人教版八年级数学上册第11章三角形几何证明专题练习题(无答案)
2021-2022学年度人教版八年级数学上册第11章《三角形》单元训练题含解析
2021-2022学年度人教版八年级数学上册第11章《三角形》单元训练题一.选择题1.不一定在三角形内部的线段是()A.三角形的角平分线B.三角形的中线C.三角形的高D.三角形的高和中线2.下列各组图形中,表示AD是△ABC中BC边的高的图形为()A.B.C.D.3.如图,△ABC的角平分线AD,中线BE交于点O,则结论:①AO是△ABE的角平分线;②BO是△ABD的中线.其中()A.①、②都正确B.①、②都不正确C.①正确②不正确D.①不正确,②正确4.下列设计的原理不是利用三角形的稳定性的是()A.由四边形组成的伸缩门B.自行车的三角形车架C.斜钉一根木条的长方形窗框D.照相机的三脚架5.用三根木条首尾顺次连接形成三角形框架,其中两根木条长分别为2cm,4cm,则第三根木条长可以是()A.2cm B.4cm C.6cm D.8cm6.如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上()根木条.A.1B.2C.3D.4A.3个B.4个C.5个D.6个8.如图,∠1=()A.40°B.50°C.60°D.70°9.已知一个n边形的内角和等于1800°,则n=()A.6B.8C.10D.1210.如图,在△ABC中,AB=2020,AC=2018,AD为中线,则△ABD与△ACD的周长之差为()A.1B.2C.3D.411.已知一个三角形三边长为a、b、c,则|a﹣b﹣c|﹣|a+b﹣c|=()A.﹣2a+2c B.﹣2b+2c C.2a D.﹣2c12.如图,在△ABC中,∠B=32°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1﹣∠2的度数是()A.32°B.45°C.60°D.64°二.填空题13.在一个三角形中,三个内角之比为1:2:6,则这个三角形是三角形.(填“锐角”、“直角”或“钝角”)14.已知△ABC的两条边a、b的长分别为4和7,则第三边c的取值范围是.15.若某个正多边形的一个内角为108°,则这个正多边形的边数为.16.如图,图中有个三角形,∠B的对边是.17.如图,AD为△ABC的中线,AB=13cm,AC=10cm.若△ACD的周长28cm,则△ABD的周长为.三.解答题18.一个三角形的两边b=2,c=7.(1)当各边均为整数时,有几个三角形?(2)若此三角形是等腰三角形,则其周长是多少?19.如图,在△ABC中,∠CAB=90°,AD⊥BC于D.(1)若∠B=30°,求∠C和∠CAD的度数;(2)若∠C=α,求∠B与∠BAD的度数.20.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.21.如图,在三角形ABC中,AB=10cm,AC=6cm,D是BC的中点,E点在边AB上,三角形BDE与四边形ACDE 的周长相等.(1)求线段AE的长.(2)若图中所有线段长度的和是53cm,求BC+DE的值.22.(1)如图1,则∠A、∠B、∠C、∠D之间的数量关系为.(2)如图2,AP、CP分别平分∠BAD、∠BCD.若∠B=36°,∠D=14°,求∠P的度数;(3)如图3,CP、AG分别平分∠BCE、∠F AD,AG反向延长线交CP于点P,请猜想∠P、∠B、∠D之间的数量关系.并说明理由.23.已知在△ABC中,图1,图2,图3中的△ABC的内角平分线或外角平分线交于点O.(1)如图1,点O是△ABC的两个内角平分线的交点,猜想∠O与∠A之间的数量关系,并加以证明.(2)请直接写出结果.如图2,若∠A=60°,△ABC的内角平分线与外角平分线交于点O,则∠O=;如图3,若∠A=60°,△ABC的两个外角平分线交于点O,则∠O=.24.“转化”是数学中的一种重要思想,即把陌生的问题转化成熟悉的问题,把复杂的问题转化成简单的问题,把抽象的问题转化为具体的问题.(1)请你根据已经学过的知识求出下面星形图(1)中∠A+∠B+∠C+∠D+∠E的度数;(2)若对图(1)中星形截去一个角,如图(2),请你求出∠A+∠B+∠C+∠D+∠E+∠F的度数;(3)若再对图(2)中的角进一步截去,你能由题(2)中所得的方法或规律,猜想图3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度数吗?只要写出结论,不需要写出解题过程)参考答案一.选择题1.解:因为在三角形中,它的中线、角平分线一定在三角形的内部,而钝角三角形的两条高在三角形的外部.故选:C.2.解:△ABC的高AD是过顶点A与BC垂直的线段,只有D选项符合.故选:D.3.解:AD是三角形ABC的角平分线,则是∠BAC的角平分线,所以AO是△ABE的角平分线,故①正确;BE是三角形ABC的中线,则E是AC是中点,而O不一定是AD的中点,故②错误.故选:C.4.解:由四边形组成的伸缩门是利用了四边形的不稳定性,而A、C、D选项都是利用了三角形的稳定性,故选:A.5.解:设第三边长为acm,由三角形的三边关系,得4﹣2<a<4+2,即2<a<6,则第三根木条长可以是3cm或4cm或5cm,故选:B.6.解:根据三角形的稳定性,要使六边形木架不变形,至少再钉上3根木条;故选:C.7.解:图中是三角形的有:△AOC、△BOD、△AOB、△ABC、△ABD.故选:C.8.解:∠1=130°﹣60°=70°,故选:D.9.解:∵(n﹣2)×180=1800,∴n=12.故选:D.∴DB=DC,∴△ABD与△ACD的周长之差为:(AB+AD+BD)﹣(AD+DC+AC)=AB+AD+BD﹣AD﹣DC﹣AC=AB﹣AC=2020﹣2018=2,故选:B.11.解:∵a、b、c是一个三角形三边长,∴b+c>a,a+b>c,∴|a﹣b﹣c|﹣|a+b﹣c|=﹣(a﹣b﹣c)﹣(a+b﹣c)=﹣a+b+c﹣a﹣b+c=﹣2a+2c,故选:A.12.解:如图所示:由折叠的性质得:∠D=∠B=32°,根据外角性质得:∠1=∠3+∠B,∠3=∠2+∠D,∴∠1=∠2+∠D+∠B=∠2+2∠B=∠2+64°,∴∠1﹣∠2=64°.故选:D.二.填空题13.解:设三角形的内角为别为x,2x,6x,x+2x+6x=180°,解得x=20°,∴2x=40°,6x=120°,∴这个三角形的最大的内角的度数是120°,是钝角三角形.故答案为:钝角.即3<c<11.故答案为:3<c<11.15.解:设这个正多边形的边形为x.∵正多边形的一个内角为108°,∴这个正多边形的每个外角等于72°.∴=72°.∴n=5.故答案为:5.16.解:由图可知:三角形有△ABD、△ABC、△ADC,共3个,∠B的对边是AD、AC.故答案为:3,AD、AC.17.解:∵AD为△ABC的中线,∴BD=DC,∵△ACD的周长28cm,∴AC+AD+CD=28(cm),∵AC=10cm,∴AD+CD=18(cm),即AD+BD=18(cm),∵AB=13cm,∴△ABD的周长=AB+AD+BD=31(cm),故答案为:31cm.三.解答题18.解:(1)设第三边长为a,则5<a<9,由于三角形的各边均为整数,则a=6或7或8,因此有三个三角形;(2)当a=7时,有a=7=c,所以周长为7+7+2=16.19.解:(1)在△ABC中,∠CAB=90°,∠B=30°,∴∠C=90°﹣30°=60°,∵AD⊥BC,∴∠CAD=90°﹣30°=60°;(2)△ABC中,∠CAB=90°,∠C=α,∴∠B=90°﹣∠C=90°﹣α,∵AD⊥BC,20.解:∵∠CAB=50°,∠C=60°∴∠ABC=180°﹣50°﹣60°=70°,又∵AD是高,∴∠ADC=90°,∴∠DAC=180°﹣90°﹣∠C=30°,∵AE、BF是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°,∴∠DAE=∠DAC﹣∠EAF=5°,∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°,∴∠DAC=30°,∠BOA=120°.故∠DAE=5°,∠BOA=120°.21.解:(1)∵三角形BDE与四边形ACDE的周长相等,∴BD+DE+BE=AC+AE+CD+DE,∵BD=DC,∴BE=AE+AC,设AE=x cm,则BE=(10﹣x)cm,由题意得,10﹣x=x+6.解得,x=2,∴AE=2cm;(2)图中共有8条线段,它们的和为:AE+EB+AB+AC+DE+BD+CD+BC=2AB+AC+2BC+DE,由题意得,2AB+AC+2BC+DE=53,∴2BC+DE=53﹣(2AB+AC)=53﹣(2×10+6)=27,∴BC+DE=(cm).22.解:(1)∵∠AOB+∠A+∠B=∠COD+∠C+∠D=180°,∠AOB=∠COD,∴∠A+∠B=∠C+∠D,故答案为∠A+∠B=∠C+∠D;(2)∵AP、CP分别平分∠BAD、∠BCD,∴∠BAP=∠DAP,∠BCP=∠DCP,∴∠B﹣∠P=∠P﹣∠D,即2∠P=∠B+∠D,∵∠B=36°,∠D=14°,∴∠P=25°;(3)2∠P=∠B+∠D.理由:∵CP、AG分别平分∠BCE、∠F AD,∴∠ECP=∠PCB,∠F AG=∠GAD,∵∠P AB=∠F AG,∴∠GAD=∠P AB,∵∠P+∠P AB=∠B+∠PCB,∴∠P+∠GAD=∠B+∠PCB,∵∠P+∠P AD=∠D+∠PCD,∴∠P+(180°﹣∠GAD)=∠D+(180°﹣∠ECP),∴2∠P=∠B+∠D.23.解:(1 )猜想:.证明∵OB平分∠ABC,OC平分∠ACB,∴,,∴∠O=180°﹣(∠OBC+∠OCB)===.(2)如图2所示.∵OB平分∠ABC,OC平分∠ACM∴,∠ACO=∠ACM.∴∠O=180°﹣∠OBC﹣∠OCB=180°﹣∠ABC﹣∠ACB﹣∠ACM.∵∠ACM=180°﹣∠ACB,∴∠O=180°﹣∠ABC﹣∠ACB﹣(180°﹣∠ACB)=180°﹣∠ABC﹣∠ACB﹣90°+∠ACB=90°﹣∠ABC﹣∠ACB=90°﹣(∠ABC+∠ACB)=90°﹣(180°﹣∠A)=∠A.当∠A=60°时,∠O=30°.故答案为:30°.如图3所∵OB平分∠EBC,OC平分∠FCB,∴∠CBO=∠EBC,∠BCO=∠BCF.∴∠O=180°﹣∠OBC﹣∠OCB=180°﹣∠EBC﹣∠BCF.∵∠EBC=180°﹣∠ABC,∠BCF=180°﹣∠ACB,∴∠O=180°﹣(180°﹣∠ABC)﹣(180°﹣∠ACB)=180°﹣90°+∠ABC﹣90°+∠ACB=∠ABC+∠ACB=(∠ABC+∠ACB)=(180°﹣∠A)=90°﹣∠A.当∠A=60°时,∠O=60°.故答案为:60°.24.解:(1)∵∠1=∠2+∠D=∠B+∠E+∠D,∠1+∠A+∠C=180°,∴∠A+∠B+∠C+∠D+∠E=180°;(2)∵∠1=∠2+∠F=∠B+∠E+∠F,∠1+∠A+∠C+∠D=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°;(3)根据图中可得出规律∠A+∠B+∠C+∠D+∠E=180°,每截去一个角则会增加180度,所以当截去5个角时增加了180×5度,则∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N=180°×5+180°=1080°.。
人教版八年级上册数学第十一章 三角形 专项练习题(含答案)
人教版八年级上册数学第十一章三角形专项练习题考点1.与三角形有关的线段常见题型1.在下列长度的三条线段中,不能组成三角形的是()A.2cm ,3cm ,4 cmB. 3cm ,6cm,7cmC. 2cm,2cm,6cmD. 5cm,6cm,7cm.2.已知三角形两边长分别为1,5,第三边长为整数,则第三边的长为______。
3.下列说法中,正确的是()A.三角形的角平线是射线B. 三角形的高总在三角形的内部C.三角形的高、中线、角平分线一定是三条不同的线段D.三角形的中线在三角形的内部4.下图中AE是△ABC的高线,作图正确的是()5.如图,在△ABC中,D、E分别为BC,AD的中点,且S△ABC=4,则S阴影()A.2B. 1C. 12D. 146.已知等腰三角形的一边等于8cm,一边等于6cm,则三角形的周长为_________7.木工师傅在做完门框后,为防止变形,常常像如图所示那样钉上两条斜拉的木板条(即图中的AB、CD两根木条),这样做的数学道理是________。
