三年级下册数学竞赛试题:简单枚举 全国通用

合集下载

三年级数学枚举法练习题题库

三年级数学枚举法练习题题库

三年级枚举法练习题题库(思维突破)姓名:例1、一个三位数,每一位上的数字都是0、1、2中的一个,且数字不重复,请问:一共有多少个满足条件的三位数?练1、一个三位数,每一位上的数字都是1、2、4中的一个,且数字不重复,请问:一共有多少个满足条件的三位数?例2、一个四位数,每一位上的数字都是0、1、2中的一个,并且相邻的两个数字不同,请问:一共有多少个满足条件的四位数?练2、一个三位数,每一位上的数字都是5、6、7中的某一个,并且相邻的两个数字不同,请问:一共有多少个满足条件的三位数?例3、小高、墨莫和萱萱玩传球游戏,每次持球人都可以把球传给另外两人中的任何一人。

先由小高拿球,经过4次传球之后,球又回到了小高手里。

请问:一共有多少种不同的传球过程?练3、有A、B、C三片荷叶,青蛙“呱呱”在荷叶A上,每次它都会从一片荷叶跳到另一片荷叶上,结果它跳了3次之后,不在荷叶A上。

请问:它一共有多少种不同的跳法?例4、一个两位数,十位比个位大,个位不小于5且不大于7,请问:这样的两位数一共有多少个?练4、王老师有一个带密码锁的公文包,但是他忘记了密码,只记得密码是一个两位数。

这个两位数的个位数字比十位数字大,并且没有比4大的数字,试问:王老师最多需要试多少次就肯定能打开这个公文包?课后作业:1、一个两位数,每一位上的数字都是1、2、3中的一个,且数字不重复,请问:一共有多少个满足条件的两位数?2、一个三位数,每一位上的数字都是6、7、8中的一个,且数字不重复,请问:一共有多少个满足条件的三位数?3、粗心的卡莉娅忘记了日记本的三位密码,只记得密码是由1、2、7三个数字中的某些数字构成的,且相邻的两个数字不一样。

那么卡莉娅最多试几次就一定能打开日记本?4、由1、2、7能组成多少个各位数字不重复的三位数?5、由1、2能组成多少个三位数?(数字不必都用上)6、由2、3、4各一个组成三位数。

要求:百位不是2,十位不是3,个位不是4,则符合三位数有多少个?7、一个三位数,百位比十位小,十位比个位小,百位不小于6.那么这样的三位数一共有多少个?8、松鼠宝宝出去摘松果,每次出去都会摘回来1个松果或2个松果。

三年级下册数学试题-第十二讲枚举法二(含答案)全国通用

三年级下册数学试题-第十二讲枚举法二(含答案)全国通用

三年级下册数学试题-第⼗⼆讲枚举法⼆(含答案)全国通⽤第⼗⼆讲枚举法⼆内容概述巩固字典排列的⽅法;使⽤树形图的⽅法解决更复杂的计数问题;熟练掌握分类枚举的⽅法兴趣篇1.有⼀些三位数的各位数字都不是0,且各位数字之和为6,这样的三位数共有多少个?分析:10个2.汤姆、杰瑞和德鲁⽐都有蛀⽛,他们⼀起去⽛医诊所看病。

医⽣发现他们⼀共有8颗蛀⽛,他们三⼈可能分别有⼏颗蛀⽛?分析:共21中情况,详解略3.⽼师让⼩明写出3个⾮零的⾃然数,且3个数的和是9,如果数相同、顺序不同算同⼀种写法,例如1+2+6、2+1+6还有6+1+2都算是同⼀种写法。

请问:⼩明⼀共有多少种不同的写法?分析:7种4.⽣物⽼师让⼤家观察蚂蚁的习性。

第⼆天⼩悦在⼩区的⼴场上发现了12只⿊蚂蚁,这12只蚂蚁恰好凑成了3堆,每堆⾄少有2只。

请问:这3堆蚂蚁可能各有⼏只?分析:共7种情况:(2,2,8);(2,3,7);(2,4,6);(2,5,5);(3,3,6);(3,4,5);(4,4,4)5.⼀个三位数,每⼀位上的数字都是1、2、3中的某⼀个,并且相邻的两个数字不相同。

⼀共有多少个满⾜条件的三位数?分析:12个6.如图,⼀只⼩蚂蚁药从⼀个正四⾯体的顶点A出发,沿着这个正四⾯体的棱依次⾛遍4个顶点再回到顶点A。

请问:这只⼩蚂蚁⼀共有多少种不同的⾛法?分析:6种7.5块六边形的地毯拼成了下图中的形状,每块地毯上都有⼀个编号。

现在阿奇站在1号地毯上,他想要⾛到5号地毯上。

如果阿奇每次都只能⾛到河他相邻的地毯上(两个六边形如果⼜公共边就称为相邻),并且只能向右边⾛,例如1→2→3→5就是⼀种可能的⾛法。

请问:阿奇⼀共有多少种不同的⾛法?分析:5种8.在下图中,⼀共能找出多少个长⽅形(包括正⽅形)?分析:29个9.如果只能⽤1元、2元、5元的纸币付款,那么要买价格是13元的东西,⼀共有多少种不同的付款办法?(不考虑找钱的情况)分析:14种10.有⼀类⼩于1000的⾃然数,每个数都由若⼲个1和若⼲个2组成,并且在每个数中,1的个数⽐2的个数多。

三年级下册数学试题-奥数:分类枚举(无答案)全国通用

三年级下册数学试题-奥数:分类枚举(无答案)全国通用

【例1】(★★)分类枚举【例3】(★★★)老师拿来三张卡片,上面分别写着数字1、2、3,言言可以用这些卡片已知一个两位数的各位数字之和是8,这样的两位数一共有几个?请你写下来。

【例2】(★★★)把10分拆成三个不同的自然数相加的形式,共有多少种不同的分拆方法?拼出多少个不同的数?【例4】(★★★★)下午茶的时候,老师给同学们准备了苹果、香蕉和橘子三种水果,每种都有足够多个。

言言想挑3个水果吃,请问:她一共有多少种选择?【例5】(★★★★)言言买了些大熊和小熊娃娃玩具(每种都要买),一共不到10个,且两种娃娃的个数不一样。

请问:两种娃娃的个数可能有多少种不同的情况?【私房菜】池里的睡莲以每天增长一倍的速度生长。

已知16天睡莲铺满整个水池,那你知道多少天时睡莲铺满半个水池吗?【例6】(★★★)一个学生假期往A、B、C三个城市游览。

他今天在这个城市,明天就到另一个城市。

如果他第一天在A市,第五天又回到A市。

问他的游览路线共有几种不同的方案?【例7】(★★★★)某人游览A,B,C三个风景区,计划旅游5天,最后又回到A区(不能连续两天在同一风景区),符合条件的游览路线可以有几条?1【例8】(★★★)一只蚂蚁在长方形格纸上的A点,它想去B点玩,只能沿着格线走,但是不知走哪条路最近。

小朋友们,你能给它找到几条这样的最短路线呢?A 【例9】⑵(★★★★)“五一”长假就要到了,小新和爸爸决定去黄山玩。

聪明的小朋友请你找找看从北京到黄山的最短路线共有几条呢?北京B黄山小聪明想从北村到南村上学,可是他不知道最短路线的走法共有几种?小朋友们,快帮帮忙呀!北村南村【金牌挑战】编号从1到10的10个白色小球排成一行,现按照如下要求涂红色:⑴涂两个球;⑵被涂色的两个球的编号之差大于2。

