高考数学一轮复习 第三章 导数及其应用 3.2 导数的应用 理
高考数学大一轮复习 第三章 三角函数、解三角形 3.2 导数的应用 第2课时 导数与函数的极值、最值教师用书
第2课时导数与函数的极值、最值题型一用导数解决函数极值问题命题点1 根据函数图象判断极值例1 (1)(2016·绍兴模拟)设f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能是( )(2)设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是( )A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(-2)和极小值f(1)C.函数f(x)有极大值f(2)和极小值f(-2)D.函数f(x)有极大值f(-2)和极小值f(2)答案(1)C (2)D解析(1)由f′(x)图象可知,x=0是函数f(x)的极大值点,x=2是f(x)的极小值点,故选C.(2)由题图可知,当x<-2时,f′(x)>0;当-2<x<1时,f′(x)<0;当1<x<2时,f′(x)<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值. 命题点2 求函数的极值例2 (2016·台州模拟)已知函数f (x )=x -1+ae x (a ∈R ,e 为自然对数的底数).(1)若曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,求a 的值; (2)求函数f (x )的极值.解 (1)由f (x )=x -1+a e x ,得f ′(x )=1-ae x .又曲线y =f (x )在点(1,f (1))处的切线平行于x 轴, 得f ′(1)=0,即1-ae =0,解得a =e. (2)f ′(x )=1-aex ,①当a ≤0时,f ′(x )>0,f (x )为(-∞,+∞)上的增函数,所以函数f (x )无极值. ②当a >0时,令f ′(x )=0,得e x=a ,即x =ln a , 当x ∈(-∞,ln a )时,f ′(x )<0; 当x ∈(ln a ,+∞)时,f ′(x )>0, 所以f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增,故f (x )在x =ln a 处取得极小值且极小值为f (ln a )=ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,f (x )在x =ln a 处取得极小值ln a ,无极大值. 命题点3 已知极值求参数例3 (1)(2016·杭州模拟)已知f (x )=x 3+3ax 2+bx +a 2在x =-1时有极值0,则a -b =________.(2)(2016·福州质检)若函数f (x )=x 33-a2x 2+x +1在区间(12,3)上有极值点,则实数a 的取值范围是( ) A .(2,52)B .[2,52)C .(2,103)D .[2,103)答案 (1)-7 (2)C解析 (1)由题意得f ′(x )=3x 2+6ax +b ,则⎩⎪⎨⎪⎧a 2+3a -b -1=0,b -6a +3=0,解得⎩⎪⎨⎪⎧a =1,b =3或⎩⎪⎨⎪⎧a =2,b =9,经检验当a =1,b =3时,函数f (x )在x =-1处无法取得极值,而a =2,b =9满足题意,故a -b =-7.(2)若函数f (x )在区间(12,3)上无极值,则当x ∈(12,3)时,f ′(x )=x 2-ax +1≥0恒成立或当x ∈(12,3)时,f ′(x )=x 2-ax +1≤0恒成立.当x ∈(12,3)时,y =x +1x 的值域是[2,103);当x ∈(12,3)时,f ′(x )=x 2-ax +1≥0,即a ≤x +1x恒成立,a ≤2;当x ∈(12,3)时,f ′(x )=x 2-ax +1≤0,即a ≥x +1x 恒成立,a ≥103.因此要使函数f (x )在(12,3)上有极值点,实数a 的取值范围是(2,103).思维升华 (1)求函数f (x )极值的步骤 ①确定函数的定义域; ②求导数f ′(x );③解方程f ′(x )=0,求出函数定义域内的所有根;④列表检验f ′(x )在f ′(x )=0的根x 0左右两侧值的符号,如果左正右负,那么f (x )在x 0处取极大值,如果左负右正,那么f (x )在x 0处取极小值.(2)若函数y =f (x )在区间(a ,b )内有极值,那么y =f (x )在(a ,b )内绝不是单调函数,即在某区间上单调函数没有极值.(1)函数f (x )=(x 2-1)2+2的极值点是( )A .x =1B .x =-1C .x =1或-1或0D .x =0(2)函数y =2x -1x2的极大值是________.答案 (1)C (2)-3解析 (1)∵f (x )=x 4-2x 2+3,∵由f ′(x )=4x 3-4x =4x (x +1)(x -1)=0,得x =0或x =1或x =-1.又当x <-1时,f ′(x )<0, 当-1<x <0时,f ′(x )>0. 当0<x <1时,f ′(x )<0, 当x >1时,f ′(x )>0,∴x =0,1,-1都是f (x )的极值点. (2)y ′=2+2x3,令y ′=0,得x =-1.当x <-1,x >0时,y ′>0;当-1<x <0时,y ′<0. ∴当x =-1时,y 取极大值-3. 题型二 用导数求函数的最值例4 已知a ∈R ,函数f (x )=a x+ln x -1.(1)当a =1时,求曲线y =f (x )在点(2,f (2))处的切线方程; (2)求f (x )在区间(0,e]上的最小值.解 (1)当a =1时,f (x )=1x+ln x -1,x ∈(0,+∞),所以f ′(x )=-1x 2+1x =x -1x2,x ∈(0,+∞).因此f ′(2)=14,即曲线y =f (x )在点(2,f (2))处的切线斜率为14.又f (2)=ln 2-12,所以曲线y =f (x )在点(2,f (2))处的切线方程为y -(ln 2-12)=14(x -2),即x -4y +4ln 2-4=0.(2)因为f (x )=ax+ln x -1,所以f ′(x )=-a x2+1x=x -ax2,x ∈(0,e].令f ′(x )=0,得x =a .①若a ≤0,则f ′(x )>0,f (x )在区间(0,e]上单调递增,此时函数f (x )无最小值. ②若0<a <e ,则当x ∈(0,a )时,f ′(x )<0,函数f (x )在区间(0,a )上单调递减;当x ∈(a ,e]时,f ′(x )>0,函数f (x )在区间(a ,e]上单调递增, 所以当x =a 时,函数f (x )取得最小值ln a .③若a ≥e,则当x ∈(0,e]时,f ′(x )≤0,函数f (x )在区间(0,e]上单调递减, 所以当x =e 时,函数f (x )取得最小值ae.综上可知,当a ≤0时,函数f (x )在区间(0,e]上无最小值; 当0<a <e 时,函数f (x )在区间(0,e]上的最小值为ln a ; 当a ≥e 时,函数f (x )在区间(0,e]上的最小值为ae .思维升华 求函数f (x )在[a ,b ]上的最大值和最小值的步骤 (1)求函数在(a ,b )内的极值;(2)求函数在区间端点的函数值f (a ),f (b );(3)将函数f (x )的极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.