高中必备比例及外接球内切球问题(含答案)
最新高三数学(理科)综合内切球和外接球问题(附习题)
高考数学中的内切球和外接球问题一、有关外接球的问题如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点。
一、直接法(公式法)1、求正方体的外接球的有关问题例1 若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______________ .解析:球的半径可转化为先求正方体的体对角线长,再计算半径.故表面积为27π.例2 一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为____43π__________.2、求长方体的外接球的有关问题例3 (2007年天津高考题)一个长方体的各顶点均在同一球面上,且一个顶点上的三1,2,3,则此球的表面积为.条棱长分别为解析:体对角线正好为球的直径。
长方体体对角线长为14,故球的表面积为14π.例4、已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为( C ).A. 16πB. 20πC. 24πD. 32π解析:长、宽、高分别为2,2,43.求多面体的外接球的有关问题例5. 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 .解 设正六棱柱的底面边长为x ,高为h ,则有263,1,2936,384x x x h h =⎧⎧=⎪⎪∴⎨⎨=⨯⎪⎪=⎩⎩.∴正六棱柱的底面圆的半径12r =,球心到底面的距离32d =.∴外接球的半径221R r d =+=.43V π∴=球.小结 本题是运用公式222R r d =+求球的半径的,该公式是求球的半径的常用公式.二、构造法(补形法)1、构造正方体例5 若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是_______9π________.解 把这个三棱锥可以补成一个棱长为3的正方体,于是正方体的外接球就是三棱锥的外接球.则有()()()()222223339R =++=.∴294R =.故表面积249S R ππ==.小结 一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则有2222R a b c =++.出现“墙角”结构利用补形知识,联系长方体。
高考数学中的内切球和外接球问题(附习题)-精选.pdf
一、 有关外接球的问题
如果一个多面体的各个顶点都在同一个球面上, 那么称这个多面
体是球的内接多面体,这个球称为多面体的外接球 . 有关多面体外接
球的问题, 是立体几何的一个重点, 也是高考考查的一个热点 . 考查
学生的空间想象能力以及化归能力 .研究多面体的外接球问题,既要
学习 .
五 .确定球心位置法
例 5 在矩形 ABCD 中, AB 4, BC 3,沿 AC 将矩形 ABCD 折成一
个直二面角 B AC D ,则四面体 ABCD 的外接球的体积为
125
A. 12
125
B. 9
125
C. 6
125
D. 3
D
A
O
C
图4 B
解 设矩形对角线的交点为 O ,则由矩形对角线互相平分,可知
例 2 一个正方体的各顶点均在同一球的球面上,若该正方体的
表面积为 24 ,则该球的体积为 ______________.4 3 . 2、求长方体的外接球的有关问题
例 3 一个长方体的各顶点均在同一球面上, 且一个顶点上的三条
棱长分别为 1,2,3 ,则此球的表面积为
.14 .
例 4、已知各顶点都在一个球面上的正四棱柱高为 4,
只是希望能有个人,在我说没事的时候,知道我不是真的没事;能有个人,在我强颜欢笑的时候,知道我不是真的开心。 ——张小娴
OA OB OC OD .∴点 O 到四面体的四个顶点 A、B、C、D 的距离相
等,即点 O 为四面体的外接球的球心,如图 2 所示 .∴外接球的半径
5 R OA
V 球 4 R3 125
2 .故
3
6 .选 C.
几何体的外接球与内切球的有关问题(含例题)
几何体的外接球与内切球的有关问题一、外接球的问题简单多面体外接球问题是立体几何中的难点和重要的考点,此类问题实质是计算球的半径或确定球心O 的位置问题,其中球心的确定是关键. (一) 由球的定义确定球心在空间中,如果一个定点与一个简单多面体的所有顶点的距离都相等,那么这个定点就是该简单多面体的外接球的球心.结论1:正方体或长方体的外接球的球心其体对角线的中点.例1 一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为3,2,3,则此球的表面积为 .结论2:正棱柱的外接球的球心是上下底面中心的连线的中点.例2 若一个底面边长为32,棱长为6的正六棱柱的所有顶点都在一个平面上,则此球的体积为 .结论3:直三棱柱的外接球的球心是上下底面三角形外心的连线的中点,由球心、底面中心及底面一顶点构成的直角三角形便可得球半径.(在1BOO Rt ∆中,21212OO BO BO +=,即222)2(hr R +=.) 例3 在直三棱柱111ABC A B C -中,22AB =,3BC =,14AA =,π4ABC ∠=,则它的外接球体积为 . 结论4:正棱锥的外接球的球心在其高上,具体位置可通过构造直角三角形利用勾股定理求得.BC 222a b c R ++=(以正三棱锥为例:设正三棱锥的底面△ABC 的边长为a ,高为h ,外接球球心为O ,半径为R . 