那么满足这两个要求的涂色方法有多少种?一、本讲重点知识回顾无敌大枚举,分类才清晰方法:字典排列树形图二、本讲经典例题例2,例3,例6,例92。

【精选】小学三年级下学期数学竞赛试题(含答案)一图文百度文库

【精选】小学三年级下学期数学竞赛试题(含答案)一图文百度文库

【精选】小学三年级下学期数学竞赛试题(含答案)一图文百度文库一、拓展提优试题1.★+★+★+■=36,■=●+●,●=★+★+★,■=,●=,★=.2.用3、0、8这三个数字可以组成个数字不重复的三位数.3.小胖买了2张桌子和3把椅子,共付110元,每张桌子的价钱是每把椅子价钱的4倍,每张椅子元.4.如图,式中不同的字母表示不同的数字,那么ABC表示的三位数是.5.有甲乙两桶酒,如果甲桶倒入8千克酒,两桶酒就一样重,如果从甲桶取出3千克酒倒入乙桶,乙桶的酒就是甲桶的3倍,甲原来有酒千克,乙千克.6.同学们乘车去秋游,第一辆车上坐了38个人,如果把第二辆车的4个同学调到第一辆车上,那么第二辆车上的同学还要比第一辆多2人,第二辆车原来坐了人.7.四月份共有30天,如果其中有5个星期六和星期日,那么4月1日是星期.8.一天中午,孙悟空吃了10个桃子,猪八戒吃了25个包子,孙悟空说猪八戒太能吃了,但猪八戒说自己的包子比桃子小得多,还是孙悟空吃得多.聪明的沙僧用天平得到了如图所示的两种情况(圆圈是桃子,三角是包子长方形表示重量为所标数值的砝码),那么1个桃子和1个包子共重克.9.小胖从一楼到三楼需要90秒,照这样速度算,他从二楼上到七楼需要秒钟.10.观察下列四图,求出x的值.x=.11.一只大熊猫从A地往B地运送竹子,他每次可以运送50根,但是他从A地走到B地和从B地返回A地都要吃5根,A地现在有200根竹子,那么大熊猫最多可以运到B地()根.A.150B.155C.160D.165 12.(12分)2个樱桃的价钱与3个苹果价钱一样,但是一个苹果的大小却是一个樱桃的12倍,如果妈妈用买1箱樱桃的钱买同样大小箱子的苹果,能买()箱.A.4B.6C.18D.2713.在一道没有余数的除法中,被除数、除数与商三个数的和是103,商是3.被除数是()A.25B.50C.7514.图中一共能数出正方形.15.甲、乙、丙、丁获得了学校的前4名(无并列),他们说:甲:“我既不是第一,也不是第二”;乙说:“我既不是第二,也不是第三”;丙:“我的名次和乙相邻”;丁:“我的名次和丙相邻”.现知道,甲、乙、丙、丁分别获得第A、B、C、D名,并且他们都是不说谎的好学生,那么四位数=.【参考答案】一、拓展提优试题1.解:由■=●+●,●=★+★+★,可得■=6个★,代入★+★+★+■=36,3个★加6★等于9个★就等于36,即可得出★的值是4,★=4,代入●=★+★+★,求出●=12,●=12,代入■=●+●,求出■=24;故答案为:24,12,4.2.解:用3、0、8可以组成的不重复数字的三位数有:308,380,803,830;一共是4个.故答案为:4.3.解:因为每张桌子的价钱是每把椅子价钱的4倍,所以2张桌子的价钱=8把椅子的价钱,又因为2张桌子和3把椅子,共付110元,所以8把椅子的价钱+3把椅子的价钱=110元,1把椅子的价钱=110÷11=10元.答:每张椅子10元.故答案为:10.4.解:根据题意,由竖式可得:个位上:C+C+C=3C的末尾是8,由3×6=18,可得,C=6,向十位进1;十位上:B+B+B+1=3B+1的末尾是8,也就是3B的末尾是8﹣1=7,由3×9=27,可得,B=9,向百位进2;百位上:A+A+A+2=8,3A=6,A=2;由以上可得竖式是:;所以,ABC表示的三位数是276.故答案为:296.5.解:根据题意可得:如果从甲桶取出3千克酒倒入乙桶,两桶的差是:8+3+3=14(千克);这时甲桶有:14÷(3﹣1)=7(千克);乙桶有:7×3=21(千克);乙桶原来有:21﹣3=18(千克);甲桶原来有:18﹣8=10(千克).答:甲原来有酒10千克,乙18千克.故答案为:10,18.6.解:设第二辆车上原有x人,可得方程:x﹣4﹣2=38+4,x﹣6=42,x=48.答:第二辆车上原来坐了48人.7.解:4月份有30天;30÷7=4(周)…2(天);余下的2天是星期六和星期日;所以4月1日是星期六.故答案为:六.8.解:由图可知:○=2△+40克①○+80克=△+200克②由②可知:○=△+120克③把③带入①得:△+120克=2△+40克△+120克﹣40克=2△+40克﹣40克△+80克=2△△+80克﹣△=2△﹣△△=80克把△=80克带入③得:○=200克200+80=280(克)答:1个桃子和1个包子共重280克.故答案为:280.9.解:爬每层的时间是:90÷(3﹣1)=45(秒);他从二楼上到七楼的时间是:45×(7﹣2)=225(秒).答:他从二楼上到七楼需要225秒钟.故答案为:225.10.解:根据分析知本题的规律是:三角形是上面的数是下面左面的数扩大10倍与下面右面数的和.45×10+15=465.故答案为:465.11.解:由题意,运四次,去四次回三次,吃掉了5×(4+3)=35根,则最多可以运到B地200﹣35=165根,故选:D.12.解:根据题意:2个樱桃的价钱×6=3个苹果价钱×6,即12 个樱桃的钱可以买18 个苹果;又一个苹果的大小却是一个樱桃的12倍,所以1 个苹果大小的樱桃可以买到18 个苹果,1箱樱桃就可以买到同样大小箱子的苹果18箱.故选:C.13.解:因为被除数、除数与商三个数的和是103,商是3,所以被除数+除数=103﹣3=100;因为除数=,所以被除数是:100÷(1+)=100÷=75故选:C.14.解:根据分析可得,8+1+4=13(个)答:图中一共能数出 13正方形.故答案为:13.15.解:根据分析,甲、乙、丙、丁分别获得第A、B、C、D名,并且他们都是不说谎的好学生,根据甲的话得知,甲只能是第三或第四,故后两名之一是甲,而乙的话得知,乙只能是第一或第四,若乙是第四名,则由丙的话得知,丙为第三,矛盾,故乙只能是第一,而丙为第二,丁为第三,甲为第四.故A=4,B=1,C=2,D=3,故答案是:=4123.。

小学三年级奥数专题十六:简单枚举

小学三年级奥数专题十六:简单枚举

小学三年级奥数专题十六:简单枚举
专题简析:一是分类要全,不能造成遗漏;二是枚举要清,必须有次序、有规律地进行枚举。

例题1:从小华家到学校有3条路可走,从学校到文峰公园有4条路可走。

从小华家到文峰公园,有几种不同的走法?
思路:为了帮助理解题意,可以画出示意图。

根据图中可知,从小明家经学校到文峰公园,走①路有4种不同走法,走②路有4种不同走法,走③路也有4种不同走法,共有4×3=12种不同走法。

试一试1:明明有2件不同的上衣,3条不同的裤子,4双不同的鞋子。

最多可搭配成多少种不同的装束?例题2:用红、绿、黄三种信号灯组成一种信号,可以组成多少种不同的信号?
思路:组成的信号有:红绿黄、红黄绿;绿红黄、绿黄红;黄红绿、黄绿红等6种。

可以把组成的信号看成是三个位置:第1个位置有3种选择,第2个位置有2种选择,第3个位置就只有1中选择。

所以排列方法一共有:3×2×1=6(种)
试一试2:用数字1、2、3,可以组成多少个不同的三位数?分别是哪几个数?
例题3:有4位小朋友,寒假中互相通一次电话,他们一共打了多少次电话?
思路1:每个小朋友都节打电话3次。

但两人之间只需打1次电话,互打就重复了。

因此一共打3×4÷2=6(次)
思路2:第1个小朋友打了3个电话,第2个小朋友打了2个电话,第3个小朋友打了1个电话,第4个小朋友不需要打电话。

因此一共打3+2+1=6(次)
试一试3:
(1)6个小队进行排球比赛,每两队比赛一场,共要进行多少次比赛?
(2)暑假里,三位小朋友互发一封问候邮件,他们一共发了多少封邮件?。

三年级下册数学试题-第十二讲 枚举法二(含答案)全国通用

三年级下册数学试题-第十二讲 枚举法二(含答案)全国通用

第十二讲枚举法二内容概述巩固字典排列的方法;使用树形图的方法解决更复杂的计数问题;熟练掌握分类枚举的方法兴趣篇1.有一些三位数的各位数字都不是0,且各位数字之和为6,这样的三位数共有多少个?分析:10个2.汤姆、杰瑞和德鲁比都有蛀牙,他们一起去牙医诊所看病。

医生发现他们一共有8颗蛀牙,他们三人可能分别有几颗蛀牙?分析:共21中情况,详解略3.老师让小明写出3个非零的自然数,且3个数的和是9,如果数相同、顺序不同算同一种写法,例如1+2+6、2+1+6还有6+1+2都算是同一种写法。

请问:小明一共有多少种不同的写法?分析:7种4.生物老师让大家观察蚂蚁的习性。

第二天小悦在小区的广场上发现了12只黑蚂蚁,这12只蚂蚁恰好凑成了3堆,每堆至少有2只。

请问:这3堆蚂蚁可能各有几只?分析:共7种情况:(2,2,8);(2,3,7);(2,4,6);(2,5,5);(3,3,6);(3,4,5);(4,4,4)5.一个三位数,每一位上的数字都是1、2、3中的某一个,并且相邻的两个数字不相同。