设函数f (x )=x 3-x 22-2x +5,若对任意的x ∈[-1,2],都有f (x )>a ,则实数a 的取值范围是________________.答案 (-∞,72)解析 由题意知,f ′(x )=3x 2-x -2, 令f ′(x )=0,得3x 2-x -2=0, 解得x =1或x =-23,又f (1)=72,f (-23)=15727,f (-1)=112,f (2)=7,故f (x )min =72,∴a <72.题型三 函数极值和最值的综合问题例5 已知函数f (x )=⎩⎪⎨⎪⎧-x 3+x2x ,a ln x x(1)求f (x )在区间(-∞,1)上的极小值和极大值点; (2)求f (x )在[-1,e](e 为自然对数的底数)上的最大值.解 (1)当x <1时,f ′(x )=-3x 2+2x =-x (3x -2), 令f ′(x )=0,解得x =0或x =23.当x 变化时,f ′(x ),f (x )的变化情况如下表:↘↗↘故当x =0时,函数f (x )取得极小值f (0)=0,函数f (x )的极大值点为x =23.(2)①当-1≤x <1时,由(1)知,函数f (x )在[-1,0]和[23,1)上单调递减,在[0,23]上单调递增.因为f (-1)=2,f (23)=427,f (0)=0,所以f (x )在[-1,1)上的最大值为2. ②当1≤x ≤e 时,f (x )=a ln x , 当a ≤0时,f (x )≤0;当a >0时,f (x )在[1,e]上单调递增, 则f (x )在[1,e]上的最大值为f (e)=a . 故当a ≥2时,f (x )在[-1,e]上的最大值为a ; 当a <2时,f (x )在[-1,e]上的最大值为2.思维升华 求一个函数在闭区间上的最值和在无穷区间(或开区间)上的最值时,方法是不同的.求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值.若函数f (x )=13x 3+x 2-23在区间(a ,a +5)上存在最小值,则实数a 的取值范围是( ) A .[-5,0) B .(-5,0) C .[-3,0) D .(-3,0)答案 C解析 由题意,得f ′(x )=x 2+2x =x (x +2), 故f (x )在(-∞,-2),(0,+∞)上是增函数,在(-2,0)上是减函数,作出其图象如图所示,令13x 3+x 2-23=-23得, x =0或x =-3,则结合图象可知,⎩⎪⎨⎪⎧-3≤a <0,a +5>0,解得a ∈[-3,0).3.利用导数求函数的最值典例 (15分)已知函数f (x )=ln x -ax (a ∈R ). (1)求函数f (x )的单调区间;(2)当a >0时,求函数f (x )在[1,2]上的最小值.思维点拨 (1)已知函数解析式求单调区间,实质上是求f ′(x )>0,f ′(x )<0的解区间,并注意定义域.(2)先研究f (x )在[1,2]上的单调性,再确定最值是端点值还是极值.(3)两小问中,由于解析式中含有参数a ,要对参数a 进行分类讨论. 规范解答解 (1)f ′(x )=1x-a (x >0),①当a ≤0时,f ′(x )=1x-a >0,即函数f (x )的单调递增区间为(0,+∞).[3分]②当a >0时,令f ′(x )=1x -a =0,可得x =1a,当0<x <1a 时,f ′(x )=1-axx>0;当x >1a 时,f ′(x )=1-ax x<0,故函数f (x )的单调递增区间为⎝⎛⎭⎪⎫0,1a ,单调递减区间为⎝ ⎛⎭⎪⎫1a,+∞.[5分]综上可知,当a ≤0时,函数f (x )的单调递增区间为(0,+∞);当a >0时,函数f (x )的单调递增区间为⎝⎛⎭⎪⎫0,1a ,单调递减区间为⎝ ⎛⎭⎪⎫1a ,+∞.[6分](2)①当1a≤1,即a ≥1时,函数f (x )在区间[1,2]上是减函数,所以f (x )的最小值是f (2)=ln 2-2a . [7分]②当1a ≥2,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )的最小值是f (1)=-a .[9分]③当1<1a <2,即12<a <1时,函数f (x )在⎣⎢⎡⎦⎥⎤1,1a 上是增函数,在⎣⎢⎡⎦⎥⎤1a ,2上是减函数.又f (2)-f (1)=ln 2-a ,所以当12<a <ln 2时,最小值是f (1)=-a ;当ln 2≤a <1时,最小值为f (2)=ln 2-2a .[13分]综上可知,当0<a <ln 2时,函数f (x )的最小值是-a ; 当a ≥ln 2时,函数f (x )的最小值是ln 2-2a .[15分]用导数法求给定区间上的函数的最值问题一般可用以下几步答题 第一步:(求导数)求函数f (x )的导数f ′(x );第二步:(求极值)求f (x )在给定区间上的单调性和极值; 第三步:(求端点值)求f (x )在给定区间上的端点值;第四步:(求最值)将f (x )的各极值与f (x )的端点值进行比较,确定f (x )的最大值与最小值; 第五步:(反思)反思回顾,查看关键点,易错点和解题规范.1.函数f (x )=13x 3-4x +4的极大值为( )A.283 B .6 C.263 D .7 答案 A解析 f ′(x )=x 2-4=(x +2)(x -2),f (x )在(-∞,-2)上单调递增,在(-2,2)上单调递减,在(2,+∞)上单调递增,所以f (x )的极大值为f (-2)=283.2.(2016·四川)已知a 为函数f (x )=x 3-12x 的极小值点,则a 等于( ) A .-4 B .-2 C .4 D .2 答案 D解析 ∵f (x )=x 3-12x ,∴f ′(x )=3x 2-12, 令f ′(x )=0,得x 1=-2,x 2=2.当x ∈(-∞,-2),(2,+∞)时,f ′(x )>0,则f (x )单调递增; 当x ∈(-2,2)时,f ′(x )<0,则f (x )单调递减, ∴f (x )的极小值点为a =2.3.(2016·温州模拟)函数f (x )=12x 2-ln x 的最小值为( )A.12 B .1 C .0 D .不存在 答案 A解析 f ′(x )=x -1x =x 2-1x且x >0.令f ′(x )>0,得x >1. 令f ′(x )<0,得0<x <1.∴f (x )在x =1处取得极小值也是最小值,f (1)=12-ln 1=12.4.已知函数f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则实数a 的取值范围是( ) A .(-1,2) B .(-∞,-3)∪(6,+∞) C .(-3,6) D .(-∞,-1)∪(2,+∞)答案 B解析 ∵f ′(x )=3x 2+2ax +(a +6), 由已知可得f ′(x )=0有两个不相等的实根. ∴Δ=4a 2-4×3(a +6)>0,即a 2-3a -18>0. ∴a >6或a <-3.*5.(2016·安阳模拟)函数f (x )=ax 3+bx 2+cx -34(a ,b ,c ∈R )的导函数为f ′(x ),若不等式f ′(x )≤0的解集为{x |-2≤x ≤3},f (x )的极小值等于-115,则a 的值是( )A .