在1AOO Rt ∆中,21212OO AO AO +=,即222)(33R h a R -+⎪⎪⎭⎫ ⎝⎛=.) 例4 已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1===AB BC AC OO ,则球O 的表面积为 .结论5:若棱锥的顶点可构成共斜边的直角三角形,则公共斜边的中点就是其外接球的球心,则公共斜边的一半就是其外接球的半径.例5 已知三棱锥的四个顶点都在球O 的球面上,AB ⊥BC 且P A =7,PB =5,PCAC =10,则球O 的体积为 .(二)构造正方体或长方体确定球心长方体或正方体的外接球的球心是在其体对角线的中点处. 1. 可构造正方体的类型:① ② ③ ①正四面体:棱长对应正方体的面对角线.例6 一个正四面体P-ABC 的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为 .②三条侧棱两两垂直的正三棱锥:底面棱长对应正方体的面对角线,侧棱对应正方体的棱长.例7 设是球O 面上的四点,且,,PA PB PC 两两互相垂直,若PA PB PC a ===,则球心O 到截面ABC 的距离是 .③四个面都是是直角三角形的三棱锥:最长的棱长对应正方体的体对角线.例8 在四面体S ABC -中,SA ⊥平面ABC ,90ABC ︒∠=,1SA AC AB ==,则该四面体的外接球的表面积为( )A .23π B .43πC .4πD .5πA BC DA BCPABCP2.可构造长方体和正方体的类型①与②与③ ④①同一个顶点上的三条棱两两垂直的四面体;②三个侧面两两垂直的三棱锥;例9 如果三棱锥的三个侧面两两垂直,面积分别为6cm 2、4cm 2和3cm 2,那么它的外接球的体积是 .③有三个面是直角三角形的三棱锥;例10 已知球上四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA=AB=BC=3,则球O 的体积等于 .④相对的棱相等的三棱锥:设对应长方体的长、宽、高分别为a 、b 、c ,则BC 2=a 2+b 2,AC 2=a 2+c 2,AB 2=b 2+c 2. 所以对应长方体的体对角线为2222222AB AC BC c b a ++=++.例11 在三棱锥S ABC -中,5,17,10SA BC SB AC SC AB ======,则该三棱锥外接球的表面积为 .⑤含有其它线面垂直关系的棱锥. (三) 由性质确定球心利用球心O 与截面圆圆心O’的连线垂直于截面圆,确定球心. 记球的半径为R ,截面圆的半径为r ,球心O 与截面圆圆心O’ 的距离为d ,则有R 2=r 2+d 2.例12 设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边 三角形且其面积为93,则三棱锥D ABC -体积的最大值为( )A .123B .183C .243D .543(四) 圆柱外接球模型计算球的半径一个底面半径为r ,高为h 的圆柱,求它的外接球半径. 222)2(hr R +=(1) (2) (3)变形一:如果我们对圆柱上下底面对应位置处,取相同数量的点,比如都取三个点,如图(1)所示.我们可以得到(直)三棱柱,它的外接球其实就是这个圆柱的外接球,所以说直棱柱的外接球求半径符合这个模型. 在这里棱柱的高就是公式中的h ,而棱柱底面△ABC 外接圆的半径则是公式中的r .例13 在三棱柱ABC-A 1B 1C 1中,AC BC ⊥,若12AA AB ==,当四棱锥11B A ACC -体积最大时,三棱柱外接球的体积为 .变形二:如果把三棱柱上面的C 1去掉,如图(2)所示,我们得到有一个侧面⊥矩形底面的四棱锥,其中r 为垂直底面的侧面△ABC 的外接圆半径,h 为垂直于那个侧面的底面边长AA 1.例14 在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAB ⊥平面ABCD ,22PA PB AB ==,若PBC ∆和PCD ∆的面积分别为1和3,则四棱锥P ABCD -的外接球的表面积为 .变形三:如果把上面的那个三棱柱上面的B 1,C 1两点去掉,如图(3)所示,我们得到一根侧棱⊥底面的三棱锥,其中r 为底面△ABC 外接圆半径,h 为垂直于底面的那条侧棱AA 1.例15 已知A ,B ,C ,D 为同一球面上的四个点.在△ABC 中,23BAC π∠=,23AB AC ==,AD=6,AD ⊥平面ABC ,则该球的体积为 .二、内切球问题若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球.结论1:内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等. 结论2:正多面体的内切球和外接球的球心重合.结论3:正棱锥的内切球和外接球球心都在高线上,但不重合.例16正三棱锥的高为1,底面边长为26.求它的内切球的表面积.例17正四棱锥S ABCD -,底面边长为2,侧棱长为3,则其外接球和内切球的半径是多少?结论4:基本方法:构造三角形利用相似比和勾股定理.Rr2h A BC1A 1B 1C A BC1A 1B A BC1A结论5:体积分割是求内切球半径的通用做法. (一)正方体的的内切球设正方体的棱长为a ,求(1)内切球半径;(2)与棱相切的球半径.(1)内切球:截面图为正方形的内切圆,得2a R =. (2)棱切球:切点为正方体各棱的中点,截面图为为正方形的外接圆,得22a R =. 例18 一个正方体的棱长是4 cm ,它的内切球的体积为__cm 3,棱切球的体积为__cm 3.