2.2.2对数函数及其性质导学案

合集下载

2.2.2对数函数及性质(1)17

2.2.2对数函数及性质(1)17

2.2.2 对数函数及其性质(1)一、学习目标1.通过学习对数函数及性质,学生提高了数形结合的能力,养成直观想象的数学核心素养.2.通过对对数函数图象及其性质的归纳,学生锻炼了逻辑推理的数学核心素养.3通过对知识的探究过程,学生能够认真分析问题,解决问题,提高了数学运算的核心素养.二、学习任务1.通过观察对数函数的图象归纳出对数函数的性质.2.掌握对数函数的概念,图象和性质,解决与定义域,单调性有关的问题.三、疑点收集四、导学内容及其过程 自主学习: (一)对数函数的概念一般地,我们把函数 叫做对数函数,其中x 是自变量, 函数的定义域是 .(二)对数函数的图象1.在同一平面直角坐标系中画出下列函数的图象:(1)2log y x = (2)12log y x = (3) 3log y x = (4) 13log y x =y0 1 x思考1:函数2log y x =的图象与函数12logy x =的图象有什么关系?可否利用2log y x =的图象画出12log y x =的图象?思考 2:选取底数a (1,0≠>a a )的若干个不同的值,在同一平面直角坐标系内作出相应的对数函数的图象.观察图象,你能发现有哪些共同特征吗?2.对数函数的图象和性质.一般的,对数函数log (01)a y x a a =>≠且的图象和性质如下表所示:合作探究:合作探究一:对数函数单调性的应用例1.比较下列各组数中两个值的大小:(1)4.3log2与5.8log2(2)8.1log3.0与7.2log3.0(3)log 5.1a与log 5.9a(0a>且1a≠)合作探究二:对数函数的定义例2.求下列函数的定义域:(1)2logay x=(2)log(4)ay x=-(3)32log xy=(4))34(logy5.0-=x合作探究三:比较对数函数底数的大小例3.图是对数函数xyalog=的图象,已知a的值取43、31510、,则图象1234C C C C、、、相应的a值依次是()A.134,1053 B.314,5103 C.431,3510 D.413,3105 .五、巩固练习:基础题1. 函数)1lg(-=x y 的定义域是( )A.[)+∞,0B.[)+∞,1C.()+∞,0D.()+∞,1 2. 若对数函数的图象过点()2,9,则对数函数的解析式为( ) A. x y 2log = B.x y 3log =C.x y 9log =D.x y 4log = 3. 若函数x y a log =的图象过点⎪⎭⎫ ⎝⎛2,41,则当161=x 时,函数值为( ) A.1 B.2 C.3 D.4 4. 函数()23log 23+-=x x y 定义域为( )A.RB.()+∞,0C.()2,∞-D.()()+∞⋃∞-,21, 提升题5. 已知0a >且1a ≠则函数log (1)1a y x =-+的图象恒过定点 .6. 已知函数2()log 2ax f x x +=- (0a >且1a ≠). (1)求函数的定义域; (2)判断函数的奇偶性.六、自主反思1.你的收获2.你的不足3.努力方向。

《2.2.2对数函数及其性质》教案

《2.2.2对数函数及其性质》教案

对数函数及其性质一、教材分析本节课选自《普通高中课程标准数学教科书-必修1》(人教A版)《2.2.2对数函数及其性质》共3课时,本节课是第1课时。

本节课主要内容是学习对数函数的定义、图象、性质及初步应用。

对数函数是继指数函数之后的又一个重要初等函数,无论从知识或思想方法的角度对数函数与指数函数都有许多类似之处。

与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活,能力要求也更高。

学习对数函数是对指数函数知识和方法的巩固、深化和提高,也为解决函数综合问题及其在实际上的应用奠定良好的基础。

二、学生学习情况分析1.有利条件本节课是在学生学完了对数及其运算、并初步接触了一些对数应用问题的基础上进行的,同时前面指数函数的研究也为本课学习提供了范例,这些都是学生学习本节课的有利条件。

2.不利条件学生初中也已经学习过整数指数幂及其运算,因些学生对指数函数的学习有一定的基础可寻。

但对数和对数函数,对学生来说都是新知识,对学生来说更抽象和陌生,同时前面3节课的大量的对数运算公式的学习,也可能使学生对本节课的学习产生一些为难情绪。

克服不利因素的关键是紧紧抓住指数与对数的联系,利用它们在形式上的相互转化,并结合函数的概念进行教学。

三、教学目标分析课标要求:初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图像,探索并了解对数函数的单调性与特殊点。

1.知识与技能目标⑴理解指数函数与对数函数的内在关系;⑵掌握对数函数的概念、图象和性质;2.过程与方法目标⑴能借助计算器或计算机画出具体对数函数的图象,引导学生结合图象类比指数函数,探索研究对数函数的性质.⑵通过具体实例,直观了解对数函数模型所刻画的数量关系,体会对数函数是一类重要的函数模型.3.情感、念度与价值观目标在指数函数与对数函数相互类比与转化的学习中,体会转化的转想和对立统一的辩证关系。

四、教学重点、难点分析重点:对数函数的定义、图象和性质难点:对数函数概念的理解,底数a的范围对对数函数图象、性质的影响.突破难点的关键:从指数函数与对数函数联系的角度来引出和分析对数函数的概念,发挥数形结合的直观特点,进行操作、猜想的验证,在学生原有的知识基础上来进行本节课的教学。

2.2.2对数函数(二)教案

2.2.2对数函数(二)教案

2.2.2 对数函数(二)教案一、教学目标通过本堂课的学习,学生应能够: 1. 理解对数函数的概念,并能够正确地用符号表示对数函数; 2. 掌握对数函数的性质,包括定义域、值域、单调性、奇偶性等; 3. 能够应用对数函数解决实际问题。

二、教学内容1.对数函数的定义和性质;2.对数函数图像的特点;3.对数函数的应用。

三、教学步骤步骤一:引入1.引导学生回顾上节课学习的内容,对数函数的基本概念和性质;2.提出对数函数的实际应用问题,引发学生的思考。

步骤二:定义和性质1.通过示例引导学生理解对数函数的定义,即 $y = \\log_a{x}$;2.解释对数函数的定义域和值域,与指数函数的关系;3.讲解对数函数的单调性和奇偶性,以及对数函数与指数函数的逆运算关系。

步骤三:图像特点1.通过实例展示对数函数的图像特点;2.讲解对数函数图像的平移、缩放和反转等变化规律;3.引导学生观察并总结对数函数图像的规律。

步骤四:应用实例1.提供一些实际问题,并引导学生分析问题所涉及的数学模型;2.基于对数函数的性质,引导学生解决实际问题;3.鼓励学生在解决问题过程中,灵活运用对数函数的知识。

步骤五:小结1.回顾本堂课学习的内容;2.强调对数函数的重要性和应用价值;3.鼓励学生继续深入学习对数函数的知识,并拓展应用领域。

四、教学资源•教材:对数函数相关章节的教材资料;•课件:包含对数函数的定义、性质和图像特点的课件;•实例:提供实际问题的实例材料。

五、教学评估1.在课堂上进行小组讨论,解决应用实例问题;2.布置作业,要求学生运用对数函数解决实际问题;3.随堂进行问答,检查学生对对数函数的理解和掌握程度。

六、教学反思本节课通过引入实际问题,设计了丰富的示例和应用实例,帮助学生理解对数函数的定义和性质,并能够灵活应用到实际问题中。

同时,通过观察对数函数图像的特点,引导学生发现规律,提高他们的数学建模能力。

在后续的教学中,可以继续加大实际应用的训练,培养学生的问题解决能力。

数学:2.2.2《对数函数及其性质》教案(新人教版A必修1)

数学:2.2.2《对数函数及其性质》教案(新人教版A必修1)

2.2.2对数函数及其性质一、教学内容分析《普通高中课程标准数学教科书·必修(1)》(人民教育出版社)高中一年级第二单元2.2.2《对数函数的图象和性质》第一课时。

函数是高中数学的主体内容——变量数学的主要研究对象之一,是中学数学的重点知识,研究函数的一般理论和基本方法,用函数的思想方法解决实际问题,是函数教学的主要目标。

必修(Ⅰ)2.2.2对数函数及其性质,按课标要求教学时间为3个学时,本节课为第1课时,本节课教学是学生在学过正比例函数、一次函数、二次函数、反比例函数和指数函数的基础上进一步学习的一种新函数,对对数函数概念的理解,图象和性质的掌握和应用有利于学生对初等函数认识的系统性,有利于进一步加深对函数思想方法的理解。

为后面进一步探究对数函数的应用及指数函数、对数函数的综合应用起到承上启下的作用。

二、学情与教材分析对数函数是高中引进的第二个初等函数,是本章的重点内容。

学生在前面的函数性质、指数函数学习的基础上,用研究指数函数的方法,进一步研究和学习对数函数的概念、图象和性质以及初步应用,有利于学生进一步完善初等函数的认识的系统性,加深对函数的思想方法的理解,在教学过程中,虽然学生的认知水平有限,但只要让学生体验对数函数来源于实践,通过教师课件的演示,通过数形结合,让学生感受y=log a x(a>0且a≠1)中,a取不同的值时反映出不同的函数图象,让学生观察、小组讨论、发现、归纳出图象的共同特征、函数图象的规律,进而探究学习对数函数的性质。