-8122 B.13 C .2 D .5答案 C解析 由已知可得f ′(x )=3ax 2+2bx +c ,由3ax 2+2bx +c ≤0的解集为{x |-2≤x ≤3}可知a >0, 且-2,3是方程3ax 2+2bx +c =0的两根, 则由根与系数的关系知2b 3a =-1,c3a =-6,∴b =-3a2,c =-18a ,此时f (x )=ax 3-3a 2x 2-18ax -34,当x ∈(-∞,-2)时,f ′(x )>0,f (x )为增函数; 当x ∈(-2,3)时,f ′(x )<0,f (x )为减函数; 当x ∈(3,+∞)时,f ′(x )>0,f (x )为增函数,∴f (3)为f (x )的极小值,且f (3)=27a -27a2-54a -34=-115,解得a =2,故选C.6.(2016·奉化模拟)已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax (a >12),当x ∈(-2,0)时,f (x )的最小值为1,则a 的值等于( )A.14B.13C.12 D .1 答案 D解析 由题意知,当x ∈(0,2)时,f (x )的最大值为-1. 令f ′(x )=1x -a =0,得x =1a,当0<x <1a时,f ′(x )>0;当x >1a时,f ′(x )<0.∴f (x )max =f (1a)=-ln a -1=-1,解得a =1.7.已知函数f (x )=x 3+ax 2+bx +a 2在x =1处有极值10,则f (2)等于( ) A .11或18 B .11 C .18D .17或18答案 C解析 ∵函数f (x )=x 3+ax 2+bx +a 2在x =1处有极值10,∴f (1)=10,且f ′(1)=0,即⎩⎪⎨⎪⎧ 1+a +b +a 2=10,3+2a +b =0,解得⎩⎪⎨⎪⎧ a =-3,b =3或⎩⎪⎨⎪⎧ a =4,b =-11. 而当⎩⎪⎨⎪⎧ a =-3,b =3时,函数在x =1处无极值,故舍去. ∴f (x )=x 3+4x 2-11x +16,∴f (2)=18.8.函数f (x )=x 3-3a 2x +a (a >0)的极大值是正数,极小值是负数,则a 的取值范围是________.答案 (22,+∞) 解析 f ′(x )=3x 2-3a 2=3(x +a )(x -a ),由f ′(x )=0得x =±a ,当-a <x <a 时,f ′(x )<0,函数递减;当x >a 或x <-a 时,f ′(x )>0,函数递增.∴f (-a )=-a 3+3a 3+a >0且f (a )=a 3-3a 3+a <0,解得a >22. ∴a 的取值范围是(22,+∞). 9.(2016·宁波模拟)已知函数f (x )=13x 3-x 2-x +m 在[0,1]上的最小值为13,则实数m 的值为________.答案 2解析 由f (x )=13x 3-x 2-x +m , 可得f ′(x )=x 2-2x -1,令x 2-2x -1=0,可得x =1± 2.当x ∈(1-2,1+2)时,f ′(x )<0,即函数f (x )在(1-2,1+2)上是减函数,即f (x )在[0,1]上的最小值为f (1),所以13-1-1+m =13,解得m =2. 10.(2016·杭州模拟)已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m ∈[-1,1],则f (m )的最小值为________.答案 -4解析 f ′(x )=-3x 2+2ax ,由f (x )在x =2处取得极值知f ′(2)=0.即-3×4+2a ×2=0,故a =3.由此可得f (x )=-x 3+3x 2-4. f ′(x )=-3x 2+6x ,由此可得f (x )在(-1,0)上单调递减,在(0,1)上单调递增, ∴对m ∈[-1,1]时,f (m )min =f (0)=-4.11.设f (x )=a (x -5)2+6ln x ,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线与y 轴相交于点(0,6).(1)确定a 的值;(2)求函数f (x )的单调区间与极值.解 (1)因为f (x )=a (x -5)2+6ln x ,所以f ′(x )=2a (x -5)+6x. 令x =1,得f (1)=16a ,f ′(1)=6-8a ,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -16a =(6-8a )(x -1),由点(0,6)在切线上,可得6-16a =8a -6,故a =12. (2)由(1)知,f (x )=12(x -5)2+6ln x (x >0), f ′(x )=x -5+6x =x -x -x .令f ′(x )=0,解得x =2或3.当0<x <2或x >3时,f ′(x )>0,故f (x )在(0,2),(3,+∞)上为增函数;当2<x <3时,f ′(x )<0,故f (x )在(2,3)上为减函数.由此可知f (x )在x =2处取得极大值f (2)=92+6ln 2,在x =3处取得极小值f (3)=2+6ln 3.综上,f (x )的单调递增区间为(0,2),(3,+∞),单调递减区间为(2,3),f (x )的极大值为92+6ln 2,极小值为2+6ln 3.12.设函数f (x )=a ln x -bx 2(x >0),若函数f (x )在x =1处与直线y =-12相切. (1)求实数a ,b 的值;(2)求函数f (x )在[1e,e]上的最大值. 解 (1)f ′(x )=a x-2bx ,∵函数f (x )在x =1处与直线y =-12相切, ∴⎩⎪⎨⎪⎧ f =a -2b =0,f =-b =-12,解得⎩⎪⎨⎪⎧ a =1,b =12.(2)由(1)知,f (x )=ln x -12x 2, f ′(x )=1x -x =1-x 2x, 当1e ≤x ≤e 时,令f ′(x )>0,得1e≤x <1, 令f ′(x )<0,得1<x ≤e,∴f (x )在[1e,1)上单调递增, 在(1,e]上单调递减,∴f (x )max =f (1)=-12. *13.(2017·杭州调研)已知函数f (x )=ax 2+bx -ln x (a >0,b ∈R ).(1)设a =1,b =-1,求f (x )的单调区间;(2)若对任意的x >0,f (x )≥f (1),试比较ln a 与-2b 的大小.解 (1)由f (x )=ax 2+bx -ln x ,x ∈(0,+∞),得f ′(x )=2ax 2+bx -1x. ∵a =1,b =-1,∴f ′(x )=2x 2-x -1x =x +x -x (x >0).令f ′(x )=0,得x =1.当0<x <1时,f ′(x )<0,f (x )单调递减; 当x >1时,f ′(x )>0,f (x )单调递增. ∴f (x )的单调递减区间是(0,1);单调递增区间是(1,+∞).(2)由题意可知,f (x )在x =1处取得最小值, 即x =1是f (x )的极值点,∴f ′(1)=0,∴2a +b =1,即b =1-2a . 令g (x )=2-4x +ln x (x >0),则g ′(x )=1-4x x. 令g ′(x )=0,得x =14. 当0<x <14时,g ′(x )>0,g (x )单调递增, 当x >14时,g ′(x )<0,g (x )单调递减, ∴g (x )≤g (14)=1+ln 14=1-ln 4<0,∴g (a )<0,即2-4a +ln a =2b +ln a <0, 故ln a <-2b .。
高考一轮复习教案数学(理)新课标 第三篇 导数及其应用 3 导数的应用(二)