考点2.与三角形有关的角常见题型1.一个三角形的三个内角的度数之比为1:2:3,则这个三角形一定是()A.锐角三角形B. 直角三角形C. 钝角三角形D.等腰直角三角形2.一个三角形的三个外角之比为3:3:2,则这个三角形是()A.等腰三角形B. 等腰直角三角形C.直角三角形D.等边三角形3.如图,将三角板的直角顶点放在直角尺的一边上,∠1=300,∠2=500,则∠3的度数为()A.80B. 50C. 30D. 204.一副三角板有两个直角三角形,如图叠放在一起,则∠α的度数是()A.1650B. 1200C. 1500D. 13505.如图,在锐角△ABC中,CD、BE分别是AB、AC上的高,且CD、BE交于一点P,若∠A=500,则∠BPC的度数是( ) A.1500 B. 1300 C. 1200 D. 10005.填空:(1)△ABC中,若∠A+∠C=2∠B,则∠B=____;(2)△ABC中,若∠A:∠B:∠C=2:3:5,则∠A=___,∠B=____,∠C=____.(3)△ABC中,若∠A:∠B:∠C=1:2:3,则它们的相应邻补角的比为_______。
八年级上册数学第十一章三角形11.1与三角形有关的线段配套练习
八年级上册数学第十一章三角形11.1与三角形有关的线段配套练习题一、选择题(本大题共8小题,共24.0分)1.已知三条线段的长度比如下: ①2:3:4; ②1:2:3; ③2:4:6; ④3:3:6; ⑤6:6:10; ⑥6:8:10,其中能构成三角形的有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】此题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边即可求解.【解答】解: ①设三条线段的长分别为2x,3x,4x,则2x+3x>4x,故能构成三角形; ②设三条线段的长分别为x,2x,3x,则x+2x=3x,故不能构成三角形; ③设三条线段的长分别为2x,4x,6x,则2x+4x=6x,故不能构成三角形; ④设三条线段的长分别为3x,3x,6x,则3x+3x=6x,故不能构成三角形; ⑤设三条线段的长分别为6x,6x,10x,则6x+6x>10x,故能构成三角形; ⑥设三条线段的长分别为6x,8x,10x,则6x+8x>10x,故能构成三角形.故选C.2.已知三角形的两边长分别为3cm和4cm,则该三角形第三边的长不可能是()A. 1cmB. 3cmC. 5cmD. 6cm【答案】A【解析】解:∵三角形的两边长分别为3cm和4cm,∴1<第三边的长<7,故该三角形第三边的长不可能是1cm.故选:A.直接利用三角形三边关系得出第三边长的取值范围进而得出答案.此题主要考查了三角形三边关系,正确得出第三边长的取值范围是解题关键.3.如图,AD,BE,CF依次是△ABC的高、中线和角平分线,下列各式中错误的是()A. AE=CEB. ∠ADC=90∘C. ∠CAD=∠CBED. ∠ACB=2∠ACF【答案】C【解析】略4.下列说法正确的是()A. 所有的等腰三角形都是锐角三角形B. 等边三角形属于等腰三角形C. 不存在既是钝角三角形又是等腰三角形的三角形D. 一个三角形里有两个锐角,则一定是锐角三角形【答案】B【解析】解:A、错误,内角为30°,30°,120°的等腰三角形是钝角三角形;B、正确,等边三角形属于等腰三角形;C、错误,内角为30°,30°,120°的三角形既是钝角三角形又是等腰三角形的三角形;D、错误,内角为30°,30°,120°的三角形有两个锐角,是钝角三角形.故选:B.根据锐角三角形、钝角三角形、等腰三角形的定义一一判断即可.本题考查三角形的一个概念,解题的关键是搞清楚锐角三角形、钝角三角形、等腰三角形的定义,属于基础题,中考常考题型.5.画△ABC中AB边上的高,下列画法中正确的是()A. B.C. D.【答案】C【解析】略6.如图,工人师傅做了一个长方形窗框ABCD,E,F,G,H分别是四条边上的中点,为了使它更加稳固,需要在窗框上钉一根木条,这根木条不应钉在()A. A,C两点之间B. E,G两点之间C. B,F两点之间D. G,H两点之间【答案】B【解析】选项A,C,D中都构成了三角形,增加了稳定性;选项B中,木条钉在E,G两点之间,没有构成三角形.故选B.7.将一张三角形纸片剪开分成两个三角形,这两个三角形不可能()A. 都是直角三角形B. 都是钝角三角形C. 都是锐角三角形D. 是一个直角三角形和一个钝角三角形【答案】C【解析】【分析】本题主要考查了三角形的分类,理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.分三种情况讨论,即可得到这两个三角形不可能都是锐角三角形.【解答】解:如图,沿三角形一边上的高剪开即可得到两个直角三角形.,如图,钝角三角形沿虚线剪开即可得到两个钝角三角形.,如图,直角三角形沿虚线剪开即可得到一个直角三角形和一个钝角三角形.,因为剪开的边上的两个角互补,故这两个三角形不可能都是锐角三角形.故选C.8.如图,△ABC的三边长均为整数,且周长为22,AM是边BC上的中线,△ABM的周长比△ACM的周长大2,则BC长的可能值有()A. 4个B. 5个C. 6个D. 7个【答案】A【解析】【分析】本题主要考查了三角形三边关系的运用,解题时注意:三角形两边之和大于第三边,三角形的两边差小于第三边.依据△ABC的周长为22,△ABM的周长比△ACM的周长大2,可得2<BC<11,再根据△ABC的三边长均为整数,即可得到BC=4,6,8,10.【解答】解:∵△ABC的周长为22,△ABM的周长比△ACM的周长大2,∴2<BC<22−BC,解得2<BC<11,又∵△ABC的三边长均为整数,△ABM的周长比△ACM的周长大2,∴AC=22−BC−22=10−12BC,为整数,∴BC边长为偶数,∴BC=4,6,8,10,故选:A.二、填空题(本大题共2小题,共6.0分)9.三角形的三条中线相交于一点,这个点一定在三角形的________,这个点叫做三角形的__________.【答案】内部;重心【解析】略10.如图,在△ABC中,D是BC边上一点,E是AD边上一点.(1)以AC为边的三角形共有个,它们是;(2)∠1是△和△的内角;(3)在△ACE中,∠CAE的对边是.【答案】3△ACE,△ACD,△ACBBCECDECE【解析】略三、解答题(本大题共5小题,共40.0分)11.在如图所示的方格纸中,每个小正方形的边长均为1,点A,点B,点C均在小正方形的顶点上.(1)画出△ABC中BC边上的高AD;(2)画出△ABC中AC边上的中线BE;(3)直接写出△ABE的面积为.【答案】解:(1)如图所示,线段AD即为所求.(2)如图所示,线段BE即为所求.(3)4.【解析】(3)解:∵S△ABC=12BC⋅AD=12×4×4=8,∴△ABE的面积=12S△ABC=4.12.已知a、b、c为△ABC的三边长,且b、c满足(b−5)2+(c−7)2=0,a为方程|a−3|=2的解,求△ABC的周长,并判断△ABC的形状.【答案】解:∵(b −5)2+(c −7)2=0,∴{b −5=0,c −7=0,解得{b =5,c =7,∵a 为方程|a −3|=2的解,∴a =5或1,当a =1,b =5,c =7时,三边长分别为1,5,7,1+5<7,不能组成三角形,故a =1不符合题意;当a =5,b =5,c =7时,三边长分别为5,5,7,5+5>7,能组成三角形,故a =5符合题意,∴△ABC 的周长=5+5+7=17.∵a =b =5,∴△ABC 是等腰三角形.【解析】要注意检验三边长能否构成三角形.13. 若△ABC 的三边长分别为m −2,2m +1,8.(1)求m 的取值范围;(2)若△ABC 的三边均为整数,求△ABC 的周长.【答案】解:(1)根据三角形的三边关系,{2m +1−(m −2)<82m +1+m −2>8, 解得:3<m <5;(2)因为△ABC 的三边均为整数,且3<m <5,所以m =4.所以,△ABC 的周长为:(m −2)+(2m +1)+8=3m +7=3×4+7=19.【解析】(1)直接利用三角形三边关系得出不等式组求出答案;(2)利用m 的取值范围得出m 的值,进而得出答案.此题主要考查了三角形三边关系,正确得出不等式组是解题关键.14.如图,已知P是△ABC内一点.求证:PA+PB+PC>1(AB+BC+AC).2【答案】证明:在△ABP中,PA+PB>AB; ①在△PBC中,PB+PC>BC; ②在△PAC中,PA+PC>AC. ③ ①+ ②+ ③,得2(PA+PB+PC)>AB+BC+AC,(AB+BC+AC).即PA+PB+PC>12【解析】见答案15.在平面内,分别用3根、5根、6根⋯⋯火柴棒首尾顺次相接,能搭成什么形状的三角形呢?通过尝试,列表如下:火柴棒根数356示意图形状等边三角形等腰三角形等边三角形(1)用4根火柴棒能搭成三角形吗?(2)用8根、12根火柴棒分别能搭成几种不同形状的三角形?并画出它们的示意图.【答案】解:(1)用4根火柴棒不能搭成三角形.(2)用8根火柴棒能搭成一种三角形,示意图如图 ①所示;用12根火柴棒能搭成三种不同形状的三角形,即:(4,4,4),(5,5,2),(3,4,5),示意图如图 ②所示.【解析】见答案。
人教版八年级上册数学第十一章 三角形经典练习题附详细解析学生版
人教版八年级上册数学第十一章三角形经典练习题附详细解析一、单选题1.若有两条线段长分别为3cm和4cm,则下列长度的线段能与其组成三角形的是()A.1cm B.5cm C.7cm D.9cm2.若三角形的三边分别为3、4、a,则a的取值范围是()A.a>7B.a<7C.1<a<7D.3<a<63.下列长度的三条线段能组成三角形的是()A.1,2,3B.3,4,5C.3,1,1D.3,4,74.已知等腰三角形的一边长为2,一边长为4,则它的周长等于()A.8B.10C.8或10D.10或125.如图所示,在△ABC中,AB=8,AC=6,AD是△ABC的中线,则△ABD与△ADC的周长之差为()A.14B.1C.2D.76.如图,在△ABC中,已知点E、F分别是AD、CE边上的中点,且S△BEF=4cm2,则S△ABC的值为()A.1cm2B.2cm2C.8cm2D.16cm27.如图四个图形中,线段BE 是△ABC 的高线的是( )A.B.C.D.8.在三角形中,一定能将其面积分成相等两部分的是()A.中线B.高线C.角平分线D.某一边的垂直平分线9.如图,在△ABC中,点D为BC边上一点,连接AD,取AD的中点P,连接BP,CP.若△ABC 的面积为4cm2,则△BPC的面积为()A.4cm2B.3cm2C.2cm2D.1cm210.如图,AE△BC于E,BF△AC于F,CD△AB于D,△ABC中AC边上的高是线段()A.BF B.CD C.AE D.AF11.如图△ABC中,△A=96°,延长BC到D,△ABC与△ACD的平分线相交于点A1△A1BC与△A1CD的平分线相交于点A2,依此类推,△A4BC与△A4CD的平分线相交于点A5,则△A5的度数为()A.19.2°B.8°C.6°D.3°12.如图,△A +△B +△C +△D +△E +△F等于()A.180°B.360°C.540°D.720°13.如图,则△A+△B+△C+△D+△E=()度A.90B.180C.200D.36014.已知一个多边形的内角和为540°,则这个多边形为()A.三角形B.四边形C.五边形D.六边形15.一个正多边形的每个外角都是36°,这个正多边形是()A.正六边形B.正八边形C.正十边形D.正十二边形16.如果一个多边形的每个内角都为150°,那么这个多边形的边数是()A.6B.11C.12D.1817.如图,已知BD是△ABC的中线,AB=5,BC=3,且△ABD的周长为11,则△BCD的周长是()A.9B.14C.16D.不能确定二、填空题18.三角形三边长为7cm、12cm、acm,则a的取值范围是.19.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是.20.如图,自行车的三角形支架,这是利用三角形具有性.21.在△ABC中,△B,△C的平分线交于点O,若△BOC=132°,则△A=度.22.如图,△1+△2+△3+△4=°。
人教版八年级上册 第十一章《三角形》—与三角形相关的角解答题、证明题训练(附有答案)