例19 甲球内切于正方体的各面,乙球内切于正方体的各条棱,丙球外接于正方体,则三球表面积之比为 .(二)棱锥的内切球(分割法)将内切球的球心与棱锥的各个顶点连线,将棱锥分割成以原棱锥的面为底面,内切球的半径为高的小棱锥,根据分割前后的体积相等,列出关于半径的方程.设三棱锥的棱长为a ,内切球半径为r.V V V V VPAB O PBC O PAC O ABC O ABCP -----+++=r S r S r S r S PAB PBC PAC ABC 31313131+++= r S S S S PAB PBC PAC ABC )(31+++= 内切球r S ABC P -=31ABCP ABC P S Vr --=⇔3内切球 一般地,记棱锥的体积为V ,表面积为S ,则内切球的半径为SVr 3=.例20正三棱锥的高为3,底面边长为83,正三棱锥内有一个球与其四个面相切,则球的表面积与体积分别为.(说明:球与正三棱锥四个面相切,实际上,球是正三棱锥的内切球,球心到正三棱锥的四个面的距离相等,都为球半径R.这样求球的半径可转化为求球心到三棱锥面的距离,而点面距离常可以用等体积法解决.)例21 如图,在棱锥P ABCD-中,底面ABCD是正方形,2PD AB==,PD⊥平面ABCD.在这个四棱锥中放入一个球,则球的最大半径为()A.2B.21+C.2 D.21-(三)圆柱、圆锥的内切球(截面法)(1)圆柱的内切球:圆柱的轴截面为正方形,记圆柱的底面圆的半径r,内切球的半径R,则R=r.(2)圆锥的内切球:圆锥的轴截面为三角形的内切圆,记截面△ABC的面积为S,周长为C,内切球的半径R,则CSR2=.例22 圆柱的底面直径和高都是6,求该圆柱内切球的半径____.例23 圆锥的高为4,底面半径为2,求该圆锥内切球与外接球的半径比.三、有关内切球和外接球的综合问题1.正四面体的内切球与外接球的半径之比(正四面体的内切球与外接球的两个球心“二心合一”)设正四面体A-BCD的棱长为a,内切球半径为r,外接球半径为R,则OA=OB=R ,OE=r ,且R+r=AE.⊥底面△BCD 为正三角形,∴BE=a 33在ABE Rt ∆中,a aaBE AB AE 36312222=-=-=,∴a r R 36=+ ① 在BEO Rt ∆中,222OE BE BO +=,即22233r a R +⎪⎪⎭⎫⎝⎛= ②由①②,得a r a R 12646==, ∴1:3:=r R , 即球心O 为正四面体高h 的四等分点.例24 求棱长为2的正四面体内切球和外接球的体积.2.正三棱柱的内切球与外接球的半径之比正三棱柱的内切球与外接球的球心是重合的,过侧棱1AA 和它们的球心O 作截面如下图所示:设正三棱柱底面边长为a . 由于内切球投影到底面的圆是底面正三角形的内切圆,所以a R 632=,从而正三棱柱的高为a R h 3322== . 在O D A Rt 11∆中,得,22222211211256333a a a R D A R =⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=.1251a R =∴ 因此1:5:21=R R . 例25 一个正三棱柱恰好有一个内切球和一个外接球,则此内切球与外接球表面积之比为 .巩固练习1. 在正三棱锥S ABC -中,6AB BC CA ===,点D 是SA 的中点,若SB CD ⊥,则该三棱锥外接球的表面积为 .2.已知三棱锥P ABC -的底面是正三角形,PA a =,点A 在侧面PBC 内的射影H 是PBC ∆的垂心,当三棱锥P ABC -体积最大值时,三棱锥P ABC -的外接球的表面积为( ) A .343aB .23a πC .33a π D .212a3.在平面四边形PACB 中,已知120APB ∠=︒,23PA PB ==,10AC =,8BC =.沿对角线AB 折起得到四面体P ABC -,当PA 与平面ABC 所成的角最大时,该四面体的外接球的半径为 .4.已知正三棱柱111ABC A B C -中,侧面11BCC B 的面积为4,则正三棱柱111ABC A B C -外接球表面积的最小值为( ) A .23πB .43πC .83πD .163π5.已知正方体1111ABCD A BC D -棱长为2,点P 是上底面1111D C B A 内一动点,若三棱锥P ABC -的外接球表面积恰为414π,则此时点P 构成的图形面积为________. 6.已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O 的表面积为______.备注:1.三角形内切圆的半径S S S S AO B AO C BO C ABC∆∆∆∆++=r c b a cr br ar )(21212121++=++= 内切圆r C ABC ∆=21所以三角形内切圆的半径为CSr 2=,其中S 为△ABC 的面积,C 为△ABC 的周长. 2. 三角形外接圆的半径利用正弦定理R C c B b A a 2sin sin sin ===,CcB b A a R sin 2sin 2sin 2===.①正三角形:a a R 3360sin 2=︒=,其中a 为正三角形的边长.②直角三角形:290sin 2cc R =︒=,其中c 为直角三角形的斜边.3. 正三角形的内切圆与外接圆的半径之比正三角形的内切圆与外接圆的两个圆心“二心合一”. 设正三角形的边长为a ,内切圆半径为r ,外接圆半径为R.由于a a R 3360sin 2=︒=,a a a a a a C S r 6360sin 2122=++︒⋅⋅⋅⨯==, 所以1:2:=r R ,即圆心O 为正三角形高h 的三等分点.。