第3讲导数的应用(二)【2013年高考会这样考】1.利用导数求函数的极值.2.利用导数求函数闭区间上的最值.3.利用导数解决某些实际问题.【复习指导】本讲复习时,应注重导数在研究函数极值与最值中的工具性作用,会将一些实际问题抽象为数学模型,从而用导数去解决.复习中要注意等价转化、分类讨论等数学思想的应用.基础梳理1.函数的极值(1)判断f(x0)是极值的方法一般地,当函数f(x)在点x0处连续时,①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.(2)求可导函数极值的步骤①求f′(x);②求方程f′(x)=0的根;③检查f′(x)在方程f′(x)=0的根左右值的符号.如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值,如果左右两侧符号一样,那么这个根不是极值点.2.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.(3)设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下:①求f(x)在(a,b)内的极值;②将f (x )的各极值与f (a ),f (b )比较,其中最大的一个是最大值,最小的一个是最小值.3.利用导数解决生活中的优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y =f (x ); (2)求函数的导数f ′(x ),解方程f ′(x )=0;(3)比较函数在区间端点和f ′(x )=0的点的函数值的大小,最大(小)者为最大(小)值;(4)回归实际问题作答.两个注意(1)注意实际问题中函数定义域的确定.(2)在实际问题中,如果函数在区间内只有一个极值点,那么只要根据实际意义判定最大值还是最小值即可,不必再与端点的函数值比较. 三个防范(1)求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论;另外注意函数最值是个“整体”概念,而极值是个“局部”概念. (2)f ′(x 0)=0是y =f (x )在x =x 0取极值的既不充分也不必要条件. 如①y =|x |在x =0处取得极小值,但在x =0处不可导; ②f (x )=x 3,f ′(0)=0,但x =0不是f (x )=x 3的极值点.(3)若y =f (x )可导,则f ′(x 0)=0是f (x )在x =x 0处取极值的必要条件.双基自测1.(2011·福建)若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于( ). A .2 B .3 C .6 D .9解析 f ′(x )=12x 2-2ax -2b ,由函数f (x )在x =1处有极值,可知函数f (x )在x =1处的导数值为零,12-2a -2b =0,所以a +b =6,由题意知a ,b 都是正实数,所以ab ≤⎝⎛⎭⎪⎫a +b 22=⎝ ⎛⎭⎪⎫622=9,当且仅当a =b =3时取到等号.答案 D2.已知函数f(x)=14x4-43x3+2x2,则f(x)().A.有极大值,无极小值B.有极大值,有极小值C.有极小值,无极大值D.无极小值,无极大值解析f′(x)=x3-4x2+4x=x(x-2)2f′(x),f(x)随x变化情况如下x (-∞,0)0(0,2)2(2,+∞)f′(x)-0+0+f(x)04 3因此有极小值无极大值.答案 C3.(2010·山东)已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为y=-13x3+81x-234,则使该生产厂家获取最大年利润的年产量为().A.13万件B.11万件C.9万件D.7万件解析y′=-x2+81,令y′=0解得x=9(-9舍去).当0<x<9时,y′>0;当x>9时,y′<0,则当x=9时,y取得最大值,故选C.答案 C4.(2011·广东)函数f(x)=x3-3x2+1在x=________处取得极小值.解析f′(x)=3x2-6x=3x(x-2)当x<0时,f′(x)>0,当0<x<2时,f′(x)<0,当x>2时,f′(x)>0,故当x=2时取得极小值.答案 25.若函数f (x )=x 2+ax +1在x =1处取极值,则a =________.解析 ∵f (x )在x =1处取极值,∴f ′(1)=0, 又f ′(x )=2x (x +1)-(x 2+a )(x +1)2,∴f ′(1)=2×1×(1+1)-(1+a )(1+1)2=0,即2×1×(1+1)-(1+a )=0,故a =3. 答案 3考向一 函数的极值与导数【例1】►(2011·重庆)设f (x )=2x 3+ax 2+bx +1的导数为f ′(x ),若函数y =f ′(x )的图象关于直线x =-12对称,且f ′(1)=0. (1)求实数a ,b 的值; (2)求函数f (x )的极值.[审题视点] 由条件x =-12为y =f ′(x )图象的对称轴及f ′(1)=0求得a ,b 的值,再由f ′(x )的符号求其极值. 解 (1)因f (x )=2x 3+ax 2+bx +1, 故f ′(x )=6x 2+2ax +b . 从而f ′(x )=6⎝ ⎛⎭⎪⎫x +a 62+b -a 26,即y =f ′(x )的图象关于直线x =-a6对称, 从而由题设条件知-a 6=-12,解得a =3.又由于f ′(1)=0,即6+2a +b =0,解得b =-12. (2)由(1)知f (x )=2x 3+3x 2-12x +1,f ′(x )=6x 2+6x -12=6(x -1)(x +2). 令f ′(x )=0,即6(x -1)(x +2)=0, 解得x 1=-2,x 2=1.当x ∈(-∞,-2)时,f ′(x )>0, 故f (x )在(-∞,-2)上为增函数; 当x ∈(-2,1)时,f ′(x )<0, 故f (x )在(-2,1)上为减函数; 当x ∈(1,+∞)时,f ′(x )>0, 故f (x )在(1,+∞)上为增函数.从而函数f (x )在x 1=-2处取得极大值f (-2)=21, 在x 2=1处取得极小值f (1)=-6.运用导数求可导函数y =f (x )的极值的步骤:(1)先求函数的定义域,再求函数y =f (x )的导数f ′(x );(2)求方程f ′(x )=0的根;(3)检查f ′(x )在方程根的左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值,如果左负右正,那么f (x )在这个根处取得极小值. 【训练1】 (2011·安徽)设f (x )=e x1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围. 解 对f (x )求导得f ′(x )=e x 1+ax 2-2ax (1+ax 2)2.①(1)当a =43时,若f ′(x )=0,则4x 2-8x +3=0, 解得x 1=32,x 2=12. 综合①,可知x ⎝ ⎛⎭⎪⎫-∞,12 12 ⎝ ⎛⎭⎪⎫12,32 32 ⎝ ⎛⎭⎪⎫32,+∞ f ′(x ) +0 -0 +f (x )极大值极小值所以,x 1=32是极小值点,x 2=12是极大值点.(2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号,结合①与条件a >0,知ax 2-2ax +1≥0在R 上恒成立. 因此Δ=4a 2-4a =4a (a -1)≤0, 由此并结合a >0,知0<a ≤1.考向二 函数的最值与导数【例2】►已知a 为实数,且函数f (x )=(x 2-4)(x -a ). (1)求导函数f ′(x );(2)若f ′(-1)=0,求函数f (x )在[-2,2]上的最大值、最小值. [审题视点] 先化简再求导,求极值、端点值,进行比较得最值. 