最后将对数函数、指数函数的图象和性质进行比较,以便加深对对数函数的概念、图象和性质的理解,同时也为后面教学作准备。

三、设计思想在本节课的教学过程中,通过古遗址上死亡生物体内碳14含量与生物死亡年代关系的探索,引出对数函数的概念。

通过对底数a的分类讨论,探究总结出对数函数的图象与性质,使学生经历从特殊到一般的过程,体验知识的产生、形成过程,通过例题的分析与练习,进一步培养学生自主探索,合作交流的学习方式,通过学生经历直观感知,观察、发现、归纳类比,抽象概括等思维过程,落实培养学生积极探索学习习惯,提高学生的数学思维能力的新课程理念。

对数函数导学案李远敬

对数函数导学案李远敬

§2.2.2对数函数及其性质导学案援疆教师 李远敬一、学习目标1.知识技能:①理解对数函数的概念,熟悉对数函数的图象与性质.②掌握对数函数的性质.2.过程与方法:引导学生结合图象,探索研究对数函数的性质.3.情感、态度与价值观.培养学生数形结合的思想以及分析推理的能力;培养学生严谨的科学态度.二、学习重点和难点重点:1.对数函数的定义、图象、性质. 2.对数函数的性质的初步应用. 难点:对数函数的图像和性质的探究.三、自主学习1.对数函数的定义函数 ,叫做对数函数.2.对数函数x y a log = (0>a ,且1≠a )的图象研究函数x y 2log =和x y 21log =的图象;①列表②描点③连线3.对数函数x y a log = (0>a ,且1≠a )的图象和性质四、合作探究题型1.求下列函数的定义域:(1)2log x y a = (2))4(log x y a -= (学生板书)题型2.函数的图象过定点(1)x y a log 1+= (2)3)4(log +-=x y a题型3.比较下列各组数中两个值的大小:(1)4.3log 2, 5.8log 2 (2)8.1log 3.0,7.2log 3.0(学生板书) (3)1.5log a , 9.5log a (教师板书)五、分组讨论两对数的底数相同时,如何比较大小? 两底数不同的对数,如何比较大小?六、.自主测评(1)7log 6,6log 7 (2)3log π,8.0lo 2g七、合作总结八、课后作业教材87页A 组第7,10题。

九、学习反思。

2.2.2对数函数以及性质导学案

2.2.2对数函数以及性质导学案

主备人:李建美 教研组长:李瑶 审核人: 使用时间:2016.10
1
郑州剑桥中学高一数学导学案
一、课前准备
(预习教材P 70~ P 73,找出疑惑之处)
(1)拉面模型:师傅在做拉面时,将1根拉成2根,2根拉成4根,4根拉成8根,……,试写出第y 次拉出x 根面条的式子?并利用对数与指数的互化性质,将其转化成对数形式。

(2)观察教材图2.2-3,这两个函数的图象有哪些共同特征?有什么关系?
二、新课导学
探究任务1:对数函数的概念
一般地,把函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 为自变量,函数的定义域是 . 探究任务2:对数函数的图像与性质
在同一坐标系中用描点法画出对数函数2log y x =与12
log y x =的图象。

将表格与图象补充完整。

x
… 1/4 1/2 1 2 4 … 2log y x =
… -2
-1 0 1 2 (12)
log y x = …

根据对数底数判断对数函数增减性;比较真数大小,然后利用对数函数的增减性判断两对数值的大小.
D.(-∞,+∞
1.如图,若C1,C2分别为函数y=log a x和y=log b x的图象,则()
A.0<a<b<1 B.0<b<a<1 C.a>b>1 D.b>a>1
2.函数y=log2|x|的图象大致是()
3.求下列函数的定义域.
(1)y=log2(x2-4x-5);(2)y=log0.5(4x-3).
P73 练习2(做书上).
2
3。

2.2.2对数函数及其性质教案(1)

2.2.2对数函数及其性质教案(1)

2.2.2对数函数及其性质教案(1)2.2.2对数函数及其性质(一)教学目标(一)教学知识点1.对数函数的概念;2.对数函数的图象与性质.(二)能力训练要求1.认知对数函数的概念;2.掌握对数函数的图象、性质;3.培养学生数形结合的意识.(三)德育渗透目标1.重新认识事物之间的广泛联系与相互转变;2.用联系的观点看看问题;3.了解对数函数在生产生活中的简单应用.教学重点对数函数的图象、性质.教学难点对数函数的图象与指数函数的关系.教学过程一、复习引入:1、对数的概念:如果ax=n,那么数x叫作以a为底n的对数,记作logan=x(a>0,a≠1)2、指数函数的定义:函数y=ax(a>0,且a≠1)叫作指数函数,其中x就是自变量,函数的定义域就是r.3、我们研究指数函数时,曾经讨论过细胞分裂问题,某种细胞分裂时,得到的细胞的个数y就是对立次数x的函数,这个函数可以用指数函数y=2则表示.现在,我们来研究相反的问题,如果要求这种细胞经过多少次分裂,大约可以得到1万个,10万个??细胞,那么,分裂次数x就是要得到的细胞个数y的函数.根据对数的定义,这个函数可以写成对数的形式就是x?log2y.如果用x则表示自变量,y则表示函数,这个函数就是y?log2x.带出新课--对数函数.二、新授内容:1.对数函数的定义:函数y?logax(a?0且a?1)叫做对数函数,定义域为(0,??),值域为(??,??).x第1页共11页例1.求下列函数的定义域:(1)y?logax2;(2)y?loga(4?x);(3)y?loga(9?x2).分析:此题主要利用对数函数y?logax的定义域(0,+∞)解.求解:(1)由x>0得x?0,∴函数y?logax2的定义域就是?x|x?0?;2(2)由4?x?0得x?4,∴函数y?loga(4?x)的定义域是?x|x?4?;2(3)由9?x?0得-3?x?3,∴函数y?loga(9?x2)的定义域是?x|?3?x?3?.2.对数函数的图象:通过列表、描点、连线作y?log2x与y?log1x的图象:232.532.5221.51-11.510.51110.50-0.512345678-101-0.512345678-1-1-1.5-1.5-2-2-2.5-2.5思索:y?log2x与y?log1x的图象存有什么关系?23.练习:教材第73页练习第1题.1.图画出来函数y=log3x及y=log1x的图象,并且表明这两个函数的相同性质和相同性质.3解:相同性质:两图象都位于y轴右方,都经过点(1,0),这说明两函数的定义域都是(0,+∞),且当x=1,y=0.不同性质:y=log3x的图象是上升的曲线,y=log1x的图象3就是上升的曲线,这表明前者在(0,+∞)上就是增函数,后者在(0,+∞)上就是减至函数.4.对数函数的性质由对数函数的图象,观察得出对数函数的性质.32.52a>132.520<a<11.51.5图象1-111110.50.50-0.512345678-101-0.512345678-1-1-1.5-1.5-2-2-2.5-2.5性定义域:(0,+∞)第2页共11页质值域:r过点(1,0),即当x=1时,y=0x?(0,1)时y?0x?(1,??)时y?0在(0,+∞)上是增函数三、讲解范例:基准2.比较以下各组数中两个值的大小:x?(0,1)时y?0x?(1,??)时y?0在(0,+∞)上是减函数⑴log23.4,log28.5;⑵log0.31.8,log0.32.7;⑶loga5.1,loga5.9(a?0,a?1).解:⑴考查对数函数y?log2x,因为它的底数2>1,所以它在(0,+∞)上是增函数,于是log23.4?log28.5.⑵考查对数函数y?log0.3x,因为它的底数0<0.3<1,所以它在(0,+∞)上就是减至函数,于是log0.31.8?log0.32.7.小结1:两个同底数的对数比较大小的一般步骤:①确认所必须考查的对数函数;②根据对数底数推论对数函数多寡性;③比较真数大小,然后利用对数函数的多寡性推论两对数值的大小.⑶当a?1时,y?logax在(0,+∞)上就是增函数,于是loga5.1?loga5.9;当0?a?1时,y?logax在(0,+∞)上就是减至函数,于是loga5.1?loga5.9.小结2:分类探讨的思想.对数函数的单调性取决于对数的底数是大于1还是小于1.而已知条件并未指明,因此需要对底数a进行讨论,体现了分类讨论的思想,要求学生逐步掌握.四、练1。

