-x t =24y t t =-1x t =+22(1)4(1)23y t t t t =+-+=--()()22,4,1,23B t t t C t t t -+--OA y kx =(3,3)-33,1k k -=∴=-OA ∴y x =-(,),(1,1)D t t E t t -+--23t <<DF CE ⊥1DF =()()2222()43,23[(1)]2BD t t t t t CE t t t t t =---=-+=----+=--由.解得. 9分②当时,点B 与D 重合,四点B 、C 、D 、E 不构成四边形.③当时,如图②,过点D 作于点H ,则.此时.. 10分解得(舍),(舍). 11分综上所述,. 12分 图① 图②注:以上各题如有另解,请参照本评分标准给分.()22113()321222DBEC S BD CE DF t t t t =+⋅=-++--⋅=四边形52t =3t =3t >DH CE ⊥1DH =()()22224()3,23[(1)]2BD t t t t t CE t t t t t =---=-=----+=--()22113()321222BDEC S BD CE DH t t t t =+⋅=-+--⋅=四边形113t =+<213t =<52t =。

北京市三帆中学2024-2025学年九年级上学期开学考试数学试题

北京市三帆中学2024-2025学年九年级上学期开学考试数学试题

北京市三帆中学2024-2025学年九年级上学期开学考试数学试题一、单选题1.下列二次根式中,最简二次根式的是( )AB C D 2.以下列各组数为边长,能组成直角三角形的是( )A .3,3,3B .1C .45,45,90D .8,16,173.下列计算正确的是( )A BC 6=D =4.如图, 菱形ABCD 的对角线交于点O , 点M 为AB 的中点,连接OM ,若6AC =,8BD =,则OM 的长为( )A .52B .4C .5D .35.已知一次函数y=kx+1,y 随x 的增大而减小,则该函数的图象一定经过( ) A .第一、二、三象限 B .第一、二、四象限 C .第一、三、四象限D .第二、三、四象限6.若关于x 的一元二次方程()2210a x a x a -+-=有一个根是1x =,则a 的值为( )A .1-B .0C .1D .1-或17.甲、乙、丙三名射箭运动员在某次测试中各射箭8次,三人的测试成绩如下表:222s s s 乙甲丙、、分别表示甲、乙、丙三名运动员这次测试成绩的方差,下面各式中正确的是( )A .222s s s >>乙甲丙B .222s s s >>乙甲丙C .222s s s >>乙甲丙D .222s s s >>乙甲丙8.如图1,在边长为2的正方形ABCD 中,O 为对角线的交点,E 为CD 的中点,以DE 为边在CD 右侧作正方形DEFG .如图2,将正方形DEFG 绕点D 逆时针旋转(0120)a α︒<<︒,连接AE ,AG ,CE ,CG ,过点D 作DM AG ⊥于点M ,延长MD 交CE 于点N ,连接ON .在旋转过程中,给出下面四个结论:①AE AG =;②AE CG ⊥;③ADG CDE S S =V V ;④ON 的最)A .①②B .②③C .①④D .②③④二、填空题9x 的取值范围是. 10.直线23y x =-向上平移4个单位后得到的直线解析式为. 11.方程240x x +=的根为.12.ABC V 中,90C ∠=︒,30A ∠=︒,8AB =,则AB 边上的高为. 13.如图,在平面直角坐标系xOy 中,点A ,点B 的坐标分别为(0,2),(,0),将线段AB 绕点O 顺时针旋转,若点A 的对应点A '的坐标为(2,0),则点B 的对应点B '的坐标为.14.一位求职者参加某公司的招聘,面试和笔试的成绩分别是86和90,公司给出他这两项测试的平均成绩为87.2,可知此次招聘中(填“面试”或“笔试”)的权重较大.15.如图,四边形ABCD 中,AC 和BD 互相垂直,3AC =,5BD =,则AD BC +的最小值为.16.已知函数1y a x =-(a 为常数),给出下列四个结论:①该函数图象经过()1,0;②当1x >时,y 随x 的增大而增大;③当01a <<时,直线1122y kx k =-+(k 为常数)与函数1y a x =-的图象总有两个交点;④当2a =-时,若点()1,m y 和()24,m y +都在函数1y a x =-的图象上,且12y y <,则有1m <-.其中所有正确结论的序号是.三、解答题 17.计算:(1))21(2))222.18.已知关于x 的一元二次方程x 2﹣4x +2m ﹣1=0有两个不相等的实数根. (1)求m 的取值范围;(2)若m 为正整数,且该方程的根都是整数,求m 的值. 19.如图,在平面直角坐标系xOy 中,()0,4A ,()3,0C .(1)①连接AC ,画出线段AC 关于y 轴对称的线段AB ;②将线段CA 绕点C 顺时针旋转一个角度,得到对应线段CD ,使得AD x ∥轴,请画出线段CD .(2)若直线y kx =平分(1)中四边形ABCD 的面积,则k 的值为______.(3)若直线3y kx =-与(1)中四边形ABCD 有公共点,则k 的取值范围为______. 20.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,E 是AD 的中点,点F ,G 在AB 上,EF AB ⊥,OG ∥EF .(1)求证:四边形OEFG 是矩形;(2)若26,12AD EF ==,求OE 和BG 的长.21.如图,在平面直角坐示系xOy 中,直线7y kx =+与直线2y x =-交于点A(3,m).(1)求k ,m 的値;(2)已知点P(n ,n),过点P 作垂直于y 轴的直线与直线2y x =-交于点M ,过点P 作垂直于x 轴的直线与直线7y kx =+交于点N(P 与N 不重合).若PN≤2PM ,结合图象,求n 的取值范围.22.如图,ACB △中,AC BC =,90ACB ∠=︒,CD AB ⊥于点D ,点P 在AC 的延长线上,连接DP ,点B 与点E 关于直线DP 对称,连接AE .(1)依题意补全图形; (2)求证:AE DP ∥;(3)当=AE CP 时,连接CE ,PE ,用等式表示线段AE ,CE ,PE 之间的数量关系,并证明.四、填空题23.七个边长为2的正方形按如图所示的方式放置在平面直角坐标系xOy 中,直线l 经过点()8,8A 且将这七个正方形的面积分成相等的两部分,则直线l 与x 轴的交点B 的横坐标为.24.甲、乙、丙三人进行羽毛球赛前训练,每局两人进行比赛,第三个人做裁判,每一局都要分出胜负,胜方和原来的裁判进行新一局的比赛,输方转做裁判,依次进行,半天训练结束时,发现甲共当裁判11局,乙、丙分别进行了18局、16局比赛,在这半天的训练中,甲、乙、丙三人共进行了局比赛,其中第16局比赛的裁判是.五、解答题25.对于平面直角坐标系xOy 中的点P 和图形M ,给出如下定义:若在图形M 上存在一点Q ,使得P ,Q 两点间的距离小于或等于1,则称点P 为图形M 的“邻点”.已知点()()()(),2,2,A B C D ----.(1)如图1,画出线段AB 的所有“邻点”组成的图形,并用阴影表示;(2)如图2,已知P 是直线y x =上一点,若点P 为四边形ABCD 的“邻点”,记点P 的横坐标为s ,直接写出s 的取值范围;(3)将四边形ABCD 沿着x 轴平移,得到四边形A B C D '''',四边形A B C D ''''的对角线交x 轴于点T ,直线22y x =+与x 轴,y 轴分别交于点E ,F ,若线段EF 上的所有点都是四边形A B C D ''''的“邻点”,记点T 的横坐标为t ,直接写出t 的取值范围.。

人教版九年级上册数学单元测试卷

人教版九年级上册数学单元测试卷

人教版九年级上册数学单元测试卷一、选择题(每题3分,共30分)1. 二次函数y = x^2+1的图象的顶点坐标是()A. (0,1)B. (1,0)C. (-1,0)D. (0,-1)2. 二次函数y = -2(x - 3)^2+5的对称轴是()A. x = -3B. x = 3C. x = 5D. x = -53. 二次函数y = ax^2+bx + c(a≠0)的图象如图所示,则下列结论正确的是()A. a < 0,b < 0,c > 0B. a < 0,b > 0,c > 0C. a < 0,b < 0,c < 0D. a < 0,b > 0,c < 0(此处可插入一个二次函数图象的简单示意图)4. 把二次函数y = 3x^2的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数表达式是()A. y = 3(x - 2)^2+1B. y = 3(x + 2)^2-1C. y = 3(x - 2)^2-1D. y = 3(x + 2)^2+15. 二次函数y = x^2-4x + 3与x轴的交点坐标为()A. (1,0),(3,0)B. (-1,0),(-3,0)C. (1,0),(-3,0)D. (-1,0),(3,0)6. 对于二次函数y=(x - 1)^2+2的最小值是()A. 2B. 1C. -1D. -27. 已知二次函数y = ax^2+bx + c的图象经过点(0,0),(1,9),( - 1, - 1),则这个二次函数的表达式为()A. y = 4x^2+5xB. y = 5x^2+4xC. y = - 4x^2+5xD. y = - 5x^2+4x8. 二次函数y = kx^2-6x + 3的图象与x轴有交点,则k的取值范围是()A. k < 3B. k < 3且k≠0C. k≤slant3D. k≤slant3且k≠09. 二次函数y = ax^2+bx + c的图象开口向上,对称轴为直线x = - 1,图象经过点(1,0),则a - b + c的值()A. 大于0B. 小于0C. 等于0D. 无法确定。

