函数的单调性与最值(含例题详解)

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的单调性与最值

一、知识梳理

1.增函数、减函数

一般地,设函数f (x )的定义域为I ,区间D ⊆I ,如果对于任意x 1,x 2∈D ,且x 1f (x 2). 2.单调区间的定义

若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格

的)单调性,区间D 叫做y =f (x )的单调区间. 3.函数的最值

注意:

1.函数的单调区间是指函数在定义域内的某个区间上单调递增或单调递减.单调区间 只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集

]

符号“∪”联结,也不能用“或”联结.

2.两函数f (x ),g (x )在x ∈(a ,b )上都是增(减)函数,则f (x )+g (x )也为增(减)函数,

f (x )·

g (x ),

()

1

f x 等的单调性与其正负有关,切不可盲目类比. [试一试]

1.下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =ln(x +2)

B .y =-x +1

C .12x

y ⎛⎫= ⎪⎝⎭

D .y =x +1

x

解析:选A 选项A 的函数y =ln(x +2)的增区间为(-2,+∞),所以在(0,+∞)上

一定是增函数.

2.函数f (x )=x 2

-2x (x ∈[-2,4])的单调增区间为______;f (x )max =________.

解析:函数f (x )的对称轴x =1,单调增区间为[1,4],f (x )max =f (-2)=f (4)=8. 答案:[1,4] 8

$

二、方法归纳

1.判断函数单调性的四种方法

(1)定义法:取值、作差、变形、定号、下结论;

(2)复合法:同增异减,即内外函数的单调性相同时,为增函数,不同时为减函数; (3)图像法:如果f (x )是以图像形式给出的,或者f (x )的图像易作出,可由图像的直观性

判断函数单调性.

(4)导数法:利用导函数的正负判断函数单调性. 2.求函数最值的五个常用方法

(1)单调性法:先确定函数的单调性,再由单调性求最值.

(2)图像法:先作出函数的图像,再观察其最高点、最低点,求出最值.

!

(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值. (4)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不 等式求出最值.

(5)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值. 提醒:在求函数的值域或最值时,应先确定函数的定义域. [练一练]

1.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( ) A .y =1x

B .y =e -x

C .y =-x 2

+1 D. y =lg|x |

答案:C 2.函数f (x )=

1

x 2

+1

在区间[2,3]上的最大值是________,最小值是________. }

答案:15 110

三、考点精练

考点一 求函数的单调区间

1、函数()()5log 21f x x =+的单调增区间是________. 解析:要使()5log 21y x =+有意义,则210x +>,即1

2

x >-

,而5log y u =为()0,+∞

上的增函数,当1 2

x>-时,u=2x+1也为R上的增函数,故原函数的单调增区间是

1

,

2

⎛⎫

-+∞

⎝⎭

.

答案:

1

,

2

⎛⎫

-+∞

⎝⎭

2.函数y=x-|1-x|的单调增区间为________.

解析:y=x-|1-x|=

1,1

21,1

x

x x

-<

作出该函数的图像如图所示.

由图像可知,该函数的单调增区间是(-∞,1].

答案:(-∞,1]

3.设函数y=f(x)在()

,

-∞+∞内有定义.对于给定的正数k,定义函数()

()()

()

,

,

k

f x f x k

f x

k f x k

⎧≤

=⎨

>

⎪⎩

取函数()2x

f x-

=,当k=1

2

时,函数()

k

f x的单调递增区间为( )

A.(-∞,0) B.(0,+∞)

C.(-∞,-1) D.(1,+∞)

解析:选C 由f(x)>

1

2

,得-1

由f(x)≤

1

2

,得x≤-1或x≥1.

所以()

1

2

2,1

1

,11

2

2,1

x

x

x

f x x

x

-

⎧≥

=-<<

⎪≤-

,故()

1

2

f x的单调递增区间为(-∞,-1).

[解题通法]

求函数单调区间的方法与判断函数单调性的方法相同即:

!

(1)定义法;(2)复合法;(3)图像法;(4)导数法.

相关文档
最新文档