第十一章《三角形》与三角形有关的角证明题及解答题训练1.已知,如图D是△ABC中BC边延长线上一点,DF⊥AB交AB于F,交AC于E,∠A=46°,∠D=50°.求∠ACB的度数.2.已知,如图△ABC中,三条高AD、BE、CF相交于点O.若∠BAC=60°,求∠BOC的度数.3.已知,如图△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC 的平分线.求∠DAE的度数.4.已知:AD是△ABC的外角∠EAC的平分线,且AD∥BC.求证:∠B=∠C.5.已知,如图CE是△ABC的外角∠ACD的平分线,BE是∠ABC内任一射线,交CE于E.求证:∠EBC<∠ACE.6.已知:如图P是△ABC内任一点,(1)求证:AB+AC>BP+PC.(2)求证:∠BPC>∠A.7.如图,△ABC中,∠B=34°,∠ACB=104°,AD是BC边上的高,AE是∠BAC 的平分线,求∠DAE的度数.8.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC=______度;(2)求∠EDF的度数.9.如图,在△ABC中,AD⊥BC于点D,BE平分∠ABC.若∠ABC=64°,∠AEB=70°,求∠CAD的度数.10.如图,在△ABC中,AD⊥BC于D,AE平分∠BAC.(此题为求同一顶点的角平分线与高线的夹角的度数)(1)若∠C=70°,∠B=40°,求∠DAE的度数;(2)若∠C-∠B=30°,求∠DAE的度数;(3)若∠C-∠B=α(∠C>∠B),求∠DAE的度数(用含α的代数式表示).11-1.如图,△ABC中,∠ABC和∠ACB的平分线交于点O.若∠BOC=120°,求∠A。
初中数学人教版八年级上册第十一章《三角形》练习册(含答案)11.2 与三角形有关的角
初中数学人教版八年级上册实用资料11.2 与三角形有关的角基础巩固1.(题型三角度a)如图11-2-1,将三角板的直角顶点放在直角尺的一边上,∠1=30°,∠2=50°,则∠3的度数为()图11-2-1A.80°B.50°C.30°D.20°2.(题型一)如图11-2-2,在△ABC中,∠A=80°,∠B=40°,D,E分别是AB,AC上的点,且DE∥BC,则∠AED的度数是()图11-2-2A.40°B.60°C.80°D.120°3.(题型一)若三角形的一个内角等于另外两个内角之差,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定4.(题型一)如图11-2-3,一根直尺EF压在三角形30°的角∠BAC上,与两边AC,AB分别交于点M,N,那么∠CME+∠BNF=()图11-2-3A.135°B.150°C.180°D.不能确定5.(题型一)如图11-2-4,在△ABC中,∠ABD=∠DBE=∠EBC,∠ACD=∠DCE=∠ECB,若∠BEC=145°,则∠BDC=()图11-2-4A.100°B.105°C.110°D.115°6.(题型三角度a)将一副直角三角板,按图11-2-5叠放在一起,则图中α的度数是.图11-2-57.(题型一)如图11-2-6,EF∥BC,AC平分∠BAF,∠B=80°,则∠C的度数是.图11-2-68.(知识点2)如图11-2-7,在Rt△ACB中,∠ACB=90°,CD⊥AB,则图中互余的角有对.图11-2-79.(知识点3)如图11-2-8,已知在△ABC中,∠A=40°,剪去∠A后成四边形,∠1+∠2= °.图11-2-810.(知识点2)如图11-2-9,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=40°,∠C=60°.求∠DAE的度数.图11-2-911.(题型二角度b)如图11-2-10,∠1,∠2,∠3的大小关系是.图11-2-1012.(题型一)(1)如图11-2-11(1),有一块直角三角板XYZ放置在△ABC下,恰好三角板XYZ的两条直角边XY,XZ分别经过点B,C.在△ABC中,∠A=30°,则∠ABC+∠ACB=度,∠XBC+∠XCB=度.(2)如图11-2-11(2),改变直角三角板XYZ的位置,使三角板XYZ的两条直角边XY,XZ仍然分别经过点B,C,那么∠ABX+∠ACX的大小是否发生变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.(1)(2)图11-2-1113.(题型一、二)(1)如图11-2-12,在△ABC中,AD⊥BC于点D,AE平分∠BAC,且∠C大于∠B.求证:∠EAD=12(∠C-∠B).(2)若把问题(1)中的“AD⊥BC于点D”改为“点F为EA上一点且FD⊥BC于点D”,画出新的图形,并说明∠EFD=12(∠C-∠B).(3)若把问题(2)中的“F为EA上一点”改为“F为AE延长线上的一点”,则问题(2)中的结论成立吗?说明你的理由.图11-2-1214.(题型一)如图11-2-13,在Rt△ABC中,∠C=90°,点D,E分别是△ABC边AC,BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=α.(注:四边形的内角和是360°)(1)若点P在线段AB上,如图11-2-13(1),且α=50°,则∠1+∠2= .(2)若点P在边AB上运动,如图11-2-13(2),则α,∠1,∠2之间的关系为 .(1)(2)(3)(4)图11-2-13(3)若点P运动到边AB的延长线上,图11-2-13(3),则α,∠1,∠2之间有何关系?请写出你的猜想,并说明理由.(4)若点P运动到△ABC外,如图11-2-13(4),则α,∠1,∠2之间的关系为.答案基础巩固1. D 解析:如图D11-2-1,∵BC∥DE,∴∠CBD=∠2=50°.又∵∠CB D为△ABC的外角,∴∠CBD=∠1+∠3,即∠3=∠CBD-∠1=50°-30°=20°.故选D.图D11-2-12. B 解析:∵DE∥BC,∠B=40°,∴∠A DE=∠B=40°.又∵∠A=80°,∴在△ADE中,∠AED=180°-∠A-∠A DE=180°-80°-40°=60°(三角形的内角和定理).故选B.3. B 解析:设此三角形的三个内角分别是∠1,∠2,∠3(其中∠3最大),根据题意,得∠1=∠3-∠2,∴∠1+∠2=∠3.又∵∠1+∠2+∠3=180°,∴2∠3=180°,∴∠3=90°,∴这个三角形是直角三角形.故选B.4. B 解析:∵∠A+∠AMN+∠ANM=180°,∠A=30°,∴∠AMN+∠ANM=180°-∠A=180°-30°=150°.∵∠AMN=∠CME,∠ANM=∠BNF,∴∠CME+∠BNF=∠AMN+∠ANM=150°.故选B.5. C 解析:在△BCE中,∵∠BEC=145°,∴∠EBC+∠ECB=180°-145°=35°.∵∠DBE=∠EBC,∠DCE=∠ECB,∴∠DBC+∠DCB=2(∠EBC+∠ECB)=2×35°=70°.在△BCD中,∠BDC=180°-(∠DBC+∠DCB)=180°-70°=110°.故选C. 6. 75°解析:如图D11-2-2,∠1=90°-60°=30°,所以α=45°+∠1=45°+30°=75°.图D11-2-2 图D11-2-37. 50°解析:∵EF∥BC,∴∠BAF=180°-∠B=100°.∵AC平分∠BAF,∴∠CAB=12∠BAF=50°.∴∠C=180°-∠B-∠CAB=50°.8. 4 解析:由直角三角形的两个锐角互余,得∠ACD+∠A=90°,∠BCD+∠B=∠90°,∠A+∠B=90°.∵∠ACB=90°,∴∠BCD+∠ACD=90°.∴互余的角有4对.9. 220解析:如图D11-2-3,∠1+∠2=(∠A+∠4)+(∠A+∠3)=∠A+(∠A+∠3+∠4)=∠A+180°.∵∠A=40°,∴∠1+∠2=40°+180°=220°.10. 解:在△ABC中,∠B=40°,∠C=60°,∴∠BAC=80°.∵AE平分∠BAC,∴∠BAE=40°.又∵AD⊥BC,∠B=40°,∴∠BAD=90°-40°=50°.∴∠DAE=∠BAD-∠BAE=50°-40°=10°.能力提升11. ∠3>∠1>∠2 解析:如图D11-2-4,∵∠3=∠1+∠5,∴∠3>∠1.∵∠1=∠2+∠4,∴∠1>∠2.∴∠3>∠1>∠2.图D11-2-412. 解:(1)∵∠A=30°,∴∠ABC+∠ACB=180°-∠A=150°.∵∠X=90°,∴∠XBC+∠XCB=90°.(2)不变化.∵∠A=30°,∴∠ABC+∠ACB=150°.∵∠X=90°,∴∠XBC+∠XCB=90°.∴∠ABX+∠ACX=(∠ABC-∠XBC)+(∠ACB-∠XCB)=(∠ABC+∠ACB)-(∠XBC+∠XCB)=150°-90°=60°.13.(1)证明:在Rt△ADE中,∵∠AED+∠DAE=90°,∴∠DAE=90°-∠AED.∵∠AED=180°-∠C-∠CAE,且AE平分∠BAC,∴∠CAE=12∠BAC=12(180°-∠C-∠B).∴∠EAD=90°-180°-∠C-1/2(180°-∠C-∠B)=12(∠C-∠B).(2)解:如图D11-2-5(1),由三角形的内角和定理的推论,得∠FED=∠B+12∠BAC,故∠B+12∠BAC+∠EFD=90°①.在△ABC中,由三角形的内角和定理,得∠B+∠BAC+∠C=180°,即12∠C+12∠B+12∠BAC=90°②.②-①,得∠EFD=12(∠C-∠B).(3)解:成立.理由:如图D11-2-5(2),由三角形的内角和定理的推论,得∠FED=∠AEC=∠B+12∠BAC,故∠B+12∠BAC+∠EFD=90°①.在△ABC中,由三角形的内角和定理,得∠B+∠BAC+∠C=180°,即12∠C+12∠B+12∠BAC=90°②.②-①,得∠EFD=1(∠C-∠B).2(1)(2)图D11-2-514. 解:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+α.∵∠C=90°,α=50°,∴∠1+∠2=140°.(2)由(1)得α+∠C=∠1+∠2,∴∠1+∠2=90°+α.(3)∠1=90°+∠2+α.理由如下:如图D11-2-6(1),∵∠2+α=∠DME,∠DME+∠C=∠1,∴∠1=∠C+∠2+α=90°+∠2+α.(4)如图D11-2-6(2),∵∠PFC=∠DFE,∴α+180°-∠1=∠C+180°-∠2,∴∠2=90°+∠1-α.(1)(2)图D11-2-6。
人教版八年级数学上册第十一章 三角形练习(含答案)
第十一章三角形一、单选题1.下列各组线段的长为边,能组成三角形的是()A.2,5,10B.2,3,4C.2,3,5D.8,4,42.以下是四位同学在钝角三角形ABC中画BC边上的高,其中画法正确的是()A.B.C.D.3.如图,在△ABC中,已知点D,E,F分别为BC,AD,AE的中点,且S△ABC=12cm2,则阴影部分面积S=()cm2.A.1B.2C.3D.44.下列说法错误的是()A.三角形三条高交于三角形内一点B.三角形三条中线交于三角形内一点C.三角形三条角平分线交于三角形内一点D.三角形的中线、角平分线、高都是线段5.下列图形不具有稳定性的是()A .B .C .D . 6.如图,在△ABC 中,∠C =90°,∠B =40°,AD 是∠BAC 的平分线,则∠ADC 的大小为( )A .25°B .50°C .65°D .70°7.如图所示,∠α的度数是( )A .10°B .20°C .30°D .40°8.一个8边形中,由一个顶点出发的对角线可以将此8边形分为几个三角形 ( ) A .9 B .6 C .8 D .109.正多边形的一个内角等于144°,则该多边形是正( )边形.A .8B .9C .10D .1110.如图,ABC ∆中,100ABC ∠=︒,且AEF AFE ∠=∠,CFD CDF ∠=∠,则EFD ∠ 的度数为( )A.80°B.60°C.40°D.20°二、填空题11.))))△ABC))∠C)90°)AC)BC)AD))∠BAC)BC))))DE⊥AB))E))AB)5 cm))△B D E))))________)12.如图,∠1+∠2+∠3+∠4=______度.13.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A点时,一共走了米.14.如图,已知△ABC中,∠A=60°,点O为△ABC内一点,且∠BOC=140°,其中O1B 平分∠ABO,O1C平分∠ACO,O2B平分∠ABO1,O2C平分∠ACO1,…,O n B平分∠ABO n,O n C平分∠ACO n﹣1,…,以此类推,则∠BO1C=_____°,∠BO2017C=_____°.﹣1三、解答题15.如图,在直角三角形ABC中,∠ACB=90°,CD是AB边上的高,AB=13cm,BC=12cm,AC=5cm;求(1)△ABC的面积;(2)CD的长.16.如图,AD是ABC的高,BE是ABC的角平分线,BE,AD相交于点F,已知∠=︒,求EFD50BAD∠度数.17.如图,AD 为ABC ∆的中线,BE 为ABD ∆的中线.(1)15ABE ∠=,40BAD ∠=,求BED ∠的度数;(2)若ABC ∆的面积为40,5BD =,则E 到边BC 的距离为多少.18.如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:;(2)仔细观察,在图2中“8字形”的个数:个;(3)图2中,当∠D=40°,∠B=30°度时,求∠P的度数答案1.B 2.B 3.C 4.A 5.A 6.C 7.A8.B 9.C 10.C 11.5 cm 12.280 13.12014.100 [60+(12)2017×80].15.(1)30cm2;(2)6013cm.16.11017.(1)55;(2)418.(1)∠A+∠D=∠C+∠B;(2)6;(3)∠P=35°。