解 (1)f (x )=x 3-ax 2-4x +4a ,得f ′(x )=3x 2-2ax -4. (2)因为f ′(-1)=0,所以a =12,有f (x )=x 3-12x 2-4x +2,所以f ′(x )=3x 2-x -4. 令f ′(x )=0,所以x =43或x =-1.又f ⎝ ⎛⎭⎪⎫43=-5027,f (-1)=92,f (-2)=0,f (2)=0,所以f (x )在[-2,2]上的最大值、最小值分别为92、-5027.一般地,在闭区间[a ,b ]上的连续函数f (x )必有最大值与最小值,在开区间(a ,b )内的连续函数不一定有最大值与最小值,若函数y =f (x )在闭区间[a ,b ]上单调递增,则f (a )是最小值,f (b )是最大值;反之,则f (a )是最大值,f (b )是最小值.【训练2】 函数f (x )=x 3+ax 2+b 的图象 在点P (1,0)处的切线与直线3x +y =0平行 (1)求a ,b ;(2)求函数f (x )在[0,t ](t >0)内的最大值和最小值. 解 (1)f ′(x )=3x 2+2ax由已知条件⎩⎨⎧f (1)=0,f ′(1)=-3,即⎩⎨⎧ a +b +1=0,2a +3=-3,解得⎩⎨⎧a =-3,b =2. (2)由(1)知f (x )=x 3-3x 2+2, f ′(x )=3x 2-6x =3x (x -2), f ′(x )与f (x )随x 变化情况如下:x (-∞,0)0 (0,2) 2 (2,+∞)f ′(x )+-0 +f (x )2-2由f (x )=f (0)解得x =0,或x =3 因此根据f (x )的图象当0<t ≤2时,f (x )的最大值为f (0)=2 最小值为f (t )=t 3-3t 2+2;当2<t ≤3时,f (x )的最大值为f (0)=2, 最小值为f (2)=-2;当t >3时,f (x )的最大值为f (t )=t 3-3t 2+2,最小值为 f (2)=-2.考向三 用导数解决生活中的优化问题【例3】►(2011·江苏)请你设计一个包装盒.如图所示,ABCD 是边长为60 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒.E 、F 在AB 上,是被切去的一个等腰直角三角形斜边的两个端点.设AE =FB =x (cm).(1)若广告商要求包装盒的侧面积S (cm 2)最大,试问x 应取何值?(2)某厂商要求包装盒的容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.[审题视点] 由实际问题抽象出函数模型,利用导数求函数最优解,注意变量的实际意义.解 设包装盒的高为h (cm),底面边长为a (cm).由已知得a =2x ,h =60-2x2=2(30-x ),0<x <30.(1)S =4ah =8x (30-x )=-8(x -15)2+1 800, 所以当x =15时,S 取得最大值.(2)V =a 2h =22(-x 3+30x 2),V ′=62x (20-x ). 由V ′=0得x =0(舍去)或x =20.当x ∈(0,20)时,V ′>0;当x ∈(20,30)时,V ′<0. 所以当x =20时,V 取得极大值,也是最大值. 此时h a =12.即包装盒的高与底面边长的比值为12.在求实际问题中的最大值或最小值时,一般先设自变量、因变量、建立函数关系式,并确定其定义域,利用求函数最值的方法求解,注意结果应与实际情况相符合,用导数求解实际问题中的最大(小)值,如果函数在区间内只有一个极值点,那么根据实际意义该极值点就是最值点.【训练3】 统计表明,某种型号的汽车在匀速行驶中,每小时的耗油量y (升)关于行驶速度x (千米/小时)的函数解析式可以表示为:y =1128 000x 3-380x +8(0<x ≤120).已知甲、乙两地相距100千米.(1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升? (2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升? 解 (1)设汽车以x 千米/小时的速度行驶时,其耗油量为 f (x )=100x ⎝ ⎛⎭⎪⎫1128 000x 3-380x +8=x 21 280+800x -154(0<x ≤120) f (40)=17.5(升)因此从甲地到乙地要耗油17.5升.(2)f′(x)=x640-800x2=x3-512 000640x2=(x-80)(x2+80x+6 400)640x2又0<x≤120,令f′(x)=0解得x=80,当0<x<80时,f′(x)<0;当80<x≤120时,f′(x)>0.则当x=80时,f(x)取到最小值f(80)=11.25(升)因此当汽车以80千米/小时行驶时耗油最省,最小耗油量为11.25升.难点突破7——有关导数热点问题的求解策略导数的工具性使得导数在高考中的应用有得天独厚的优势,特别是在研究函数的性质、相切问题以及实际优化的问题方面.近年,各地高考都从不同的方面对导数内容进行考查,既有考查导数的小题,又有考查导数综合应用的大题.这些问题构成了高考试卷中一道亮丽的风景线.一、研究曲线切线的导数问题导数的几何意义是我们解决有关直线与曲线相切的问题以及切线的斜率问题的有力武器,它使得复杂的图象关系问题转化为简单的函数问题、因而常常与导函数在切点的函数值一起作为列出方程的重要依据.【示例】►(2011·辽宁)设函数f(x)=x+ax2+b ln x,曲线y=f(x)过P(1,0),且在P 点处的切线斜率为2(1)求a、b的值;(2)证明:f(x)≤2x-2.二、研究函数性质的导数问题导数是研究函数问题的有力工具,常常用来解决函数的单调性、极值、最值等问题.【示例】► (2011·陕西)设f (x )=ln x ,g (x )=f (x )+f ′(x ). (1)求g (x )的单调区间和最小值; (2)讨论g (x )与g ⎝ ⎛⎭⎪⎫1x 的大小关系;(3)求a 的取值范围,使得g (a )-g (x )<1a 对任意x >0成立.▲解决实际问题的导数问题(教师备选)对于实际问题中的一些优化问题,如成本最低、利润最大、用料最省等问题,常常需要将实际问题抽象为数学问题,然后化为函数的最值来解决,而求解函数最值最有效的方法是导数法,因此,导数被广泛地应用于实际生活中的一些优化问题的求解过程,成为求解这些优化问题的首选.【示例】►如图所示,一根水平放置的长方体枕木的安全负荷与它的宽度a成正比,与它的厚度d的平方成正比,与它的长度l的平方成反比.(1)将此枕木翻转90°(即宽度变为了厚度),枕木的安全负荷会变大吗?为什么?(2)现有一根横截面为半圆(半圆的半径为R)的柱形木材,用它截取成横截面为长方形的枕木,其长度即为枕木规定的长度,问如何截取,可使安全负荷最大?。
高考数学一轮复习 第三章 导数及其应用 3.2 导数的应用(一)课件 文
导数及其应用
• 3.2 导数的应用(一)
1.函数的单调性与导数
在某个区间(a,b)内,如果 f′(x)>0,那么函数 y=f(x)在这个区间内 ____________ ; 如 果 f′(x)<0 , 那 么 函 数 y = f(x) 在 这 个 区 间 内
____________;如果在某个区间内恒有 f′(x)=0,那么函数 f(x)在这个区
解:求导得 f′(x)=2ex+2xex=2ex(x+1),令 f′(x) =2ex(x+1)=0,解得 x=-1,易知 x=-1 是函数 f(x)
的极小值点.故选 D.