2023届高三数学一轮复习专题 空间几何体的外接球与内切球问题 讲义 (解析版)
空间几何体的外接球与内切球问题高考分析: 球与几何体的切接问题是近几年高考的高频考点,常以选择题和填空题的形式出现,以中档题和偏难题为主. 一、几种常见几何体的外接与内切球 1.长方体的外接球 (1)球心:体对角线的交点;(2)半径:R =a 2+b 2+c 22(a ,b ,c 为长方体的长、宽、高).2.正方体的外接球、内切球及与各条棱相切的球 (1)外接球:球心是正方体的中心;半径R =32a(a 为正方体的棱长); (2)内切球:球心是正方体的中心;半径r =2a(a 为正方体的棱长);(3)与各条棱都相切的球:球心是正方体的中心;半径=2r a (a 为正方体的棱长). 3.正四面体的外接球与内切球(1)外接球:球心是正四面体的中心;半径R (a 为正四面体的棱长);(2)内切球:球心是正四面体的中心;半径r (a 为正四面体的棱长).求外接球问题常用方法:1.补体法。
将几何体补形成长方体正方体等常见模型去求解2.外接球的球心都在过底面外接圆圆心的垂线上(注意球体可以滚动所以可以选择较为方便计算的那一面作为底面)3.利用外接球球心到几何体各顶点距离都等于半径4.球心与截面圆圆心的连线垂直于截面圆求外接球的关键是确定球心位置,进而计算出外接球半径。
题型一:柱体的外接球1.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为_________.2.已知三棱柱111ABC A B C -的底面是边长为6的正三角形,侧棱垂直于底面,且该三棱柱的外接球的表面积为12 ,则该三棱柱的体积为_________.3.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是( )A .16πB .20πC .24πD .32π4.已知圆柱的底面半径为12,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A.πB.3π4 C.π2 D.π4题型二:锥体的外接球5.求棱长为1的正四面体外接球的体积为_________.6.已知正四棱锥P -ABCD 内接于一个半径为R 的球,则正四棱锥P -ABCD 体积的最大值是( )A.16R 381B.32R 381C.64R 381 D .R 3 7.如图,在四棱锥P -ABCD 中,底面ABCD 为菱形,PB ⊥底面ABCD ,O 为对角线AC 与BD 的交点,若PB =1,∠APB =∠BAD =π3,则三棱锥P -AOB 的外接球的体积是_________.8.已知△ABC 是面积为的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) A.B.C. 1D.9.已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A. 64πB. 48πC. 36πD. 32π10.《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵.将一堑堵沿其一顶点与相对的棱切开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均是直角三角形的四面体).在如图所示的堑堵ABC -A 1B 1C 1中,AA 1=AC =5,AB =3,BC =4,则阳马C 1-ABB 1A 1的外接球的表面积是( )A .25πB .50πC .100πD .200π11.已知三棱锥P −ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为 A .68πB .64πC .62πD .6π12.已知正三棱锥的所有顶点都在球O 的球面上,其底面边长为3,E,F ,G 分别为为侧棱AB,AC,AD 的中点.若O 在三棱锥A -BCD 内,且三棱锥A -BCD 的体积是三棱锥O -BCD 体积的3倍,则平面EFG 截球O 所得截面的面积为微专题 球与几何体的切接问题——内切球1.半径为R 的球的外切圆柱(球与圆柱的侧面、两底面都相切)的表面积为_________,体积为_________.2.若正四面体的棱长为a ,则其内切球的半径为_________.3.已知正三棱锥的高为6,内切球(与四个面都相切)的表面积为16π,则其底面边长为( ) A .18 B .12 C .6 3 D .434.将半径为3,圆心角为2π3的扇形围成一个圆锥(接缝处忽略不计),则该圆锥的内切球的体积为( )A.2π3 B.3π3 C.4π3D .2π 5.如图,已知球O 是棱长为1的正方体ABCD -A 1B 1C 1D 1的内切球,则平面ACD 1截球O 的截面面积为( )A.66π B.π3 C.π6 D.33π题型三 最值问题6.已知底面是正六边形的六棱锥P -ABCDEF 的七个顶点均在球O 的表面上,底面正六边形的边长为1,若该六棱锥体积的最大值为3,则球O 的表面积为_________.7.四棱锥S -ABCD 的所有顶点都在同一球面上,底面ABCD 是正方形且和球心O 在同一平面内,当此四棱锥的体积取得最大值时,其表面积等于8+83,则球O 的体积等于( )A.32π3B.322π3 C .16π D.162π38.已知SAB 是边上为2的等边三角形,045ACB ∠=,则三棱锥体积最大时,CA = ;其外接球的表面积为。
高考数学中地内切球和外接球问题(附习题)