北京市海淀区十一学校2024-2025学年九年级上学期开学测试数学试题

北京市海淀区十一学校2024-2025学年九年级上学期开学测试数学试题

北京市海淀区十一学校2024-2025学年九年级上学期开学测试数学试题一、单选题1.在《2023北京市数字经济标杆企业评价报告》中,昌平区共有7家重点企业成功获评北京市数字经济标杆企业. 以下是四家标杆企业的商标,其中商标图形是中心对称图形的是( )A .B .C .D .2.在ABC V 中,A B C ∠∠∠,, 的对边分别为a ,b ,c ,下列条件中可以判断90A ∠=︒的是( )A .345a b c ===,,B .654a b c ===,,C .2a b c ==,D .12,,==a b c 3.如图,在平行四边形ABCD 中,6AD =,E 为AD 上一动点,M ,N 分别为BE ,CE 的中点,则MN 的长为( )A .3B .4C .5D .不确定4.某商店销售5种领口大小分别为38,39,40,41,42(单位:cm )的衬衫,一个月内的销量如下表:你认为商店最感兴趣的是这组数据的( ) A .平均数B .中位数C .众数D .方差5.函数y ax a =-与(0)ay a x=≠在同一平面直角坐标系中的图象可能是( )A .B .C .D .6.如图,AB 是O e 的弦,CD 是O e 的直径,CD AB ⊥于点E .在下列结论中,不一定成立的是( )A .AE BE =B .90CBD ∠=︒C .2COBD ∠=∠ D .COB C ∠=∠7.如图,以40m/s 的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度h (单位:m )与飞行时间t (单位:s )之间具有函数关系h =20t ﹣5t 2.下列叙述正确的是( )A .小球的飞行高度不能达到15mB .小球的飞行高度可以达到25mC .小球从飞出到落地要用时4sD .小球飞出1s 时的飞行高度为10m8.如图,四边形ABCD 是正方形, 点E F ,分别在AB BC ,的延长线上, 且BE CF =,设AD a AE b AF c ===,,. 给出下面三个结论:①a b c +>;②22ab c <;2a .上述结论中,所有正确结论的序号是( )A .①②B .②③C .①③D .①②③二、填空题9.函数y =x 的取值范围是. 10.若关于x 的一元二次方程28160kx x -+=有实数根,则k 的取值范围是. 11.如图,在正方形ABCD 中.点E ,F ,G 分别在边CD ,AD ,BC 上,FD CG <.若F G A E =,1a ∠=,则2∠的度数为(用含a 的式子表示).12.在平面直角坐标系xOy 中,将直线1:2l y x m =-+向左平移3个单位长度,得到直线2:21l y x =-+,则m =.13.如图,将△ABC 纸片绕点C 顺时针旋转40°得到A B C '''V ,连接AA ',若AC ⊥A B '',则AA B ''∠的度数为 ,14.在平面直角坐标系xOy 中,已知点()12,n y -,()21,n y -,()31,n y +在抛物线()2220y ax ax a =--<上,若01n <<,则1y ,2y ,3y 的大小关系为(用“<”表示)15.如图,AB 为O e 的直径,PB ,PC 分别与⊙O 相切于点B ,C ,过点C 作AB 的垂线,垂足为E ,交O e 于点D.若60,BPC CD ∠=︒=PB 的长为.16.已知反比例函数6y x=-.则:(1)当26x ≤≤时,y 的取值范围为; (2)当3x ≤-时,y 的取值范围为;(3)当26x -≤≤且0x ≠时,y 的取值范围为.三、解答题17.(1)计算:()21202352⎛⎫-++- ⎪⎝⎭. (2)解不等式组:()2531432x x x x ⎧-≤-⎪⎨--<⎪⎩18.已知40a b -=,求分式22223a ab b a b -++的值.19.已知y 是z 的反比例函数,z 是x 的正比例函数.(1)当23z =-时,6y =.当6x =时,4z =.求y 与x 之间的函数关系式;(2)证明:y 是x 的反比例函数.20.如图,在四边形ABCD 中,AB DC AB AD =∥,,对角线AC BD ,交于点,O AC 平分角BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若4AB BD ==,求OE 的长.21.小明的爸爸买了甲、乙两种不同的一年期理财产品共20万元.甲种理财产品的预期年利率为8%,乙种理财产品的预期年利率为6%.按预期,小明的爸爸一年共可获得收益14400元.小明的爸爸购买甲、两种不同的理财产品各多少万元?22.在平面直角坐标系xOy 中,一次函数()0y kx b k =+≠的图象与函数2y x =的图象平行,且过点()1,3A .(1)求这个一次函数的表达式;(2)当2x >时,对于x 的每一个值,函数()0y mx m =≠的值都大于函数()0y kx b k =+≠的值,直接写出m 的取值范围.23.糖类是一类有机化合物,有研究表明,不同种类的糖熔化过程中的温度变化不同。

北京大学附属中学2023-2024学年九年级上学期开学考试数学试题

北京大学附属中学2023-2024学年九年级上学期开学考试数学试题

北京大学附属中学2023-2024学年九年级上学期开学考试数学一、单选题1.下列二次根式中,是最简二次根式的是()A 3B 0.5C 12D 32.如图,ABCD 中,25B ∠=︒,则A ∠=()A .50︒B .65︒C .115︒D .155︒3.下列计算正确的是()A 2810B .2222-=C 284=D 824=4.用配方法解方程2430x x --=,则配方正确的是()A .2(2)1x -=B .2(2)1x +=C .2(2)7x -=D .2(2)7x +=5.已知一次函数2y x =-+,那么下列结论正确的是()A .y 的值随x 的值增大而增大B .图象经过第一、二、三象限C .图象必经过点()0,2D .当2x <时,y <06.某企业参加“科技创新企业百强”评选,创新能力、创新价值、创新影响三项得分分别为8分,9分,7分,若将三项得分依次按5:3:2的比例计算总成绩,则该企业的总成绩为()A .8分B .8.1分C .8.2分D .8.3分7.某工厂2021年生产某种机械5000台,研发生产技术后,预计2023年生产该种机械6600台,设生产该种机械的年平均增长率为x ,下面所列方程正确的是()A .()2500016600x +=B .2 50006600x =C .()2660015000x -=D .()()250001500016600x x +++=8.如图1,动点P 从点A 出发,在边长为1的小正方形组成的网格平面内运动.设点P 经过的路程为s ,点P 到直线l 的距离为d ,已知d 与s 的关系如图2所示.则下列选项中,可能是点P 的运动路线的是()A .B .C .D .二、填空题9.已知2x =是关于x 的一元二次方程250x bx +-=的一个根,则b 的值是.10.已知点1(1,)A y ,2(4,)B y 在直线21y x =-上,比较1y 与2y 的大小:1y 2y .(填“>”,“=”或“<”)11.如图,在平面直角坐标系xOy 中,已知点23A (,),以点O 为圆心,OA 长为半径画弧,交x 轴的正半轴于点B ,则点B 的横坐标为.12.如图,菱形ABCD 的对角线,AC BD 相交于点O ,点E 边CD 的中点,连接OE .若AC =2BD =,则OE 长为.13.甲、乙两地6月上旬的日平均气温如图所示,则这两地中6月上旬日平均气温的方差较小的是.(填“甲”或“乙”)14.由于惯性的作用,行驶中的汽车在刹车后还要继续向前滑行一段距离才能停止,这段距离称为“刹车距离”.某公司设计了一款新型汽车,需要对它的刹车性能进行测试,设汽车的刹车距离为s (单位:m ),车速为v (单位:km/h ),根据测得的数据,s 与v 的函数关系如图所示,(1)若该款汽车某次测试的刹车距离为50m ,估计该车的速度约为km/h ;(2)在测试中发现该款汽车在车速达到某一数值时,其刹车距离的数值恰好是车速数值的13,则此时的车速约为km/h (结果取整数).三、解答题15.(1(2)解方程:2450x x --=.16.如图,在ABCD 中,点E F ,分别在AB ,CD 上,且BE DF =.求证:AF CE =.17.下面是小茜设计的“作一个已知角的平分线”的尺规作图过程.已知:如图1,AOB ∠.求作:射线OP ,使得OP 平分AOB ∠.作法:如图2,①在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作弧交射线OB 于点D ;②分别以点C ,D 为圆心,OC 长为半径作弧,两弧交于点P (异于点O ),连接PC 和PD ;③作射线OP .所以射线OP 平分AOB ∠.根据小茜设计的尺规作图过程.(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明,并在括号内填写推理依据.证明:∵OC OD PC ===,∴四边形OCPD 是(),∴OP 平分AOB ∠().18.在平面直角坐标系xOy中,已知一次函数122y x=-+的图象与x轴、y轴分别交于点A和点B.(1)求A、B两点的坐标;(2)在给定的平面直角坐标系中,画出该函数的图象;(3)结合图象直接写出当0y>时,x的取值范围.19.如图,在正方形网格中,每个小正方形网格的边长均为1,点A,B,C,D均在格点上.(1)判断ACD的形状,并说明理由;(2)求四边形ABCD的面积.20.抛物线()2y a x h =+的对称轴是直线2x =-,且过点()1,3-.(1)求抛物线的解析式;(2)求抛物线的顶点坐标;(3)当x 为何值时,y 随x 的增大而增大?21.已知关于x 的一元二次方程22210x kx k +-=-.(1)请判断这个方程根的情况;(2)若该方程有一个根小于1,求k 的取值范围.22.如图,在ABCD 中,对角线AC ,BD 相交于点O ,AC BC ⊥,点E 是BC 延长线上一点,且CE BC =,连接DE .(1)求证:四边形ACED 为矩形;(2)连接OE ,若32BC DE ==,,求OE 的长.23.2023年5月30日神舟十六号载人飞船发射取得圆满成功,某校准备以此为契机,开展一次“普及航天知识,弘扬航天精神”的科普讲座.为了获悉学生对航天知识的了解程度,讲座前学校从七、八两个年级各随机抽取名学生,进行了航天知识问卷测试,获得学生的成绩(百分制),并对数据(成绩)进行整理、描述和分析,下面给出了部分信息:a.七年级名学生成绩的频数分布直方图如下(数据分成5组:5060x≤<,≤<,6070xx≤≤):x≤<,90100x≤<,80907080b.七年级成绩在7080x≤<这一组的是:70717172727374757677787979c.七、八两个年级成绩的平均分、中位数如下:年级平均分中位数七73.8m八73.874.5根据以上信息,回答下列问题:(1)写出表中m的值;(2)在七年级抽取的学生中,记成绩高于抽取学生平均分的学生人数为1p.在八年级抽取的学生中,记成绩高于抽取学生平均分的学生人数为2p.比较1p,2p的大小,并说明理由;(3)假设该校七年级共有200名学生参加测试,估计参加测试的学生成绩不低于80分的人数.24.在平面直角坐标系xOy 中,函数()0y kx b k =+≠的图像经过点()()1,52,2,-.(1)求该函数的表达式;(2)当x m >时,对于x 的每一个值,函数2y x =+的值大于函数()0y kx b k =+≠,直接写出m 的取值范围.25.如图,正方形ABCD 中,点P 在边AD 上,连接DE ,使DE DC =,交CE 于点N ,连接AE AN BN 、、.(1)依题意补全图形;(2)判断ANE 的形状,并证明;(3)用等式表示线段AN BN CN 、、三者之间的数量关系,并证明.26.在平面直角坐标系xOy中,点P和图形W的中间点的定义如下:Q是图形W上一点,若M为线段PQ的中点,则称M为点P和图形W的中间点.C(-2,3),D(1,3),E(1,0),F(-2,0)(1)点A(2,0),①点A和原点的中间点的坐标为;②求点A和线段CD的中间点的横坐标m的取值范围;(2)点B为直线y=2x上一点,在四边形CDEF的边上存在点B和四边形CDEF的中间点,直接写出点B的横坐标n的取值范围.。

