光伏组件封装材料综述

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光伏组件封装材料综述

摘要

光伏市场在过去五到七年间的快速增长带动了封装材料市场的强劲爆发,并导致供应链的暂时性短缺。与此同时,组件价格也出现显著下降,给生产成本和光伏组件原料成本带来巨大压力,促使封装材料市场朝着新型材料和创新供应商转变。由于封装材料对组件效率、稳定性和可靠性方面有着显著的影响,加之上述市场压力的推动,对封装技术和材料的选择便成为了组件设计过程中的一个关键步骤。本文对目前市场上的不同材料、光伏组件封装材料的整体需求以及这些材料与其它组件部件间的相互作用进行了综合介绍。

前言

光伏组件结构

晶体硅(c-Si)光伏组件通常由太阳能玻璃前盖、聚合物封装层、前后表面印刷有金属电极的单晶或多晶硅电池、连接单个电池的焊带以及聚合物(少数采用玻璃)背板组成。而薄膜光伏组件既可以通过在组件背面沉积半导体层的底衬工艺(substrateprocess)制造,也可以使用在组件前表面沉积半导体层的顶衬工艺(superstrateprocess)制造而成(如图一中(b)和(c)所示)。

为了确保组件的力学稳定性和对整个太阳能电池吸收光谱范围内的高透光率,并保护电池和金属电极不受外界环境侵蚀,必须在电池前表面使用太阳能玻璃。对于柔性太阳能电池技术,则选择聚合物作为前板,这层结构对材料阻挡特性要求非常高。背面材料同样要确保力学稳定性、电气安全性,使电池和组件其它部件不受外界影响。

生产工艺

一套标准的组件生产工艺由以下几个步骤组成:玻璃清洗和干燥;电池片串焊;组件层压,包括十字接头的焊接;固化;边缘密封和装框;安装接线盒;最后是功率测试。

有三种工艺可以将电池矩阵固定在这些材料中。其中最常用的是真空层压工艺,该工艺最初用于加工乙烯-醋酸乙烯酯(EVA)封装材料,之后还用于加工热塑性薄膜。对于薄膜电池工艺还有另一个选择,即装配了热压器的卷对卷层压机,该设备常见于玻璃行业。使用铸塑树脂可以避免使用层压工艺,例如硅胶。在c-Si组件工艺中,液态封装材料需要分两次添加:第一次添加于玻璃表面,随后再添加于电池矩阵。

在一系列组件生产步骤中,固化工艺的耗时最长。而组件生产商追求的主要目标是通过研制能在相同时间内加工更多组件的层压机来降低工艺耗时。除此之外还有另一种可行的方法,即对封装材料本身进行调整,例如添加经过优化的过氧化物交联剂以加快交联速度,或者使用热塑性封装材料。

“对于所有固化工艺来说,最主要的挑战是如何获得均匀和足够的固化或交联水平以确保粘合强度和稳定的层压效果”

对于所有固化工艺来说,最主要的挑战是如何获得均匀和足够的固化或交联水平以确保粘合强度和稳定的层压效果。要达到这一目的,组件封装操作必须提供良好的导热和均匀的压力、高度精确的温度控制以及保证工艺参数的长期稳定。

与组件效率相关的损失机制以及与其它部件的互相影响

电池-组件(CTM)效率比可以定义为互连电池片封装成组件后的效率与封装前电池平均效率之间的关系。CTM值大小受电池种类的影响非常大。例如,对于同一种封装材料,拥有均匀减反射膜和高蓝光光谱响应的高效太阳电池的CTM损失通常比低效电池高。

从电池到组件,中间有几种因素影响着发电效率,但多数影响都是负面的。其中,由组件内部非活性区域引起的损失只影响组件效率而不会降低实际功率输出。能影响功率输出的因素可以分为光学和电学因素;其中电学损失主要是由电池间的串联电阻引起的。