高一数学2.2.2对数函数及其性质公开课导学案设计

高一数学2.2.2对数函数及其性质公开课导学案设计

高 一 数学
《2.2.2对数函数及其性质》导学案(一)
[目标展示]
1、理解对数函数的概念。

2、掌握掌握对数函数的图像和性质。

[重点难点]
重点 、难点:对数函数的概念、图像和性质;
导:复习:
画出2x y =、1 ()2
x y =的图象,并以这两个函数为例,说说指数函数的性质. [课前预习]
学:新知:
阅读教材第70页前两自然段,完成下列问题 。

1、对数函数的定义:一般地,我们把函数 叫做对数函数, 其中 是自变量,函数的定义域是 。

议:2、想一想:为什么对底数a 和自变量x 做这样的规定?
练:3、画出函数x x f 2log )(=和x x g 2
1log )(=的图象,这两函数图像关于什么轴对称 ?
[合作探究]
问题 1:指出下列函数那些是对数函数.
(1)x y a
log =(a>0,且a 1≠) x y 2log )2(=+2 (3) )1(2log 8+=x y (4)6log x y =(x>0,且x )1≠ (5)x y 6log =
问题2:判断正误.
(1)若f(x)是对数函数,则f(1)=0( ).
(2)函数x
y 2log =在R 上是增函数.( )
(3)函数x a y log =(a>0,且a 1≠)的图像一定位于y 轴的右侧.( )
结: 一个函数是对数函数必须是形如=y x a log (a>0,且a ≠1)的函数,即必须满足 以下条件:
(1)系数为1;(2)底数为大于0且不等于1的常数;
(3)对数的真数仅有自变量x.。

人教A版高中数学必修一 2.2.2 对数函数的图像及其性质 学案

人教A版高中数学必修一 2.2.2 对数函数的图像及其性质 学案

2.2.2 对数函数的图像及其性质(学案)一、学习目标1.理解对数函数的概念,会求对数函数的定义域.(重点、难点) 2.能画出具体对数函数的图象,并能根据对数函数的图象说明对数函数的性质.(重点)二、自主学习教材整理1 对数函数的概念阅读教材P 70前两个自然段,完成下列问题.对数函数:一般地,我们把函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域为(0,+∞).阅读教材P 70第三自然段至P 71“例7”以上部分,完成下列问题.阅读教材P 73至“练习”以上的部分,完成下列问题.反函数:对数函数y =log a x 与指数函数y =a x (a >0,且a ≠1)互为反函数. 三、合作探究例1. (1)下列函数表达式中,是对数函数的个数有( )①y =log x 2;②y =log a x (a ∈R );③y =log 8x ;④y =l n x ;⑤y =log x (x +2);⑥y =2log 4x ;⑦y =log 2(x +1).A .1个B .2个C .3个D .4个(2)若对数函数f (x )的图象过点(4,-2),则f (8)=________.【自主解答】 (1)由于①中自变量出现在底数上,∴①不是对数函数;由于②中底数a ∈R 不能保证a >0,且a ≠1,∴②不是对数函数;由于⑤⑦的真数分别为(x +2),(x +1),∴⑤⑦也不是对数函数;由于⑥中log 4x 的系数为2,∴⑥也不是对数函数;只有③④符合对数函数的定义.(2)由题意设f (x )=log a x ,则f (4)=log a 4=-2,所以a -2=4,故a =12,即f (x )=log 12x ,所以f (8)=log 128=-3. 【答案】 (1)B (2)-3归纳总结:1.判断一个函数是对数函数必须是形如y =log a x (a >0且a ≠1)的形式,即必须满足以下条件:(1)底数a >0,且a ≠1; (2)自变量x 在真数的位置上,且x >0; (3)在解析式y =log a x 中,log a x 的系数必须是1,真数必须是x .2.对数函数的解析式中只有一个参数a ,故用待定系数法求对数函数的解析式时只需一个条件即可求出.例2. (1)函数f (x )=1log 12x +1的定义域为( )A .(2,+∞)B .(0,2)C .(-∞,2) D.⎝⎛⎭⎫0,12(2)函数f (x )=12-x+ln (x +1)的定义域为____________________________. (3)函数f (x )=log (2x -1)(-4x +8)的定义域为___________________________.【自主解答】 (1)要使函数f (x )有意义,则log 12x +1>0,即log 12x >-1,解得0<x <2,即函数f (x )的定义域为(0,2),故选B . (2)函数式若有意义,需满足⎩⎪⎨⎪⎧x +1>02-x ≥02-x ≠0即⎩⎪⎨⎪⎧x >-1x <2,解得-1<x <2,故函数的定义域为(-1,2).(3)由题意得⎩⎪⎨⎪⎧-4x +8>02x -1>02x -1≠1,解得⎩⎨⎧x <2x >12x ≠1.故函数y =log (2x -1)(-4x +8)的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪12<x <2,且x ≠1. 【答案】 (1)B (2)(-1,2) (3)⎩⎨⎧⎭⎬⎫x ⎪⎪12<x <2,且x ≠1 归纳总结:求与对数函数有关的函数的定义域问题应遵循的原则为:1要保证根式有意义;要保证分母不为0;要保证对数式有意义,即若自变量在真数上,则必须保证真数大于0;若自变量在底数上,应保证底数大于0且不等于1.例3. (1)已知a >0且a ≠1,函数y =log a x ,y =a x ,y =x +a 在同一坐标系中的图象可能是( )(2)作出函数y =|log 2(x +1)|+2的图象.【自主解答】 (1)∵函数y =a x 与y =log a x 互为反函数,∴它们的图象关于直线y =x 对称.再由函数y =a x 的图象过(0,1),y =log a x 的图象过(1,0),排除选项A ,B ,从C ,D 选项看,y =log a x 递减,即0<a <1,故C 正确.【答案】 C(2)第一步:作y =log 2x 的图象,如图(1)所示.(1) (2)第二步:将y =log 2x 的图象沿x 轴向左平移1个单位长度,得y =log 2(x +1)的图象,如图(2)所示.第三步:将y =log 2(x +1)的图象在x 轴下方的部分作关于x 轴的对称变换,得y =|log 2(x+1)|的图象,如图(3)所示.第四步:将y =|log 2(x +1)|的图象沿y 轴向上平移2个单位长度,即得到所求的函数图象,如图(4)所示.(3) (4)归纳总结:函数图象的变换规律 (1)一般地,函数y =f (x ±a )+b (a ,b 为实数)的图象是由函数y =f (x )的图象沿x 轴向左或向右平移|a |个单位长度,再沿y 轴向上或向下平移|b |个单位长度得到的.(2)含有绝对值的函数的图象一般是经过对称变换得到的.一般地,y =f (|x -a |)的图象是关于直线x =a 对称的轴对称图形;函数y =|f (x )|的图象与y =f (x )的图象在f (x )≥0的部分相同,在f (x )<0的部分关于x 轴对称.四、学以致用1.若函数f (x )=log (a +1)x +(a 2-2a -8)是对数函数,则a =________.【解析】 由题意可知⎩⎪⎨⎪⎧a 2-2a -8=0a +1>0a +1≠1,解得a =4. 【答案】 42.函数f (x )=3-x +lg (x +1)的定义域为( )A .[-1,3)B .(-1,3)C .(-1,3]D .[-1,3]【解析】 根据题意,得⎩⎪⎨⎪⎧3-x ≥0x +1>0,解得-1<x ≤3,∴f (x )的定义域为(-1,3].故选C. 【答案】 C 3.函数y =log 32x -的定义域为( )A .[1,+∞)B .(1,+∞) C.⎝⎛⎭⎫12,+∞ D.⎝⎛⎭⎫12,1 【解析】 要使函数y =log 32x -有意义,有⎩⎪⎨⎪⎧2x -1>0log 32x -,解得x ≥1,所以函数f (x )的定义域是[1,+∞).故选A. 【答案】 A 4.函数y =a -x 与y =log a (-x )的图象可能是( )【解析】∵在y =log a (-x )中,-x >0,∴x <0,∴图象只能在y 轴的左侧,故排除A ,D ;当a >1时,y =log a (-x )是减函数,y =a -x =⎝⎛⎭⎫1a x 是减函数,故排除B ;当0<a <1时,y =log a (-x )是增函数,y =a -x =⎝⎛⎭⎫1a x 是增函数,∴C 满足条件,故选C. 【答案】 C五、自主小测1.已知函数f (x )=11-x的定义域为M ,g(x )=ln (1+x )的定义域为N ,则M∩N =( )A .{x |x >-1}B .{x |x <1}C .{x |-1<x <1}D .∅ 2.若f (x )是对数函数,且f (2)=2,则f (x )=________.3.函数f (x )=log a (2x +1)+2(a >0且a ≠1)必过定点________.4.已知函数y =f (x )与g(x )=log 3x (x >0)互为反函数,则f (-2)=________.5.已知f (x )=log 3x .(1)作出这个函数的图象;(2)当0<a <2时,利用图象判断是否有满足f (a )>f (2)的a 值.参考答案1.【解析】 由题意得M ={x |x <1},N ={x |x >-1},则M ∩N ={x |-1<x <1}.【答案】 C2.【解析】 设f (x )=log a x (a >0,且a ≠1),则f (2)=log a 2=2,即a =2,所以f (x )=log 2x .【答案】 log 2x3.【解析】 令2x +1=1,得x =0,此时f (x )=2,故函数f (x )=log a (2x +1)+2(a >0且a ≠1)必过定点(0,2).【答案】 (0,2)4.【解析】 ∵函数y =f (x )与g (x )=log 3x (x >0)互为反函数,∴f (x )=3x ,则f (-2)=3-2=19. 【答案】 195.【解】 (1)作出函数y =log 3x 的图象如图所示:(2)令f (x )=f (2),即log 3x =log 32,解得x =2.由如图所示的图象知:当0<a <2时,恒有f (a )<f (2).故当0<a <2时,不存在满足f (a )>f (2)的a 值.。