高考数学中的内切球和外接球问题一、有关外接球的问题如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球. 有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点. 考查学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.一、直接法(公式法)1、求正方体的外接球的有关问题例1 若棱长为 3 的正方体的顶点都在同一球面上,则该球的表面积为______________ .27 .例2 一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为______________.4 3 .2、求长方体的外接球的有关问题例3 一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3 ,则此球的表面积为.14 .例4、已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为(). CA. 16B. 20C. 24D. 323.求多面体的外接球的有关问题例5. 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为.解设正六棱柱的底面边长为x ,高为h,则有6x 3, 1x ,29 326 x h,h 3.8 4∴正六棱柱的底面圆的半径 1r ,球心到底面的距离23d .∴外2接球的半径R 2 d . 体积:r24V 3 .RV 3 .3小结本题是运用公式 2 2 2R r d 求球的半径的,该公式是求球的半径的常用公式.二、构造法(补形法)1、构造正方体例5 若三棱锥的三条侧棱两两垂直,且侧棱长均为 3 ,则其外接球的表面积是_______________.9 .例3 若三棱锥的三个侧面两两垂直,且侧棱长均为 3 ,则其外接球的表面积是.故其外接球的表面积 2S 4 R 9 .小结:一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a、b、c ,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则有 2 222Ra bc .出现“墙角”结构利用补形知识,联系长方体。
2025高考数学必刷题 第50讲、外接球、内切球、棱切球(学生版)
第50讲外接球、内切球、棱切球知识梳理知识点一:正方体、长方体外接球1、正方体的外接球的球心为其体对角线的中点,半径为体对角线长的一半.2、长方体的外接球的球心为其体对角线的中点,半径为体对角线长的一半.3、补成长方体(1)若三棱锥的三条侧棱两两互相垂直,则可将其放入某个长方体内,如图1所示.(2)若三棱锥的四个面均是直角三角形,则此时可构造长方体,如图2所示.(3)正四面体-P ABC 可以补形为正方体且正方体的棱长=a ,如图3所示.(4)若三棱锥的对棱两两相等,则可将其放入某个长方体内,如图4所示图1图2图3图4知识点二:正四面体外接球如图,设正四面体ABCD 的的棱长为a ,将其放入正方体中,则正方体的棱长为2a ,显然正四面体和正方体有相同的外接球.正方体外接球半径为22==R a ,即正四面体外接球半径为=R .知识点三:对棱相等的三棱锥外接球四面体ABCD 中,==AB CD m ,==AC BD n ,==AD BC t ,这种四面体叫做对棱相等四面体,可以通过构造长方体来解决这类问题.如图,设长方体的长、宽、高分别为,,a b c ,则222222222⎧+=⎪+=⎨⎪+=⎩b c m a c n a b t ,三式相加可得222++=a b c 222,2++m n t 而显然四面体和长方体有相同的外接球,设外接球半径为R ,则22224+=+a b c R,所以=R.知识点四:直棱柱外接球如图1,图2,图3,直三棱柱内接于球(同时直棱柱也内接于圆柱,棱柱的上下底面可以是任意三角形)图1图2图3第一步:确定球心O 的位置,1O 是∆ABC 的外心,则1⊥OO 平面ABC ;第二步:算出小圆1O 的半径1=AO r ,111122==OO AA h (1=AA h 也是圆柱的高);第三步:勾股定理:22211=+OA O A O O ⇒222()2=+hR r⇒=R R知识点五:直棱锥外接球如图,⊥PA 平面ABC ,求外接球半径.解题步骤:第一步:将∆ABC 画在小圆面上,A 为小圆直径的一个端点,作小圆的直径AD ,连接PD ,则PD 必过球心O ;第二步:1O 为∆ABC 的外心,所以1⊥OO 平面ABC ,算出小圆1O 的半径1=O D r (三角形的外接圆直径算法:利用正弦定理,得2sin sin sin ===a b c r A B C ),112=OO PA ;第三步:利用勾股定理求三棱锥的外接球半径:①222(2)(2)=+R PA r ⇔2=R②2221=+R r OO ⇔=R .知识点六:正棱锥与侧棱相等模型1、正棱锥外接球半径:222+=r h R h.2、侧棱相等模型:如图,P 的射影是∆ABC 的外心⇔三棱锥-P ABC 的三条侧棱相等⇔三棱锥-P ABC 的底面∆ABC 在圆锥的底上,顶点P 点也是圆锥的顶点.解题步骤:第一步:确定球心O 的位置,取∆ABC 的外心1O ,则1,,P O O 三点共线;第二步:先算出小圆1O 的半径1=AO r ,再算出棱锥的高1=PO h (也是圆锥的高);第三步:勾股定理:22211=+OA O A O O ⇒222()=-+R h R r ,解出222+=r h R h.