人教版八年级数学上册第11章、第12章测试题及答案(各一套)
人教版八年级数学上册第11章测试题(三角形)(时间:120分分值:120分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案前的英文字母填在题后括号内)1.(3分)三角形三条边大小之间存在一定的关系,以下列各组线段为边,能组成三角形的是()A.2 cm,3 cm,5 cm B.5 cm,6 cm,10 cmC.1 cm,1 cm,3 cm D.3 cm,4 cm,9 cm2.(3分)以长为13cm、10cm、5cm、7cm的四条线段中的三条线段为边,可以画出三角形的个数是()A.1个B.2个C.3个D.4个3.(3分)下列说法错误的是()A.锐角三角形的三条高线、三条中线、三条角平分线分别交于一点B.钝角三角形有两条高线在三角形外部C.直角三角形只有一条高线D.任意三角形都有三条高线、三条中线、三条角平分线4.(3分)给出下列命题:①三条线段组成的图形叫三角形;②三角形相邻两边组成的角叫三角形的内角;③三角形的角平分线是射线;④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外;⑤任何一个三角形都有三条高、三条中线、三条角平分线;⑥三角形的三条角平分线交于一点,且这点在三角形内.正确的命题有()A.1个B.2个C.3个D.4个5.(3分)如图,在△ABC中,D,E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有()对.A.4 B.5 C.6 D.76.(3分)如图,一面小红旗,其中∠A=60°,∠B=30°,则∠BCA=90°.求解的直接依据是()A.三角形内角和定理B.三角形外角和定理C.多边形内角和公式D.多边形外角和公式7.(3分)如图,在直角三角形ABC中,AC≠AB,AD是斜边上的高,DE⊥AC,DF⊥AB,垂足分别为E、F,则图中与∠C(∠C除外)相等的角的个数是()A.3个B.4个C.5个D.6个8.(3分)如图,在△ABC中,∠C=90°,点D,E分别在边AC,AB上.若∠B=∠ADE,则下列结论正确的是()A.∠A和∠B互为补角B.∠B和∠ADE互为补角C.∠A和∠ADE互为余角D.∠AED和∠DEB互为余角9.(3分)已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值。
人教版八年级上册数学第十一章三角形解答题专项练习
第十一章三角形解答题专项练习1.探究与发现:如图①,在△ABC中,∠B=∠C=45°,点D在BC边上,点E在AC边上,且∠ADE=∠AED,连结DE.(1)当∠BAD=60°时,求∠CDE的度数;(2)当点D在BC(点B、C除外)边上运动时,试探究∠BAD与∠CDE的数量关系;(3)深入探究:如图②,若∠B=∠C,但∠C≠45°,其它条件不变,试继续探究∠BAD 与∠CDE的数量关系.2.如图,直线AE⊥BF于O,将一个三角板ABO如图放置(∠BAO=30°),两直角边与直线BF,AE重合,P为直线BF上一动点,BC平分∠ABP,PC平分∠APF,点D在直线PC 上,且OD平分∠POE.(1)求∠BGO的度数;(2)试确定∠C与∠OAP之间的数量关系并说明理由;(3)P在直线上运动,∠C+∠D的值是否变化?若发生变化,说明理由;若不变求其值.3.(1)问题发现:如图1,在△ABC中,∠A=α,∠ABC和∠ACB的平分线交于P,则∠BPC的度数是(2)类比探究:如图2,在△ABC中,∠ABC的平分线和∠ACB的外角∠ACE的角平分线交于P,则∠BPC 与∠A的关系是,并说明理由.(3)类比延伸:如图3,在△ABC中,∠ABC的平分线和∠ACB的外角∠ACE的角平分线交于P,请直接写出∠BPC与∠A的关系是.4.(1)如图(1),在△ABC中,∠A=62°,∠ABD=20°,∠ACD=35°,求∠BDC的度数.(2)图(1)所示的图形中,有点像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,观察“规形图”图(2),试探究∠BDC与∠A、∠B、∠C之间的数量关系,并说明理由.(3)请你直接利用以上结论,解决以下问题:①如图(3),把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=42°,则∠ABX+∠ACX=°.②如图(4),DC平分∠ADB,EC平分∠AEB,若∠DAE=60°,∠DBE=140°,求∠DCE的度数.③如图(5),∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=140°,∠BG1C=68°,求∠A的度数.5.如图1,在△ABC中,∠ABC与∠ACB的角平分线交于O点.(1)若∠A=40°,则∠BOC=°;(2)若∠A=n°,则∠BOC=°;(3)若∠A=n°,∠ABC与∠ACB的角平分线交于O点,∠ABO的平分线与∠ACO的平分线交于点O1,…,∠ABO2016的平分线与∠ACO2016的平分线交于点O2017,则∠O2017=°.6.如图,四边形ABCD中,设∠A=α,∠D=β,∠P为四边形ABCD的内角∠ABC与外角∠DCE的平分线所在直线相交而形成的锐角.①如图1,若α+β>180°,求∠P的度数.(用α、β的代数式表示)②如图2,若α+β<180°,请在图③中画出∠P,并求得∠P=.(用α、β的代数式表示)7.(1)如图(1),在△ABC中,∠ABC、∠ACB的平分线相交于点O,∠A=40°求∠BOC 的度数.(2)如图(2),△A′B′C′外角的平分线相交于点O′,∠A′=40°,求∠B′O′C′的度数.(3)由(1)、(2)可以发现∠BOC与∠B′O′C′有怎样的数量关系?设∠A=∠A′=n°,∠BOC与∠B′O′C′是否还具有这样的数量关系?这个结论你是怎样得到的?8.(1)如图①,△ABC的三边所在的直线与直线A1A2、A3A4、A5A6分别两两相交,求∠A1+∠A2+∠A3+∠A4+∠A5+∠A6等于多少度?(2)如图②,四边形ABCD的四边所在的直线与直线A1A2、A3A4、A5A6、A7A8分别两两相交,求∠A1+∠A2+∠A3+∠A4+∠A5+∠A6+∠7+∠8的度数;(3)若n边形的n条边所在的直线与直线A1A2、A3A4、A5A6、…、A2n﹣1A2n分别两两相交,求∠A1+∠A2+…+∠A2n=.9.如图1,在△ABC中,∠B=90°,分别作其内角∠ACB与外角∠DAC的平分线,且两条角平分线所在的直线交于点E.(1)∠E=°;(2)分别作∠EAB与∠ECB的平分线,且两条角平分线交于点F.①依题意在图1中补全图形;②求∠AFC的度数;(3)在(2)的条件下,射线FM在∠AFC的内部且∠AFM=∠AFC,设EC与AB的交点为H,射线HN在∠AHC的内部且∠AHN=∠AHC,射线HN与FM交于点P,若∠FAH,∠FPH和∠FCH满足的数量关系为∠FCH=m∠FAH+n∠FPH,请直接写出m,n的值.10.老师给了小胖同学这样一个问题:如图1,△ABC中,BE是∠ABC的平分线,点D是BC延长线上一点,2∠D=∠ACB,若∠BAC=60°,求∠BED小胖通过探究发现,过点C作CM∥AD(如图2),交BE于点M,将∠BED转移至∠BMC 处,结合题目已知条件进而得到CM为∠ACB的平分线,在△ABC中求出∠BMC,从而得出∠BED.(1)请按照小胖的分析,完成此题的解答:(2)参考小胖同学思考问题的方法,解决下面问题:如图3,在△ABC中,点D是AC延长线上的一点,过点D作DE∥BC,DG平分∠ADE,BG 平分∠ABC,DG与BG交于点G,若∠A=m°,求∠G的度数(用含m的式子表示)11.图1所示的图形中,有像我们常见的学习用品﹣﹣圆规,我们不妨把这样的图形叫做“规形图”.观察“规形图”.(1)如图1,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由.(2)请你直接利用以上结论,解决以下问题:如图2,DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度数.12.已知如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”,如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图1中,求∠A、∠B、∠C、∠D之间的数量关系:解:∵∠AOC是△AOD的外角(外角定义),∴∠AOC=(三角形的外角等于它不相邻的两个内角和),∵∠AOC是△COB的外角(外角定义),∴∠AOC=,∴∠A+∠D=.(2)图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠B、∠D之间存在着怎样的数量关系,说明理由.13.【问题背景】小明在学习多边形时,把如图1的图形成为“8”字形,并得出如下结论:∠A+∠B=∠C+∠D,请你说明理由;(2)【尝试应用】如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=36°,∠ADC=16°,求∠P的度数;小明结合(1)中的结论并利用方程思想轻松解答如下:解:由AP、CP分别平分∠BAD、∠BCD,可设∠1=∠2=x,∠3=∠4=y,由(1)的结论得:,①+②,得2∠P+x+y=x+y+∠B+∠D∴(∠B+∠D)=26°(3)【拓展延伸】如图3,已知∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,请利用上述结论或方法求∠P的度数.14.如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F.(1)当△PMN所放位置如图①所示时,求出∠PFD与∠AEM的数量关系;(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=15°,∠PEB=30°,求∠N的度数..15.如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1(1)当∠A为70°时,∵∠ACD﹣∠ABD=∠∴∠ACD﹣∠ABD=°∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1CD﹣∠A1BD=(∠ACD﹣∠ABD)∴∠A1=°;(2)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、A n,请写出∠A与∠A n的数量关系;(3)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F=.(4)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q﹣∠A1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值.参考答案1.解:(1)∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD=105°,∵∠AED是△CDE的外角,∴∠AED=∠C+∠EDC,∵∠B=∠C,∠ADE=∠AED,∴∠ADC﹣∠EDC=105°﹣∠EDC=45°+∠EDC,解得:∠EDC=30°.(2)∠EDC=∠BAD.证明:设∠BAD=x,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD=45°+x,∵∠AED是△CDE的外角,∴∠AED=∠C+∠EDC,∵∠B=∠C,∠ADE=∠AED,∴∠ADC﹣∠EDC=∠45°+x﹣∠EDC=45°+∠EDC,解得:∠EDC=∠BAD.(3)∠EDC=∠BAD.