湖南师大附中2024-2025学年九年级上学期入学考试数学试卷

湖南师大附中2024-2025学年九年级上学期入学考试数学试卷

湖南师大附中2024-2025 学年度九年级上入学检测数学试题时量:90 分钟满分:100 分一.选择题(每题3 分,共30 分)1 .下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .2 .下列说法中,正确的是( )A .对“神舟十八号”载人飞船零部件的检查适合采用抽样调查B .调查市场上某品牌节能灯的使用寿命适合采用全面调查C .甲、乙两人各进行了10 次射击测试,他们的平均成绩相同,方差分别是S甲2= 3.2 ,S乙2= 1 ,则乙的射击成绩较稳定D .某种彩票中奖率是10% ,则购买10 张这种彩票一定会中奖3.去年冬天,一山区县遭受冬雨天气灾害,居民生活受困,某校开展为灾区捐款活动,八年级(1)班第一组8 名学生捐款如下(单位:元): 30 ,50 ,30 ,20 ,30 ,50 ,20 ,20,则这组捐款的众数是( )A .30 元B .20 元C .25 元D .30 元和20 元4 .成语是中国语言文化的缩影,有着深厚丰富的文化底蕴,学习成语,运用成语,了解成语当中所包含的语言文化现象,是我们学习语言、学习中国传统文化必不可少的一个环节和目的.下列成语所描述的事件中,属于随机事件的是( )A .竹篮打水B .守株待兔C .水涨船高D .水中捞月5.我区“人才引进”招聘考试分笔试和面试,按笔试占60% 、面试占40% 计算加权平均数作为总成绩.应试者李老师的笔试成绩为90 分,面试成绩为95 分,则李老师的总成绩为( )A .90B .91C .92D .936 .从2 ,3 ,4 ,5 四个数中,随机抽取三个数,作为三角形的边长,能组成三角形的概率为( )A .B .C .D .DQ(第8 题图)(第10 题图)7 .已知点A (a , −2) ,B (3, b ) 关于原点对称,则 a b 的值为( )A . −6B . 6C . −9D .9 8 .如果小球在如图所示的地板上自由地滚动,并随机停留在某块方砖上, 那么小球最终停留在黑色区域的概率是( )A .B .C .D .9 .如图,在正方形网格中,△ EFG 绕某一点旋转某一角度得到△ RPQ .则旋转中心可能是( )A .点 AB .点BC .点C D .点D 10.如图,△ OAB 中,7AOB = 60O ,OA = 4 ,点B 的坐标为(6, 0) ,将△ OAB 绕点 A 逆时针旋转得到△CAD , 当点 O 的对应点 C 落在OB 上时,点D 的坐标为( )A .(7 ,33)B .(7,5)C .(5 3 ,5)D .(5 3 ,33)二.填空题(每题 3 分,共 24 分)11 .已知一组数据:3 、0、 −2 、5,则这组数据的极差为. 12 .为了考查某种海水稻的长势,从所育稻苗中随机抽取 5 株,测量这 5 株稻苗高度所得数据为 8 ,8 ,9, 7 ,8(单位:cm ),该组数据的方差为 . 13 .已知一组数据x 1 ,x 2 ,x 3 ,x 4 的平均数是 5,则另一组数据5x 1 − 5 ,5x 2 − 5 ,5x 3 − 5 ,5x 4 − 5 的平均 数是 .14 .在相同条件下选取一定数量的小麦种子做发芽试种,结果如表所示:在相同的条件下,估计种植一粒该品牌的小麦发芽的概率为 . (结果精确到0.1)15.一个布袋内只装有 2 个黑球和 1 个白球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是 . 16 .抛物线y = x 2 − 8x +7 关于x 轴对称的抛物线的解析式为 .17 .某校共有 40 名初中生参加足球兴趣小组,他们的年龄统计情况如图所示,则这 40 名学生年龄的中位数是 .16.二次函数y = ax 2 − 2x +1,若对于任意x 都有y < 0 成立,求 实数a 的取值范围是.三.解答题(10 +10 +12 +14 = 46 分)19.根据“五项管理”文件精神,某学校优化学校作业管理,探索减负增效新举措,学校就学生做作业时间 进行问卷调查,将收集信息进行统计分成 A 、B 、C 、D 四个层级,其中 C : 30 ~ 60 分钟;D : 30 分钟以下.并将结果绘制成两幅不完整的统计图,请你根据统计信息解答下列问 题:(1)求扇形统计图中“D ”等级的扇形的圆心角的度 数,并补全条形统计图;(2)全校约有学生 1500 人,估计“A”层级的学生约 有多少人?(3)学校从“ A ”层级的 3 名女生和 2 名男生中随机抽取 2 人参加现场深入调研,请用画树状图或列表的 方法,求出恰好抽到 1 名女生和 1 名男生的概率.20 .如图,四边形ABCD 是正方形,△DCF 经逆时针旋转90O 后与△ BCE 重合. (1)若7DCF = 80O , 7CDF = 30O ,求 7BEC 的度数; (2)若 CF = 2 ,求△CEF 的面积.AB C21 .已知关于x 的一元二次方程(m −1)x 2 + (m − 4)x − 3 = 0 . (1)求证:此方程总有两个实数根;(2)如果此方程的两个实数根都是整数,求正整数m 的值.A : 90 分钟以上;B : 60 ~ 90 分钟;F22 .抛物线y = ax 2 − 2ax − 3a 与x 轴交于A 、B 两点,与y 轴交于点C ,顶点为D . (1)求 A 、B 两点的坐标;(2)若△ ABD 为等边三角形,求 a 的值; (3)若a = − 1①点F 是对称轴与AC 的交点,点P 是抛物线上一点,且横坐标为m ,PE 丄 x 轴交AC 于点E ,点 P , E ,F 构成的三角形是直角三角形,求m 的值;②当k ≤ x ≤ k + 2 时,y = ax 2 − 2ax − 3a 始终位于直线y =−x 的下方,求实数k 的取值范围. / \ / / \图 1 图 2 备用图x x yy y。