函数 f(x)=13x3-4x+4 在[0,3]上的最大值为________,
在[0,3]上的最小值为________.
解:f′(x)=x2-4=(x-2)(x+2), 令 f′(x)>0,得 x>2 或 x<-2; 令 f′(x)<0,得-2<x<2. 所以 f(x)在(-∞,-2),(2,+∞)上单调递增;在(-2, 2)上单调递减,而 f(2)=-43,f(0)=4,f(3)=1,故 f(x)在[0, 3]上的最大值是 4,最小值是-43.故填 4;-43.
间上是________. 2.函数的极值与导数
(1)判断 f(x0)是极大值,还是极小值的方法: 一般地,当 f′(x0)=0 时, ①如果在 x0 附近的左侧 f′(x)>0,右侧 f′(x)<0,那么 f(x0)是极大值; ②如果在 x0 附近的左侧____________,右侧____________,那么 f(x0)
解:导数为 0 的点不一定是极值点(如 y=x3,在 x=0 处), 而极值点的导数一定为 0.极值是局部概念,因此极小值可能有
2025年高考数学一轮复习课件第三章一元函数的导数及其应用-阶段集训3
−1,最大值为1,则符合条件的一组,的值为___________________________.
3
解:′ = 6 2 − 2 = 2 3 − .不妨令 > 1,则′ < 0在区间[0,1]上恒成
0 = = 1,
立, 在区间[0,1]上单调递减,此时要满足题意则ቊ
恒成立.而 ∈ [e, +∞)时,易知′
min
= ′ e = 2 − ,只需2 − ≥ 0,即 ≤ 2.故
6
7
选B.
1
2
3
4
5
8
9
10
11
12
13
14
7.过原点的直线与函数 = cos 在[0, π]上的图象切于点 0 , 0 ,则0 tan 0 =
(
)
B.−1
√
则−2 + = 3 > 0 .又− 2 + − 6 = 3 − 2,
所以− 2 + 3 + 2 − 6 = 3 − 2.
又 > 0,所以 = 2, = 7.故选AD.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
三、填空题:本题共3小题,每小题5分,共15分.
12.已知 = sin 2 + cos 2,则′
2 + 2 − 3 = + 3)( − 1 < 0,解得−3 < < 1.故0 < < 1.所以 的单调递
减区间是 0,1 .故选B.
1
2
高考数学一轮复习 第三章 导数及其应用 3.2 导数的应用(一)课件 文
(2)设函数 f(x)=13x3-(1+a)x2+4ax+24a,其中常数
a>1,则 f(x)的单调减区间为________.
解:f′(x)=x2-2(1+a)x+4a=(x-2)(x-2a), 由 a>1 知,当 x<2 时,f′(x)>0, 故 f(x)在区间(-∞,2)上是增函数; 当 2<x<2a 时,f′(x)<0, 故 f(x)在区间(2,2a)上是减函数; 当 x>2a 时,f′(x)>0,
递增区间是(0,+∞).故选 A.
12/11/2021
(2016·湛江模拟)函数 f(x)=lnxx的单调递减区间
是 A.(e,+∞) C.(0,e)
() B.(1,+∞) D.(0,1)
解:f′(x)=1-x2lnx,由 x>0 及 f′(x)<0 解得 x>e. 故选 A.
12/11/2021
或-5<a<1 且 a≠-12,所以所求 a 的取值范围是-5,-12∪ -12,1.故填-5,-12∪-12,1.
12/11/2021
1.用导数判断单调性
用导数判断函数的单调性时,首先应确定函数的定义域, 然后在函数的定义域内,通过讨论导数的符号,来判断函数
的单调区间.在对函数划分单调区间时,除了必须确定使导 数等于 0 的点外,还要注意定义区间内的间断点.
(2)讨论 f(x)的单调性.
12/11/2021
解:f′(x)=2x+ax,x>0. (1)因为 f′(1)=0,所以 2+a=0,得 a=-2, 经检验,
当 a=-2 时,x=1 是函数 f(x)的极值点. (2)①若 a>0,则 f′(x)>0 恒成立,f(x)在(0,+∞)上单调递增.
②若 a<0,令 f′(x)=0,得 x= -2a,
高中数学第三章导数及其应用3.2导数的计算3.2.1几个常用函数的导数3.2.2基本初等函数的导数公式及导数的运
导函数 f′(x)=_0__ f′(x)=_n_x_n-_1__ f′(x)=_c_o_s_x__ f′(x)=_-__si_n_x__ f′(x)=_a_x_ln__a_ (a>0)
f(x)=ex f(x)=logax f(x)=ln x
f′(x)=_e_x_
1 f′(x)=_x_l_n_a_ (a>0,且a≠1)
[思路探究] 直线PQ的斜率⇒所求切线的斜率⇒切点坐标⇒所求切线x,设切点为M(x0,y0),则y′|x=x0=2x0,
又因为PQ的斜率为k=
4-1 2+1
=1,而切线平行于PQ,所以k=2x0=1,即
x0=12.
所以切点为M12,14.
所以所求切线方程为y-14=x-12,即4x-4y-1=0.
[合 作 探 究·攻 重 难]
利用导数公式求函数的导数
(1)函数y= x在点14,12处切线的倾斜角α为(
)
【导学号:97792133】
π
π
π
3π
A.6
B.4
C.3
D. 4
(2)求下列函数的导数:
①y=x20;②y=x14;③y=log6x;④y=sin
π 3.