电池封装后会出现某些交互光学效应(如图二所示)。首先,任何两种折射率不同的材料界面都会引起光反射。其次,位于电池前表面的所有材料层都会吸收部分入射光线。其中,来自电池表面的反射光,包括细栅、主栅和焊带反射光,可以被部分反射或全部反射回电池表面。通过使用高反射率背板,可以将入射到电池间隙的光线散射回来。如果散射光线到达组件的第一层界面,通常是玻璃—空气,会被部分或全部反射组件内部,反射效果决定于入射角。部分被反射回来的光线将射入到电池活性层,并提高电池电流和输出功率。对于封装材料,最关键的是避免吸收有用光谱区间的光线(其中c-Si电池的光谱区间为350-1200nm) 能削弱到达电池表面光线强度的损失机制有几种,它们分别为(如图二所示):

••①、③反射损失,发生于空气-组件前表面和前表面-封装材料界面;

••②、④吸收损失,发生在玻璃内部和封装材料内部;

••⑤电池吸收;

••⑥电池表面反射以及在玻璃-空气界面处的部分或全部再反射;

••⑦背板材料的吸收;

••⑧背板材料的反射,以及在玻璃-空气表面处的部分或全部再反射。

封装材料的折射率影响着玻璃-封装层界面以及硅-减反射膜(ARC)-封装层界面的反射损失。对于有陷光结构和ARC层的电池,光耦合引起的光增益会更少。

封装材料特性

对封装材料的要求

为了优化组件效率,对光伏组件封装的要求可以分为五个方面:发电量、电气安全、可靠性、组件工艺和成本。

••封装材料的光吸收率应该尽量低并提供合适的折射率以减少界面反射

••高导热性能以降低工作温度并提高发电量

••根据IEC61215的标准类型批准测试,为了保证电气安全,漏电流必须足够低

••为了确保光伏组件可靠性,封装材料在UV辐射、高湿、温度循环、超低或超高环境温度、机械负载以及对地电势差等特性上都至关重要。此外,封装材料必须与其它组件部件保持足够的粘附性,以保护电池和金属线不受外界环境影响。

••同时,组件生产商对材料成本、工艺成本和生产时间、保存期限和质保方面也非常重视评估封装材料的参数和方法根据上述要求,在选择光伏封装材料时必须考虑以下几个重要因素(见表一)。除了基本材料特性,例如玻璃转变或熔融温度这种可以通过特性表征技术(差式扫描量热法DSC或动态机械分析法)测量的参数外,机械特性也同样至关重要,因为需要足够的缓冲效果以抵消机械冲撞和机械与热机械负载。

“一个被普遍忽略的事实是,材料温度严重影响着封装材料内部的水蒸气传送速率和氧分子传送速率”

影响光伏组件耐用性的重要因素包括背板和封装材料的气体(例如氧气和水蒸气)扩散特性[2];这两种气体都能从聚合物背板表面进入封装聚合物层并穿透光伏组件,到达电池和前表面玻璃之间的区域,从而加速衰退反应。一个被普遍忽略的事实是,材料温度严重影响着封装材料内部的水蒸气传送速率(WVTR)和氧分子传送速率(OTR)。如图三所示,由于温度升高能大大加速渗透过程,尤其是高温下的高传送速率,组件内外将出现大量的粒子传输。

另一种用于材料表征和评估的有趣工具是拉曼光谱仪,该设备被认为是一种用于分析小型测试层压样品或全面积光伏组件封装衰退效应的快速且非破坏性方法。

封装材料

市场调查

在60至70年代,聚二甲基硅氧烷(PDMS)主要用于第一代光伏组件的封装,之后被其它材料所代替,例如EVA,并一直持续几十年。所有聚合物都是热塑性材料或人造橡胶;然而,后者必须在层压过程中发生交联反应,因此增加了生产周期和成本。受到降低光伏组件成本的压力驱使,新的封装材料纷纷被投入市场,但因为光伏制造商们必须保证其产品能够长期稳定使用,所以着重考虑影响可靠性的缺陷是必不可少的。

“受到降低光伏组件成本的压力驱使,新的封装材料纷纷被投入市场”

相关文档
最新文档