(48)人教版九年级数学上册测试题 附答案

(48)人教版九年级数学上册测试题 附答案

(48)人教版九年级数学上册测试题附答案人教版九年级数学上册测试题附答案一、选择题1.已知抛物线y=yy^2+yy+y的标准方程的顶点坐标为(1,2),则(),若y=2 ,则y=()A. y=−4B. y=−2C. y=0D. y=22.解方程y^3−3y^2+y−3=y时得一个实根y,则( )A. y自己装填到根式中是B. 根式填写形式C. y填写小数的形式D. y填写百分数的形式3.计算 5/6÷4/5 的结果()A. 1B. 5/6C. 1/4D. 5/4二、填空题1.使抛物线y=yy^2+yy+y的图象经过点(1,2),则()是准确的方法A. 代入y=1 ,y=2 ,求解y、y、yB. 代入y=2 ,y=5 ,求解y、y、yC. 代入y=2 ,y=4 ,求解y、y、yD. 代入y=4 ,y=16 ,求解y、y、y2.在以下几个平面角中,不是锐角的是()A. 90°B. 60°C. 30°D. 120°3.已知模数为8的两个整数y和y,若 |y−y|=5 ,则()的表达式能够表示出这两个整数A. y=8y7 ,y=8y2 (y为任意整数)B. y=8y8 ,y=8y2 (y为任意整数)C. y=8y7+5 ,y=8y2 (y为任意整数)D. y=8y8+5 ,y=8y2 (y为任意整数)三、解答题1.已知函数y=8^y,解方程 8^y=1/4 ,并用图像的方法给出解的分析解答。

解:首先化简方程 8^y=1/4 ,可得 2^(3y)=2^(-2) ,那么 3y=(-2) ,解得y=(-2)/3 。

所以方程的解为y=(-2)/3 。

通过图像的方法验证解的正确性,绘制函数y=8^y的图像,与y=1/4 的图像进行比较,可以发现两个图像在y=(-2)/3 的位置相交,符合方程 8^y=1/4 的解y=(-2)/3 。

2.已知直线y的斜率为y,直线y过点(3,4)且与直线y互相垂直,求直线y的斜率。

2024-2025学年九年级数学上学期第一次月考卷(测试范围:第1-2章)(北师大版)(解析版)

2024-2025学年九年级数学上学期第一次月考卷(测试范围:第1-2章)(北师大版)(解析版)

2024-2025年九年级数学上册第一次月考卷(测试范围:第1-2章)一、单选题1.下列方程中,关于x 的一元二次方程是( )A .20ax bx c ++=B .2210x y --=C .()270x x x -+=D .223x x -=A .231416x æö+=ç÷èøB .231248x æö-=ç÷èøC .23148x æö+=ç÷èøD .2311416x æö+-=-ç÷èø故选:A .3.如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,若3OA =,则BD 的长为( )A .3B .6C .D .4.若关于x 的一元二次方程2(1)230k x kx k --+-=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且1k ¹C .34k ≥D .34k ≥且1k ¹5.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂第二季度平均每月的增长率为x ,那么x 满足的方程是( )A .()251182x +=B .()()250501501182x x ++++=C .()()2501501182x x +++=D .()50501182x ++=【答案】B【分析】本题考查一元二次方程的实际应用,根据增长率的等量关系()21a x b +=,结合题意,列出方程即可.【解析】解:设该厂第二季度平均每月的增长率为x ,由题意,得:()()250501501182x x ++++=;故选B .6.三角形两边的长是3和4,第三边的长是方程212350x x -+=的根,则该三角形的周长为( )A .12B .14C .12或14D .247.如图,四边形ABCD 是菱形,对角线8cm 6cm AC DB DH AB ==^,,于点H ,则DH 的长为( )A .5cmB .10cmC .24cm 5D .48cm 5【答案】C 【分析】此题考查了菱形的性质,勾股定理,根据菱形的性质结合勾股定理求出AB ,再根据菱形的面积计算公式即可求出DH ,熟练掌握菱形的性质是解题的关键.【解析】解:∵四边形ABCD 是菱形,13,,则AC的长是()8.如图,在直角坐标系中,矩形OABC,点B的坐标是()A.3B C D.413,,∵点B的坐标是()∴22=+=OB,1310∵四边形OABC是矩形,∴10AC OB==,故选:C.9.如图,在矩形ABCD 中,点F 是CD 上一点,连结BF ,然后沿着BF 将矩形对折,使点C 恰好落在AD 边上的E 处.若41AE ED =::,则EF BE的值为( )A .4B .3C .13D10.如图,正方形ABCD 中,1AB =,点E 、F 分别在边BC CD 、上,45EAF Ð=°,连接AE EF AF 、、,下列结论:①BE DF EF +=;②AE 平分BEF Ð;③CEF △的周长为2;④CEF ABE ADF S S S =+△△△,其中正确的是( )A .①②B .①②③C .①③④D .②③④【答案】B 【分析】延长CB 到T ,使得BT DF =,连接AT ,证明ADF ABT△≌△,EAF EAT △≌△,可判定①②,利用等量代换,可判③,利用面积公式解答即可,本题考查了正方形的性质,三角形全等的判定和性质,熟练掌握正方形的性质,三角形全等的判定和性质是解题的关键.【解析】延长CB 到T ,使得BT DF =,连接AT∵四边形ABCD 是正方形,∴90D ABE ABT Ð=Ð=Ð=°,AD AB =,∵DF BT ABT ADF AB AD =ìïÐ=Ðíï=î,∴ADF ABT △≌△(SAS ),∴AF AT =,DAF BAT Ð=Ð,∴90FAT DAB Ð=Ð=°,∵45EAF Ð=°,∴45EAF EAT Ð=Ð=°,∵AF ABT TAE FAE AE AE =ìïÐ=Ðíï=î,二、填空题11.已知()211350mm x x +-+-=是关于x 的一元二次方程,则m 的值为 .【答案】1-【分析】此题主要考查了一元二次方程的定义:含有一个未知数,且未知数的最高次幂是2次的整式方程,特别注意二次项系数不为0,正确把握定义是解题关键.直接利用一元二次方程的定义知道二次项系数不为0同时x 的最高次幂为2,得出m 的值进而得出答案.【解析】解:由题意知:212m +=且10m -¹,解得1m =-,故答案为:1-.12.平行四边形ABCD 的对角线AC 、BD 相交于点O ,要使平行四边形ABCD 是矩形请添加一个条件 .【答案】AC BD =(答案不唯一)【分析】本题考查了矩形的判定定理,根据对角线相等的平行四边形是矩形,有一个角是直角的平行四边形是矩形即可得出答案,熟练掌握矩形的判定定理是解此题的关键.【解析】解:要使平行四边形ABCD 是矩形,可添加的条件是AC BD =(对角线相等的平行四边形是矩形)【答案】25320x x +-=【解析】本题考查了公式法解一元二次方程,根据求根公式确定出方程即可.【解答】解:根据题意得:532a b c ===-,,,则该一元二次方程是25320x x +-=,故答案为:25320x x +-=.14.如图,已知四边形ABCD 是矩形,6AB =,点E 在AD 上,2DE =.若EC 平分BED Ð,则BC 的长为 .【答案】10【分析】由矩形的性质可得AD BC ∥,AD BC =,由角平分线和平行线的性质可证BE BC =,由勾股定理可求解.本题考查了矩形的性质,角平分线的性质,勾股定理,掌握矩形的性质是解题的关键.【解析】解:EC Q 平分BED Ð,BEC CED \Ð=Ð,Q 四边形ABCD 是矩形,AD BC \∥,AD BC =,DEC BCE \Ð=Ð,BEC BCE \Ð=Ð,BE BC \=,222BE AB AE =+Q ,2236(2)BC BC \=+-,10BC \=,故答案为:10.15.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD 中,2AB =,2AC =,则BD 的长为 .∵两条纸条宽度相同,∴AE AF =,∵AB CD ∥,AD BC ∥,∴四边形ABCD 是平行四边形,16.已知a 是方程22202310x x -+=的一个根,则代数式220232121a a +++的值为 .17.如图,ABCD 绕点C 顺时针旋转后得到正方形EFCG , EF 交于点H ,则AH的长是 .边长为的正方形按顺时针方向旋转后得到正方形30,DCG CFH \Ð=°Ð∴60DCF Ð=°,在 Rt CHF V 和 R t CHD V CH CH CF CD=ìí=î,18.定义:20cx bx a ++=是一元二次方程20ax bx c ++=的倒方程.则下列四个结论:①如果2x =是220x x c ++=的倒方程的解,则54c =-;②如果0ac <,那么这两个方程都有两个不相等的实数根;③如果一元二次方程220ax x c -+=无解,则它的倒方程也无解;④如果一元二次方程20ax bx c ++=有两个不相等的实数根,则它的倒方程也有两个不相等的实数根。

九年级数学上册期末测试卷(必考题)

九年级数学上册期末测试卷(必考题)