22对数函数导学案

22对数函数导学案

22对数函数导学案[学习目标]1.理解对数的概念及其运算性质.2.知道用换底公式能将一般对数转化成自然对数或常用对数.3.了解对数的发现历史以及其对简化运算的作用.4.通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型.5.能借助计算器或计算机画出具体的对数函数的图象,探索并了解对数函数的单调性与特殊点.6.知道对数函数yloga某与指数函数ya某互为反函数(a0,且a1).[学习要求]本节内容是在学习了指数函数之后,通过具体实例了解对数函数模型的实际背景,明确本节课要学习的问题——对数问题.学习对数概念,进而学习一类新的基本初等函数——对数函数.在学习对数定义时,要注意以下几点:一是要弄清楚对数式logaNb(a0,且a1)的含义,明确a,N,b,相对于指数式aN是什么数,并找出它们之间是什么关系.二是要注意对数式logaNb中字母的取值范围,要清楚对数定义中为什么要规定a0,且a1,N0.对数的运算性质是进行对数计算的重要依据,要理解其推导过程.学习过程中应充分发挥对数函数图象的作用,要做到自己动手做出对数函数的图象.会根据图象讨论对数函数的性质.[学习重点]对数函数的概念、图象和性质.[课时安排]6课时b第一课时2.2.1对数与对数运算(1)——对数新课导入回顾2.1.2指数函数一节中的例8,把我国1999年底人口13亿作为基数,如果人口年平均增长率控制在1%,那么经过20年后,我国人口数y最多为多少?我们算出经过年数某与人口数y满足关系y131.01某中,如果问“哪一年的人口数可达到18亿,20亿,30亿”?该如何解决?分析:人口数达到18亿时,是1999年底13亿人口的人口数达到20亿时,是1999年底13亿人口的达到30亿时,是1999年底13亿人口的某181.01某,需要从中求出经过年数某;13201.01某,需要从中求出经过年数某;人口数13301.01某,需要从中求出经过年数某;一般地,需要13从1.01N中求出经过年数某.这是我们这一节将要学习的对数问题.新课进展一、对数1.定义某一般地,如果aN(a0,且a1),那么数某叫做以a为底N的对数(logarithm),记作某logaN,其中a叫做对数的底数,N叫做真数.1818181.01某,其中某就是以1.01为底的对数,记作某log1.01;请同学们写出131********.01某,1.01某中的某.1313问:以4为底16的对数是2,用等式怎么表达?讨论:按照对数的定义,以4为底16的对数是2,可记作log4162;同样从对数的定义出发,可写成416.我们从一般的角度来考虑这个问题,根据对数的定义,可以得到对数和指数间的关系:某某当a0,且a1时,如果aN,那么某logaN;如果某logaN,那么aN.即2a某N等价于某logaN,记作当a0,且a1时,a某N某logaN.当a0,且a1时,计算:loga1,logaa.分析:利用对数和指数间的关系.由于aN0,所以:负数和零没有对数.2.常用对数和自然对数3.课堂例题例1将下列指数式化为对数式,对数式化为指数式:某(1)5625;1(2)2;6464(3)5.73;3(4)log1164;2m(5)lg0.012;(6)ln102.303.例2求下列各式中某的值2(1)log64某;3(2)log某86;(3)lg100某;(4)lne某.24.课堂练习1.把下列指数式写成对数式:(1)28;(1)log22;43(2)232.(2)log34.8452.把下列对数式写成指数式:5.布置作业课本第74页习题2.2.A组1、2.第二课时2.2.1对数与对数运算(2)——对数的运算复习导入通过提问复习上节课主要学习内容.问:你如何理解对数?答:从运算的角度,对数运算可以看成是指数运算的逆运算.因此,对数式和指数式的互化某在对数学习过程中很重要.当a0,且a1时,aN某logaN,即logaa 某某.新课进展通过师生探究,学习本节主要内容问:从指数与对数的关系以及指数运算性质,你能得出相应的对数运算性质吗?回顾指数幂的运算性质:amanamn,amanamn,(am)namn.师生讨论:把指对数互化的式子具体化:设Ma,Na,于是有mnMNamn,Mamn,Mnamn.logaMm,logaNn.N根据对数的定义有:logaamnmn,logaamnmn,logaamnmn.于是有二、对数的运算(1)loga(MN)logaMlogaN;(2)logaMlogaMlogaN;N(3)logaMnnlogaM(nR).课堂例题例1用loga某,logay,logaz表示下列各式:某y(1)loga;z(2)loga某2yz.例2求下列各式的值(1)log2(4725);(2)lg.课堂练习1.用loga某,logay,logaz表示下列各式(1)lg(某yz);某y2(3)lg;z某y2(2)lg;某(4)lg2.yz(2)lg1002;2.求下列各式的值:(1)log3(2792);(3)lg0.00001;(1)log26log23;(4)lne.(2)lg5lg2;(4)log35log315.3.求下列各式的值:1(3)log53log5;3布置作业课本第74页习题2.2A组第3、4、5题.第三课时2.2.1对数与对数运算(3)——对数的换底公式复习导入通过提问复习上节课主要学习内容.问:上节课我们学习了哪些对数的性质?请用文字语言叙述.答:(1)积的对数等于同底对数的和;(2)商的对数等于同底对数的差;(3)n次幂的对数等于同底对数的n倍;即:(1)loga(MN)logaMlogaN;(2)logaMlogaMlogaN;N(3)logaMnnlogaM(nR).新课进展三、对数的换底公式问:前面我们学习了常用对数和自然对数,我们知道任意不等于1的正数都可以作为对数的底,能否将其它底的对数转换为以10或e为底的对数?把问题一般化,能否把以a为底转化为以c为底?师生共同探究:设logabp,则ab,对此等式两边取以c为底的对数,得到:plogcaplogcb,根据对数的性质,有:plogcalogcb,所以plogcb.其中a0,且a1,c0,且c1.logcalogcb称为换底公式.logcalogcb.logca即logab公式logab用换底公式可以很方便地利用计算器进行对数的数值计算.例如,求我国人口达到18亿的年份,就是计算某log1.0118的值,利用换底公式和对数的运算性质,可得:13180.004313lg1.01lg1.01lg课堂例题例1(课本第66页例5)例2(课本第67页例6)本例题根据问题的实际意义可知,对于每一个碳14含量P,通过对应关系tlog57302P,都有唯一确定的年代t与它对应,所以,t是P的函数.课堂练习利用对数的换底公式化简下列各式:(2)log23log34log45log52;(3)(log43log83)(log32log92).布置作业课本第74页习题2.2A组4(1)——(4)、5(1)——(4)、6题.第四课时2.2.2对数函数及其性质(1)情景问题导入1.课堂练习课本第74页习题2.2A组第6题.2.上节课的例题,考古学家通过提取附着在出土文物、古遗址上死亡生物体的残留物测定碳14含量P,估算出土文物或古遗址地年代t,即tlog一、对数函数的定义一般地,我们把函数yloga某(a0,且a1)叫做对数函数(logarithmic57302P.function),其中某是自变量,函数的定义域是(0,+).我们类比指数函数ya某(a0,且a1)图象与性质,来研究对数函数yloga某(a0,且a1)的图象和性质.二、对数函数的图象在同一坐标系中画出对数函数ylog2某和ylog1某的图象(可用描点法,也可借助科学2计算器或计算机).(图及表格见课本第70页)讨论:函数ylog2某和ylog1某的图象之间的关系.2ylog1某log2某,又点(某,y)和点(某,y)关于某轴对称,所以,ylog2某和2ylog1某的图象关于某轴对称.2思考函数yloga某与ylog1某(a0,且a1)的图象有什么关系?a三、对数函数的性质一般地,对数函数yloga某(a0,且a1)的图象和性质如下表所示.课堂例题例1求下列函数的定义域:(1)yloga某2;(2)yloga(4某).例2比较下列各组数中两个值的大小:(1)ylog23.4,ylog28.5;(2)ylog0.31.8,ylog0.32.7;(3)yloga5.1,yloga5.9(a>0,且a≠1).该两例是巩固对数函数的概念,利用单调性比较对数式的大小.课堂练习1.画出函数ylog3某及ylog1某的图象,3并且说明这两个函数的相同点和不同点.;log2某2.求下列函数的定义域(1)ylog5(1某);(2)y(3)ylog;713某(4)ylog3某.3.比较下列各题中两个值的大小:(1)log106,log108;(3)log20.5,log20.6;33(2)log0.56,log0.54.(4)log1.51.6,log1.51.4.布置作业课本第74页习题2.2A组第7、8、9题.第五课时2.2.2对数函数及其性质(2)复习导入通过提问复习上节课主要学习内容.问:我们是怎样研究对数函数的?投影出一般的对数函数的特征图象,总结其单调性和特殊点.新课进展四、对数函数的应用课堂例题例1(课本第72页例9)利用对数函数,解决溶液酸碱度pH值得测量问题,体会对数函数的应用价值.例2(课本第75页习题2.2A组第12题)学习用数学的观点处理现实问题的方法,进一步引导学生体会对数函数的应用价值.例3(课本第75页习题2.2B组第3题)体会对数函数应用的广泛性.课堂练习课本第75页习题2.2A组第12题.布置作业课本第82页复习参考题A组第9题.课本第83页复习参考题B组第5题.第六课时2.2.2对数函数及其性质(3)——对数函数与指数函数的关系问题导入问:在指数函数y2中,某为自变量,y为因变量.如果把y当成自变量,某当成因变量,那么某是y的函数吗?如果是,那么对应关系是什么?如果不是,请说明理由.通过对问题的讨论,形成反函数的概念.通过摄氏温度与华氏温度的换算,进一步明确反函数的概念.在指数函数y2中,某是自变量,定义域是某R,y是某的函数,且值域y(0,+).根据指数与对数的关系,由指数式y2某可得到对数式某log2y,这样,对于任意一个某某y(0,+),通过式子某log2y,某在R中都有唯一确定的值和它对应.我们可以把y作为某自变量,某作为y的函数,这时,我们就把某log2y(y(0,+))称为函数y2(某R)的反函数(inverefunction).在函数某log2y中,y是自变量,某是y的函数.但习惯上,我们通常用某表示自变量,y表示函数.为此,我们把函数某log2y中的字母某,y交换,把它写成ylog2某,这样,对数某函数ylog2某(某(0,+))是指数函数y2某R的反函数.课堂讨论1.如何说明指数函数ya某(a0,且a1)与对数函数yloga某(a0,且a1)互为反函数.2.互为反函数的这两个函数的定义域和值域有什么关系?3.互为反函数的这两个函数的图象有什么关系?答案提示:1.在指数函数ya某中,某是自变量,定义域是某R,y是某的函数,且值域y(0,+).根据指数与对数的关系,由指数式ya某可得到对数式某logay,这样,对于任意一个y(0,+),通过式子某logay,某在R中都有唯一确定的值和它对应.我们可以把y作为自变量,某作为y的函数,这时,某logay(y(0,+))就为指数函数ya某的反函数,把自变量用某表示,因变量用y表示,则对数函数yloga某就是指数函数ya某的反函数(a0,且a1).反之,也可类似说明对数函数yloga某(a0,且a1)是指数函数ya某(a0,且a1)的反函数.2.互为反函数的这两个函数的定义域和值域恰好互换,例如y2的定义域为实数集R,值域为(0,),y2的反函数的定义域为(0,),值域为实数集R.3.在同一个直角坐标系中,互为反函数的函数图象关于直线y某对称.说明:作为探究与发现,教材只要求学生了解指数函数ya和对数函数某某某yloga某(a0,且a1)互为反函数.对反函数的一般概念、判断一个函数是否存在反函数以及求函数的反函数等均不作要求.课堂例题例1求下列函数的反函数:(1)y();(2)ylog5某.13某解:(1)y()的反函数为ylog1某,某(0,).33某(2)函数ylog5某的反函数为y5某,某R.课堂练习写出下列函数的反函数:(1)ylog4某;(2)ylog1某.4本课小结1.对数函数yloga某(a0,且a1)与同底的指数函数ya某互为反函数.2.对数函数yloga某与同底的指数函数ya某的性质相互对应.布置作业1.根据对数函数yloga某(a0,且a1)与同底的指数函数ya某互为反函数的关系,列出指数函数与对数函数的对照表.2.课本第82页复习参考题A组第8题.。