一共有多少个满足条件的三位数?分析:12个6.如图,一只小蚂蚁药从一个正四面体的顶点A出发,沿着这个正四面体的棱依次走遍4个顶点再回到顶点A。

请问:这只小蚂蚁一共有多少种不同的走法?分析:6种7.5块六边形的地毯拼成了下图中的形状,每块地毯上都有一个编号。

现在阿奇站在1号地毯上,他想要走到5号地毯上。

如果阿奇每次都只能走到河他相邻的地毯上(两个六边形如果又公共边就称为相邻),并且只能向右边走,例如1→2→3→5就是一种可能的走法。

请问:阿奇一共有多少种不同的走法?分析:5种8.在下图中,一共能找出多少个长方形(包括正方形)?分析:29个9.如果只能用1元、2元、5元的纸币付款,那么要买价格是13元的东西,一共有多少种不同的付款办法?(不考虑找钱的情况)分析:14种10.有一类小于1000的自然数,每个数都由若干个1和若干个2组成,并且在每个数中,1的个数比2的个数多。

人教版三年级下学期数学竞赛试题(含答案)图文百度文库

人教版三年级下学期数学竞赛试题(含答案)图文百度文库

一、拓展提优试题1.两个长7厘米,宽3厘米的长方形重叠成右边的图形.这个图形的周长是厘米.2.晨晨小朋友发现,自己一共有1角和5角的硬币共20枚,总钱数是8元钱,那么1角的硬币共有多少枚?3.12枚硬币的总值是9角,其中只有5分和1角的两种,那么每种硬币各()个.A.4B.5C.6D.74.奶奶折一个纸鹤用3分钟,每折好一个需要休息1分钟,奶奶从2时30分开始折,她折好第5个纸鹤时已经到了()A.2时45分B.2时49分C.2时50分D.2时53分5.这个图形最少是由()个正方体整齐堆放而成的.A.12B.13C.14D.156.动物园的饲养员把一堆桃子分给若干只猴子,如果每只猴子分6个,剩57个桃子;如果每只猴子分9个,就有5只猴子一个也分不到,还有一只猴子只分到3个.那么,有()个桃子.A.216B.324C.273D.3017.大、中、小三个正方形,边长都是整数厘米,小正方形的周长比中正方形的边长小,把这两个正方形放在大正方形上(如图),大正方形露出的部分的面积是10平方厘米(图中阴影部分).那么,大正方形的面积是()平方厘米.A.25B.36C.49D.648.有20间房间,有的开着灯,有的关着灯,在这些房间里的人都希望与大多数房间保持一致.现在,从第一间房间的人开始,如果其余19间房间的灯开着的多,就把灯打开,否则就把灯关上,如果最开始开灯与关灯的房间各10间,并且第一间的灯开着.那么,这20间房间里的人轮完一遍后,关着灯的房间有()间.A.0B.10C.11D.209.有3盒同样重的苹果,如果从每盒中都取出4千克,那么盒子里剩下的苹果的重量正好等于原来1 盒苹果的重量,原来每盒苹果重()千克.A.4B.6C.8D.1210.一个不透明的布袋中有黑、白、黄三种颜色的筷子各10根,最少拿出根筷子就能保证有一双是同样颜色的筷子.11.观察下面各等式的计算规律:第一行1+2+3=6第二行3+5+7=15第三行5+8+11=24…第十二行的算式是.12.3个苹果的重量等于1个柚子的重量,4根香蕉的重量等于2个苹果的重量.一个柚子重576克,那一根香蕉()克.A.96B.64C.14413.在如图的竖式中,不同的汉字代表“0﹣9”是个不同数字,该竖式成立,则展示活动代表的四位数最小的是.14.1千克大豆可以制成3千克豆腐,制成1千克豆油则需要6千克大豆,豆腐3元1千克,豆油15元1千克,一批大豆共460千克,制成豆腐或豆油销售后得到1800元,这批大豆中有千克被制成了豆油.15.一群鸭子对一群狗说:“我们比你们多2只.”狗对鸭子说:“我们比你们多10条腿.”那么鸭子和狗共只.16.甲、乙、丙、丁获得了学校的前4名(无并列),他们说:甲:“我既不是第一,也不是第二”;乙说:“我既不是第二,也不是第三”;丙:“我的名次和乙相邻”;丁:“我的名次和丙相邻”.现知道,甲、乙、丙、丁分别获得第A、B、C、D名,并且他们都是不说谎的好学生,那么四位数=.17.如图,薷薷家的菜园是一个由4块正方形的菜地和1个小长方形的水池组成的大长方形.如果每块菜地的面积都是20平方米且菜园的长为9米,那么菜园中水池(图中阴影部分)的周长是米.18.看图填数19.小明将买来的一筐桔子分别装入几个盘子中,如果每个盘子装10个,则多余2个,如果每个盘子装12个,则可以少用一个盘子,那么买来的一筐桔子共有多少只?20.○○÷□=14…2,□内共有种填法.21.如图有5个点,在两个点之间可以画出一条线段,画出的图形中共可以得到条线段.22.小巧往一个长方形盒子里放玻璃球,她往盒子里放的玻璃球个数每分钟增加1倍,这样下去10分钟正好放满,那么分钟时,恰好放满半个盒子.23.找规律填数:1、4、3、8、5、12、7、.24.数一数图中,带有☆的正方形有个.25.54﹣□÷6×3=36,□代表的数是.26.有一个挂钟,3时敲3下,要用6秒.这个挂钟12时敲12下,需要用秒.27.某个码头有一艘渡船.有一天,这艘船从南岸出发驶向北岸,来回送游客,一共202次(来回算做两次),此时,渡船停靠在岸.28.时钟2点敲2下,2秒钟敲完.12点敲了12下,秒可以敲完.29.观察下列图形,“?”位置对应的图形是()A.B.C.D.30.切一个蛋糕,切1刀最多切成2块,切2刀最多切成4块,切3刀最多切成7块,照这样切下去,切5刀最多切成块.31.兄妹俩人去买文具,哥哥带的钱是妹妹的两倍,哥哥用去180元,妹妹用去30元,这是兄妹俩人剩下的钱正好相等.哥哥带了元钱,妹妹带了元钱.32.已知:1×9+2=11,12×9+3=111,123×9+4=1111,…,△×9+〇=111111,那么△+〇=.33.四月份共有30天,如果其中有5个星期六和星期日,那么4月1日是星期.34.在中,不同的字母代表不同的数字,则A+B+C+D+E+F+G=.35.只用2,3,5三个数(可重复使用)填在右图中的○内,使得每个三角形三个顶点上的三个数的和都相等.36.六个数的平均数是24,加上一个数后的平均数是25,加上的这个数是.37.一个数与3的和是7的倍数,与5的差是8的倍数,这个数最小的.38.观察下列四图,求出x的值.x=.39.一根长30厘米的铁丝,可以围成种不同的长方形(边长是整厘米数).40.小胖的妈妈去买苹果,想买5千克,付钱时发现还少3元5角,结果买了4千克,又剩下1元5角,小胖妈妈一共带了元钱.【参考答案】一、拓展提优试题1.解:周长:(7+3)×2×2﹣3×4=40﹣12=28(厘米)答:这个图形的周长是28厘米.故答案为:28.2.解:8元=80角,假设全是5角硬币,则1角的有:(5×20﹣80)÷(5﹣1)=20÷4=5(枚);答:1角的有5枚.3.解:5分的数量:(12×1﹣9)÷(1﹣0.5)=3÷0.5=6(枚);1角的硬币数量为:12﹣6=6(枚).答:每种硬币各6个.故选:C.4.解:1×(5﹣1)=4(分钟)3×5=15(分钟)2时30分+4分钟+15分钟=2时49分答:她折好第5个纸鹤时已经到了2时49分;故选:B.5.解:观察如果俯视图是下面图形时(小正方形上的数字是上面立方体的个数),所放的立方体最少.所以所放的最少的立方体的个数为1+2+2+4+1+2+1=13个,故选:B.6.解:依题意可知:如果每只猴子分6个,剩57个桃子.如果每只猴子分9个,就有5只猴子一个也分不到,还有一只猴子只分到3个证明少了5×9+6=51;猴子共有(57+51)÷(9﹣6)=36(只);桃子共有36×6+57=273.故选:C.7.解:根据分析,一条阴影部分的面积为10÷2=5平方厘米.因为都是整数,所以只能为1×5.故,大正方形面积=(1+5)×(1+5)=6×6=36平方厘米.故选:B.8.解:因为最开始开灯和关灯的各是10间,由于第一间的灯是开着的,所以,第一间人看到的,开灯的9间,关灯的10间,之后,他就关灯,以后无论开灯的出来看,还是关灯的出来看,始终关灯的多,即:一轮结束,灯全部会关闭,故选:D.9.解:3×4÷2=12÷2=6(千克)答:每盒苹果重6千克.故选:B.10.解:把三种颜色的筷子构造为三个抽屉,分别放黑、白、黄不同颜色的筷子.从最不利情况考虑,拿了3根,颜色各不同放到三个抽屉里,此时再任意拿1根,即可出现一个抽屉里能放了2根筷子.即出现一个抽屉里2根,另外两个抽屉里各1根筷子的情况,共计2+1+1=4根.故答案为:4.11.解:由分析可知:第十二行的算式的第一个加数是2×12﹣1=23,第二个加数是3×12﹣1=35,第三个加数是4×12﹣1=47,则第十二行的算式是 23+35+47=105.故答案为:23+35+47=105.12.解:576÷3×2÷4=384÷4=96(克)答:一根香蕉96克.故选:A.13.解:要使和最小,则数必须为1,展必须为2,学必须为9,示为0,活动的最小值为34,经试验1956+78=2034成立,则展示活动代表的四位数最小的是2034,故答案为2034.14.解:3×3=9(元)15÷6=2.5(元)(9×460﹣1800)÷(9﹣2.5)=2340÷6.5=360(千克)答:这批大豆中有 360千克被制成了豆油.故答案为:360.15.解:根据分析,再加两只狗,狗与鸭子数量相同,狗的腿数比鸭子多:10+4×2=18(条)鸭子有:18÷(4﹣2)=9(只);狗有:9﹣2=7(只);狗和鸭子共有:9+7=16(只).故答案是:16.16.解:根据分析,甲、乙、丙、丁分别获得第A、B、C、D名,并且他们都是不说谎的好学生,根据甲的话得知,甲只能是第三或第四,故后两名之一是甲,而乙的话得知,乙只能是第一或第四,若乙是第四名,则由丙的话得知,丙为第三,矛盾,故乙只能是第一,而丙为第二,丁为第三,甲为第四.故A=4,B=1,C=2,D=3,故答案是:=4123.17.解:根据分析,根据图中4块正方形和小长方形的关系,易知水池的长和宽之和为9,菜园中水池(图中阴影部分)的周长=2×9=18(米),故答案是:18.18.解:1个苹果的质量+2个梨的质量=1600克…①,3个苹果的质量+2个梨的质量=2800克…②,②﹣①可得:3﹣1个苹果的质量=2800﹣16002个苹果的质量=12001个苹果的质量=600答:1个苹果的质量是600克.故答案为:600.19.解:(10+2)÷(12﹣10)=6(个)12×6=72(只)答:买来的一筐桔子共有72只.20.解:因为余数<除数,所以□>2,因为14×6+2=86,14×7+2=100,被除数是两位数,所以□内最大填6,所以□内共有4种填法:3、4、5、6.故答案为:4.21.解:如图:4+3+3=10(条),答:图形中共可以得到10条线段;故答案为:10.22.解:根据分析可得,1÷2=(盒),即10﹣1=9(分钟);答:那么9分钟时,恰好放满半个盒子.故答案为:9.23.解:根据分析可得,12+4=16,故答案为:16.24.解:由分析得出小鸟在不同的正方形的个数:1+4+4+1=10(个),故答案为:10.25.解:54﹣□÷6×3=36,□÷6×3=54﹣36,□÷6×3=18,□=18×6÷3,□=36.故答案为:36.26.解:6÷(3﹣1)×(12﹣1),=6÷2×11,=3×11,=33(秒),答:需要33秒;故答案为:33.27.解:在摆渡奇数次后,船在北岸,摆渡遇数次后,船在南岸.202为奇数,则摆渡202次后,小船在南岸.故答案为:南.28.解:根据分析可得,2÷(2﹣1)×(12﹣1),=2×11,=22(秒);答:12点敲了12下,22秒可以敲完.故答案为:22.29.解:再逆时针旋转90°是.故选:C.30.解:当切1刀时,块数为1+1=2块;当切2刀时,块数为1+1+2=4块;当切3刀时,块数为1+1+2+3=7块;…当切n刀时,块数=1+(1+2+3…+n)=1+.则切5刀时,块数为1+=16块;故答案为:16.31.解:根据题意可得:他们的钱数差是:180﹣30=150(元);由差倍公式可得:妹妹带的钱数是:150÷(2﹣1)=150(元);哥哥带的钱数是:150×2=300(元).答:哥哥带了300元钱,妹妹带了150元钱.故答案为:300,150.32.解:由题意得,1×9+2=11,12×9+3=111,123×9+4=1111,1234×9+5=11111,12345×9+6=111111,所以△=12345,〇=6,所以△+〇=12345+6=12351,故答案为12351.33.解:4月份有30天;30÷7=4(周)…2(天);余下的2天是星期六和星期日;所以4月1日是星期六.故答案为:六.34.解:因为A、B、C、D、E、F、G是不同的数字,由题意可得:D+G=10,C+F=10,B+E=9,A=1,所以:A+B+C+D+E+F+G=A+(B+E)+(C+F)+(D+G)=1+9+10+10=30故答案为:30.35.解:这个幻方可以是(答案不唯一):36.解:25×7﹣24×6,=175﹣144,=31,答:加上的这个数是31.故答案为:31.37.解:7×8﹣3=53.故答案为:53.38.解:根据分析知本题的规律是:三角形是上面的数是下面左面的数扩大10倍与下面右面数的和.45×10+15=465.故答案为:465.39.解:长方形的周长=(长+宽)×2,长与宽的和是:30÷2=15(厘米),因为15=1+14=2+13=3+12=4+11=5+10=6+9=7+8,所以可以围成7种不同的长方形.答:可以围成7种不同的长方形.故答案为:7.40.解:单价:(3.5+1.5)÷(5﹣4),=5÷1,=5(元);共带:5×4+1.5=21.5(元);答:小胖妈妈一共带了21.5元.故答案为:21.5.。