九年级数学上册期末测试卷(必考题)班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 估计的值在()A. 2到3之间B. 3到4之间C. 4到5之间D. 5到6之间2. 已知两个有理数a, b, 如果ab<0且a+b>0, 那么()A. a>0, b>0B. a<0, b>0C. a、b同号D. a、b异号, 且正数的绝对值较大3.若正多边形的一个外角是, 则该正多边形的内角和为()A. B. C. D.4.当1<a<2时, 代数式|a-2|+|1-a|的值是()A. -1B. 1C. 3D. -35.一个整数815550…0用科学记数法表示为8.1555×1010, 则原数中“0”的个数为()A. 4B. 6C. 7D. 106. 若顺次连接四边形ABCD各边的中点所得四边形是菱形. 则四边形ABCD一定是()A. 菱形B. 对角线互相垂直的四边形C. 矩形D. 对角线相等的四边形7.如图是抛物线y=ax2+bx+c(a≠0)的部分图象, 其顶点是(1, n), 且与x 的一个交点在点(3, 0)和(4, 0)之间, 则下列结论:①a-b+c>0;②3a+b=0;③b2=4a(c-n);④一元二次方程ax2+bx+c=n-1有两个不等的实数根.其中正确结论的个数是()A. 1B. 2C. 3D. 48.如图, 在▱ABCD中, BF平分∠ABC, 交AD于点F, CE平分∠BCD, 交AD于点E, 若AB=6, EF=2, 则BC的长为()A. 8B. 10C. 12D. 149.如图, 函数 y1=﹣2x 与 y2=ax+3 的图象相交于点 A(m, 2), 则关于 x 的不等式﹣2x>ax+3 的解集是()A. x>2B. x<2C. x>﹣1D. x<﹣110.如图, 在下列条件中, 不能证明△ABD≌△ACD的是().A. BD=DC, AB=ACB. ∠ADB=∠ADC, BD=DCC. ∠B=∠C, ∠BAD=∠CADD. ∠B=∠C, BD=DC二、填空题(本大题共6小题, 每小题3分, 共18分)1. 9的平方根是__________.2. 因式分解: ____________.3. 若函数y=mx2+2x+1的图象与x轴只有一个公共点, 则常数m的值是_____.4. 如图, 已知△ABC的周长是21, OB, OC分别平分∠ABC和∠ACB, OD⊥BC于D, 且OD=4, △ABC的面积是__________.5. 如图, 反比例函数y= 的图象经过▱ABCD对角线的交点P, 已知点A, C, D 在坐标轴上, BD⊥DC, ▱ABCD的面积为6, 则k=_________.6. 如图, 将正方形OEFG放在平面直角坐标系中, O是坐标原点, 点E的坐标为(2, 3), 则点F的坐标为__________.三、解答题(本大题共6小题, 共72分)1. 解方程:2. 已知关于x的方程x2﹣(2k+1)x+k2+1=0.(1)若方程有两个不相等的实数根, 求k的取值范围;(2)若方程的两根恰好是一个矩形两邻边的长, 且k=2, 求该矩形的对角线L 的长.3. 已知: 如图, 平行四边形ABCD, 对角线AC与BD相交于点E, 点G为AD的中点, 连接CG, CG的延长线交BA的延长线于点F, 连接FD.(1)求证: AB=AF;(2)若AG=AB, ∠BCD=120°, 判断四边形ACDF的形状, 并证明你的结论.4. 如图, ▱ABCD的对角线AC, BD相交于点O. E, F是AC上的两点, 并且AE=CF, 连接DE, BF.(1)求证: △DOE≌△BOF;(2)若BD=EF, 连接DE, BF.判断四边形EBFD的形状, 并说明理由.5. 某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了非常了解比较了解基本了解不太了解解”、“基本了解”、“不太了解”四个等级, 要求每名学生选且只能选其中一个等级.随机抽取了120名(1)求x的值;(2)若该校有学生1800人, 请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?6. 水果店张阿姨以每斤2元的价格购进某种水果若干斤, 然后以每斤4元的价格出售, 每天可售出100斤, 通过调查发现, 这种水果每斤的售价每降低0.1元, 每天可多售出20斤, 为保证每天至少售出260斤, 张阿姨决定降价销售. (1)若将这种水果每斤的售价降低x元, 则每天的销售量是斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元, 张阿姨需将每斤的售价降低多少元?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、B2、D3、C4、B5、B6、D7、C8、B9、D10、D二、填空题(本大题共6小题, 每小题3分, 共18分)1、±32、(2)(2)a a a +-3.0或14、425、-36.(﹣1, 5)三、解答题(本大题共6小题, 共72分)1、13x = 2.(1)k > ;(2) .3.(1)略;(2)结论: 四边形ACDF 是矩形. 理由略.4、(2)略;(2)四边形EBFD 是矩形. 理由略.5.(1)6 (2)1440人6、(1)100+200x ;(2)1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