知识点七:侧棱为外接球直径模型方法:找球心,然后作底面的垂线,构造直角三角形.知识点八:共斜边拼接模型如图,在四面体ABCD 中,⊥AB AD ,⊥CB CD ,此四面体可以看成是由两个共斜边的直角三角形拼接而形成的,BD 为公共的斜边,故以“共斜边拼接模型”命名之.设点O 为公共斜边BD 的中点,根据直角三角形斜边中线等于斜边的一半的结论可知,===OA OC OB OD ,即点O 到A ,B ,C ,D 四点的距离相等,故点O 就是四面体ABCD外接球的球心,公共的斜边BD 就是外接球的一条直径.知识点九:垂面模型如图1所示为四面体-P ABC ,已知平面⊥PAB 平面ABC ,其外接球问题的步骤如下:(1)找出△PAB 和△ABC 的外接圆圆心,分别记为1O 和2O .(2)分别过1O 和2O 作平面PAB 和平面ABC 的垂线,其交点为球心,记为O .(3)过1O 作AB 的垂线,垂足记为D ,连接2O D ,则2⊥O D AB .(4)在四棱锥12-A DO OO 中,AD 垂直于平面12DO OO ,如图2所示,底面四边形12DO OO 的四个顶点共圆且OD 为该圆的直径.图1图2知识点十:最值模型这类问题是综合性问题,方法较多,常见方法有:导数法,基本不等式法,观察法等知识点十一:二面角模型如图1所示为四面体-P ABC ,已知二面角--P AB C 大小为α,其外接球问题的步骤如下:(1)找出△PAB 和△ABC 的外接圆圆心,分别记为1O 和2O .(2)分别过1O 和2O 作平面PAB 和平面ABC 的垂线,其交点为球心,记为O .(3)过1O 作AB 的垂线,垂足记为D ,连接2O D ,则2⊥O D AB .(4)在四棱锥12-A DO OO 中,AD 垂直于平面12DO OO ,如图2所示,底面四边形12DO OO 的四个顶点共圆且OD 为该圆的直径.知识点十二:坐标法对于一般多面体的外接球,可以建立空间直角坐标系,设球心坐标为(,,)O x y z ,利用球心到各顶点的距离相等建立方程组,解出球心坐标,从而得到球的半径长.坐标的引入,使外接球问题的求解从繁琐的定理推论中解脱出来,转化为向量的计算,大大降低了解题的难度.知识点十三:圆锥圆柱圆台模型1、球内接圆锥如图1,设圆锥的高为h ,底面圆半径为r ,球的半径为R .通常在△OCB 中,由勾股定理建立方程来计算R .如图2,当>PC CB 时,球心在圆锥内部;如图3,当<PC CB 时,球心在圆锥外部.和本专题前面的内接正四棱锥问题情形相同,图2和图3两种情况建立的方程是一样的,故无需提前判断.由图2、图3可知,=-OC h R 或-R h ,故222()-+=h R r R ,所以222+=h r R h.2、球内接圆柱如图,圆柱的底面圆半径为r ,高为h ,其外接球的半径为R ,三者之间满足22(2+=hr R .3、球内接圆台2222222122⎛⎫--=+ ⎪⎝⎭r r h R r h ,其中12,,r r h 分别为圆台的上底面、下底面、高.知识点十四:锥体内切球方法:等体积法,即3体积表面积=V R S知识点十五:棱切球方法:找切点,找球心,构造直角三角形必考题型全归纳题型一:外接球之正方体、长方体模型例1.(2024·云南昆明·高一校考期末)正方体的表面积为96,则正方体外接球的表面积为例2.(2024·吉林·则球的表面积为.例3.(2024·全国·高一专题练习)已知长方体的顶点都在球O 表面上,长方体中从一个顶点出发的三条棱长分别为2,3,4则球O 的表面积是变式1.(2024·湖南长沙·高一长郡中学校考期中)长方体1111ABCD A B C D -的外接球的表面积为25π,AB =AD 1111ABCD A B C D -的体积为.变式2.(2024·天津静海·高一校考期中)在长方体1111ABCD A B C D -中,6AB =,BC =,14BB =,则长方体外接球的表面积为.题型二:外接球之正四面体模型例4.(2024·湖北宜昌·宜昌市夷陵中学校考模拟预测)已知正四面体ABCD 的表面积为且A ,B ,C ,D 四点都在球O 的球面上,则球O 的体积为.例5.(2024·浙江·高二校联考期中)正四面体的所有顶点都在同一个表面积是36π的球面上,则该正四面体的棱长是.例6.(2024·全国·的正四面体的外接球体积为.变式3.(2024·全国·高一假期作业)正四面体P BDE -和边长为1的正方体1111ABCD A B C D -有公共顶点B ,D ,则该正四面体P BDE -的外接球的体积为.变式4.(2024·安徽池州·高二池州市第一中学校考期中)正四面体-P ABC 中,其侧面积与底面积之差为,则该正四面体外接球的体积为.题型三:外接球之对棱相等的三棱锥模型例7.(2024·高一单元测试)在四面体ABCD 中,若AB CD ==,2==AC BD ,AD BC =ABCD 的外接球的表面积为()A .2πB .4πC .6πD .8π例8.(2024·河南·开封高中校考模拟预测)已知四面体ABCD 中,AB CD ==AC BD =,AD BC =,则四面体ABCD 外接球的体积为()A .45πBC D .例9.(2024·广东揭阳·高二校联考期中)在三棱锥S ABC -中,5SA BC ==,SB AC ==,SC AB ==)A .50πB .100πC .150πD .200π变式5.(2024·全国·高三专题练习)如图,在三棱锥-P ABC 中,PA BC ==2PB AC ==,PC AB ==-P ABC 外接球的体积为()AB C D .6π题型四:外接球之直棱柱模型例10.