【经典】小学三年级下学期数学竞赛试题(含答案)

【经典】小学三年级下学期数学竞赛试题(含答案)

【经典】小学三年级下学期数学竞赛试题(含答案)一、拓展提优试题1.找规律填数:1、4、3、8、5、12、7、.2.有a,b,c三个数,a×b=24,a×c=36,b×c=54,则a+b+c=.3.五个连续的自然数的和是2010,其中最大的一个是.4.★+■=24,■+●=30,●+★=36,■=,●=,★=.5.有A,B,C三人,他们分别是工人、教师、工程师.A的年龄比工人大,C 和教师的年龄不同岁,教师的年龄比B小,那么工程师是.6.数一数,图中有个三角形.7.小胖从一楼到三楼需要90秒,照这样速度算,他从二楼上到七楼需要秒钟.8.这个图形最少是由()个正方体整齐堆放而成的.A.12B.13C.14D.159.(12分)一次考试有三道题,四个好朋友考完后互相交流了成绩.发现四人各对了3、2、1、0题.这时一个路人问:你们考的怎么样啊?甲:“我对了两道题,而且比乙对的多,丙考的不如丁.”乙:“我全对了,丙全错了,甲考的不如丁.”丙:“我对了一道,丁对了两道,乙考的不如甲.”丁:“我全对了,丙考的不如我,甲考的不如乙.”已知大家都是对了几道题就说几句真话,那么对了2题的人是()A.甲B.乙C.丙D.丁10.你能根据以下的线索找出百宝箱的密码吗?(1)密码是一个八位数;(2)密码既是3 的倍数又是25 的倍数;(3)这个密码在20000000 到30000000 之间;(4)百万位与十万位上的数字相同;(5)百位数字比万位数字小2;(6)十万位、万位、千位上数字组成的三位数除以千万位、百万位上数字组成的两位数,商是25.依据上面的条件,推理出这个密码应该是()A.25526250B.26650350C.27775250D.28870350 11.6□4÷3,要使商的中间有一位是0,□里可以填.(几种情况填写完整)12.喜羊羊和懒羊羊共有邮票70张,喜羊羊的邮票张数比懒羊羊的4倍还多5张.喜羊羊有张,懒羊羊有张.13.在一道没有余数的除法中,被除数、除数与商三个数的和是103,商是3.被除数是()A.25B.50C.7514.期末考试到了,小蕾的前两门语文和数学的平均分是90分,如果他希望自己的语文、数学、英语三门平均分能够不低于92分,那么他的英语至少要考到分.15.晨晨小朋友发现,自己一共有1角和5角的硬币共20枚,总钱数是8元钱,那么1角的硬币共有多少枚?【参考答案】一、拓展提优试题1.解:根据分析可得,12+4=16,故答案为:16.2.解:因为,(a×b)×(a×c)÷(b×c)=24×36÷54=16,即a2=16,所以a=4,b=24÷a=6,c=36÷a=9,a+b+c=4+6+9=19;故答案为:19.3.解:2010÷5=402,最大的数是402+1+1=404;故答案为:404.4.解:★+■=24,■+●=30,●+★=36,则:★+■+■+●+●+★=24+30+36,2(★+■+●)=90,★+■+●=45,则:●=45﹣24=21;■=45﹣36=9,★=45﹣30=15;故答案为:9,21,15.5.解:由C和教师的年龄不同岁,教师的年龄比B小,可知B、C都不是教师,只有A是教师;由A的年龄比工人大,和教师的年龄比B小,说明B不是工人是工程师,所以C是工人;故答案为:B.6.解:3+4+1+1+1=10(个);故答案为:10.7.解:爬每层的时间是:90÷(3﹣1)=45(秒);他从二楼上到七楼的时间是:45×(7﹣2)=225(秒).答:他从二楼上到七楼需要225秒钟.故答案为:225.8.解:观察如果俯视图是下面图形时(小正方形上的数字是上面立方体的个数),所放的立方体最少.所以所放的最少的立方体的个数为1+2+2+4+1+2+1=13个,故选:B.9.解:全对的人不会说自己对的题少于3,故只有乙、丁可能全对.若乙全对,则排名是乙、丁、甲、丙,与丙所说的“丁对了2 道”是假话相矛盾;若丁全对,则丙的后两句是假话,不可能是第二名,又由丁的“甲考得不如乙”能知道第二名是乙,故丙全错,甲只有“丙考得不如丁”是真话,排名是丁、乙、甲、丙且4 人的话没有矛盾.所以对了2题的人是乙.故选:B.10.解:(1)四个选项都是8位数;(2)四选项都是25的倍数,C的数字和是35不是3的倍数.排除C;(3)都满足条件;(4)都满足条件;(5)A,D相等不满足条件;(6)B满足条件.故选:B.11.解:6□4÷3中,要使商的中间有一位是0,则□<3,所以□里可以填:0、1、2.故答案为:0、1、2.12.解:设懒羊羊有x张票,那么喜羊羊则有(4x+5)张邮票,x+(4x+5)=705x+5=705x=65x=1313×4+5=57(张)答:喜羊羊有 57张,懒羊羊有 13张.故答案为:57;13.13.解:因为被除数、除数与商三个数的和是103,商是3,所以被除数+除数=103﹣3=100;因为除数=,所以被除数是:100÷(1+)=100÷=75故选:C.14.解:92×3﹣90×2=276﹣180=96(分)答:他的英语至少要考到 96分.故答案为:96.15.解:8元=80角,假设全是5角硬币,则1角的有:(5×20﹣80)÷(5﹣1)=20÷4=5(枚);答:1角的有5枚.。