证明:设∠BAD=x,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD=∠B+x,∵∠AED是△CDE的外角,∴∠AED=∠C+∠EDC,∵∠B=∠C,∠ADE=∠AED,∴∠ADC﹣∠EDC=∠B+x﹣∠EDC=∠B+∠EDC,解得:∠EDC=∠BAD.2.解:(1)∵∠BAO=30°,∴∠ABO=60°,∵BC平分∠ABP,∴∠ABG=∠GBO=30°,∠BGO=∠BAG+∠ABG=60°.(2)∠APF=∠OAP+∠AOP∠C=∠APF﹣∠CBF=∠OAP+45°﹣30°=∠OAP+15°(3)∠C+∠D不变.如图1,∠CPF=∠OPD,∠CPF=∠C+30°,∠OPD=180°﹣45°﹣∠D∠C+30°=180°﹣45°﹣∠D∠C+∠D=105°.3.解:(1)∵∠A=α,∴∠ABC+∠ACB=180°﹣α,∵∠ABC和∠ACB的平分线交于P,∴∠PBC=∠ABC,∠PCB=ACB,∴∠BPC=180°﹣(∠ABC+ACB)=90°+α;故答案为:90°+α;(2)∠BPC=∠A,证明:∵∠ACE是△ABC的外角,∠PCE是△PBC的外角,∴∠ACE=∠ABC+∠A∠PCE=∠PBC+∠BPC,∵BP平分∠ABC,CP平分∠ACE,∴∠PBC=∠ABC∠PCE=∠ACE,∴∠ACE=∠ABC+∠BPC,∴∠BPC=∠ABC﹣∠ACE=(∠ABC﹣∠ACE),∴∠BPC=∠A,故答案为:∠BPC=∠A;(3)由(1)得,∠BPC=90°﹣∠A,故答案为:∠BPC=90°﹣∠A.4.解:(1)解:∵在△ABC中,∠A=62°,∴∠ABC+∠ACB=180°﹣62°=118°.∵∠1=20°,∠2=35°,∴∠DBC+∠DCB=∠ABC+∠ACB﹣∠1﹣∠2=118°﹣20°﹣35°=63°.∴∠BDC=180°﹣(∠DBC+∠DCB)=180°﹣63°=117°;(2)解:(1)如图2,连接AD并延长至点F,根据外角的性质,可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD,又∵∠BDC=∠BDF+∠CDF,∠BAC=∠BAD+∠CAD,∴∠BDC=∠A+∠B+∠C;(3)①由(1),可得∠ABX+∠ACX+∠A=∠BXC,∵∠A=42°,∠BXC=90°,∴∠ABX+∠ACX=90°﹣42°=48°;故答案为:48°;②由(1),可得∠DBE=∠DAE+∠ADB+∠AEB,∴∠ADB+∠AEB=∠DBE﹣∠DAE=140°﹣60°=80°,∴(∠ADB+∠AEB)=80°÷2=40°,∴∠DCE=(∠ADB+∠AEB)+∠DAE=40°+60°=100°;C=(∠ABD+∠ACD)+∠A,③∠BG1C=68°,∵∠BG1∴设∠A为x°,∵∠ABD+∠ACD=140°﹣x°∴(140﹣x)+x=70,∴14﹣x+x=68,解得x=60即∠A的度数为60°.5.解:(1)∵∠A=40°,∴∠ABC+∠ACB=140°,∵点O是∠ABC与∠ACB的角平分线的交点,∴∠OBC+∠OCB=70°,∴∠BOC=110°.故答案为:110°;(2)∵∠A=n°,∴∠ABC+∠ACB=180°﹣n°,∵BO、CO分别是∠ABC与∠ACB的角平分线,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB)=(180°﹣n°)=90°﹣n°,∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+n°.故答案为:90°+n°;(3)由(2)得∠O=90°+n°,∵∠ABO的平分线与∠ACO的平分线交于点O1,∴∠O1BC=∠ABC,∠O1CB=∠ACB,∴∠O1=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=×180°+n°,同理,∠O2=×180°+n°,∴∠O n=×180°+n°,∴∠O2017=×180°+n°,故答案为:×180°+n°.6.解:(1)∵∠ABC+∠DCB=360°﹣(α+β),∴∠ABC+(180°﹣∠DCE)=360°﹣(α+β)=2∠FBC+(180°﹣2∠DCP)=180°﹣2(∠DCP﹣∠FBC)=180°﹣2∠P,∴360°﹣(α+β)=180°﹣2∠P,2∠P=α+β﹣180°,∴∠P=(α+β)﹣90°;(2)∵∠ABC+∠DCB=360°﹣(α+β),∴∠ABC+(180°﹣∠DCE)=360°﹣(α+β)=2∠GBC+(180°﹣2∠HCE)=180°+2(∠GBC﹣∠HCE)=180°+2∠P,∴360°﹣(α+β)=180°+2∠P,∴∠P=90°﹣(α+β);故答案为:90°﹣(α+β).7.解:(1)在△ABC中,∠ABC、∠ACB的平分线相交于点O,则∠1+∠2=∠ABC+∠ACB=(∠ABC+∠ACB)=(180°﹣∠A)=×(180°﹣40°)=70°.故∠BOC=180°﹣70°=110°;(2)因为∠A的外角等于180°﹣40°=140°,△A′B′C′另外的两外角平分线相交于点O′,根据三角形的外角和等于360°,所以∠1+∠2=×(360°﹣140°)=110°,∠B′O′C′=180°﹣110°=70°;(3)∵(1)(2)中∠BOC+∠B′O′C′=110°+70°=180°,∴∠BOC与∠B′O′C′互补;证明:当∠A=n°时,∠BOC=180°﹣[(180°﹣n°)÷2]=90°+n°,∵∠A′=n°,∠B′O′C′=180°﹣[360°﹣(180°﹣n°)]÷2=90°﹣n°,∴∠A+∠A′=90°+n°+90°﹣°=180°,∠BOC与∠B′O′C′互补,∴当∠A=∠A′=n°,∠BOC与∠B′O′C′还具有互补的关系.8.解:(1)∵∠1+∠2+∠3=360°,∠1=∠A5+A6,∠2=∠A3+∠A4,∠3=∠A1+∠A2,∴∠A1+∠A2+∠A3+∠A4+∠A5+∠A6=360°.(2)∵∠1+∠2+∠3+∠4=360°,∠1=∠A7+A8,∠2=∠A5+∠A6,∠3=∠A3+∠A4,∠4=∠A1+∠A2∴∠A1+∠A2+∠A3+∠A4+∠A5+∠A6+∠A7+∠A8=360°.(3)由(1)(2)可知,∠A1+∠A2+…+∠A2n=n边形的外角和=360°,故答案为360°9.解:(1)如图1,∵EA平分∠DAC,EC平分∠ACB,∴∠CAF=∠DAC,∠ACE=∠ACB,设∠CAF=x,∠ACE=y,∵∠B=90°,∴∠ACB+∠BAC=90°,∴2y+180﹣2x=90,x﹣y=45,∵∠CAF=∠E+∠ACE,∴∠E=∠CAF﹣∠ACE=x﹣y=45°,故答案为:45;(2)①如图2所示,②如图2,∵CF平分∠ECB,∴∠ECF=y,∵∠E+∠EAF=∠F+∠ECF,∴45°+∠EAF=∠F+y①,同理可得:∠E+∠EAB=∠B+∠ECB,∴45°+2∠EAF=90°+y,∴∠EAF=②,把②代入①得:45°+=∠F+y,∴∠F=67.5°,即∠AFC=67.5°;(3)如图3,设∠FAH=α,∵AF平分∠EAB,∴∠FAH=∠EAF=α,∵∠AFM=∠AFC=×67.5°=22.5°,∵∠E+∠EAF=∠AFC+∠FCH,∴45+α=67.5+∠FCH,∴∠FCH=α﹣22.5①,∵∠AHN=∠AHC=(∠B+∠BCH)=(90+2∠FCH)=30+∠FCH,∵∠FAH+∠AFM=∠AHN+∠FPH,∴α+22.5=30+∠FCH+∠FPH,②把①代入②得:∠FPH=,∵∠FCH=m∠FAH+n∠FPH,α﹣22.5=mα+n,解得:m=2,n=﹣3.10.(1)证明:如图1,过点C作CM∥AD,交BE于点M,∴∠BED=∠BMC,∠DAC=∠ACM,∠BCM=∠D,∵∠ACB=2∠D,∴∠BCM=∠ACM=∠ACB∵BE是∠ABC的平分线∴∠MBC=∠ABC∴∠BED=∠BMC=180°﹣(∠MBC+∠MCB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠BAC)=180°﹣×(180°﹣60)=120°;(2)如图2,延长BC交DG于点M∵BG平分∠ABC,DG平分∠ADE∴∠GBM=∠ABC,∠GDE=∠ADE∵DE∥BC∴∠ACM=∠ADE∠BMD=∠GDE=∠ADE=∠ACM=(∠A+∠ABC)=∠A+∠GBM在△BGM中,∠G=∠BMD﹣∠GBM=∠A+∠GBM﹣∠GBM=∠A=m.11.解:(1)∠BDC=∠A+∠B+∠C.理由如下:连接AD并延长到E点∵∠BDE=∠BAE+∠B∠EDC=∠EAC+∠C∴∠BDE+∠EDC=∠BAE+∠EAC+∠B+∠C∵∠BDC=∠BDE+∠EDC∠BAC=∠BAE+∠EAC∴∠BDC=∠BAC+∠B+∠C;(2)由(1)可知,∵∠DAE=50°,∠DBE=130°,∴∠ADB+∠AEB=∠DBE﹣∠DAE=80°,∵DC平分∠ADB,EC平分∠AEB,∴∠CDB=∠ADB,∠CEB=∠AEB,∴∠CDB+∠CEB=(∠ADB+∠AEB)=40°,又∵∠DBE=∠DCE+∠CDB+∠CEB,∴∠DCE=∠DBE﹣(∠CDB+∠CEB)=130°﹣40°=90°.12.解:(1)∵∠AOC是△AOD的外角(外角定义),∴∠AOC=∠A+∠D(三角形的外角等于它不相邻的两个内角和),∵∠AOC是△COB的外角(外角定义),∴∠AOC=∠C+∠B,∴∠A+∠D=∠C+∠B,故答案为:∠A+∠D,∠C+∠B,∠C+∠B;(2)∠P与∠D、∠B之间存在的关系为2∠P=∠D+∠B.∵∠1+∠D=∠P+∠3,①∠4+∠B=∠2+∠P,②∵∠DAB和∠BCD的平分线AP和CP相交于点P,∴∠1=∠2,∠3=∠4,由①+②得:∠1+∠D+∠4+∠B=∠P+∠3+∠2+∠P,即2∠P=∠D+∠B.13.解:(1)证明:【问题背景】在△AOB中,∠A+∠B+∠AOB=180°,在△COD中,∠C+∠D+∠COD=180°,∵∠AOB=∠COD,∴∠A+∠B=∠C+∠D;(2)【尝试应用】)∵AP、CP分别平分∠BAD.∠BCD∴∠1=∠2,∠3=∠4,由(1)的结论得:,①+②,得2∠P+∠1+∠3=∠2+∠4+∠B+∠D∴∠P=(∠B+∠D)=26°.(3)∠P=α+β.14.解:(1)作PH∥AB,又AB∥CD,则PH∥CD,∴∠PFD=∠MPH,∠AEM=∠HPM,∵∠MPN=90°,∴∠PFD+∠AEM=90°;(2)∵AB∥CD,∴∠PFD=∠PHB,∵∠PHB﹣∠PEB=90°,∠PEB=∠AEM,∴∠PFD﹣∠AEM=90°;(3)由(2)得,∠PFD=90°+∠PEH=120°,∴∠N=180°﹣∠DON﹣∠PFD=45°.15.解:(1)当∠A为70°时,∵∠ACD﹣∠ABD=∠A,∴∠ACD﹣∠ABD=70°,∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线,∴∠A1CD﹣∠A1BD=(∠ACD﹣∠ABD)∴∠A1=35°;故答案为:A,70,35;(2)∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠BAC,∴∠BAC=2∠A1=80°,∴∠A1=40°,同理可得∠A1=2∠A2,即∠BAC=22∠A2=80°,∴∠A2=20°,∴∠A=2n∠A n,即∠A n=∠A,故答案为:∠A n=∠A.(3)∵∠ABC+∠DCB=360°﹣(∠A+∠D),∴∠ABC+(180°﹣∠DCE)=360°﹣(∠A+∠D)=2∠FBC+(180°﹣2∠DCF)=180°﹣2(∠DCF﹣∠FBC)=180°﹣2∠F,∴360°﹣(α+β)=180°﹣2∠F,2∠F=∠A+∠D﹣180°,∴∠F=(∠A+∠D)﹣90°,∵∠A+∠D=230°,∴∠F=25°;故答案为:25°.(4)①∠Q+∠A1的值为定值正确.∵∠ACD﹣∠ABD=∠BAC,BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A 1=∠A 1CD ﹣∠A 1BD =∠BAC ,(1分)∵∠AEC +∠ACE =∠BAC ,EQ 、CQ 是∠AEC 、∠ACE 的角平分线, ∴∠QEC +∠QCE =(∠AEC +∠ACE )=∠BAC ,∴∠Q =180°﹣(∠QEC +∠QCE )=180°﹣∠BAC , ∴∠Q +∠A 1=180°.。
人教版八年级数学上《第11章三角形》单元测试含答案解析