(2024·陕西安康·统考三模)已知矩形ABCD 的周长为36,把它沿图中的虚线折成正六棱柱,当这个正六棱柱的体积最大时,它的外接球的表面积为.例11.(2024·黑龙江齐齐哈尔·高一齐齐哈尔市第八中学校校考阶段练习)设直三棱柱111ABC A B C -的所有顶点都在一个表面积是40π的球面上,且1,120AB AC AA BAC ∠=== ,则此直三棱柱的表面积是()A .16+B .8+C .8+D .16+例12.(2024·全国·高三专题练习)在直三棱柱111ABC A B C -中,ABC 为等腰直角三角形,若三棱柱111ABC A B C -的体积为32,则该三棱柱外接球表面积的最小值为()A .12πB .24πC .48πD .96π变式6.(2024·湖北咸宁·高二鄂南高中校考阶段练习)已知正三棱柱111ABC A B C -的体积为)A .12πB .6πC .16πD .8π变式7.(2024·全国·高三专题练习)在三棱柱111ABC A B C -中,已知11,90BC AB BCC ==∠= ,AB ⊥侧面11BB C C ,且直线1C B 与底面ABC 则此三棱柱的外接球的表面积为()A .3πB .4πC .5πD .6π变式8.(2024·新疆昌吉·高三校考期末)已知正三棱柱111ABC A B C -所有棱长都为6,则此三棱柱外接球的表面积为()A .48πB .60πC .64πD .84π题型五:外接球之直棱锥模型例13.(2024·安徽宣城·高一统考期末)在三棱锥-P ABC 中,△ABC 是边长为3的等边三角形,侧棱PA ⊥平面ABC ,且4PA =,则三棱锥-P ABC 的外接球表面积为.例14.(2024·江苏南京·高二统考期末)在三棱锥-P ABC 中,PA ⊥面ABC ,ABC 为等边三角形,且PA AB ==-P ABC 的外接球的表面积为.例15.(2024·四川成都·高一成都七中校考阶段练习)已知三棱锥-P ABC ,其中PA ⊥平面,120,2ABC BAC PA AB AC ∠=︒===,则三棱锥-P ABC 外接球的表面积为.变式9.(2024·陕西商洛·镇安中学校考模拟预测)在三棱锥D ABC -中,ABC 为等边三角形,DC ⊥平面ABC ,若6AC CD +=,则三棱锥D ABC -外接球的表面积的最小值为.变式10.(2024·陕西榆林·高二校考阶段练习)已知三棱锥S ABC -中,SA ⊥平面ABC ,2AB BC CA ===,异面直线SC 与AB 所成角的余弦值为4,则三棱锥S ABC -的外接球的表面积为.变式11.(2024·江苏镇江·高三江苏省镇江中学校考阶段练习)如图,在四棱锥P ABCD -中,底面ABCD 为菱形,PD ⊥底面ABCD ,O 为对角线AC 与BD 的交点,若3PD =,π3APD BAD ∠=∠=,则三棱锥P AOD -的外接球的体积为.变式12.(2024·四川绵阳·绵阳中学校考二模)在四棱锥A BCDE -中,AB ⊥平面BCDE ,BC CD ⊥,BE DE ⊥,120CBE ∠=︒,且2AB BC BE ===,则该四棱锥的外接球的表面积为.变式13.(2024·广东韶关·高二统考期末)三棱锥-P ABC 中,PA ⊥平面ABC ,4PA =,π3BAC ∠=,BC =,则三棱锥-P ABC 外接球的体积是.题型六:外接球之正棱锥、正棱台模型例16.(2024·山东滨州·高一校考期中)已知正四棱锥P ABCD -的底面边长为侧棱长为6,则该四棱锥的外接球的体积为.例17.(2024·福建福州·高一福建省福州屏东中学校考期末)已知正三棱锥PABC ﹣的顶点都在球O 的球面上,其侧棱与底面所成角为π3,且PA =O 的表面积为例18.(2024·河南商丘·高一商丘市第一高级中学校联考期末)在正三棱锥-P ABC 中,点D 在棱PA 上,且满足2PD DA =,CD PB ⊥,若AB =P BCD -外接球的表面积为.变式14.(2024·云南保山·高一统考期末)已知正三棱锥-P ABC 的侧棱与底面所成的角为60︒,高为,则该三棱锥外接球的表面积为.变式15.(2024·广东佛山·高一佛山市南海区第一中学校考阶段练习)已知正三棱锥-P ABC中,1PA =,AB =,该三棱锥的外接球体积为.变式16.(2024·陕西咸阳·武功县普集高级中学校考模拟预测)如图,在正三棱台111ABC A B C -中,AB =116A B =,1AA =111ABC A B C -的外接球表面积为()A .64B .64πC .256π3D .64π3变式17.(2024·辽宁·高三校联考期末)正四棱台高为2,上下底边长分别为2和4,所有顶点在同一球面上,则球的表面积为()A .32πB .33πC .34πD .35π变式18.(2024·贵州六盘水·高一校考阶段练习)已知正四棱锥P ABCD -的底面边长为6,侧棱长为,则该四棱锥外接球的表面积为.变式19.(2024·山西晋中·高三祁县中学校考阶段练习)在正四棱锥P ABCD -中,=,若四棱锥P ABCD -的体积为2563,则该四棱锥外接球的体积为.变式20.(2024·湖北·高三统考阶段练习)在正四棱台1111ABCD A B C D -中,112AB A B =,1AA =)A .332πB .33πC .572πD .57π题型七:外接球之侧棱相等的棱锥模型例19.(2024·安徽安庆·校联考模拟预测)三棱锥-P ABC 中,PA PB PC ===,26AB AC ==,π3BAC ∠=,则该三棱锥外接球的表面积为.例20.(2024·江苏常州·高三华罗庚中学校考阶段练习)在三棱锥S ABC -中,2SA SB CA CB AB =====,二面角S AB C --的大小为60︒,则三棱锥S ABC -的外接球的表面积为.