小学三年级下学期数学竞赛试题(含答案)图文百度文库

小学三年级下学期数学竞赛试题(含答案)图文百度文库

一、拓展提优试题1.一个不透明的布袋中有黑、白、黄三种颜色的筷子各10根,最少拿出根筷子就能保证有一双是同样颜色的筷子.2.在一根绳子上依次穿入5颗红珠、4颗白珠、3颗黄珠和2颗蓝珠,并按照此方式不断重复,如果从头开始一共穿了2014颗珠子,那么第2014颗珠子的颜色是色.3.一根长30厘米的铁丝,可以围成种不同的长方形(边长是整厘米数).4.祖玛游戏中,龙嘴里不断吐出很多颜色的龙珠,先4颗红珠,接着3颗黄珠,再2颗绿珠,最后1颗白珠,按此方式不断重复,从龙嘴里吐出的第2000颗龙珠是()A.红珠B.黄珠C.绿珠D.白珠5.一只大熊猫从A地往B地运送竹子,他每次可以运送50根,但是他从A地走到B地和从B地返回A地都要吃5根,A地现在有200根竹子,那么大熊猫最多可以运到B地()根.A.150B.155C.160D.1656.有四个数,它们的和是45,把第一个数加2,第二个数减2,第三个数乘2,第四个数除以2,得到的结果都相同.那么,原来这四个数依次是()A.10,10,10,10B.12,8,20,5C.8,12,5,20D.9,11,12,137.动物园的饲养员把一堆桃子分给若干只猴子,如果每只猴子分6个,剩57个桃子;如果每只猴子分9个,就有5只猴子一个也分不到,还有一只猴子只分到3个.那么,有()个桃子.A.216B.324C.273D.3018.大、中、小三个正方形,边长都是整数厘米,小正方形的周长比中正方形的边长小,把这两个正方形放在大正方形上(如图),大正方形露出的部分的面积是10平方厘米(图中阴影部分).那么,大正方形的面积是()平方厘米.A.25B.36C.49D.649.甲乙两数的差是144,甲数比乙数的3倍少14,那么甲数是.10.○○÷□=14…2,□内共有种填法.11.数一数,图中有个三角形.12.湖边种着一排柳树,每两棵数之间相距6米.小明从第一棵树跑到第200棵,一共跑了()米.A.1200米B.1206米C.1194米13.图中一共能数出正方形.14.有一颗神奇的树上长了46个果子,第一天会有1个果子从树上掉落,每天掉落的果子数量比前一天多1个,但如果某天树上的果子数量少于这一天本应掉落的数量时,那么这一天它又重新从掉落1个果子开始,按原规律进行新的一轮.如此继续,那么第天树上的果子会都掉光.15.如图所示,从正三角形的边作一个正方形,再用与正三角形不相邻的正方形一边做一个正五边形,再从与正方形不相邻的正五边形一边作一个正六边形,继续以相同的方式再作一个正七边形,依序再作一个正八边形,这样形成了一个多边形,请问这个多边形有个边.16.有一种特殊的计算器,当输入一个数后.计算器会把这个数乘以2,然后将其结果的数字顺序颠倒,接着再加2后显示最后的结果.如果输入一个两位数,最后显示的结果是45,那么,最开始输入的是.17.在如图的每个方框中填入一个适当的数字,使得乘法算式成立,乘积等于.18.小明有一本100道题的练习册,他决定单数的日子做2道题,双数的日子做3道题,如果周六或周日则额外多做2道题.小明从12月25日星期四开始做题,他1月26日能将练习册上的题都做完.19.小圆有一筐桃子,第一次他吃掉了全部桃子的一半多1个,第二次他又吃掉了剩余桃子的一半少1个,此时筐里还剩下4个桃子,那么这个筐里原有桃子个.20.6□4÷3,要使商的中间有一位是0,□里可以填.(几种情况填写完整)21.下面有20个点,每相邻的两个点之间距离都相等,将四个点用直线连接起来可以得到一个正方形.用这样的方法,你可以得到个正方形.22.△=○+○+○,△+○=40,则○=,△=.23.99999×77778+33333×66666=.24.如图,式中不同的字母表示不同的数字,那么ABC表示的三位数是.25.有甲乙两桶酒,如果甲桶倒入8千克酒,两桶酒就一样重,如果从甲桶取出3千克酒倒入乙桶,乙桶的酒就是甲桶的3倍,甲原来有酒千克,乙千克.26.有a,b,c三个数,a×b=24,a×c=36,b×c=54,则a+b+c=.27.五个连续的自然数的和是2010,其中最大的一个是.28.小李、小华比赛爬楼梯,小李跑到第5层时,小华正好跑到第3层.照这样计算,小李跑到第25层时,小华跑到第层.29.一个数与3的和是7的倍数,与5的差是8的倍数,这个数最小的.30.A、B、C、D、E五个盒子中依次有9个、5个、3个、2个、1个小球,第一个同学找到放球最少的盒子,然后从其它盒子中各拿出1个小球放到这个盒子里,第二个同学找到放球最少的盒子,然后从其它盒子中各拿出1个小球放到这个盒子里…;当第199个同学放完后,A、B、C、D、E五个盒子中各有个、个、个、个、个.31.计算:100﹣99+98﹣97+96﹣95+94﹣93+93﹣92+91=.32.小华、小俊都有一些玻璃球.如果小华给小俊4个,小华的玻璃球的个数就是小俊的2倍;假如把小俊的玻璃球给小华2个,那么小华的玻璃球的个数就是小俊的11倍.小华原来有个玻璃球,小俊原来有个玻璃球.33.同学们乘车去秋游,第一辆车上坐了38个人,如果把第二辆车的4个同学调到第一辆车上,那么第二辆车上的同学还要比第一辆多2人,第二辆车原来坐了人.34.时钟2点敲2下,2秒钟敲完.12点敲了12下,秒可以敲完.35.有A,B,C三人,他们分别是工人、教师、工程师.A的年龄比工人大,C和教师的年龄不同岁,教师的年龄比B小,那么工程师是.36.切一个蛋糕,切1刀最多切成2块,切2刀最多切成4块,切3刀最多切成7块,照这样切下去,切5刀最多切成块.37.超市中的某种汉堡每个10元,这种汉堡最近推出了“买二送一”的优惠活动,即花钱买两个汉堡,就可以免费获得一个汉堡,已知东东和朋友需要买9个汉堡,那么他们最少需要花元钱.38.四月份共有30天,如果其中有5个星期六和星期日,那么4月1日是星期.39.在中,不同的字母代表不同的数字,则A+B+C+D+E+F+G =.40.某个码头有一艘渡船.有一天,这艘船从南岸出发驶向北岸,来回送游客,一共202次(来回算做两次),此时,渡船停靠在岸.【参考答案】一、拓展提优试题1.解:把三种颜色的筷子构造为三个抽屉,分别放黑、白、黄不同颜色的筷子.从最不利情况考虑,拿了3根,颜色各不同放到三个抽屉里,此时再任意拿1根,即可出现一个抽屉里能放了2根筷子.即出现一个抽屉里2根,另外两个抽屉里各1根筷子的情况,共计2+1+1=4根.故答案为:4.2.解:5+3+4+2=14(个)2014÷14=143…12,所以第2014颗珠子是第144周期的第12个,是黄颜色;答:第2014颗珠子的颜色是黄色.故答案为:黄.3.解:长方形的周长=(长+宽)×2,长与宽的和是:30÷2=15(厘米),因为15=1+14=2+13=3+12=4+11=5+10=6+9=7+8,所以可以围成7种不同的长方形.答:可以围成7种不同的长方形.故答案为:7.4.解:2000÷(4+3+2+1)=2000÷10=200(组)商是200,没有余数,说明第2000颗龙珠是200组的最后一个,是白珠.答:从龙嘴里吐出的第2000颗龙珠是白珠.故选:D.5.解:由题意,运四次,去四次回三次,吃掉了5×(4+3)=35根,则最多可以运到B地200﹣35=165根,故选:D.6.解:设相同的结果为2x,根据题意有:2x﹣2+2x+2+x+4x=45,解得x=5,所以原来的4个数依次是8,12,5,20.7.