《第11章三角形》一、填空题1.如果三角形的一个角等于其它两个角的差,则这个三角形是三角形.2.已知△ABC中,AD⊥BC于D,AE为∠A的平分线,且∠B=35°,∠C=65°,则∠DAE的度数为.3.△ABC中,如果∠A=∠B=3∠C,则∠A= .4.已知,如图,∠ACD=130°,∠A=∠B,那么∠A的度数是°.5.如图所示,图中有个三角形,个直角三角形.6.四边形ABCD中,若∠A+∠B=∠C+∠D,若∠C=2∠D,则∠C= .7.某足球场需铺设草皮,现有正三角形、正四边形、正五边形、正六边形、正八边形、正十边形6种形状的草皮,请你帮助工人师傅选择两种草皮来铺设足球场,可供选择的两种组合是.8.若一个n边形的边数增加一倍,则内角和将增加.9.如图,BC⊥ED于O,∠A=27°,∠D=20°,则∠B= ,∠ACB= .10.如图,由平面上五个点A、B、C、D、E连接而成,则∠A+∠B+∠C+∠D+∠E= .二、选择题11.如果一个三角形的三个外角之比为2:3:4,则与之对应的三个内角度数之比为()A.4:3:2 B.5:3:1 C.3:2:412.三角形中至少有一个内角大于或等于()A.45° B.55° C.60° D.65°13.如图,下列说法中错误的是()A.∠1不是三角形ABC的外角B.∠B<∠1+∠2C.∠ACD是三角形ABC的外角D.∠ACD>∠A+∠B14.如图,C在AB的延长线上,CE⊥AF于E,交FB于D,若∠F=40°,∠C=20°,则∠FBA的度数为()A.50° B.60° C.70° D.80°15.三条线段a=5,b=3,c的值为整数,由a、b、c为边可组成三角形()A.1个B.3个C.5个D.无数个16.多边形每一个内角都等于150°,则从此多边形一个顶点发出的对角线有()A.7条B.8条C.9条D.10条17.如图,△ABC中,D为BC上的一点,且S△ACD =S△ABD,则AD为()A.高B.中线 C.角平分线 D.不能确定18.现有长度分别为2cm、4cm、6cm、8cm的木棒,从中任取三根,能组成三角形的个数为()A.1 B.2 C.3 D.4三、解答题(共46分)19.如图,在三角形ABC中,∠B=∠C,D是BC上一点,且FD⊥BC,DE⊥AB,∠AFD=140°,你能求出∠EDF的度数吗?20.如图,有甲、乙、丙、丁四个小岛,甲、乙、丙在同一条直线上,而且乙、丙在甲的正东方,丁岛在丙岛的正北方,甲岛在丁岛的南偏西52°方向,乙岛在丁岛的南偏东40°方向.那么,丁岛分别在甲岛和乙岛的什么方向?21.已知等腰三角形的周长是16cm.(1)若其中一边长为4cm,求另外两边的长;(2)若其中一边长为6cm,求另外两边长;(3)若三边长都是整数,求三角形各边的长.22.如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,试问BE∥DF吗?为什么?《第11章三角形》参考答案与试题解析一、填空题1.如果三角形的一个角等于其它两个角的差,则这个三角形是三角形.【考点】三角形内角和定理.【分析】三角形三个内角之和是180°,三角形的一个角等于其它两个角的差,列出两个方程,即可求出答案.【解答】解:设三角形的三个角分别为:a、b、c,则由题意得:解得:a=90°故这个三角形是直角三角形.【点评】本题考查直角三角形的有关性质,可利用方程进行求解.2.已知△ABC中,AD⊥BC于D,AE为∠A的平分线,且∠B=35°,∠C=65°,则∠DAE的度数为.【考点】三角形内角和定理.【分析】首先根据三角形的内角和定理和角平分线的定义求出∠EAC的度数,再根据三角形的内角和定理求出∠DAC的度数,进而求∠DAE的度数.【解答】解:∵∠B=35°,∠C=65°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣35°﹣65°=80°.∵AE为∠BAC的平分线,∴∠EAC=∠BAC=×80°=40°.∵AD⊥BC,∴∠ADC=90°,在△ADC中,∵∠DAC=180°﹣∠ADC﹣∠C=180°﹣90°﹣65°=25°,∴∠DAE=∠EAC﹣∠DAC=40°﹣25°=15°.故答案为:15°.【点评】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.3.△ABC中,如果∠A=∠B=3∠C,则∠A= .【考点】三角形内角和定理.【分析】根据题意可得出2∠A=∠B=6∠C,设∠C=x,则∠B=6x,∠A=3x,再由三角形内角和定理即可得出x的值,进而得出结论.【解答】解:∵ABC中,∠A=∠B=3∠C,∴2∠A=∠B=6∠C,设∠C=x,则∠B=6x,∠A=3x,∵∠A+∠B+∠C=180°,∴3x+6x+x=180°,解得x=18°,∴∠A=3x=54°.故答案为:54°.【点评】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.4.已知,如图,∠ACD=130°,∠A=∠B,那么∠A的度数是°.【考点】三角形的外角性质.【分析】直接根据三角形内角与外角的性质解答即可.【解答】解:∵∠ACD是△ABC的外角,∴∠ACD=∠A+∠B,∵∠ACD=130°,∠A=∠B,∴∠A==65°.【点评】本题比较简单,考查的是三角形外角的性质,即三角形的外角等于不相邻的两个内角的和.5.如图所示,图中有个三角形,个直角三角形.【考点】三角形.【分析】三角形有:△ABC、△ADE、△ADB、△ADC、△CDE;根据直角三角形性质,直角三角形有:△ADE、△ADB、△ADC、△CDE.【解答】解:由分析知:图中有5个三角形,4个直角三角形.【点评】本题考查三角形和直角三角形的判定,认真列举即可.6.四边形ABCD中,若∠A+∠B=∠C+∠D,若∠C=2∠D,则∠C= .【考点】多边形内角与外角.【分析】先根据任意四边形的内角和为360°及∠A+∠B=∠C+∠D,∠C=2∠D列出关于∠D的关系式,求出∠D的度数,再由∠C=2∠D即可求解.【解答】解:∵任意四边形的内角和为360°,∴∠A+∠B+∠C+∠D=360°,∵∠A+∠B=∠C+∠D,∠C=2∠D,∴∠A+∠B+∠C+∠D=6∠D=360°,∴∠D=60°,∴∠C=2×60°=120°.【点评】本题考查的是四边形的内角和定理,解答此题的关键是根据四边形的内角和定理及四个角之间的关系列出关于∠D的关系式,再求出∠C的度数即可.7.某足球场需铺设草皮,现有正三角形、正四边形、正五边形、正六边形、正八边形、正十边形6种形状的草皮,请你帮助工人师傅选择两种草皮来铺设足球场,可供选择的两种组合是.【考点】平面镶嵌(密铺).【专题】开放型.【分析】选择两种草皮来铺设足球场,共15种可能.根据正多边形的组合能否铺满地面,关键是看位于同一顶点处的几个角之和能否为360°:若能,则说明能铺满;反之,则说明不能铺满.依此得出可供选择的两种组合.【解答】解:正三角形、正四边形内角分别为60°、90°,当60°×3+90°×2=360°,故能铺满;正三角形、正五边形内角分别为60°、108°,显然不能构成360°的周角,故不能铺满;正三角形、正六边形内角分别为60°、120°,当60°×2+120°×2=360°,故能铺满;正三角形、正八边形内角分别为60°、135°,显然不能构成360°的周角,故不能铺满;正三角形、正十边形内角分别为60°、144°,显然不能构成360°的周角,故不能铺满;正四边形、正五边形内角分别为90°、108°,显然不能构成360°的周角,故不能铺满;正四边形、正六边形内角分别为90°、120°,显然不能构成360°的周角,故不能铺满;正四边形、正八边形内角分别为90°、135°,当90°+135°×2=360°,故能铺满;正四边形、正十边形内角分别为90°、144°,显然不能构成360°的周角,故不能铺满;正五边形、正六边形内角分别为108°、120°,显然不能构成360°的周角,故不能铺满;正五边形、正八边形内角分别为108°、135°,显然不能构成360°的周角,故不能铺满;正五边形、正十边形内角分别为108°、144°,当108°×2+144°=360°,故能铺满;正六边形、正八边形内角分别为120°、135°,显然不能构成360°的周角,故不能铺满;正六边形、正十边形内角分别为120°、144°,显然不能构成360°的周角,故不能铺满;正八边形、正十边形内角分别为135°、144°,显然不能构成360°的周角,故不能铺满.故可供选择的两种组合是:正三角形和正四边形、正三角形和正六边形、正四边形和正八边形、正五边形、正十边形中任选两种即可.【点评】解决此类题,可以记住几个常用正多边形的内角,及能够用两种正多边形镶嵌的几个组合.8.若一个n边形的边数增加一倍,则内角和将增加.【考点】多边形内角与外角.【分析】n边形的内角和是(n﹣2)•180°,将n边形的边数增加一倍就变成2n边形,2n边形的内角和是(2n﹣2)•180°,据此即可求得增加的度数.【解答】解:∵n边形的内角和是(n﹣2)•180°,∴2n边形的内角和是(2n﹣2)•180°,∴将n边形的边数增加一倍,则它的内角和增加:(2n﹣2)•180°﹣(n﹣2)•180°=n×180°.故答案为n×180°.【点评】本题主要考查了多边形的内角和公式,整式的化简,都是需要熟练掌握的内容.9.如图,BC⊥ED于O,∠A=27°,∠D=20°,则∠B= ,∠ACB= .【考点】直角三角形的性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠BEO=∠A+∠D,再根据直角三角形两锐角互余列式计算即可求出∠B,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACB=∠D+∠COD.【解答】解:∵∠A=27°,∠D=20°,∴∠BEO=∠A+∠D=27°+20°=47°,∵BC⊥ED,∴∠B=90°﹣∠BEO=90°﹣47°=43°;在Rt△COD中,∠ACB=∠D+∠COD=20°+90°=110°.故答案为:43°;110°.【点评】本题考查了直角三角形两锐角互余的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.10.如图,由平面上五个点A、B、C、D、E连接而成,则∠A+∠B+∠C+∠D+∠E= .【考点】三角形的外角性质;三角形内角和定理.【分析】延长CE交AB于F,再根据三角形内角与外角的关系求出∠BFC=∠A+∠C,∠D+∠DEG=∠EGB,再根据三角形内角和定理解答即可.【解答】解:延长CE交AB于F,∵∠BFC是△ACF的外角,∴∠BFC=∠A+∠C,∵∠EGB是△EDG的外角,∴∠EGB=∠D+∠DEG,∵∠B+∠BFC+∠EGB=180°,∴∠A+∠B+∠C+∠D+∠E=180°.【点评】此题比较简单,解答此题的关键是延长CE交AB于F,构造出△BGF,利用三角形外角的性质把所求的角归结到一个三角形中,再根据三角形内角和定理求解.二、选择题11.如果一个三角形的三个外角之比为2:3:4,则与之对应的三个内角度数之比为()A.4:3:2 B.5:3:1 C.3:2:4【考点】三角形的外角性质.【分析】已知三角形三个外角的度数之比,可以设一份为k°,根据三角形的外角和等于360°列方程求三个内角的度数,确定三角形内角的度数,然后求出度数之比.【解答】解:设一份为k°,∵三个外角之比为2:3:4,∴三个外角的度数分别为2k°,3k°,4k°,∵2k°+3k°+4k°=360°,解得k°=40°,∴三个外角分别为80°,120°和160°,∵三角形外角与它相邻的内角互补,与之对应的三个内角的度数分别是100°,60°和20°,即三个内角的度数的比为5:3:1.故选B.【点评】本题考查三角形外角的性质及三角形的外角与它相邻的内角互补的知识,解答的关键是沟通外角和内角的关系.12.三角形中至少有一个内角大于或等于()A.45° B.55° C.60° D.65°【考点】三角形内角和定理.【分析】根据三角形的内角和为180°解答即可.【解答】解:∵三角形的内角和为180°,∴当三个内角均小于60°时不能构成三角形,∴三角形中至少有一个内角大于或等于60°.故选C.【点评】此题比较简单,考查的是三角形的内角和为180°.13.如图,下列说法中错误的是()A.∠1不是三角形ABC的外角B.∠B<∠1+∠2C.∠ACD是三角形ABC的外角D.∠ACD>∠A+∠B【考点】三角形的外角性质.【分析】根据三角形的外角等于和它不相邻的两个内角的和,判断A正确,D错误;由三角形外角的定义,判断C正确;三角形的外角大于和它不相邻的任何一个内角,判断B正确.【解答】解:A、∠1不是三角形ABC的外角,正确;B、∠B<∠1+∠2,正确;C、∠ACD是三角形ABC的外角,正确;D、∠ACD=∠A+∠B,故D错误.故选D.【点评】本题考查三角形外角的性质以及考查三角形内角与外角的关系.14.如图,C在AB的延长线上,CE⊥AF于E,交FB于D,若∠F=40°,∠C=20°,则∠FBA的度数为()A.50° B.60° C.70° D.80°【考点】三角形的外角性质;三角形内角和定理.