乘马岗中心学校九年级期末数学试题三姓名: 班级: 分数:一.选择题(共27分)1.(3分)若一元二次方程x 2+2x+m=0有实数解,则m 的取值范围是( ) A .m ≤﹣1 B .m ≤1 C .m ≤4 D .2.(3分)已知x=﹣1是方程ax 2+bx+c=0的根(b ≠0),则=( )A .1B .﹣1C .0D .23.(3分)下列图形中,中心对称图形有( )A .4个B .3个C .2个D .1个4.(3分)一个圆锥的侧面积是底面积的3倍,则圆锥侧面展开图的扇形圆心角是( ) A .60° B .90° C .120°D .180°5.(3分)坐标平面上有一函数y=﹣3x 2+12x ﹣7的图形,其顶点坐标为何?( ) A .(2,5) B .(2,﹣19) C .(﹣2,5)D .(﹣2,﹣43)6.(3分)已知二次函数y=ax 2+bx+c 的图象如图所示,那么一次函数y=bx+b 2﹣4ac 与反比例 函数y=在同一坐标系内的图象大致为( )A .B .C .D .7.(3分)正六边形的边心距与边长之比为( ) A .:3B .:2C .1:2D .:28.(3分)已知△ABC 中,∠C=90°,BC=a ,CA=b ,AB=c ,⊙O 与三角形的边相切,下列选项中,⊙O的半径为的是( )A .B .C .D .9.(3分)如图,一张半径为1的圆形纸片在边长为a (a ≥3)的正方形内任意移动,则该正方形内,这张圆形纸片“不能接触到的部分”的面积是( )A .a 2﹣π B .(4﹣π)a 2C .πD .4﹣π二.填空题(共21分)10.(3分)方程(x ﹣3)(x+1)=x ﹣3的解是 .11.(3分)已知关于x 的一元二次方程x 2+x+m=0的一个实数根为1,那么它的另一个实数根是 . 12.(3分)如图,AB 为⊙O 的直径,弦CD ⊥AB ,E 为上一点,若∠CEA=28°,则∠ABD= 度.13.(3分)若关于x 的函数y=kx 2+2x ﹣1与x 轴仅有一个公共点,则实数k 的值为 . 14.(3分)如图所示,一半径为2的圆内切于一个圆心角为60°的扇形,则扇形的周长为 . 15.(3分)如图所示,在直角坐标系中放置一个边长为1的正方形ABCD ,将正方形ABCD 沿x 轴的正方向无滑动的在x 轴上滚动,当点A 离开原点后第一次落在x 轴上时,点A 运动的路径线与x 轴围成的面积为 .16.(3分)如图,已知函数y=与y=ax 2+bx (a >0,b >0)的图象交于点P .点P 的纵坐标为1.则关于x 的方程ax 2+bx+=0的解为 .三.解答题(共72分)17.(8分)关于x 的一元二次方程x 2﹣x+p ﹣1=0有两实数根x 1,x 2,(1)求p 的取值范围;(2)若[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,求p 的值.18.(6分)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?19.(6分)如图,一个含45°的三角板HBE 的两条直角边与正方形ABCD 的两邻边重合,过E 点作EF ⊥AE 交∠DCE 的角平分线于F 点,试探究线段AE 与EF 的数量关系,并说明理由.20.(7分)如图,在△AOB 中,∠ABO=90°,OB=4,AB=8,反比例函数y=在第一象限内的图象分别交OA ,AB 于点C 和点D ,且△BOD 的面积S △BOD =4.(1)求反比例函数解析式;(2)求点C 的坐标.21.(8分)已知直线l 与⊙O ,AB 是⊙O 的直径,AD ⊥l 于点D .(Ⅰ)如图①,当直线l 与⊙O 相切于点C 时,若∠DAC=30°,求∠BAC 的大小; (Ⅱ)如图②,当直线l 与⊙O 相交于点E 、F 时,若∠DAE=18°,求∠BAF 的大小.22.(6分)某商场为了吸引顾客,设计了一种促销活动.在一个不透明的箱子里放有4个完全相同的小球,球上分别标有“0元”、“10元”、“30元”和“50元”的字样.规定:顾客在本商场同一日内,消费每满300元,就可以从箱子里先后摸出两个球(每次只摸出一个球,第一次摸出后不放回).商场根据两个小球所标金额之和返还相应价格的购物券,可以重新在本商场消费.某顾客消费刚好满300元,则在本次消费中:(1)该顾客至少可得 元购物券,至多可得 元购物券;(2)请用画树状图或列表法,求出该顾客所获购物券的金额不低于50元的概率.23.(8分)如图,以△ABC 的BC 边上一点O 为圆心的圆,经过A ,B 两点,且与BC 边交于点E ,D 为BE 的下半圆弧的中点,连接AD 交BC 于F ,若AC=FC .(1)求证:AC 是⊙O 的切线: (2)若BF=8,DF=,求⊙O 的半径r .乘马岗中心学校九年级期末数学试题三答题卡一.选择题答案二.填空题答案三.解答题(共72分) 17.(8分)18.(6分)19.(6分)20.(7分)21.(8分)22.(6分)(1) 元, 元;(2)请用画树状图或列表法,求出该顾客所获购物券的金额不低于50元的概率.23.(8分)24.(12分)某大学生利用暑假40天社会实践参与了一家网店的经营,了解到一种成本为20元/件的新型商品在第x 天销售的相关信息如表所示. q=30+q=20+(1)请计算第几天该商品的销售单价为35元/件?(2)求该网店第x 天获得的利润y 关于x 的函数关系式;(3)这40天中该网店第几天获得的利润最大?最大的利润是多少?25.(11分)已知:如图,在四边形OABC 中,AB ∥OC ,BC ⊥x 轴于点C ,A (1,﹣1),B (3,﹣1),动点P 从点O 出发,沿着x 轴正方向以每秒2个单位长度的速度移动.过点P 作PQ 垂直于直线OA ,垂足为点Q ,设点P 移动的时间t 秒(0<t <2),△OPQ 与四边形OABC 重叠部分的面积为S . (1)求经过O 、A 、B 三点的抛物线的解析式,并确定顶点M 的坐标; (2)用含t 的代数式表示点P 、点Q 的坐标;(3)如果将△OPQ 绕着点P 按逆时针方向旋转90°,是否存在t ,使得△OPQ 的顶点O 或顶点Q 在抛物线上?若存在,请求出t 的值;若不存在,请说明理由; (4)求出S 与t 的函数关系式.参考答案与试题解析一.选择题(共27分)1.(3分)若一元二次方程x2+2x+m=0有实数解,则m的取值范围是()A.m≤﹣1 B.m≤1 C.m≤4 D .【分析】由一元二次方程有实数根,得到根的判别式大于等于0,列出关于m的不等式,求出不等式的解集即可得到m的取值范围.【解答】解:∵一元二次方程x2+2x+m=0有实数解,∴b2﹣4ac=22﹣4m≥0,解得:m≤1,则m的取值范围是m≤1.故选:B.【点评】此题考查了一元二次方程解的判断方法,一元二次方程ax2+bx+c=0(a≠0)的解与b2﹣4ac 有关,当b2﹣4ac>0时,方程有两个不相等的实数根;当b2﹣4ac=0时,方程有两个相等的实数根;当b2﹣4ac<0时,方程无解.2.(3分)已知x=﹣1是方程ax2+bx+c=0的根(b≠0),则=()A.1 B.﹣1 C.0 D.2【分析】将x=﹣1代入方程得到a+c=b,将所求式子变形后将a+c=b代入,即可求出值.【解答】解:∵x=﹣1是方程ax2+bx+c=0的根,∴a﹣b+c=0,即a+c=b,∴===1.故选A.【点评】此题考查了一元二次方程的解,以及分式的化简求值,方程的解即为能使方程左右两边相等的未知数的值.3.(3分)下列图形中,中心对称图形有()A.4个B.3个C.2个D.1个【分析】根据中心对称图形的定义和各图的特点即可求解.【解答】解:第四个图只是轴对称图形,第1、第2和第3个是中心对称图形.中心对称图形有3个.故选:B.【点评】本题考查中心对称图形的概念:绕对称中心旋转180度后所得的图形与原图形完全重合.4.(3分)一个圆锥的侧面积是底面积的3倍,则圆锥侧面展开图的扇形圆心角是()A.60° B.90° C.120°D.180°【分析】根据圆锥的侧面积是底面积的3倍得到圆锥的母线长和底面半径之间的关系,进而利用扇形的弧长等于圆锥的底面周长即可求得扇形的圆心角.【解答】解:设圆锥的母线长为R,底面半径为r.∵侧面积是底面积的3倍,∴2πr×R÷2=3πr2,∴R=3r.∴=2πr,∴n=120°【点评】解决本题的关键是抓住圆锥中的相等关系解决问题.5.(3分)坐标平面上有一函数y=﹣3x2+12x﹣7的图形,其顶点坐标为何?()A.(2,5)B.(2,﹣19)C.(﹣2,5)D.(﹣2,﹣43)【分析】把函数解析式整理成顶点式形式,然后写出顶点坐标即可得解.【解答】解:∵y=﹣3x2+12x﹣7=﹣3(x2﹣4x+4)+12﹣7,=﹣3(x﹣2)2+5,∴函数的顶点坐标为(2,5).故选A.【点评】本题考查了二次函数的性质,把函数解析式转化为顶点式形式再确定顶点坐标更加简便.6.(3分)已知二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=bx+b2﹣4ac与反比例函数y=在同一坐标系内的图象大致为()A .B .C .D .【分析】根据二次函数图象的开口向上可得a>0,再根据对称轴确定出b=﹣a,然后根据x=﹣1时函数图象在x轴的上方求出b、c的关系,最后确定出b2﹣4ac与c﹣2b的正负情况,从而确定出一次函数图象与反比例函数图象即可得解.【解答】解:∵二次函数图象开口向上,∴a>0,∵对称轴为直线x=﹣=,∴b=﹣a<0,当x=﹣1时,a﹣b+c>0,∴﹣b﹣b+c>0,解得c﹣2b>0,∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴一次函数图象经过第一、二、四象限,反比例函数图象经过第一三象限.故选B.【点评】本题考查了二次函数图象,一次函数图象,反比例函数图象,此类题目通常根据二次函数图象的开口方向,对称轴以及x的特殊值求出a、b、c的关系是解题的关键.7.(3分)正六边形的边心距与边长之比为()A .:3B .:2 C.1:2 D .:2【分析】首先根据题意画出图形,然后设六边形的边长是a,由勾股定理即可求得OC的长,继而求得答案.