解:依题意可知:如果每只猴子分6个,剩57个桃子.如果每只猴子分9个,就有5只猴子一个也分不到,还有一只猴子只分到3个证明少了5×9+6=51;猴子共有(57+51)÷(9﹣6)=36(只);桃子共有36×6+57=273.故选:C.8.解:根据分析,一条阴影部分的面积为10÷2=5平方厘米.因为都是整数,所以只能为1×5.故,大正方形面积=(1+5)×(1+5)=6×6=36平方厘米.故选:B.9.解:(144+14)÷(3﹣1)+144,=158÷2+144,=79+144,=223,答:甲数是223.故应填:223.10.解:因为余数<除数,所以□>2,因为14×6+2=86,14×7+2=100,被除数是两位数,所以□内最大填6,所以□内共有4种填法:3、4、5、6.故答案为:4.11.解:3+4+1+1+1=10(个);故答案为:10.12.解:(200﹣1)×6=199×6=1194(米)答:小明一共跑了1194米.故选:C.13.解:根据分析可得,8+1+4=13(个)答:图中一共能数出 13正方形.故答案为:13.14.解:∵1+2+3+4+5+6+7+8+9=45(个)到第十天不够了从新开始掉1个.正好结束45+1=46(个)故答案为:1015.解:(3﹣1)+(4﹣2)+(5﹣2)+(6﹣2)+(7﹣2)+(8﹣1)=2+2+3+4+5+7=23(条)答:这个多边形有 23个边.故答案为:23.16.解:逆运算,乘积的数字顺序颠倒后为:45﹣2=43,则,颠倒前为34,输入的两位数为:34÷2=17;答:最开始输入的是17.故答案为:17.17.解:根据第一行的结果首位是2那么第一个乘数的首位是1;第一个乘数是110多;再根据尾数是0推理可能是偶数与5的积或者是有数字0.根据第三行的结果中含有数字1,尝试1倍满足情况.根据已知数字4,后面是没有进位的先考虑不进位的情况.可以是110×122=13420(满足条件).故答案为:13420.18.解:依题意可知:12月做题数量为:2+3+4+5+2+3+2=21(题);1月1日至1月7日也同样做了21题.1月8日至1月14日由于多了一个双数日子,所以做了22题.1月15日至1月21日做21题.这时候共做21+21+22+21=85题.接下来22日开始做题数量为3+2+5+4=14题.目前共做题85+14=99题,还需要1天.故答案为:2619.解:[(4﹣1)×2+1]×2=7×2=14(个)答:这个筐里原有桃子 14个.故答案为:14.20.解:6□4÷3中,要使商的中间有一位是0,则□<3,所以□里可以填:0、1、2.故答案为:0、1、2.21.解:边长是1个单位长度的正方形个数是12;边长是2个单位长度的正方形个数是6;边长是3个单位长度的正方形个数是2;边长最大是3个单位长度,正方形的边长再大就构不成正方形了;一共有正方形:12+6+2=20(个).答:可以得到20个正方形.故答案为:20.22.解:因为,△=○+○+○,所以,△=3○,将△=3○代入△+○=40,3○+○=40,即4○=40,○=10,△=3○=3×10=30;故答案为:10;30.23.解:99999×77778+33333×66666,=99999×77778+33333×(3×22222),=99999×77778+(33333×3)×22222,=99999×77778+99999×22222,=99999×(77778+22222),=99999×100000,=9999900000;故答案为:9999900000.24.解:根据题意,由竖式可得:个位上:C+C+C=3C的末尾是8,由3×6=18,可得,C=6,向十位进1;十位上:B+B+B+1=3B+1的末尾是8,也就是3B的末尾是8﹣1=7,由3×9=27,可得,B=9,向百位进2;百位上:A+A+A+2=8,3A=6,A=2;由以上可得竖式是:;所以,ABC表示的三位数是276.故答案为:296.25.解:根据题意可得:如果从甲桶取出3千克酒倒入乙桶,两桶的差是:8+3+3=14(千克);这时甲桶有:14÷(3﹣1)=7(千克);乙桶有:7×3=21(千克);乙桶原来有:21﹣3=18(千克);甲桶原来有:18﹣8=10(千克).答:甲原来有酒10千克,乙18千克.故答案为:10,18.26.解:因为,(a×b)×(a×c)÷(b×c)=24×36÷54=16,即a2=16,所以a=4,b=24÷a=6,c=36÷a=9,a+b+c=4+6+9=19;故答案为:19.27.解:2010÷5=402,最大的数是402+1+1=404;故答案为:404.28.解:(25﹣1)×[(3﹣1)÷(5﹣1)]+1,=24×+1,=12+1,=13(层),答:小李跑到第25层时,小华跑到第13层.故答案为:13.29.解:7×8﹣3=53.故答案为:53.30.解:由分析可知:第8个小朋友与第3个重复,即5组一循环;则以此类推:(199﹣2)÷5=39…2(次);第199个同学取后ABCDE五个盒子中应分别是:5、6、4、3、2个小球;答:当199个同学放完后,A,B,C,D,E五个盒子中各放5、6、4、3、2个小球.31.解:100﹣99+98﹣97+96﹣95+94﹣93+93﹣92+91,=(100﹣99)+(98﹣97)+(96﹣95)+(94﹣93)+(93﹣92)+91,=1×5+91,=5+91,=96.故答案为:96.32.解:设小俊原来有x个玻璃球,(x﹣2)×11=(x+4)×2+4+2,11x﹣22=2x+8+4+2,11x﹣2x﹣22=2x+14﹣2x,9x﹣22+22=14+22,9x÷9=36÷9,x=4,(4+4)×2,=10×2,=20(个),答:小华原来有20个,小俊原来有4个,故答案依次为:20,4.33.解:设第二辆车上原有x人,可得方程:x﹣4﹣2=38+4,x﹣6=42,x=48.答:第二辆车上原来坐了48人.34.解:根据分析可得,2÷(2﹣1)×(12﹣1),=2×11,=22(秒);答:12点敲了12下,22秒可以敲完.故答案为:22.35.解:由C和教师的年龄不同岁,教师的年龄比B小,可知B、C都不是教师,只有A是教师;由A的年龄比工人大,和教师的年龄比B小,说明B不是工人是工程师,所以C是工人;故答案为:B.36.解:当切1刀时,块数为1+1=2块;当切2刀时,块数为1+1+2=4块;当切3刀时,块数为1+1+2+3=7块;…当切n刀时,块数=1+(1+2+3…+n)=1+.则切5刀时,块数为1+=16块;故答案为:16.37.解:9÷(2+1)=3(个)10×[9÷(2+1)×2]=10×[9÷3×2]=10×6=60(元);答:他们最少需要花60元钱.故答案为:60.38.解:4月份有30天;30÷7=4(周)…2(天);余下的2天是星期六和星期日;所以4月1日是星期六.故答案为:六.39.解:因为A、B、C、D、E、F、G是不同的数字,由题意可得:D+G=10,C+F=10,B+E=9,A=1,所以:A+B+C+D+E+F+G=A+(B+E)+(C+F)+(D+G)=1+9+10+10=30故答案为:30.40.解:在摆渡奇数次后,船在北岸,摆渡遇数次后,船在南岸.202为奇数,则摆渡202次后,小船在南岸.故答案为:南.。