人教a版必修1学案:2.2.2对数函数及其性质(1)(含答案)

人教a版必修1学案:2.2.2对数函数及其性质(1)(含答案)

2.2.2 对数函数及其性质(一)自主学习1.掌握对数函数的概念、图象和性质.2.能够根据指数函数的图象和性质得出对数函数的图象和性质,把握指数函数与对数函数关系的实质.1.对数函数的定义:一般地,我们把函数y =log a x (a >0,且a ≠1)叫做________________,其中x 是自变量,函数的定义域是(0,+∞).a >10<a <1(0,+∞)对数函数y =log a x (a >0且a ≠1)和指数函数________________________互为反函数.对点讲练对数函数的图象【例1】 下图是对数函数y =log a x 的图象,已知a 值取3,43,35,110,则图象C 1,C 2,C 3,C 4相应的a 值依次是( )A. 3、43、35、110B.3、43、110、35C.43、3、35、110D.43、3、110、35规律方法 (1)y =log a x (a >0,且a ≠1)图象无限地靠近于y 轴,但永远不会与y 轴相交. (2)设y 1=log a x ,y 2=log b x ,其中a >1,b >1(或0<a <1,0<b <1),则当x >1时,“底大图低”,即若a >b ,则y 1<y 2.当0<x <1时,“底大图高”,即若a >b ,则y 1>y 2.(3)在同一坐标系内,y =log a x (a >0,且a ≠1)的图象与y =log 1ax (a >0,且a ≠1)的图象关于x 轴(即y =0)对称.变式迁移1 借助图象求使函数y =log a (3x +4)的函数值恒为负值的x 的取值范围.对数函数的单调性的应用【例2】 比较下列各组中两个值的大小:(1)log 0.52.7,log 0.52.8; (2)log 34,log 65; (3)log a π,log a e (a >0且a ≠1).变式迁移2 若a =log 3π,b =log 76,c =log 20.8,则( )A .a >b >cB .b >a >cC .c >a >bD .b >c >a求函数的定义域【例3】 求下列函数的定义域:(1)y =3log 2x ; (2)y =log 0.5(4x -3); (3)y =log (x +1)(2-x ).规律方法 求与对数函数有关的函数定义域时,除遵循前面已学习过的求函数定义域的方法外,还要对这种函数自身有如下要求:一是要特别注意真数大于零;二是要注意对数的底数;三是按底数的取值应用单调性,有针对性的解不等式.变式迁移3 求下列函数的定义域.(1)y =1lg (x +1)-3; (2)y =log a (4x -3)(a >0,且a ≠1).1.对数函数单调性等重要性质要借助图象来理解与掌握.2.比较对数值的大小要用函数单调性及中间“桥梁”过渡.另外还要注意底数是否相同.3.掌握对数函数不但要清楚对数函数自身的图象和性质,还要结合指数函数的图象和性质来对比掌握.4.对数函数的单调性与指数函数的单调性大同小异.课时作业一、选择题1.已知函数f (x )=11-x的定义域为M ,g (x )=ln(1+x )的定义域为N ,则M ∩N 等于( )A .{x |x >-1}B .{x |x <1}C .{x |-1<x <1}D .∅ 2.若log a 2<log b 2<0,则( )A .0<a <b <1B .0<b <a <1C .a >b >1D .b >a >1 3.以下四个数中的最大者是( )A .(ln 2)2B .ln(ln 2)C .ln 2D .ln 24.函数y =a x 与y =-log a x (a >0且a ≠1)在同一坐标系中的图象形状只能是( )二、填空题5.函数f (x )=lg (4-x )x -3的定义域为______________.6.若指数函数f (x )=a x则不等式log a (x -1)<07.函数y =log a (x +2)+3的图象过定点__________. 三、解答题8.求下列函数的定义域:(1)y = 32x -1-127;(2)y =-lg (1-x );(3)y =11-log a (x +a )(a >0,a ≠1).9.已知f (x )=log a 1+x1-x(a >0,a ≠1),(1)求f (x )的定义域; (2)求使f (x )>0的x 的取值范围; (3)判断f (x )的奇偶性.2.2.2 对数函数及其性质(一) 答案自学导引 1.对数函数2.(1,0) (-∞,0) [0,+∞) (0,+∞) (-∞,0] x 轴3.y =a x (a >0且a ≠1) 对点讲练【例1】 A [过(0,1)作平行于x 轴的直线,与C 1,C 2,C 3,C 4的交点的坐标为(a 1,1),(a 2,1),(a 3,1),(a 4,1),其中a 1,a 2,a 3,a 4分别为各对数的底,显然a 1>a 2>a 3>a 4,所以C 1,C 2,C 3,C 4的底值依次由大到小.]变式迁移1 解 当a >1时,由题意有 0<3x +4<1,即-43<x <-1.当0<a <1时,由题意有3x +4>1,即x >-1.综上,当a >1时,-43<x <-1;当0<a <1时,x >-1.【例2】 解 (1)∵0<0.5<1,∴对数函数y =log 0.5x 在(0,+∞)上是减函数. 又∵2.7<2.8,∴log 0.52.7>log 0.52.8.(2)∵y =log 3x 在(0,+∞)上是增函数, ∴log 34>log 33=1.∵y =log 6x 在(0,+∞)上是增函数, ∴log 65<log 66=1. ∴log 34>log 65.(3)当a >1时,y =log a x 在(0,+∞)上是增函数. ∵π>e ,∴log a π>log a e.当0<a <1时,y =log a x 在(0,+∞)上是减函数. ∵π>e ,∴log a π<log a e.综上可知,当a >1时,log a π>log a e ; 当0<a <1时,log a π<log a e.变式迁移2 A [利用界值法可得a =log 3π>log 33=1,0<b =log 76<log 77=1,c =log 20.8<log 21=0,故a >b >c .]【例3】 解 (1)∵该函数是奇次根式,要使函数有意义,只要对数的真数是正数即可, ∴定义域是{x |x >0}.(2)要使函数y =log 0.5(4x -3)有意义, 必须log 0.5(4x -3)≥0=log 0.51,∴0<4x -3≤1.解得34<x ≤1.∴定义域是⎩⎨⎧⎭⎬⎫x |34<x ≤1.(3)由⎩⎪⎨⎪⎧x +1>0x +1≠12-x >0,得⎩⎪⎨⎪⎧x >-1x ≠0,x <2即0<x <2或-1<x <0,所求定义域为(-1,0)∪(0,2).变式迁移3 解 (1)由⎩⎪⎨⎪⎧lg (x +1)-3≠0x +1>0,得⎩⎪⎨⎪⎧x +1≠103x >-1, ∴x >-1且x ≠999,∴函数的定义域为{x |x >-1且x ≠999}. (2)log a (4x -3)≥0.(*)当a >1时,(*)可化为log a (4x -3)≥log a 1, ∴4x -3≥1,x ≥1.当0<a <1时,(*)可化为 log a (4x -3)≥log a 1,∴0<4x -3≤1,34<x ≤1.综上所述,当a >1时,函数定义域为[1,+∞),当0<a <1时,函数定义域为⎝⎛⎦⎤34,1. 课时作业1.C [由题意知M ={x |x <1}, N ={x |x >-1}.故M ∩N ={x |-1<x <1}.]2.B [由底数与对数函数的图象关系(如图)可知y =log a x ,y =log b x 图象的大致走向.再由对数函数的图象规律:从第一象限看,自左向右底数依次增大.∴选B.] 3.D [∵0<ln 2<1,∴ln(ln 2)<0,(ln 2)2<ln 2,而ln 2=12ln 2<ln 2.∴最大的数是ln 2.] 4.A5.{x |x <4,且x ≠3}解析 ⎩⎪⎨⎪⎧4-x >0x -3≠0解得x <4,且x ≠3,所以定义域为{x |x <4,且x ≠3}. 6.{x |1<x <2}解析 由题可知a =1.2,∴log 1.2(x -1)<0, ∴log 1.2(x -1)<log 1.21,解得x <2, 又∵x -1>0,即x >1,∴1<x <2. 故原不等式的解集为{x |1<x <2}. 7.(-1,3)8.解 (1)由32x -1-127≥0得,x ≥-1.∴所求定义域为[-1,+∞).(2)由-lg(1-x )≥0得,⎩⎪⎨⎪⎧1-x ≤11-x >0,即x ∈[0,1)∴所求定义域为[0,1).(3)1-log a (x +a )>0时,函数有意义, 即log a (x +a )<1① 当a >1时,-a <-1由①得,⎩⎪⎨⎪⎧x +a <ax +a >0解得-a <x <0.∴定义域为(-a,0). 当0<a <1时,-1<-a <0. 由①得,x +a >a .∴x >0. ∴定义域为(0,+∞).故所求定义域是:当0<a <1时,x ∈(0,+∞); 当a >1时,x ∈(-a,0).9.解 (1)由1+x1-x>0,得-1<x <1.故所求的定义域为(-1,1).(2)①当a >1时,由log a 1+x1-x>0=log a 1得1+x 1-x>1,∴0<x <1. ②当0<a <1时,由log a 1+x1-x>0=log a 1得0<1+x 1-x<1,∴-1<x <0.故当a >1时,所求范围为0<x <1; 当0<a <1时,所求范围为-1<x <0.(3)f (-x )=log a 1-x1+x=log a (1+x 1-x)-1=-f (x )∴f (x )为奇函数.。