[解析]
(1)y=
1
x=x2,则
1.几个常用函数的导数 原函数 f(x)=c f(x)=x f(x)=x2 f(x)=1x
导函数 f′(x)=_0_ f′(x)=_1_ f′(x)=_2_x _ f′(x)=_-__x1_2 __
2.基本初等函数的导数公式 原函数 f(x)=c
f(x)=xn(n∈Q*) f(x)=sin x f(x)=cos x f(x)=ax
第三章 导数及其应用
高考数学一轮复习 第三章 导数及其应用 3.2 导数的应
【步步高】(江苏专用)2017版高考数学一轮复习 第三章 导数及其应用 3.2 导数的应用 文1.函数的单调性在某个区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在这个区间内单调递增;如果f ′(x )<0,那么函数y =f (x )在这个区间内单调递减.2.函数的极值一般地,当函数f (x )在点x 0处连续时,(1)如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值;(2)如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值.3.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)若函数f (x )在(a ,b )内单调递增,那么一定有f ′(x )>0.( × )(2)如果函数f (x )在某个区间内恒有f ′(x )=0,则f (x )在此区间内没有单调性.( √ )(3)函数的极大值不一定比极小值大.( √ )(4)对可导函数f (x ),f ′(x 0)=0是x 0点为极值点的充要条件.( × )(5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.( √ )1.函数y =4x 2+1x的单调增区间为____________. 答案 ⎝ ⎛⎭⎪⎫12,+∞ 解析 由y =4x 2+1x 得y ′=8x -1x2, 令y ′>0,即8x -1x 2>0,解得x >12, ∴函数y =4x 2+1x 的单调增区间为⎝ ⎛⎭⎪⎫12,+∞.2.已知定义在实数集R 上的函数f (x )满足f (1)=3,且f (x )的导数f ′(x )在R 上恒有f ′(x )<2(x ∈R ),则不等式f (x )<2x +1的解集为______________________________. 答案 (1,+∞)解析 令g (x )=f (x )-2x -1,∴g ′(x )=f ′(x )-2<0,∴g (x )在R 上为减函数,且g (1)=f (1)-2-1=0.由g (x )<0=g (1),得x >1.3.(2015·广州二模)函数f (x )=x 3-3x 2+1在x =________处取得极小值.答案 2解析 由题意知f ′(x )=3x 2-6x =3x (x -2),令f ′(x )=0得x =0或2,由f ′(x )>0得x <0或x >2,由f ′(x )<0得0<x <2.∴f (x )在x =2处取得极小值.4.(教材改编)如图是f (x )的导函数f ′(x )的图象,则f (x )的极小值点的个数为________.答案 1解析 由题意知在x =-1处f ′(-1)=0,且其左右两侧导数符号为左负右正.5.设1<x <2,则ln x x ,(ln x x )2,ln x 2x2的大小关系是__________________.(用“<”连接) 答案 (ln x x )2<ln x x <ln x 2x2 解析 令f (x )=x -ln x (1<x <2),则f ′(x )=1-1x =x -1x>0, ∴函数y =f (x )(1<x <2)为增函数,∴f (x )>f (1)=1>0,∴x >ln x >0⇒0<ln x x<1, ∴(ln x x)2<ln x x . 又ln x 2x 2-ln x x =2ln x -x ln x x 2=2-x ln x x2>0, ∴(ln x x )2<ln x x <ln x 2x 2.。
高考数学一轮复习第三章导数3.2导数的应用课件
解析 (1)若a=2,则x3-x-a(x+1)=x3-x-2(x+1)=(x+1)(x2-x-2)=(x+1)2(x-2),
x3 x, x 2, 所以F(x)= (3分) 2( x 1), x 2. 3 3 2 x x 当x≤2时, F '(x)=3x -1=3 , 3 3 3 3 3 3 由F '(x)<0,得- <x< ,所以F(x)在区间 , 上单调递减. (6分) 3 3 3 3
≥0(或f '(x)≤0),x∈(a,b)恒成立,且f '(x)在(a,b)的任意子区间内都不恒等 于0.这就是说,函数f(x)在区间上的增减性并不排除在区间内个别点处
有f '(x0)=0,甚至可以在无穷多个点处有f '(x0)=0,只要这样的点不充满所
给区间的任何一个子区间即可.因此,在已知函数f(x)是增函数(或减函 数)求参数的取值范围时,应令f '(x)≥0(或f '(x)≤0)恒成立,解出参数的取 值范围(一般可用不等式恒成立理论求解),然后检验参数的取值能否使 f '(x)恒等于0,若能恒等于0,则参数的这个值应舍去,若f '(x)不恒为0,则由 f '(x)≥0(或f '(x)≤0)恒成立解出的参数的取值范围即为所求.
考点二
导数与极值、最值
1.设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)< f(x0),则f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0);如果对x0附近的所 有的点,都有f(x)>f(x0),则f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0).极 大值与极小值统称为极值. 2.当函数f(x)在x=x0处连续时,判断f(x0)是极大(小)值的方法: (1)如果x<x0时有f '(x)>0,x>x0时有f '(x)<0,则f(x0)是① 极大值 ; (2)如果x<x0时有f '(x)<0,x>x0时有f '(x)>0,则f(x0)是② 极小值 . 3.函数的最大值与最小值 设函数f(x)在[a,b]上连续,在(a,b)内可导,先求f(x)在(a,b)内的极值;将f(x)
2015届广东高考数学(理)一轮课件【3.2】导数的应用
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
1 3 跟踪训练 1 (1) 设函数 f(x) = x - (1 + a)x2 + 4ax + 3 (2,2a) . 24a,其中常数 a>1,则 f(x)的单调减区间为________
综上,当a>1时, f(x)在区间(-∞,2)和(2a,+∞)上是增函数, 在区间(2,2a)上是减函数.
思维启迪
解析
思维升华
(2)∵f′(x)=ex-a≤0 在 (-2,3)上恒成立. ∴a≥ex 在 x∈( - 2,3) 上恒 成立. 又∵-2<x<3,∴e-2<ex<e3, 只需 a≥e3. 当 a=e3 时,f′(x)=ex-e3 在 x∈(-2,3)上,
(1)求 f(x)的单调增区间; (2)是否存在 a,使 f(x)在 ( - 2,3) 上为减函数,若存 在,求出 a 的取值范围, 若不存在,请说明理由.
(1)通过 f′(2)的值确定 a;
(2)解 f′(x)=0,然后要讨 论两个零点的大小确定函 数的极值.
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型二 利用导数求函数的极值
思维启迪 解析 思维升华
【例 2】 设 a>0,函数 f(x)= (1)由已知,得 x>0,f′(x) 1 2 a x -(a+1)x+a(1+ln x). =x-(a+1)+x, 2 (1)求曲线 y=f(x)在(2,f(2)) y=f(x)在(2,f(2))处切线的 处与直线 y=-x+1 垂直的 斜率为 1, 切线方程; (2)求函数 f(x)的极值.
函数 f(x)的极大值是 f(a)= 1 2 -2a +aln a, 1 极小值是 f(1)=-2.
浙江省2020版高考数学专题3导数及其应用3.2导数的应用课件
5.f '(x)≥0(或f '(x)≤0)是f(x)在某一区间上为增函数(或减函数)的必要不 充分条件. 考向突破 考向一 单调性的判断 例1 (2018浙江温州二模(3月),8)已知函数f(x)与f '(x)的图象如图所示,
1 1 1 3 (i)若1≤x≤2,则ln x≥0, f(x)=aln x+x- ≤x- ≤2- = . x x 2 2
当a=0,x=2时取等号. (10分)
(ii)若 ≤x<1,则ln x<0, f(x)=aln x+x- ≤- ln x+x- .