三年级下册数学试题-第三讲 简单枚举(无答案)全国通用

三年级下册数学试题-第三讲 简单枚举(无答案)全国通用

第三讲 简单枚举1、1,2,3这三个数字能组成多少个不同的三位数?2、1,0,2这三个数字能组成多少个不同的三位数?3、1,0,2这三个数字能组成多少个不同的自然数?4、1,2,3这三个数字能组成多少个不同的自然数?例1小悦、冬冬、阿奇三个人去看电影,他们买了三张座位相邻的票。

他们三人的座位顺序一共有多少种不同的安排方法?【练习】小明决定去香山、颐和园、圆明园这三个景点旅游,要走遍这三个景点,他一共有多少种不同的游览顺序?小王准备从青岛、三亚、桂林、杭州这4个地方中选2个去旅游,小王有多少种不同的选择方式?如果小王想去其中的3个地方,又有多少种选择方式?例2(1)老师给小悦14个相同的练习本。

如果小悦把这些本子全部分给冬冬和阿奇,有多少种不同的分法?(2)老师给小悦14个相同的练习本,如果小悦只需要把这些本子分成2堆,又有多少种不同的分法?【练习】1、(1)把16本书给小李、小王,每个人都有,几种方法?(2)把16本书分成两堆,几种方法?2、老师把9颗糖分给阿呆阿瓜两个人,每人都有糖,那么一共有多少种不同的分法?例3(1)小明买回了一袋糖豆,他数了一下,一共有10个。

现在他要把这些糖豆分成3堆,一共有多少种不同的分法?(2)如果小明有两袋糖豆,每袋10个。

要把这两袋糖豆分成3堆,每堆至少要有5个,一共有多少种不同的分法?【练习】1、张奶奶去超市买了12盒光明牛奶,发现这些牛奶需要装在2个相同的袋子里,并且每个袋子最多只能装10盒,张奶奶一共有几种不同的装法?2、墨莫有12颗巧克力,要把这些巧克力分成3堆,并且一堆里的巧克力不能超过8块,有几种不同的分法?【练习】(1)有2个相同的白球和1个红球。

如果把这3个小球排成一排,有多少种不同的排 法?(2)有2个相同的白球和3个相同的红球。

把这5个小球排成一排,有多少种不同的 排法?1、用3个2和1个4可以组成多少个不同的4位数?2、把2个相同的蓝球和2个相同的足球排成一排,有多少种不同的排法?例 4例5班主任要从甲、乙、丙、丁、戊这五个小朋友里面选出四个人参加乒乓球赛,有多少种不同的选法?如果已经选出了甲、乙、丙、丁,现在要把他们分成两组,进行双打比赛,有多少种不同的分法?【练习】从1到9这9个数字里选出8个相加,一共能得到多少个不同的和?【本讲知识点总结】1.王老师带着萱萱、墨莫、小高一起去看世博会,在馆外排队时,王老师一定要站在第一个或者最后一个,他们四人共有多少种不同的排队方法?2. 两个数位上的数字之和等于9的两位数共有多少个?3、某小学三年级的3个班共有150人,每班人数都不少于49人,请问三个班级人数一共有多少种不同的可能?4、有15个玻璃球,要把它们分成两堆,一共有几种不同的分法?这两堆求的个数可能相差几个?5、用6个1、1个2能组成多少个不同的7位数?6、从卡卡、萱萱、小高、墨莫、阿呆和阿瓜这2女4男中挑出1女3男去参加运动会,共有多少种不同的挑法?7、用6个2和1个1可以组成多少个不同的7位数?8、两个海盗分20枚金币。

三年级奥数题及参考答案:枚举法问题

三年级奥数题及参考答案:枚举法问题

编者导语:奥数让学生不拘泥于书本,不依常规,积极提出自己的新见解、新发现,有自己的新思路、新设计,在思考和解决问题时,思路更畅通、方法更灵活、很有深度。

奥数对于发展学生的思维、培养学生的创新意识和实践能力是极为有效的。

查字典数学网为大家准备了小学三年级奥数题,希望小编整理的三年级奥数题及参考答案:枚举法问题,可以帮助到你们,助您快速通往高分之路!!【试题】现在1元、2元和5元的硬币各4枚,用其中的一些硬币支付23元钱,一共有多少种不同的支付方法?【答案解析】23=54+21+11, 23=54+13,23=53+24, 23=53+23+12, 23=53+22+14。

所以共有5不同的取法。

【小结】对于简单的计数问题,可以用枚举法,列出满足条件的所有情况。

但是对于种数比较多的计数问题常用到排列组合来解决,排列组合的知识我们将在四年级学习。

三年级下册数学竞赛试题-简单枚举 全国通用 (无答案)

三年级下册数学竞赛试题-简单枚举 全国通用 (无答案)

简单枚举【一】从小华家到学校有2条路可以走,从学校到岐江公园有3条路可以走,从小华家到岐江公园,有几种不同的走法?练习1、丽丽有红、蓝、黑帽子各一顶,红、蓝、黑围巾各一条。

冬天,丽丽每天戴一顶帽子、围一条围巾,有几种不同的搭配方式?2、新华书店有3种不同的英语书,4种不同的数学读物,小明想买一种英语书和一种数学读物,共有多少种不同的买法?【二】把4个同样的苹果放在两个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?练习1、把5个同样的苹果放在两个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?2、把7个同样的苹果放在三个同样的盘子里,不允许有的盘子空着不放,问共有多少种不同的分法?【三】从1~6这六个数中,每次取2个数,这两个数的和都必须大于7,能有多少种取法?练习1、从1~4这四个数中,如果每次取2个数,要使两个数的和都大于5,能有多少种取法?2、从1~7这七个数中,任取两个和大于8的数,能有多少种取法?【四】一个长方形花圃的周长是18米,如果它的长和宽都是整厘米数,那么这个花圃的面积有多少种可能值?练习1、一个长方形的周长是12厘米,如果它的长和宽都是整厘米数,那么这个长方形的面积有多少种可能值?2、把10个彩色气球分成数量不同的3堆,共有多少种不同的分法?【五】中、日、韩、美进行四国足球赛,每两队踢一场。

按积分排名次,一共要踢多少场?练习1、五个同学参加乒乓球赛,每两个人都要比赛一场,一共要赛多少场?2、某学校乒乓球队员8人,其中女队员6人,现在要组成双打混合队去参加比赛,有几种组队方法?【六】往返于南京和上海之间的沪宁高速列车沿途要停靠常州、无锡、苏州三站,问:铁路部门要为这趟车准备多少种车票?练习1、上海、北京、天津、广州四个城市分别设有一个飞机场,它们之间通航一共需要多少种不同的机票?2、从广州到长沙的特快列车,中途要停靠8个站。

有几种不同的标价的车票?【七】在1~19中,任取两个和小于20的数,共有多少种不同的取法?练习1、在两位整数中,十位数字小于个位数字的共有多少个?2、在1~29中,每次取2个数,这两个数的和都必须大于30,能有多少种取法?课外作业1、小红有2件不同的上衣,3条不同的裤子,最多可以搭配多少种不同的装束?2、明明有2件不同的上衣,3条不同的裤子,4双不同的鞋子,最多可以搭配多少种不同的装束?3、用0、1、2、3可组成多少个不同的三位数?分别是哪几个数?4、2个自然数的乘积是24,问由这样的2个数所组成的数有多少组?5、某校老师17人举行乒乓球赛,每两人都要比赛一场,一共要比赛多少场?6、在珠江的某一航线上共有7个码头,它们之间通航需要多少种不同的船票?7、有9把不同的锁,开这9把锁的9把钥匙混在一起了,最多要试多少次就可以找到相应的锁?最多要试多少次就能打开相应的锁?。

三年级下册数学竞赛试题- 第二讲 等差数列基础(一)(含答案、奥数板块)-全国通用

三年级下册数学竞赛试题-  第二讲 等差数列基础(一)(含答案、奥数板块)-全国通用

等差数列基础(一)【名师解析】被人称为“数学王子”的高斯在年仅8岁时,就以一种非常巧妙的方法又快又好地算出了1+2+3+4+……+99+100的结果。

小高斯是用什么办法算得这么快呢?原来,他用了一种简便的方法:先配对再求和。

等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。

1、等差数列的判断:(1)数列同向变化(2)每相邻两项之间的差都相等2、基本概念:首项:等差数列的第一个数项数:等差数列的所有数的个数公差:数列中任意相邻两个数的差通项:表示数列中每一个数的公式中项:等差数列最最中间的一个数数列的和:这一数列全部数的和3、基本公式:求和公式:总和=(首项+末项)×项数÷2中项公式:总和=中项×项数通项公式:第n项=首项+(n-1)×公差项数公式:项数=(末项-首项)÷公差+1【例题精讲】例1:判断下面哪些是等差数列?(1)1、2、3、4、5、6、7、8、9、10(2)1、2、4、8、16、32、64(3)1、2、3、4、5、6、7、6、5、4、3、2、1(4)1、4、7、10、13、16、19、22(5)1、2、3、5、8、13、21、34、55、89练习:下面数列中,哪些是等差数列?如果是,请指出公差。