【解答】解:如图:设六边形的边长是a,则半径长也是a;经过正六边形的中心O作边AB的垂线OC,则AC=AB=a,∴OC==a,∴正六边形的边心距与边长之比为:a:a=:2.故选B.【点评】此题考查了正多边形和圆的关系.此题难度不大,注意掌握数形结合思想的应用.8.(3分)已知△ABC中,∠C=90°,BC=a,CA=b,AB=c,⊙O与三角形的边相切,下列选项中,⊙O 的半径为的是()A .B .C .D .【分析】利用圆与三角形各边相切的不同情况,利用勾股定理列方程求出圆的半径,找出正确的答案.【解答】解:①∵⊙O是△ABC的内切圆,∴⊙O的半径=,∴A不正确;②∵⊙O与AB,BC相切,∴r2+(c﹣a)2=(b﹣r)2∴r=,∴B不正确;③∵⊙O与AC,BC相切,圆心在AB上,∴=,∴r=,∴C正确,④∵⊙O与AB,AC相切,圆心在BC 上,∴(a﹣r)2=r2+(c﹣b)2,∴r=,∴D不正确.【点评】本题考查了三角形的内切圆,切线长定理,勾股定理的应用,正确弄清圆与三角形的位置关系是解决本题的关键.9.(3分)如图,一张半径为1的圆形纸片在边长为a(a≥3)的正方形内任意移动,则该正方形内,这张圆形纸片“不能接触到的部分”的面积是()A.a2﹣πB.(4﹣π)a2C.πD.4﹣π【分析】这张圆形纸片“不能接触到的部分”的面积是就是小正方形的面积与扇形的面积的差.【解答】解:小正方形的面积是:1;当圆运动到正方形的一个角上时,形成扇形BAO ,它的面积是:.则这张圆形纸片“不能接触到的部分”的面积是4(1﹣)=4﹣π.故选D.【点评】本题主要考查了正方形和圆的面积的计算公式,正确记忆公式是关键.二.填空题(共21分)10.(3分)方程(x﹣3)(x+1)=x﹣3的解是X1=0,X2=3 .【分析】由于方程的左右两边都含有公因式x﹣3,可先移项,然后用提取公因式法求解.【解答】解:(x﹣3)(x+1)=x﹣3,(x﹣3)(x+1﹣1)=0,x﹣3=0或x=0,解得x1=0,x2=3.【点评】本题考查了解一元二次方程的方法,当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.当化简后不能用分解因式的方法即可考虑求根公式法,此法适用于任何一元二次方程.11.(3分)已知关于x的一元二次方程x2+x+m=0的一个实数根为1,那么它的另一个实数根是﹣2 .【分析】首先设关于x的一元二次方程x2+x+m=0的另一个实数根是α,然后根据根与系数的关系,即可得α+1=﹣1,继而求得答案.【解答】解:设关于x的一元二次方程x2+x+m=0的另一个实数根是α,∵关于x的一元二次方程x2+x+m=0的一个实数根为1,∴α+1=﹣1,∴α=﹣2.故答案为﹣2.【点评】此题考查了根与系数的关系.此题难度不大,注意掌握若二次项系数为1,x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q.12.(3分)如图,AB为⊙O的直径,弦CD⊥AB,E 为上一点,若∠CEA=28°,则∠ABD= 28 度.【分析】本题关键是理清弧的关系,找出等弧,则可根据“同圆中等弧对等角”求解.【解答】解:由垂径定理可知,又根据在同圆或等圆中相等的弧所对的圆周角也相等的性质可知∠ABD=∠CEA=28度.故答案为:28.【点评】本题综合考查了垂径定理和圆周角的求法及性质.解答这类题一些学生不会综合运用所学知识解答问题,不知从何处入手造成错解.13.(3分)若关于x的函数y=kx2+2x﹣1与x轴仅有一个公共点,则实数k的值为0或﹣1 .【分析】令y=0,则关于x的方程kx2+2x﹣1=0只有一个根,所以k=0或根的判别式△=0,借助于方程可以求得实数k的值.【解答】解:令y=0,则kx2+2x﹣1=0.∵关于x的函数y=kx2+2x﹣1与x轴仅有一个公共点,∴关于x的方程kx2+2x﹣1=0只有一个根.①当k=0时,2x﹣1=0,即x=,∴原方程只有一个根,∴k=0符合题意;②当k≠0时,△=4+4k=0,解得,k=﹣1.综上所述,k=0或﹣1.故答案为:0或﹣1.【点评】本题考查了抛物线与x轴的交点.解题时,需要对函数y=kx2+2x﹣1进行分类讨论:一次函数和二次函数时,满足条件的k的值.14.(3分)如图所示,一半径为2的圆内切于一个圆心角为60°的扇形,则扇形的周长为12+2π.【分析】作PD⊥OA于D,根据切线的性质得到PD=2,再根据切线长定理得到∠AOB=∠AOC=30°,则有OP=2PD=4,所以OB=2,即扇形的半径为6,然后根据弧长公式计算出弧BC的长,再把弧BC的长、OA和OC的长相加即可.【解答】解:作PD⊥OA于D,如图,则PD=2,∵OC、OA与⊙P相切,∴∠AOB=∠AOC=×60°=30°,在Rt△POD中,OP=2PD=4,∴OB=OP+PB=6,∴BC弧的长度==2π,∴扇形的周长=6+6+2π=12+2π.故答案为:12+2π.【点评】本题考查了相切两圆的性质:如果两圆相切,那么连心线必经过切点.也考查了切线的性质、弧长公式以及含30度的直角三角形三边的关系.15.(3分)如图所示,在直角坐标系中放置一个边长为1的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A离开原点后第一次落在x轴上时,点A运动的路径线与x轴围成的面积为π+1 .【分析】根据旋转的性质作出图形,再利用勾股定理列式求出正方形的对角线,然后根据点A运动的路径线与x轴围成的面积为三个扇形的面积加上两个直角三角形的面积,列式计算即可得解.【解答】解:如图,∵正方形ABCD的边长为1,∴对角线长:=,点A运动的路径线与x轴围成的面积为:+++×1×1+×1×1=π+π+π++=π+1.故答案为:π+1.【点评】本题考查了旋转的性质,正方形的性质,扇形的面积,读懂题意并作出图形,观察出所求面积的组成部分是解题的关键,作出图形更形象直观.16.(3分)如图,已知函数y=与y=ax2+bx(a>0,b>0)的图象交于点P.点P的纵坐标为1.则关于x的方程ax2+bx+=0的解为x=﹣3 .【分析】先根据点P的纵坐标为1求出x的值,再把于x的方程ax2+bx+=0化为于x的方程ax2+bx=﹣的形式,此方程就化为求函数y=与y=ax2+bx(a>0,b>0)的图象交点的横坐标,由求出的P点坐标即可得出结论.【解答】解:∵P的纵坐标为1,∴1=﹣,∴x=﹣3,∵ax2+bx+=0化为于x的方程ax2+bx=﹣的形式,∴此方程的解即为两函数图象交点的横坐标的值,∴x=﹣3.故答案为:x=﹣3.【点评】本题考查的是二次函数的图象与反比例函数图象的交点问题,能把方程的解化为两函数图象的交点问题是解答此题的关键.三.解答题(共72分)17.(8分)关于x的一元二次方程x2﹣x+p﹣1=0有两实数根x1,x2,(1)求p的取值范围;(2)若[2+x1(1﹣x1)][2+x2(1﹣x2)]=9,求p的值.【分析】(1)一元二次方程有实根,△≥0,根据判别式的公式代入可求p的取值范围;(2)将等式变形,结合四个等式:x1+x2=1,x1•x2=p﹣1,x12﹣x1+p﹣1=0,x22﹣x2+p﹣1=0,代入求p,结果要根据p的取值范围进行检验.【解答】解:(1)由题意得:△=(﹣1)2﹣4(p﹣1)≥0解得,p ≤;(2)由[2+x1(1﹣x1)][2+x2(1﹣x2)]=9得,(2+x1﹣x12)(2+x2﹣x22)=9∵x1,x2是方程x2﹣x+p﹣1=0的两实数根,∴x12﹣x1+p﹣1=0,x22﹣x2+p﹣1=0,∴x1﹣x12=p﹣1,x2﹣x22=p﹣1∴(2+p﹣1)(2+p﹣1)=9,即(p+1)2=9∴p=2或p=﹣4,∵p ≤,∴所求p的值为﹣4.【点评】本题考查了一元二次方程的根的判别式运用,根与系数关系的运用以及等式变形的能力.18.(6分)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?【分析】本题可设每轮感染中平均一台会感染x台电脑,则第一轮后共有(1+x)台被感染,第二轮后共有(1+x)+x(1+x)即(1+x)2台被感染,利用方程即可求出x的值,并且3轮后共有(1+x)3台被感染,比较该数同700的大小,即可作出判断.【解答】解:设每轮感染中平均每一台电脑会感染x台电脑,依题意得:1+x+(1+x)x=81,整理得(1+x)2=81,则x+1=9或x+1=﹣9,解得x1=8,x2=﹣10(舍去),∴(1+x)2+x(1+x)2=(1+x)3=(1+8)3=729>700.答:每轮感染中平均每一台电脑会感染8台电脑,3轮感染后,被感染的电脑会超过700台.【点评】本题只需仔细分析题意,利用方程即可解决问题.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.19.(6分)如图,一个含45°的三角板HBE的两条直角边与正方形ABCD的两邻边重合,过E点作EF⊥AE交∠DCE的角平分线于F点,试探究线段AE与EF的数量关系,并说明理由.【分析】AE=EF.根据正方形的性质推出AB=BC,∠BAD=∠HAD=∠DCE=90°,推出∠HAE=∠CEF,根据△HEB是以∠B为直角的等腰直角三角形,得到BH=BE,∠H=45°,HA=EC,根据CF平分∠DCE推出∠HAE=∠CEF,根据ASA证△HAE≌△CEF即可得到答案.【解答】线段AE与EF的数量关系为:AE=EF.证明:∵四边形ABCD是正方形,∴AB=BC,∠BAD=∠HAD=∠DCE=90°,又∵EF⊥AE,∴∠AEF=90°,∵AD∥BC∴∠DAE=∠AEB(两直线平行,内错角相等)∴∠HAE=∠HAD+∠DAE=∠AEF+∠BEA=∠CEF,又∵△HEB是以∠B为直角的等腰直角三角形,∴BH=BE,∠H=45°,HA=BH﹣BA=BE﹣BC=EC,又∵CF平分∠DCE,∴∠FCE=45°=∠EHA,在△HAE和△CEF 中∴△HAE≌△CEF(ASA),∴AE=EF.【点评】此题考查线段相等的证明方法,可以通过全等三角形来证明.要判定两个三角形全等,先根据已知条件或求证的结论确定三角形,再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.20.(7分)如图,在△AOB中,∠ABO=90°,OB=4,AB=8,反比例函数y=在第一象限内的图象分别交OA,AB于点C和点D,且△BOD的面积S△BOD=4.