对数函数及其性质

对数函数及其性质

2.2.2《对数函数及其性质》导学案【学习目标】1﹑掌握对数函数的定义。

2﹑根据函数的图像探索并归纳对数函数的性质。

【重点难点】重点:对数函数的定义﹑图象和性质。

难点:借助函数的图象探索并归纳对数函数的性质。

【知识链接】1﹑指数函数2﹑对数的运算【学习过程】知识点1:对树函数的定义课本48页问题1中,在2001---2020年,各年的GDP 均为2000年的倍数,倍数y 与时间x 的关系式为xy 073.1=;问题2中,当生物死亡后,人们获得生物体内碳14含量P 与死亡年数t 之间的关系式为5730)21(tP =. 思考1:上述关系式都是什么类型的式子?思考2:能把上述关系式改写成对数式吗?思考3:这两个对数式有何共同特征?思考4:这两个对数式能用一个共同的解析式来表示吗?思考5:我们把这两个对数方程叫做对数函数,你能给对数函数下个定义吗?思考6:对数函数的定义中为什么规定0>a 且1≠a ?思考7:为什么对数函数的定义域为(∞,0)?知识点2:对数函数的性质问题1:当我们知道函数的定义以后,紧接着需要探讨什么问题?问题2:通常我们研究函数的性质需要借助一件工具,这件工具是什么?问题3:在同一坐标系中画出函数x y 2log =和x y 21log =的图象.观察函数图象有什么特征?从而得到函数有什么性质?函数图像:问题4:对一般的对数函数)1,0(log ≠>=a a x y a 且,上述结论成立吗?问题5: 阅读例8,对数函数的单调性与谁有关?【基础达标】1﹑求下列函数的定义域A ①)54(log 22--=x x y C ②)34(log 5.0-xC ③)32lg(422-+-x x x2﹑试比较下列各组数中两个值的大小 A ①5.3log 2与8log 2 C ②1.5log a 与7.5log aD ③8log 7与7log 8【小结】【当堂检测】C1﹑已知)1a ,0(11log )(≠>-+=且a xx x f a (1)求)(x f 的定义域。

对数函数的概念及其性质

对数函数的概念及其性质

对数函数的概念及其性质2.2.2对数函数及其性质学案课前预习学案一、预习目标记住对数函数的定义;初步把握对数函数的图象与性质.二、预习内容1、对数函数的定义_______________________________________.2、对数函数y=logax(a>0,且a≠1)的图像和性质研究函数和的图象;请同学们完成x,y对应值表,并用描点法分别画出函数和的图象: X…1……0……0…观察发现:认真观察函数y=log2x的图象填写下表:(表一)图象特征代数表述图象位于y轴的________.定义域为:图象向上、向下呈_________趋势.值域为:图象自左向右呈___________趋势.函数在(0,+∞)上是:观察发现:认真观察函数的图象填写下表:(表二)图象特征代数表述对数函数y=logax(a>0,且a≠1)的图像和性质:(表三)01图象定义域值域性质三、提出疑惑课内探究学案一、学习目标1理解对数函数的概念,熟悉对数函数的图象与性质规律. 2掌握对数函数的性质.学习重难点对数函数的图象与性质二、学习过程探究点一例1:求下列函数的定义域:(1);(2).练习:求下列函数的定义域:(1);(2).解析:直接利用对数函数的定义域求解,而不能先化简.解:略点评:本题主要考查了对数函数的定义域极其求法.探究点二例2:比较下列各组数中两个值的大小:(1)(2)(3)loga5.1,loga5.9(a>0,且a≠1).(1)____;(2)____;(3)若(4)若>,则m____n.三、反思总结四、当堂检测1、求下列函数的定义域(1)(2)2、比较下列各组数中两个值的大小(1)(2)课后练习与提高1.函数f(x)=lg()是(奇、偶)函数。