【分析】先根据三角形内角和定理求出∠EDF的度数,再根据对顶角的性质求出∠CDB的度数,由三角形外角的性质即可求出∠FBA的度数.【解答】解:∵CE⊥AF于E,∴∠FED=90°,∵∠F=40°,∴∠EDF=180°﹣∠FED﹣∠F=180°﹣90°﹣40°=50°,∵∠EDF=∠CDB,∴∠CDB=50°,∵∠C=20°,∠FBA是△BDC的外角,∴∠FBA=∠CDB+∠C=50°+20°=70°.故选C.【点评】本题考查的是三角形内角和定理及外角的性质,解答此题的关键是熟知以下知识:(1)三角形的内角和为180°;(2)三角形的外角等于与之不相邻的两个内角的和.15.三条线段a=5,b=3,c的值为整数,由a、b、c为边可组成三角形()A.1个B.3个C.5个D.无数个【考点】三角形三边关系.【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边c的范围,根据c的值为整数,即可确定c的值.从而确定三角形的个数.【解答】解:c的范围是:2<c<8,因而c的值可以是:3、4、5、6、7共5个数,因而由a、b、c为边可组成5个三角形.故选C.【点评】本题需要理解的是如何根据已知的两条边求第三边的范围.16.多边形每一个内角都等于150°,则从此多边形一个顶点发出的对角线有( )A .7条B .8条C .9条D .10条【考点】多边形内角与外角;多边形的对角线.【分析】多边形的每一个内角都等于150°,多边形的内角与外角互为邻补角,则每个外角是30度,而任何多边形的外角是360°,则求得多边形的边数;再根据不相邻的两个顶点之间的连线就是对角线,则此多边形从一个顶点出发的对角线共有(n ﹣3)条,即可求得对角线的条数.【解答】解:∵多边形的每一个内角都等于150°,∴每个外角是30°,∴多边形边数是360°÷30°=12,则此多边形从一个顶点出发的对角线共有12﹣3=9条.故选C .【点评】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.多边形从一个顶点出发的对角线共有(n ﹣3)条.17.如图,△ABC 中,D 为BC 上的一点,且S △ACD =S △ABD ,则AD 为( )A .高B .中线C .角平分线D .不能确定【考点】三角形的面积.【分析】过A 作AE ⊥BC ,分别计算S △ACD 、S △ABD ,根据S △ACD =S △ABD 即可求得BD=DC ,即可解题.【解答】解:过A 作AE ⊥BC ,则S △ACD =BD •AE ,S △ABD =BC •AE ,∵S △ACD =S △ABD ,∴BD=BC ,∴AD 为中线.故选B .【点评】本题考查了三角形面积的计算,考查了三角形中线的定义.本题中求证BD=DC 是解题的关键.18.现有长度分别为2cm 、4cm 、6cm 、8cm 的木棒,从中任取三根,能组成三角形的个数为( ) A .1 B .2 C .3 D .4【考点】三角形三边关系.【分析】根据三角形的三边关系定理,只要满足任意两边的和大于第三边,即可确定有哪三个木棒组成三角形.【解答】解:能组成三角形的三条线段是:4cm 、6cm 、8cm .只有一种结果.故选A .【点评】考查三角形的边时,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.三、解答题(共46分)19.如图,在三角形ABC 中,∠B=∠C ,D 是BC 上一点,且FD ⊥BC ,DE ⊥AB ,∠AFD=140°,你能求出∠EDF 的度数吗?【考点】等腰三角形的性质.【分析】由于DF ⊥BC ,DE ⊥AB ,所以∠FDC=∠FDB=∠DEB=90°,又因为△ABC 中,∠B=∠C ,所以∠EDB=∠DFC ,因为∠A FD=140°,所以∠EDB=∠DFC=40°,所以∠EDF=90°﹣∠EDB=50°.【解答】解:∵DF ⊥BC ,DE ⊥AB ,∴∠FDC=∠FDB=∠DEB=90°,又∵∠B=∠C,∴∠EDB=∠DFC,∵∠AFD=140°,∴∠EDB=∠DFC=40°,∴∠EDF=90°﹣∠EDB=50°.【点评】本题考查了等腰三角形的性质;利用三角形的内角和定理求解角的度数是正确解答本题的关键.20.如图,有甲、乙、丙、丁四个小岛,甲、乙、丙在同一条直线上,而且乙、丙在甲的正东方,丁岛在丙岛的正北方,甲岛在丁岛的南偏西52°方向,乙岛在丁岛的南偏东40°方向.那么,丁岛分别在甲岛和乙岛的什么方向?【考点】方向角;垂线;平行线的性质.【专题】应用题.【分析】根据方向角的定义即可求解.分别作AM∥CD,NB∥CD,根据两直线平行,内错角相等即可求得∠1与∠2的度数.【解答】解:设甲岛处的位置为A,乙岛处的位置为B,丙岛处的位置为D,丁岛处的位置为C.作AM∥CD,NB∥CD,如图:∵丁岛在丙岛的正北方,∴CD⊥AB.∵甲岛在丁岛的南偏西52°方向,∴∠ACD=52°.又∵AM∥CD,∴∠1=∠ACD=52°.∴丁岛在甲岛的北偏东52°方向.∵乙岛在丁岛的南偏东40°方向,∴∠BCD=40°.又∵BN∥CD,∴∠2=∠BCD=40°,∴丁岛在乙岛的北偏西40°方向.【点评】本题主要考查了方向角的定义和平行线的性质,是一个基础的内容.21.已知等腰三角形的周长是16cm.(1)若其中一边长为4cm,求另外两边的长;(2)若其中一边长为6cm,求另外两边长;(3)若三边长都是整数,求三角形各边的长.【考点】等腰三角形的性质;三角形三边关系.【分析】(1)(2)由于未说明已知的边是腰还是底,故需分情况讨论,从而求另外两边的长.(3)根据三边长都是整数,且周长是16cm,还是等腰三角形,所以可用列表法,求出其各边长.【解答】解:(1)如果腰长为4cm,则底边长为16﹣4﹣4=8cm.三边长为4cm,4cm,8cm,不符合三角形三边关系定理.所以应该是底边长为4cm.所以腰长为(16﹣4)÷2=6cm.三边长为4cm,6cm,6cm,符合三角形三边关系定理,所以另外两边长都为6cm;(2)如果腰长为6cm,则底边长为16﹣6﹣6=4cm.三边长为4cm,6cm,6cm,符合三角形三边关系定理.所以另外两边长分别为6cm和4cm.如果底边长为6cm,则腰长为(16﹣6)÷2=5cm.三边长为6cm,5cm,5cm,符合三角形三边关系定理,所以另外两边长都为5cm;(3)因为周长为16cm,且三边都是整数,所以三角形的最长边小于8cm且是等腰三角形,我们可用列表法,求出其各边长如下:7cm,7cm,2cm;6cm,5cm,5cm;6cm,6cm,4cm,共有这三种情况.【点评】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.当题目指代不明时,一定要分情况讨论,把符合条件的保留下来,不符合的舍去.22.如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,试问BE∥DF吗?为什么?【考点】平行线的判定;多边形内角与外角.【专题】探究型.【分析】要证BE∥DF,需证∠FDC=∠BEC,由于已知里给出了两条角平分线,四边形ABCD内角和为360°,∠A=∠C=90°,可得:∠FDC+∠EBC=90°,在△BCE中,∠BEC+∠E BC=90°,等角的余角相等,就可得到∠FDC=∠BEC,即可证.【解答】解:平行.∵∠A=∠C=90°,四边形ABCD的内角和为360°,∴∠ADC+∠ABC=180°,∵BE平分∠ABC,DF平分∠ADC,∴∠FDC+∠EBC=90°.又∵∠C=90°,∴∠BEC+∠EBC=90°,∴∠FDC=∠BEC,∴BE∥DF.【点评】本题利用了角平分线性质和判定,四边形的内角和为360°,同角的余角相等.。
人教版数学八年级上第11章三角形全章测试含答案.doc
第11章 三角形 全章测试一、选择题(每题3分,共30分)1. 以下列各组长度的线段为边,能构成三角形的是 ( )A .7,3,4B .5,6,12C .3,4,5D .1,2,3 2. 等腰三角形的一个外角是80°,则其底角是( )A .100°B .100°或40°C .40°D .80 3.一个多边形的每一个外角都等于40°,那么这个多边形的内角和为( )A .1260°B .1080°C .1620°D .360°4.用一批完全相同的多边形地砖铺地面,不能进行镶嵌的是( ) A.正三角形 B.正方形 C.正六边形 D.正八边形5.下列说法正确的是( )A.三角形的角平分线、中线及高都在三角形内B.直角三角形的高只有一条.C.三角形至少有一条高在形内D.钝角三角形的三条高都在形外. 6.一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是( ) A .5 B .6 C .7 D .8 7.在下图中,正确画出AC 边上高的是( ).(A ) (B ) (C ) (D ) 8.如图所示,∠A 、∠1、∠2的大小关系是( ) A. ∠A >∠1>∠2 B. ∠2>∠1>∠A C. ∠A >∠2>∠1 D. ∠2>∠A >∠19. 给出下列命题:⑴三角形的一个外角一定大于它的一个内角.⑵若一个三角形的三个内角之比为1:3:4,它肯定是直角三角形 ⑶三角形的最小内角不能大于60°⑷三角形的一个外角等于和它不相邻的两个内角的和 其中真命题的个数是 ( )(A )1个 (B )2个 (C )3个 (D )4个10.如图1,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是( )A .∠A=∠1+∠2 B .2∠A=∠1+∠2 C .3∠A=2∠1+∠2 D .3∠A=2(∠1+∠2)二、填空题(每题3分,共30分)11.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是 . 12.已知等腰三角形的两边长是5cm 和11cm ,则它的周长是_______13.一个等腰三角形的周长为18,已知一边长为5,则其他两边长为 ____________. 14.已知一个三角形的三条边长为2、7、x ,则x 的取值范围是 _______. 15.如图所示,AB∥CD,∠ABE=66°,∠D=54°,则∠E 的度数为 . 16.如图,∠A +∠B +∠C +∠D +∠E +∠F= .17.在△ABC 中,在△ABC 中,∠A-∠B=∠B-∠C =15°则∠A 、∠B 、∠C 分别为 . 18.如图,在△ABC 中,两条角平分线BD 和CE 相交于点O ,若∠BOC=116°,那么∠A 的度数是_______。
人教版八年级上册数学第十一章 三角形含答案(完美版)
人教版八年级上册数学第十一章三角形含答案一、单选题(共15题,共计45分)1、已知:如图,在△ABC中,∠C=63°,AD是BC边上的高,CD=FD,点E在AC上,BE交AD于点F,BF=AC,则∠ABF的度数为()A.18°B.36°C.48°D.63°2、如图是由线段,,,,组成的平面图形,,则的度数为()A. B. C. D.3、等腰三角形的周长为17,则它的腰长可能为()A.8B.9C.4D.34、如下图,AM是△ABC的中线,△ABC的面积为2acm2,则△AMC的面积为()A.4acm 2B.2acm 2C.acm 2D.以上答案都不正确5、如图,已知AB∥DE,∠ABC=65°,∠CDE=138°,则∠C的值为()A.21°B.23°C.25°D.30°6、若某个多边形的内角和是外角和的3倍,则这个多边形的边数为()A.4B.6C.8D.107、若n边形的内角和为1440°,则n的值是()A.8B.9C.10D.118、如图,在Rt△ABC 中,∠C=90°,∠B=30°,以点 A 为圆心,任意长为半径画弧分别交 AB,AC 于点M 和 N,再分别以 M,N 为圆心,大于的长为半径画弧,两弧交于点 P,连接 AP 并延长交 BC 于点D,则下列说法中:①AD 是∠BAC 的平分线;②点 D 在线段 AB 的垂直平分线上;③S△DAC:S△ABC=1:2.正确的是( ).A.①②B.①③C.②③D.①②③9、如图,半圆O是一个量角器,△AOB为一纸片,AB交半圆于点D,OB交半圆于点C,若点C、D、A在量角器上对应读数分别为45°,70°,160°,则∠B 的度数为()A.20°B.30°C.45°D.60°10、下列邮票中的多边形中,内角和等于的是()A. B. C. D.11、直线A.15B.20C.25D.3012、△ABC中,∠A=∠B>∠C,则△ABC是( )A.锐角三角形B.直角三角形C.钝角三角形D.都有可能13、如果AD是△ABC的中线,那么下列结论一定成立的有()①BD=CD;②AB=AC;③S△ABD = S△ABC.A.3个B.2个C.1个D.0个14、如图,在中,,点D是的中点,则下列结论不正确的是()A. B. C. D.15、如图,函数(x>0)和(x>0)的图象分别是和.设点P在上,PA∥y轴交于点A,PB∥x轴,交于点B,△PAB的面积为()A. B. C. D.二、填空题(共10题,共计30分)16、如图,将△ABC的边AB绕着点A顺时针旋转α(0°<α<90°)得到AB′,边AC绕着点A逆时针旋转β(0°<β<90°)得到AC′,连结B′C′,当α+β=60°时,我们称△AB′C’是△ABC的“蝴蝶三角形”,已知一直角边长为2的等腰直角三角形,那么它的“蝴蝶三角形”的面积为________.17、如图,AE是的角平分线,于点D,若,,________度18、直角三角形两直角边长分别为5和12,则它斜边上的高为________19、八边形的内角和为________.20、如图,在中,,点在内,平分,连结,把沿折叠,落在处,交于,恰有.若,,则________.21、等腰三角形的顶角为76°,则底角等于________.22、若对图1中星形截去一个角,如图2,再对图2中的角进一步截去,如图3,则图中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N=________度.23、如图中的螺旋由一系列直角三角形组成,则第2017个三角形的面积为________.24、图中有________个三角形.25、直线y=kx+b经过点A(-6,0)和y轴交于点B,如果△ABO(O为坐标原点)的面积为6,则b的值为________.三、解答题(共5题,共计25分)26、求出下列图中x的值。