1 2 1 3 1 5 所以当 ≤x<1时,g(x)≤g = ln 2 . (13分) 2 2 2 2 5 3 5 3 3 3 因为 ln 2- < - =1< ,所以f(x)≤ . 2 2 2 2 2 2 3 综上, f(x)max= . 2 3 于是bmin= . (15分) 2
答案 C
考点二
考向基础
导数与极值、最值
1.设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)< f(x0),则f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0);如果对x0附近的所 有的点,都有f(x)>f(x0),则f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0).极 大值与极小值统称为极值. 2.当函数f(x)在x=x0处连续时,判断f(x0)是极大(小)值的方法: (1)如果x<x0时有f '(x)>0,x>x0时有f '(x)<0,则f(x0)是① 极大值 ; (2)如果x<x0时有f '(x)<0,x>x0时有f '(x)>0,则f(x0)是② 极小值 . 3.函数的最大值与最小值 设函数f(x)在[a,b]上连续,在(a,b)内可导,先求f(x)在(a,b)内的极值;将f(x)
2023版高考数学一轮总复习第三章导数及其应用第一讲导数的概念及运算课件理
先化为和、差的形式,再求导
根式形式
先化为分数指数幂的形式,再求导
三角形式
先利用三角函数公式转化为和或差的形式,再求导
复合形式
先确定复合关系,由外向内逐层求导,必要时可换元
P(x0,f(x0))处的切线的斜率k,即k= f '(x0) .相应地,切线方程为y-f(x0)=
f '(x0)(x-x0).
说明 函数y=f(x)在某点处的导数、曲线y=f(x)在某点处切线的斜率和
倾斜角,这三者是可以相互转化的.
考点2
ቤተ መጻሕፍቲ ባይዱ
导数的运算
1.基本初等函数的导数公式
基本初等函数
导函数
f(x)=C(C为常数)
y=3x-1,则f(1)+f '(1)=
5
.
考向扫描
考向1
导数的运算
1.典例 求下列函数的导数:
(1)y=(x+1)(x+2)(x+3);
2
(2)y=sin (1-2cos );
2
4
2−1
1
(3)y=ln
(x> ).
2+1
2
考向1
解析
导数的运算
(1)因为y=(x+1)(x+2)(x+3)=(x2+3x+2)(x+3)=x3+6x2+11x+6,
f '(x)=
a
考点2
导数的运算
2.导数的四则运算法则
若f '(x),g'(x)存在,则
(1)[f(x)±g(x)] ' =f '(x)±g'(x) ;
(2)[f(x)·g(x)]'= f '(x)g(x)+f(x)g'(x) ;
高考数学一轮复习第3章一元函数的导数及其应用2利用导数研究函数的单调性课件新人教版
π
π
-π,, 0,
____________.
2
2
由题意可知 f'(x)=sin x+xcos x-sin x=xcos x.
令 f'(x)=xcos x>0,解得其在区间(-π,π)内的解集为
即 f(x)的单调递增区间为
π
-π,- 2
,
π
0, 2
.
π
-π,2
∪
π
0,
2
,
解题心得利用导数讨论函数单调性或求单调区间的方法
等,都需要考虑函数的单调性,所以也是高考必考知识.应用时,要注意函数
的定义域优先,准确求导变形,转化为导函数在某区间上的符号问题.常用
到分类讨论和数形结合的思想,对数学运算核心素养有一定的要求.
内
容
索
引
01
第一环节
必备知识落实
02
第二环节
关键能力形成
03
第三环节
学科素养提升
第一环节
必备知识落实
【知识筛查】
(2)若函数f(x)在区间[1,2]上为单调函数,求a的取值范围.
解 (1)若a=1,则f(x)=3x-2x2+ln x的定义域为(0,+∞),
1
-42 +3+1
故 f'(x)= -4x+3=
=
-(4+1)(-1)
(x>0).
当x∈(0,1)时,f'(x)>0,即函数f(x)=3x-2x2+ln x单调递增;
1
2
7
7
即 g(x)在区间[1,4]上单调递增,g(x)max=g(4)= − =- ,即 a≥- .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.函数的极值
一般地,当函数f(x)在点x0处连续时,
(1)如果在x0附近的左侧f_′__(_x_)_>_0__,右侧f_′__(_x_)_<_0_,那么f(x0)是极大
值;
f′(x)<0
f′(x)>0
(2)如果在x0附近的左侧________,右侧________,那么f(x0)是极小值.
答案
3.函数的最值
12345
解析答案
3.函数f(x)=x3-3x2+1在x=2____处取得极小值. 解析 由题意知f′(x)=3x2-6x=3x(x-2), 令f′(x)=0得x=0或2, 由f′(x)>0得x<0或x>2, 由f′(x)<0得0<x<2. ∴f(x)在x=2处取得极小值.
12345
解析答案Biblioteka 4.(教材改编)如图是f(x)的导函数f′(x)的图象,则f(x)的极小值点
的个数1为___.
解析 由题意知在x=-1处f′(-1)=0,且其左右两侧导数符号为
左负右正.
12345
解析答案
5.设 1<x<2,则lnxx,(lnxx)2,lnx2x2的大小关系是_____________.(用“<” 连接)
12345
解析答案
返回
12345
解析答案
2.已知定义在实数集R上的函数f(x)满足f(1)=3,且f(x)的导数f′(x) 在R上恒有f′(x)<2(x∈R),则不等式f(x)<2x+1的(1解,集+为∞_)_________. 解析 令g(x)=f(x)-2x-1, ∴g′(x)=f′(x)-2<0, ∴g(x)在R上为减函数,且g(1)=f(1)-2-1=0. 由g(x)<0=g(1),得x>1.
思考辨析
判断下面结论是否正确(请在括号中打“√”或“×”)
(1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>×0.( ) (2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没
有单调性√.( ) (3)函数的极大值不一定比极小值大.(√ )
(4)对可导函数f(x),f′(x0)=0是x0点为极值点的充要条件×.( )
(5)函数的最大值不一定是极大值,函数的最小值也不一定是极小
值.( √ )
答案
返回
考点自测
2
考点自测
1.函数f(x)=x2-2ln x的单调递减区间(是0,_1_)____.
解析 ∵f′(x)=2x-2x=2x+1xx-1(x>0).
∴当x∈(0,1)时,f′(x)<0,f(x)为减函数; 当x∈(1,+∞)时,f′(x)>0,f(x)为增函数.
第三章 导数及其应用
§3.2 导数的应用
内容 索引
知识梳理 考点自测
要点讲解 深层突破 快速解答 自查自纠
知识梳理
1
知识梳理
1.函数的单调性
在某个区间(a,b)内,如果f′(x>)__0,那么函数y=f(x)在这个区间内
单调递增;如果f′(<x)___0,那么函数y=f(x)在这个区间内单调递减.
(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值. (2)若函数f(x)在[a,b]上单调递增,f则(a_)___为函数的最小值f,(b_)___为 函数的最大值;若函数f(x)在[a,b]上单调递减,f(则a)____为函数的最大 值f(,b)____为函数的最小值.
答案