2.已知函数f(x)=log0.5(-x2+4x+5),则f(3)与f(4)的大小关系为。

3.已知函数在0,1]上是减函数,求实数a的取值范围.。

对数函数的图像及性质导学案

对数函数的图像及性质导学案
导学案
课题 必修 1 第二章 2.2.2 对数函数的图像及性质 学习目标 1.画出具体对数函数的图像,探索对数函数的单调性与特殊点; 2.通过比较、对照的方法,探索研究对数函数的性质; 3.培养数形结合的思想。 重点难点 1.对数函数性质 探究:
有一种细胞分裂时,由 1 个分裂成 2 个,2 个分裂成 4 个,…, 1 个这样 的细胞分裂 x 次会得到 y 个细胞,则 y 与 x 函数关系为: 那么如果知道了细胞的个数 y 如何确定分裂的次数 x? 由对数式与指数式的互化可知:
y log 2 x 1; y 2 log 8 x;
例 2. 已知函数 f(x)为对数函数,且图象过点(4, 2),求 f(1),f(8)
2
例 3.求下列函数的定义域: (1)y=log x
a
(2)y=log (4-x)
a
2、画出 y log2 x 和 y log 1 x 的图像
2.利用单调性比较大小
教师点拨 学生反思
把 x 和 y 的位置互换,那么这个函数关系应为 新知: 1、 一般的, 我们把 叫做对数函数, 其中 自变量,函数的定义域是 巩固例题 例 1.下列函数中,哪些是对数函数? (1) (3) (5)

y log a x 2 ;
(2)y (4)y
logx a( x 0, 且x 1); log5 x.
2
3、根据上述图像完成下面表格
例 4:比较下列各组中,两个值的大小: (1) log23.4 与 log28.5 (2) log
0.3
1.8 与 loga5.9 (a>0,且 a≠1)
课后思考: 1.你能比较 log34 和 log43 的大小吗? 2.对数函数 y=logax 与指数函数 y=ax 的关系。 课后作业:课本 73 页 2 题、3 题 (2)、(3)

对数函数及其性质教案

对数函数及其性质教案

2.2.2 对数函数及其性质一、教学目标(1)知识与技能①掌握对数函数的概念;②根据对数函数的图象探索并理解对数函数的性质,并简单应用。

(2)过程与方法①通过对对数函数的学习,渗透树形结合思想;②能够用类比的思想看问题,体会知识间的有机联系。

(3)情感、态度与价值观培养观察、分析、归纳的思维能力和交流能力,增强学习的积极性。

二、教学重点与难点(1)教学重点理解并掌握对数函数的概念、图像与性质,并学会其简单应用。

(2)教学难点对数函数图象和性质的探究。

三、教学过程(一)熟悉背景,引入新知到目前为止,我们学习过哪些基本函数?(一次函数、二次函数、反比例函数、指数函数)。

我们一起来回忆下之前我们研究指数函数及其性质的思路是什么?(概念、图象、性质、应用)。

今天我们将学习另一种新的函数。

首先请大家来看这两个生活实例,这两个例子我们在研究指数函数的时候已经见过了,大家再来看下。

实例1:某种细胞分裂时,我们把细胞个数x作为自变量,细胞分裂次数y作为函数值,请填写下面的表格。

细胞个数x 2 4 8 16 …256 …x 细胞分裂次数y1 2 3 4 …8 …y与x的关系式2logy x=(x∈N*)实例2:一根1米长的绳子,第1次剪去绳长的一半,第2次再剪去剩余的绳子的一半,如果将绳子剩余长度x作为自变量,剪绳子次数y作为函数值,请填写下面的表格。

剩余长度x……x剪绳子次数y 1 2 3 4 …8 …y与x的关系式12logy x=(x∈N*)师:这是两个生活中的例子,现在我们把它抽象出来,通过前两节的学习,我们知道,对数式对真数有什么要求?(真数大于0)因此着两个式子x 的取值范围是什么?(x>0)(二)师生互动,探索新知问题1:这两个式子是函数吗?(是函数,任意一个y ,是否都有唯一的x 值与之对应。

) 问题2:函数2log y x =与12log y x =有何共同的结构特征?【学情预设:学生有可能一下子就讲出这两个函数的共同特点,如果讲不出来,教师类比指数函数进行引导。

《2.2.2_对数函数及其性质导学案

《2.2.2_对数函数及其性质导学案

年级:高一 内容:2.2.2 对数函数及其性质(1) 课型:新课 执笔人:陈鹏 审核人: 谭安民 、吴军武 时间:2015年9月18日班级 姓名________学习目标1. 通过具体实例,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;2. 能借助对数函数的图象,探索并了解对数函数的单调性与特殊点;3. 通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养数形结合的思想方法,学会研究函数性质的方法. 【重点难点】▲重点:对数函数的图象和性质.▲难点:借助对数函数的图象探索并归纳对数函数的性质. 学习过程一、课前准备 1、(预习教材P 70~ P 72,找出疑惑之处)二、新课导学 ※ 学习探究探究任务一:对数函数的概念问题1﹑请回答对数函数的定义,并注明定义域.问题2﹑根据对数函数的定义,尝试判断下列哪些是对数函数?①)1(log 2+=x y ②x y 4l o g 2= ③3l o g 31+=x y ④x y 3l o g = ⑤x y 21l o g = ⑥xy 21l o g 1=探究任务二:对数函数的图象和性质问题:你能类比前面讨论指数函数性质的思路,提出研究对数函数性质的内容和方法吗?问题2﹑在同一坐标系中画出函数x y 2log =和x y 21log =的图象.问题3﹑观察上述两个函数图像,它们的定义域、值域、单调性分别有何特征?问题4﹑根据问题3,由特殊到一般,你能归纳出对数函数)0,0(log≠>=aaxya且a※典型例题例1求下列函数的定义域:(1)2logay x=;(2)log(3)ay x=-;变式:求函数y =的定义域.练习:课本P73 页第2题 例2比较大小:(1)ln3.4,ln8.5; (2)0.30.3log 2.8,log 2.7;(3)log 5.1,log 5.9a a .3、图中曲线分别表示l g a y o x =,l g b y o x =,l g c y o x =,l g d y o x =的图象,则,,,a b c d 的关系是(A. 0<a<b<1<d<cB. 0<b<a<1<c<d0.31.2 1.21. 1.6,log 1.5;(3)log 6,log 8;(4)log ,log .(01,0)a a m n a a m n >≠>>0.3练习:比较大小:(1)ln6,ln8;(2)log ,2.m n ;(3)log log (0,1)a a m n m n a a >>>≠0.30.3比较与的大小:(1)ln m<ln n;(2)log log y=logb xy=log c xC. 0<d<c<1<b<aD. 0<c<d<1<a<b三、 学习小结1. 对数函数的概念、图象和性质;2. 求定义域;3. 利用单调性比大小.四、学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 五、 当堂检测(时量:5分钟 满分:10分)计分: 1. 当a >1时,在同一坐标系中,函数x y a -=与log a y x =的图象是( ).2. 函数22log (1)y x x =+≥的值域为( ). A. (2,)+∞ B. (,2)-∞ C. [)2,+∞ D. [)3,+∞ 3. 比大小:(1)log 67 log 7 6 ; (2)log 31.5 log 2 0.8. 4. 函数(-1)log (3-)x y x =的定义域是 .5. 函数y =log a (x +1)-2 (a >0且 a ≠1)的图象恒过定点 .【课后反思】年级:高一 内容:2.2.2 对数函数及其性质(2) 课型:新课 执笔人:陈鹏 审核人: 谭安民 、吴军武 时间:2015年9月22日班级 姓名________【学习目标】其中2、3是重点和难点1、掌握对数函数的性质,并能应用对数函数解决实际中的问题。

高中数学 2.2.2对数函数及其性质(2)导学案 新人教A版必修1

高中数学 2.2.2对数函数及其性质(2)导学案 新人教A版必修1

课题:2.2.2 对数函数及其性质(2)一、三维目标:知识与技能:1.能够准确描绘出对数函数的图像,并可以利用图像来解决相关问题;2.能够利用对数函数的相性质解决相关问题。

过程与方法:1.通过师生之间,学生与学生之间的合作交流,使学生学会与别人共同学习;2.通过探究对数函数的图像,感受数形结合思想,培养学生数学的分析问题的意识。

情感态度与价值观:1.通过对对数函数图像的学习,加深对人类认识事物的一般规律的理解和认识,使学生体会知识之间的有机联系,感受数学的整体性,激发学生的学习兴趣;2.通过学生的相互交流来加深理解对数函数图像的理解,增强学生数学交流能力,培养学生倾听,接受别人建议的优良品质。

二、学习重、难点:重点:准确描绘出对数函数的图像。

难点:依据对数的函数性质进行对相关问题的处理。

三、学法指导:对比指数函数相关性质。

四、知识链接:B1、求下列函数的定义域:(1) y =y =y =五、学习过程:B 例1、如图所示曲线是对数函数log a y x =的图像,已 知a431,,3510,则相应于1234,,,C C C C 的a 值依次为B 变式训练1:已知30.330.30.3,3,log 0.3,log 3a b c d ====将a ,b ,c ,d 四数从小到大排列B 问题1、说明函数3log (2)y x =+与函数3log y x =C 问题2、将函数log a y x =的图像沿x 轴向右平移2个单位,再向下平移1个单位,所得到函数图像的解析式:C 例2、(1)若22(log )13a <,求a 的取值范围; (2)解不等式:2log (4)log (2)a a x x ->-.D 例3、已知函数f (x )=lg[(a 2-1)x 2+(a +1)x +1],若f (x )的定义域为R ,求实数a 的取值范围。