人教版初中八年级数学上册第十一章《三角形》经典练习(含答案解析)
一、选择题1.如图,在ABC中,AB边上的高为()A.CG B.BF C.BE D.AD2.将一副三角板和一张对边平行的纸条按图中方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则1的度数是()A.10°B.15°C.20°D.25°3.下列四组线段中,不可以构成三角形的是()A.4,5,6 B.1.5,2,2.5 C.13,14,15D.1,2,34.下列说法正确的是()A.射线AB和射线BA是同一条射线B.连接两点的线段叫两点间的距离C.两点之间,直线最短D.七边形的对角线一共有14条5.下列长度的三条线段能构成三角形的是()A.1,2,3B.5,12,13C.4,5,10D.3,3,6 6.如图,线段BE是ABC的高的是( )A.B.C.D.7.下列长度的三条线段能组成三角形的是( )A .3,3,4B .7,4,2C .3,4,8D .2,3,5 8.如图,在ABC 中,AD 是角平分线,AE 是高,已知2BAC B ∠=∠,2B DAE ∠=∠,那么C ∠的度数为( )A .72°B .75°C .70°D .60° 9.一副透明的三角板,如图叠放,直角三角板的斜边AB 、CE 相交于点D ,则BDC∠的度数是( )A .65︒B .75︒C .85︒D .105︒ 10.下列长度的四根木棒,能与3cm ,7cm 长的两根木棒钉成一个三角形的是( ) A .3cmB .10cmC .4cmD .6cm 11.如图,在五边形ABCDE 中,AB ∥CD ,∠A =135°,∠C =60°,∠D =150°,则∠E 的大小为( )A .60°B .65°C .70°D .75° 12.设四边形的内角和等于,a 五边形的外角和等于,b 则a 与b 的关系是( ) A .a b = B .120a b =+C .180b a =+︒D .360b a =+︒ 13.如图,盖房子时,在窗框没有安装之前,木工师傅常常先在窗框上斜钉一根木条,使其不变形,这种做法的根据是( )A .两点之间线段最短B .长方形的对称性C.长方形四个角都是直角D.三角形的稳定性14.如图,王师傅用六根木条钉成一个六边形木框,要使它不变形,至少还要再钉上________根木条()A.2 B.3 C.4 D.515.做一个三角形的木架,以下四组木棒中,符合条件的是()A.3cm,2cm,1cm B.3cm,4cm,5cmC.6cm,6cm,12cm D.5cm,12cm,6cm二、填空题16.2016年2月6日凌晨,宝岛高雄发生6.7级地震,得知消息后,中国派出武警部队探测队,探测队探测出某建筑物下面有生命迹象,他们在生命迹象上方建筑物的一侧地面上的,A B两处,用仪器探测生命迹象C,已知探测线与地面的夹角分别是30︒和60︒(如∠的度数是_________.图),则C17.如图1,ABC纸片面积为24,G为ABC纸片的重心,D为BC边上的一个四等<)连结CG,DG,并将纸片剪去GDC,则剩下纸片(如图2)的面分点(BD CD积为__________.18.如图,C为∠AOB的边OA上一点,过点C作CD∥OB交∠AOB的平分线OE于点F,作CH⊥OB交BO的延长线于点H,若∠EFD=α,现有以下结论:①∠COF=α;②∠AOH =180°﹣2α;③CH⊥CD;④∠OCH=2α﹣90°.其中正确的是__(填序号).19.如图,在△ABC中,点O是△ABC内一点,且点O到△ABC三边的距离相等,若∠A=70°,则∠BOC =________.20.过n 边形的一个顶点有9条对角线,则n 边形的内角和为______.21.如图,若∠CGE=α,则∠A+∠B+∠C+∠D+∠E+∠F=____.22.如图,△ABC 的两条中线AD 、BE 相交于点G ,如果S △ABG =2,那么S △ABC =_____.23.鹿鸣社区里有一个五边形的小公园,如图所示,王老师每天晚饭后都要到公园里去散步,已知图中的∠1=95︒,王老师沿公园边由A 点经B→C→D→E ,一直到F 时,他在行程中共转过了_____度.24.AD 为ABC 的中线,AE 为ABC 的高,ABD △的面积为14,7,2AE CE ==则DE 的长为_________.25.如图,把ABC 折叠,点B 落在P 点位置,若12120∠+∠=︒,则B ∠=______.26.如图,∠BAK +∠B +∠C +∠CDE +∠E +∠F +∠MGN +∠H +∠K =________.三、解答题27.如图,在ABC ∆中,48,A CE ∠=︒是ACB ∠的平分线, B C D 、、在同一直线上,,40.BEC BFD D ∠=∠∠=︒(1)求BCE ∠的度数;(2)求B 的度数.28.已知:如图90MON ∠=︒,与点O 不重合的两点A 、B 分别在OM 、ON 上,BE 平分ABN ∠,BE 所在的直线与OAB ∠的平分线所在的直线相交于点C . (1)当点A 、B 分别在射线OM 、ON 上,且45BAO ∠=︒时,求ACB ∠的度数; (2)当点A 、B 分别在射线OM 、ON 上运动时,ACB ∠的大小是否发生变化?若不变,请给出证明;若发生变化,请求出ACB ∠的范围.29.如图,在ABC 中,90ACB ∠=︒,29A ∠=︒,CD 是边AB 上的高,E 是边AB 延长线上一点.求:(1)CBE ∠的度数;(2)BCD ∠的度数.30.已知:180,BDG EFG B DEF ∠+∠=︒∠=∠.(1)如图1,求证://DE BC .(2)如图2,当90A EFG ∠=∠=︒时,请直接写出与C ∠互余的角.。
人教版八年级数学上册 第11章 三角形几何证明专题练习题(无答案)
C A B C DE P 图 ⑴八年级数学(上)几何证明专题练习题1、 已知:在⊿ABC 中,∠A=900,AB=AC ,在BC 上任取一点P ,作PQ ∥AB 交AC 于Q ,作PR∥CA 交BA 于R ,D 是BC 的中点,求证:⊿RDQ 是等腰直角三角形。
2、 已知:在⊿ABC 中,∠A=900,AB=AC ,D 是AC 的中点,AE ⊥BD ,AE 延长线交BC 于F ,求证:∠ADB=∠FDC 。
3、 已知:在⊿ABC 中BD 、CE 是高,在BD 、CE 或其延长线上分别截取BM=AC 、CN=AB ,求证:MA ⊥NA 。
4、已知:如图(1),在△ABC 中,BP 、CP 分别平分∠ABC 和∠ACB ,DE 过点P 交AB 于D ,交AC 于E ,且DE ∥BC .求证:DE -DB=EC .5、在Rt △ABC 中,AB =AC ,∠BAC =90°,O 为BC 的中点。
(1)写出点O 到△ABC 的三个顶点A 、B 、C 的距离的大小关系(不要求证明);(2)如果点M 、N 分别在线段AB 、AC 上移动,在移动中保持AN =BM ,请判断△OMN 的形状,并证明你的结论。
6、如图,△ABC 为等边三角形,延长BC 到D ,延长BA 到E ,AE=BD , 连结EC 、ED ,求证:CE=DE7、如图,等腰三角形ABC 中,AB =AC ,∠A =90°,BD 平分∠ABC ,DE ⊥BC 且BC =10,求△DCE 的周长。
8.如图所示,已知AD 是∠BAC 的平分线,EF 垂直平分AD 交BC 的延长线于点F ,交AD 于点E ,连接AF ,求证:∠B=∠CAF 。
A B COM N9.如图所示,AD 是∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F ,连接EF ,EF 与AD 交于点G ,求证:AD 垂直平分EF 。
C10.如图所示,已知点D 是等边三角形ABC 的边BC 延长线上的一点,∠EBC=∠DAC ,CE ∥AB 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学(上)几何证明专题练习题
1、已知:在"ABC 中,/ A=900, AB=AC 在BC 上任取一点 P ,作PQ// AB 交AC 于Q 作PR // CA
交BA 于R, D 是BC 的中点,求证:" RDQ 是等腰直角三角形。
已知:在"ABC 中,/ A=900, AB=AC D 是AC 的中点,AE ± BD, AE 延长线交 BC 于F ,求
证:/ ADB=/ FDC
已知:在"ABC 中BD CE 是高,在BD CE 或其延长线上分别截取 BM=AC CN=AB 求证: MAL NA
已知:如图(1),在△ ABC 中,BP 、CP 分别平分/ ABC 和/ ACB DE 过点P 交AB 于D,交 AC 于
E , 且
DE// BC
求证:DE - DB=EC
2、 3、 4、 C
5、在Rt A ABC 中,AB = AC, /
BAC=90
° ,
O 为BC 的中点。
(1) 写出点O到厶ABC的三个顶点A、B、C的距离的大小关系(不要求证明);
(2) 如果点M、N分别在线段AB、AC上移动,在移动中保持AN= BM,请判断厶OMN 的形状,并证明你的结论。
7、如图,等腰三角形ABC中,AB = AC , / A = 90°, BD平分/ ABC , DE丄BC且BC = 10,求厶DCE的周长。
8 •如图所示,已知AD是/ BAC的平分线,EF垂直平分AD交BC的延长线于点F,交AD于点E,连接AF ,求证:/ B= / CAF。
6、如图,△ ABC为等边三角形,延长
连结EC、ED,求证:CE=DE
BC 到D,延长BA 到E, AE=BD ,
9•如图所示,AD是/ BAC的平分线,DE丄AB , DF丄AC ,垂足分别为E, F, 连接EF, EF与AD交于点G,求证:AD垂直平分EF。
10.如图所示,已知点D是等边三角形ABC的边BC延长线上的一点,/ EBC= / DAC,CE// AB。
求证:△ CDE是等边三角形。
11 •如图所示,在△ ABC中,AB=AC,在AB边上取点D,在AC的延长线上取点E,使得BD=CE,连接DE交BC于点G,求证:DG=GE。
13.如图,公园内两条小河MO、NO在0处汇合,两河形成的半岛上有一处古迹P。
现计划在两条小河上各建一座小桥Q和R,并在半m
岛上修三段小路,连通两座小桥和古迹。
这两座小桥应建/
在何处,才能使修路费最少?
14.A ABC 中,AB=AC ,/ BAC=120
FC=3cm ,则BF 等于多少?
ABCD 进行折纸,已知该纸片宽 AB 为8cm 长BC 为10cm .当 小红折叠时,顶点 D 落在BC 边上的点F 处(折痕为AE ).想一想,此时 EC 有多长? ?
17.如图一块四边形草坪 ABCD 其中/ B=Z D=90°, AB=20cm BC=15cm CD=7cm 求这块草坪的面积。
,
AC 的垂直平分线
EF 交AC 于E ,交BC 于F .若
15.在 Rt △ ABC 中,/ ACB=90 (1)请说明△ BCD 是正三角形, 度,/ A=30度,CD
是斜边上的中线,
(2)
如果DE=1,请求出 AB 的长。
CE 是斜边上的高。
16•如图,小红用一张长方形纸片 D
E。