(1)求反比例函数解析式;(2)求点C的坐标.【分析】(1)根据反比例函数k 的几何意义得到×k=4,解得k=8,所以反比例函数解析式为y=;(2)先确定A点坐标,再利用待定系数法求出直线OA的解析式为y=2x ,然后解方程组即可得到C点坐标.【解答】解:(1)∵∠ABO=90°,S△BOD=4,∴×k=4,解得k=8,∴反比例函数解析式为y=;(2)∵∠ABO=90°,OB=4,AB=8,∴A点坐标为(4,8),设直线OA的解析式为y=kx,把A(4,8)代入得4k=8,解得k=2,∴直线OA的解析式为y=2x,解方程组得或,∵C在第一象限,∴C点坐标为(2,4).【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式.21.(8分)已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.(Ⅰ)如图①,当直线l与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小;(Ⅱ)如图②,当直线l与⊙O相交于点E、F时,若∠DAE=18°,求∠BAF的大小.【分析】(Ⅰ)如图①,首先连接OC,根据当直线l与⊙O相切于点C,AD⊥l于点D.易证得OC∥AD,继而可求得∠BAC=∠DAC=30°;(Ⅱ)如图②,连接BF,由AB是⊙O的直径,根据直径所对的圆周角是直角,可得∠AFB=90°,由三角形外角的性质,可求得∠AEF的度数,又由圆的内接四边形的性质,求得∠B的度数,继而求得答案.【解答】解:(Ⅰ)如图①,连接OC,∵直线l与⊙O相切于点C,∴OC⊥l,∵AD⊥l,∴OC∥AD,∴∠OCA=∠DAC,∵OA=OC,∴∠BAC=∠OCA,∴∠BAC=∠DAC=30°;(Ⅱ)如图②,连接BF,∵AB是⊙O的直径,∴∠AFB=90°,∴∠BAF=90°﹣∠B,∴∠AEF=∠ADE+∠DAE=90°+18°=108°,在⊙O中,四边形ABFE是圆的内接四边形,∴∠AEF+∠B=180°,∴∠B=180°﹣108°=72°,∴∠BAF=90°﹣∠B=90°﹣72°=18°.【点评】此题考查了切线的性质、圆周角定理以及圆的内接四边形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.22.(6分)某商场为了吸引顾客,设计了一种促销活动.在一个不透明的箱子里放有4个完全相同的小球,球上分别标有“0元”、“10元”、“30元”和“50元”的字样.规定:顾客在本商场同一日内,消费每满300元,就可以从箱子里先后摸出两个球(每次只摸出一个球,第一次摸出后不放回).商场根据两个小球所标金额之和返还相应价格的购物券,可以重新在本商场消费.某顾客消费刚好满300元,则在本次消费中:(1)该顾客至少可得10 元购物券,至多可得80 元购物券;(2)请用画树状图或列表法,求出该顾客所获购物券的金额不低于50元的概率.【分析】(1)根据题意即可求得该顾客至少可得的购物券,至多可得的购物券的金额;(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与该顾客所获购物券的金额不低于50元的情况,再利用概率公式求解即可求得答案.【解答】解:(1)根据题意得:该顾客至少可得购物券:0+10=10(元),至多可得购物券:30+50=80(元).故答案为:10,80.…2′(2)列表得:∵两次摸球可能出现的结果共有12种,每种结果出现的可能性相同,而所获购物券的金额不低于50元的结果共有6种.…8′∴该顾客所获购物券的金额不低于50元的概率是:.…10′【点评】此题考查的是用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意此题是不放回实验.23.(8分)如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D 为BE的下半圆弧的中点,连接AD交BC于F,若AC=FC.(1)求证:AC是⊙O的切线:(2)若BF=8,DF=,求⊙O的半径r.【分析】(1)连接OA、OD,求出∠D+∠OFD=90°,推出∠CAF=∠CFA,∠OAD=∠D,求出∠OAD+∠CAF=90°,根据切线的判定推出即可;(2)OD=r,OF=8﹣r,在Rt△DOF中根据勾股定理得出方程r2+(8﹣r)2=()2,求出即可.【解答】(1)证明:连接OA、OD,∵D为弧BE的中点,∴OD⊥BC,∠DOF=90°,∴∠D+∠OFD=90°,∵AC=FC,OA=OD,∴∠CAF=∠CFA,∠OAD=∠D,∵∠CFA=∠OFD,∴∠OAD+∠CAF=90°,∴OA⊥AC,∵OA为半径,∴AC是⊙O切线;(2)解:∵⊙O半径是r,∴OD=r,OF=8﹣r,在Rt△DOF中,r2+(8﹣r)2=()2,r=6,r=2(舍),当r=2时,OB=OE=2,OF=BF﹣OB=8﹣2=6>OE,∴r=2舍去;即⊙O的半径r为6.,【点评】本题考查了切线的判定,等腰三角形的性质和判定,勾股定理等知识点的应用,主要考查学生的推理和计算的能力.24.(12分)某大学生利用暑假40天社会实践参与了一家网店的经营,了解到一种成本为20元/件的新型商品在第x天销售的相关信息如表所示.q=30+xq=20+(1)请计算第几天该商品的销售单价为35元/件?(2)求该网店第x天获得的利润y关于x的函数关系式;(3)这40天中该网店第几天获得的利润最大?最大的利润是多少?【分析】(1)在每个x的取值范围内,令q=35,分别解出x的值即可;(2)利用利润=售价﹣成本,分别求出在1≤x≤20和21≤x≤40时,y与x的函数关系式;(3)当1≤x≤20时,y=﹣x2+15x+500=﹣(x﹣15)2+612.5,求出一个最大值y1,当21≤x≤40时,求出一个最大值y2,然后比较两者的大小.【解答】解:(1)当1≤x≤20时,令30+x=35,得x=10,当21≤x≤40时,令20+=35,得x=35,经检验得x=35是原方程的解且符合题意即第10天或者第35天该商品的销售单价为35元/件.(2)当1≤x≤20时,y=(30+x﹣20)(50﹣x)=﹣x2+15x+500,当21≤x≤40时,y=(20+﹣20)(50﹣x)=﹣525,即y=,(3)当1≤x≤20时,y=﹣x2+15x+500=﹣(x﹣15)2+612.5,∵﹣<0,∴当x=15时,y有最大值y1,且y1=612.5,当21≤x≤40时,∵26250>0,∴随x的增大而减小,当x=21时,最大,于是,x=21时,y=﹣525有最大值y2,且y2=﹣525=725,∵y1<y2,∴这40天中第21天时该网店获得利润最大,最大利润为725元.【点评】本题主要考查二次函数的应用的知识点,解答本题的关键是熟练掌握二次函数的性质和反比例函数的性质以及最值得求法,此题难度不大.25.(11分)已知:如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,﹣1),B(3,﹣1),动点P从点O出发,沿着x轴正方向以每秒2个单位长度的速度移动.过点P作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)如果将△OPQ绕着点P按逆时针方向旋转90°,是否存在t,使得△OPQ的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;(4)求出S与t的函数关系式.【分析】(1)设抛物线解析式为y=ax2+bx(a≠0),然后把点A、B的坐标代入求出a、b的值,即可得解,再把函数解析式整理成顶点式形式,然后写出顶点M的坐标;(2)根据点P的速度求出OP,即可得到点P的坐标,再根据点A的坐标求出∠AOC=45°,然后判断出△POQ是等腰直角三角形,根据等腰直角三角形的性质求出点Q的坐标即可;(3)根据旋转的性质求出点O、Q的坐标,然后分别代入抛物线解析式,求解即可;(4)求出点Q与点A重合时的t=1,点P与点C重合时的t=1.5,t=2时PQ经过点B,然后分①0<t≤1时,重叠部分的面积等于△POQ的面积,②1<t≤1.5时,重叠部分的面积等于两个等腰直角三角形的面积的差,③1.5<t<2时,重叠部分的面积等于梯形的面积减去一个等腰直角三角形的面积分别列式整理即可得解.【解答】解:(1)设抛物线解析式为y=ax2+bx(a≠0),把点A(1,﹣1),B(3,﹣1)代入得,,解得,∴抛物线解析式为y=x2﹣x,∵y=x2﹣x=(x﹣2)2﹣,∴顶点M的坐标为(2,﹣);(2)∵点P从点O出发速度是每秒2个单位长度,∴OP=2t,∴点P的坐标为(2t,0),∵A(1,﹣1),∴∠AOC=45°,∴点Q到x轴、y 轴的距离都是OP=×2t=t,∴点Q的坐标为(t,﹣t);(3)∵△OPQ绕着点P按逆时针方向旋转90°,∴旋转后点O、Q的对应点的坐标分别为(2t,﹣2t),(3t,﹣t),若顶点O 在抛物线上,则×(2t)2﹣×(2t)=﹣2t,解得t=(t=0舍去),∴t=时,点O(1,﹣1)在抛物线y=x2﹣x上,若顶点Q 在抛物线上,则×(3t)2﹣×(3t)=﹣t,解得t=1(t=0舍去),∴t=1时,点Q(3,﹣1)在抛物线y=x2﹣x上.(4)点Q与点A重合时,OP=1×2=2,t=2÷2=1,点P与点C重合时,OP=3,t=3÷2=1.5,t=2时,OP=2×2=4,PC=4﹣3=1,此时PQ经过点B,所以,分三种情况讨论:①0<t≤1时,S=S△OPQ =×(2t )×=t2,②1<t≤1.5时,S=S△OP′Q′﹣S△AEQ′=×(2t )×﹣×(t ﹣)2=2t﹣1;③1.5<t<2时,S=S梯形OABC﹣S△BGF =×(2+3)×1﹣×[1﹣(2t﹣3)]2=﹣2(t﹣2)2+=﹣2t2+8t ﹣;所以,S与t的关系式为S=.【点评】本题是二次函数综合题型,主要利用了待定系数法求二次函数解析式,等腰直角三角形的性质,二次函数图象上点的坐标特征,三角形的面积,难点在于(4)随着运动时间的变化,根据重叠部分的形状的不同分情况讨论,作出图形更形象直观.。

相关文档
最新文档