D 例4、已知(6)4,(1)()log ,(1)a a x a x f x xx --<⎧⎪=⎨≥⎪⎩是R 上的增函数,求a 的取值范围。

对数函数及其性质导学案

对数函数及其性质导学案

2.2.2对数函数及其性质(第一课时)导学案【学习目标】 (一)知识与技能目标(1)通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,并根据定义能判断哪些函数是对数函数、求函数的定义域; (2)能画出具体对数函数的图像,探索并了解对数函数的性质; (二)过程与方法引导学生自主学习,通过实例的关系式类比指数函数的形式定义,自己尝试给出对数函数的定义并归纳满足对数函数的条件;经历函数x y 2log =和x y 21log =的画法,观察其图像特征并用代数语言进行描述得出函数性质;(三)情感态度与价值观培养学生的数形结合思想,让学生养成善于观察、归纳的好习惯. 【学习重、难点】理解对数函数的定义,掌握对数函数的图像和性质.导 学 过 程 与 设 计一、课前准备(幻灯片)介绍一个考古的实例,阅读课本P70第一、二两段。

二、新课导学(一)引入:考古学家一般通过提取附着在出土文物、古遗址上死亡的残留物,利用log t P =(*)估计出土文物或古遗址的年代。

根据实际问题的实际意义可知,对于每一个C-14的含量P ,通过对应关系(*)都有唯一确定的年代t 与之对应,所以t 是P 的 。

(二)探究活动 (1)讨论函数log t P =的特征: ;(2)对数函数的定义:一般地, 。

【思考与交流】(1)判断下列函数是否为对数函数?并说明理由(2)启示:判断一个函数是否为对数函数,必须严格符合形如l o g (01a y x a a =>≠且的形式,即要满足下面的条件: ○1 ; ○2 ; ○3 。

(3)巩固练习下列函数哪个是对数函数?○1log 0,1)a y a a =>≠ ○22(2)log y x -= (4)求下列函数的定义域○1函数2log a y x =的定义域是 ; ○2函数log (4)a y x =-的定义域是 ; ○3函数(1)log (2)x y x -=+的定义域是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《2.2.1 对数与对数的运算(3)》达标检测
1.
)0(5
2
)(log ≠-a a a 化简得结果是( ).A .a - B .2a C .a
D . a
2. 已知16log log 8log 4log 4843=⋅⋅m ,则m = .
3. 计算.(1)2log 21
log 2
12
+; (2)3log 125.04-; (3)4912log 3log 2log ⋅-
4. 已知,a =9log 18,
518=b 用b a ,表示.45log 15 :
《2.2.2对数函数及其性质(1)》预习学案
【学习目标】理解对数函数的概念;掌握对数函数的图象. 【预习目标】知道对数函数的概念;了解对数函数的图象. 【预习指导】
复习:画出2x y =、1
()2
x y =的图象,并以这两个函数为例,说说指数函数的性质.
-
探究:
有一种细胞分裂时,由1个分裂成2个,2个分裂成4个,··· 1个这样的细胞分裂x 次会得到y 个细胞则y 与x 函数关系为: x
y 2=
那么如果知道了细胞的个数y 如何确定分裂的次数x
由对数式与指数式的互化可知: y x 2log =
上式可以看作以y 自变量的函数表达,但习惯上仍用x 表示自变量,y 表示它的函数:即x y 2log =
[
新知:
1.对数函数的概念.
一般地,当a >0且a ≠1时,函数 叫做对数函数,自变量是x ;函数的定义域是(0,+∞).
2.对数函数的图象.
用描点法做出x y 2log =和x y 2
1log =的图像,总结)10(log ≠>=a a x y a 且的图像.
!
反思:
1.对数函数有哪些特征怎样判断一个函数是对数函数
2.为什么定义域为(0,+∞)为什么规定底数a >0且a ≠1
3.函数的值域是 .
4.图象具有怎样的分布规律
【知识链接】
学习了指数函数后,学生知道了研究一个函数的方法,对数函数的学习应类比指数函数的研究方法.
(
【典型例题】
例1.指出下列函数那些是对数函数.
)1(log )1(2+=x y x y 2
1log 2)2(= 1log )3(4+=x y
24log )4(x y = x y x log )5(= )12
1
(log )6()12(≠>
=-a a x y a 且 %
例2.若函数x a a y a log )33(2
⋅+-=是对数函数,则a 的值为多少

例3.已知y =f (x )是对数函数,且f (4)=2,求函数y =f (x )的解析式.
&
《2.2.2对数函数及其性质(1)》达标检测
1.下列函数哪个是对数函数( ).
A .)1(log 2-=x y
B .)41(log )
1(
≠>=-a a x y a 且
C .3
4log x y = D .1log 25+=x y 2.已知y =f (x )是对数函数,且2
3
)255(-=f ,求)2(f .
'
《2.2.2对数函数及其性质(2)》预习学案
【学习目标】掌握对数函数的性质以及性质的应用.
【预习目标】 类比研究指数函数的性质总结对数函数的性质. 【预习指导】
复习:
1.一般地,当a >0且a ≠1时,函数 叫做对数函数,自变量是x ;函数的定义域是 值域是 .
2.画出对数函数)10(log ≠>=a a x y a 且的草图.
~
探究:
由对数函数)10(log ≠>=a a x y a 且的图象可以看出对数函数具有哪些性质 新知:
1
@

2
(1)求对数型函数定义域和值域.(2)比较实数的大小.(3)解不等式. 反思:
1.指数函数x a y =与x
a
y )1
(=的图象与关于 对称,那么对数函数x y a log = x y a
1log =的
图象是否也有对称关系若有,则关于 对称. 2.如何求指数型函数的定义域和值域
3.如何利用指数函数的性质比较实数间的大小
【知识链接】 对数函数的单调性取决于对数的底数是大于1还是大于0小于1.当已知条件未指明时,需要对底数a 进行讨论,体现了分类讨论的思想,要求学生逐步掌握. 》
【典型例题】
例1.求下列函数的定义域.
(1)2log a y x =; (2)log (3)a y x =-;(3)y =;(4))4(log 2
2
1x x y -=.
例2.求下列函数的值域
(1) x y 2log 2+= ; (2)1log 22
+=x y ; (3))4(log 22
1x x y -=.
)
例3.比较下列实数的大小.
(1)6.0log ,5.0log 22; (2)0.30.3log 2.8,log 2.7; (3)8.0log ,7.0log 1.14.0;
(4)2log ,3log 32; (5))10(9.5log ,1.5log ≠>a a a a 且.
例4.求x 的范围.
~
(1) 2log 2>x ; (2)2log 2
1>x ; (3))且(101log ≠>>a a x a .
《2.2.2对数函数及其性质(2)》达标检测
1. 不等式的41log 2x >
解集是( ). A. (2,)+∞ B. (0,2) C. 1(,)2+∞ D. 1(0,)2
2. 比较大小.
(1)10log 7 10log 12 ; (2)0.5log 0.7 0.5log 0.8; ·
(3)log 67 log 7 6 ; (4)log log 2 .
3.(1)y =的定义域是 值域是 . (2))2(log 2
2x x y +=的定义域是 值域是 . 4.已知)(x f y =的定义域为]2,1(,求函数)(log 2x f y =的定义域.
《2.2.2对数函数及其性质(3)》预习学案
【学习目标】掌握对数函数图象的变换;理解反函数的概念.
~
【预习目标】 类比指数函数图象的变换探究对数函数图象的变换;知道反函数的概念. 【预习指导】
复习:1.对数函数log (0,1)a y x a a =>≠且图象和性质.
2.指数函数图象的变换. 探究:如何画)1(log 2+=x y 的图象
)1(log 2+=x y 的图象可以由对数函数图象经过变换而得到: →=x y 2log )1(log 2+=→x y 新知:1.对数函数图象的变换(c a a ,10≠>且为常数). ① 左右平移变换.
x y a log = −−−−−−−−−−−−−→−)
()(log c x y a +=.
② 上下平移变换.
x y a log = −−−−−−−−−−−−−→−) (c x y a +=log .
③ x y a log =与)(log x y a -=的图象关于 对称. x y a log =与x y a log -=的图象关于 对称.
x y a log =与)(log x y a --=的图象关于 对称.
④x y a log =−−
−−−−−−−−−−−−−−→−)
(x y a log =. ⑤x y a log =−−
−−−−−−−−−−−−−−→−)
(x y a log =. 反思:
1.对数函数图象的变换与指数函数图象的变换有何联系
2.怎样才能直接写出对数型函数的单调区间.
【知识链接】 对数函数图象的变换应类比指数函数图象的变换来探究.
【典型例题】
例.直接写出下列函数的单调区间. (1))
1(2
log +=x y ; (2))
(2
log x y -= ; (3))
2(2
log --=x y ;
(4)2log 21+=x y ; (5)x
y 3
1log = ; (6) x y 2log =.。

相关文档
最新文档