(1)7、11、15、19、23……(2)8、7、6、5、4、3、2、1(3)1、2、1、2、1、2、1、2……(4)3、6、12、24、48……(5)5、5、5、5、5、5……例2:计算:1+2+3+4+5+6+7+8+9+10练习:(1)计算:1+3+5+…+17+19(2)求40以内(包括40)所有双数的和。

例3:盒子里放着一些乒乓球(如下图),这些乒乓球一共有多少个?练习:光头强在森林里砍树,下图是他放的一堆圆木,请你帮他算一算,一共有几根圆木?例4:计算:11+21+31+41+51+61+71+81+91练习:计算:99+103+107+111+115+119+123+127+131+135+139例5:下面一列数是按一定的规律排列的:3,12,21,30,39,48,57,66……,求第12个数是多少?第30个呢?练习:已知等差数列5,8,11,…,求出它的第15项和第20项。

三年级下册数学试题-思维训练导引:第四讲 枚举法一(含答案)通用版

三年级下册数学试题-思维训练导引:第四讲 枚举法一(含答案)通用版

第四讲枚举法一内容概述掌握枚举的一般方法。

学会按照一定顺序,有规律地进行枚举,做到“不重不漏”;应用字典排列法解决整数分拆的问题。

学会分辨“计次序”与“不计次序”的情形。

兴趣篇1.冬冬在一张纸上画了一些图形,如图所示,每个图形都是由若干条线段连接组成的,请你数一数,纸上一共有多少条线段?(最外面的大长方形的边框,不算在内)分析:24条2.要沿着如图所示的道路西欧那个A点走到B点,并且每段路最多只能经过一次,一共有多少种不同的走法?分析:4种3.小明决定去香山、颐和园、圆明园这三个景点旅游。

要走遍这三个景点,他一共有多少种不同的游览顺序?分析:6种4.小王准备从青岛、三亚、桂林、杭州这4个地方种选2个去旅游,小王又多少种不同的选择方式?如果小王想去其中的3个地方,又有多少种选择方式?分析:6种;4种5.小烧饼每个5角钱,大烧饼每个2元钱。

冬冬一共有6元钱,如果把这些钱全部用来买烧饼,一共有多少种不同的买法?分析:4种6.在一次知识抢答比赛中,小悦和冬冬两个人一共答对了10道题,并且每人都有答对的题目。

如果每道题1分,那么小悦和冬冬分别可能得多少分?请把所有的可能填写到下面的表格里:分析:10=1+9=2+8=3+7=4+6=5+5=6+4=7+3=8+2=9+17.两个海盗分20枚金币,请问:(1)如果每个海盗最少分到5枚金币,一共有多少种不同的分法?(2)如果每个海盗最多分到16枚金币,一共有多少种不同的分法?分析:(1)11种;(2)13种8.有15个玻璃杯,要把它们分成两堆,一共有几种不同的分法?这两堆球的个数可能相差几个?分析:7种;可能相差13,11,9,7,5,3,1个9.张奶奶去超市买了12盒光明牛奶,发现这些牛奶需要装在2个相同的袋子里,并且每个袋子最多只能装10盒。

张奶奶一共有几种不同的装法?分析:5种10.小悦、冬冬、阿奇三个人一共有7本课外书,每个人至少有一本。

小悦、冬冬、阿奇分别有几本课外书?请写出全部可能的情况。

三年级奥数精品第五讲-----简单枚举

三年级奥数精品第五讲-----简单枚举

第五讲简单枚举例题1下图中有多少条线段?练习►下图中共有多少个三角形?右图中有多少个正方形?例题2 从小华家到学校有3条路可走,从学校到文峰公园有4条路可走。

从小华家到文峰公园,有几种不同的走法?练习►明明有2件不同的上衣,3条不同的裤子,4双不同的鞋子。

最多可搭配成多少种不同的装束?例题3 用红、绿、黄三种信号灯组成一种信号,可以组成多少种不同的信号?练习►用2、3、4、7四个数字,可以组成多少个不同的四位数?例题4 一个长方形的周长是22米,如果它的长和宽都是整米数,那么这个长方形的面积有多少种可能?练习►一个长方形的周长是28米,如果它的长和宽都是整米数,那么这个长方形的面积有多少种可能?例题5 有4位小朋友,暑假中互相通一次电话,他们一共打了多少次电话?练习►6个小队进行排球比赛,每两队比赛一场,共要进行多少次比赛?例题6 一条铁路,共有10个车站,如果每个起点站到终点站只用一种车票(中间至少相隔5个车站),那么这样的车票共有多少种?练习►一条公路上,共有8个站点。

如果每个起点到终点只用一种车票(中间至少相隔3个车站),那么共有多少种不同的车票?例题7 有25本书,分成6份。

如果每份至少一本,且每份的本数都不相同,有多少种分法?练习►有18张卡片分成6份。

如果每份至少一张,且每份的张数都不相同,有多少种分法?例题8在所有的四位数中,各个数位上的数字之和等于34的数有多少个?练习►妈妈买来7个鸡蛋,每天至少吃2个,吃完为止,有多少种不同的吃法?第五讲简单枚举练习题1,下图中共有多少个三角形2,下图中各有多少个长方形?3,用0,1,2,3可组成多少个不同的三位数?4,从北京到南京的特快列车,中途要停靠9个站。

在几种不同标价的车票?5,丽丽有红、蓝、黑帽子各一顶,红蓝、黑围巾各一条。

冬天,丽丽每天戴一顶帽子、围一条围巾,有几种不同的搭配方式?6,一个长方形的周长是30厘米,如果它的长和宽都是整厘米数,那么这个长方形的面积有多少种可能?7,小芳出席由19人参加的联欢会,散会后,每两人都要握一次手,他们一共握了多少次手?8,小明用70元钱买了甲、乙、丙、丁4种书,共10册。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简单枚举
【一】从小华家到学校有2条路可以走,从学校到岐江公园有3条路可以走,从小华家到岐江公园,有几种不同的走法?
练习
1、丽丽有红、蓝、黑帽子各一顶,红、蓝、黑围巾各一条。

冬天,丽丽每天戴一顶帽子、
围一条围巾,有几种不同的搭配方式?
2、新华书店有3种不同的英语书,4种不同的数学读物,小明想买一种英语书和一种数学
读物,共有多少种不同的买法?
【二】把4个同样的苹果放在两个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?
练习
1、把5个同样的苹果放在两个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?
2、把7个同样的苹果放在三个同样的盘子里,不允许有的盘子空着不放,问共有多少种不同的分法?
【三】从1~6这六个数中,每次取2个数,这两个数的和都必须大于7,能有多少种取法?
练习
1、从1~4这四个数中,如果每次取2个数,要使两个数的和都大于5,能有多少种取法?
2、从1~7这七个数中,任取两个和大于8的数,能有多少种取法?
【四】一个长方形花圃的周长是18米,如果它的长和宽都是整厘米数,那么这个花圃的面积有多少种可能值?
练习
1、一个长方形的周长是12厘米,如果它的长和宽都是整厘米数,那么这个长方形的面积有多少种可能值?
2、把10个彩色气球分成数量不同的3堆,共有多少种不同的分法?
【五】中、日、韩、美进行四国足球赛,每两队踢一场。

按积分排名次,一共要踢多少场?
练习
1、五个同学参加乒乓球赛,每两个人都要比赛一场,一共要赛多少场?
2、某学校乒乓球队员8人,其中女队员6人,现在要组成双打混合队去参加比赛,有几种组队方法?
【六】往返于南京和上海之间的沪宁高速列车沿途要停靠常州、无锡、苏州三站,问:铁路部门要为这趟车准备多少种车票?
练习
1、上海、北京、天津、广州四个城市分别设有一个飞机场,它们之间通航一共需要多少种不同的机票?
2、从广州到长沙的特快列车,中途要停靠8个站。

有几种不同的标价的车票?
【七】在1~19中,任取两个和小于20的数,共有多少种不同的取法?
练习
1、在两位整数中,十位数字小于个位数字的共有多少个?
2、在1~29中,每次取2个数,这两个数的和都必须大于30,能有多少种取法?
课外作业
1、小红有2件不同的上衣,3条不同的裤子,最多可以搭配多少种不同的装束?
2、明明有2件不同的上衣,3条不同的裤子,4双不同的鞋子,最多可以搭配多少种不同的装束?
3、用0、1、2、3可组成多少个不同的三位数?分别是哪几个数?
4、2个自然数的乘积是24,问由这样的2个数所组成的数有多少组?
5、某校老师17人举行乒乓球赛,每两人都要比赛一场,一共要比赛多少场?
6、在珠江的某一航线上共有7个码头,它们之间通航需要多少种不同的船票?
7、有9把不同的锁,开这9把锁的9把钥匙混在一起了,最多要试多少次就可以找到相应
的锁?最多要试多少次就能打开相应的锁?。

相关文档
最新文档