例21.(2024·河北承德·高一校联考阶段练习)已知三棱锥-P ABC 的各侧棱长均为且3,AB BC AC ===-P ABC 的外接球的表面积为.变式21.(2024·吉林长春·高一长春市解放大路学校校考期末)已知三棱锥P -ABC 的四个顶点在球O 的球面上,PA PB PC ==,△ABC E ,F 分别是PA ,AB 的中点,90CEF ∠= ,则球O 的体积为.变式22.(2024·全国·高三专题练习)已知在三棱锥S ABC -中,2SA SB SC AB ====,AC BC ⊥,则该三棱锥外接球的体积为A .27B .9C .323πD .163π变式23.(2024·全国·高一专题练习)如图,在三棱锥A BCD -中,2AB BC AC CD ====,120BCD ∠=︒,二面角A BC D --的大小为120︒,则三棱锥A BCD -的外接球的表面积为()A .823πB .803πC .27πD .2449π变式24.(2024·全国·高三专题练习)在四面体ABCD 中,2AB AC BC BD CD =====,AD =ABCD 的外接球的表面积为()A .163πB .5πC .20πsD .203π题型八:外接球之圆锥、圆柱、圆台模型例22.(2024·浙江台州·高二校联考期末)已知圆锥的底面半径为1,母线长为2,则该圆锥的外接球的体积为.例23.(2024·黑龙江哈尔滨·哈尔滨三中校考模拟预测)已知某圆锥的轴截面为正三角形,侧面积为8π,该圆锥内接于球O ,则球O 的表面积为.例24.(2024·河北石家庄·高二校考阶段练习)一个圆柱的底面直径与高都等于一个球的直径,则圆柱的表面积与球的表面积之比为.变式25.(2024·重庆·统考模拟预测)如图所示,已知一个球内接圆台,圆台上、下底面的半径分别为3和4,球的体积为500π3,则该圆台的侧面积为()A .60πB .75πC .35πD .变式26.(2024·云南·高三校联考开学考试)已知圆台的上下底面圆的半径分别为3,4,母线长为O 的球面上,则球O 的体积为()A .250π3B .500π3C .100π3D .125π3变式27.(2024·陕西西安·高一校考期中)如图所示,一个球内接圆台,已知圆台上、下底面的半径分别为3和4,球的表面积为100π,则该圆台的体积为()A .175π3B .75πC .238π3D .259π3题型九:外接球之垂面模型例25.(2024·江西九江·高一校考期末)如图,三棱锥A BCD -中,平面ACD ⊥平面BCD ,ACD 是边长为2的等边三角形,BD CD =,120BDC ∠=︒.若A ,B ,C ,D 四点在某个球面上,则该球体的表面积为.例26.(2024·四川乐山·高二期末)已知正ABC 边长为1,将ABC 绕BC 旋转至DBC △,使得平面ABC ⊥平面BCD ,则三棱锥D ABC -的外接球表面积为.例27.(2024·河南平顶山·高一统考期末)在三棱锥-P ABC 中,平面ABC ⊥平面,PAB AC BC ⊥,点D 是AB 的中点,,2PD PB PB PD ⊥==,则三棱锥-P ABC 的外接球的表面积为.变式28.(2024·江苏·高一专题练习)如图,在直三棱柱111ABC A B C -中,1AA AB BC ==.设D 为1A C 的中点,三棱锥D ABC -的体积为94,平面1A BC ⊥平面11ABB A ,则三棱柱111ABC A B C -外接球的表面积为.变式29.(2024·河南开封·开封高中校考模拟预测)如图,在三棱锥-P ABC 中,平面PAB ⊥平面ABC ,6AB =,4BC =,AB BC ⊥,PAB 为等边三角形,则三棱锥-P ABC 外接球的表面积为.变式30.(2024·湖北十堰·高一统考期末)如图,在平面四边形ABCD 中,π,42ADB ABC BD BC ∠=∠===,沿对角线BD 将ABD △折起,使平面ADB ⊥平面BDC ,连接AC ,得到三棱锥A BCD -,则三棱锥A BCD -外接球表面积的最小值为.变式31.(2024·河南安阳·高一统考期末)在三棱锥-P ABC 中,平面PAB ⊥平面ABC ,PA PB ⊥,且PA PB ==ABC 是等边三角形,则该三棱锥外接球的表面积为.变式32.(2024·云南临沧·高二校考期中)如图,已知矩形ABCD 中,483AB BC ==,现沿AC 折起,使得平面ABC ⊥平面ADC ,连接BD ,得到三棱锥B ACD -,则其外接球的体积为.变式33.(2024·全国·高三校联考开学考试)在三棱锥-P ABC 中,平面PAB ⊥平面ABC ,底面ABC 是边长为3的正三角形,若该三棱锥外接球的表面积为15π,则该三棱锥体积的最大值为.变式34.(2024·四川乐山·统考三模)在三棱锥-P ABC 中,2PA PC BA BC ====,平面PAC ⊥平面ABC ,则三棱锥-P ABC 的外接球表面积的最小值为.变式35.(2024·湖南衡阳·校联考模拟预测)在平面四边形ABCD 中,90,90,2ADB ABC BD BC ∠∠==== ,沿对角线BD 将ABD △折起,使平面ADB ⊥平面BDC ,得到三棱锥A BCD -,则三棱锥A BCD -外接球表面积的最小值为.题型十:外接球之二面角模型例28.(2024·广东阳江·高三统考开学考试)在三棱锥D ABC -中,2AB BC ==,90ADC ∠= ,二面角D AC B --的平面角为30 ,则三棱锥D ABC -外接球表面积的最小值为()A .()161πB .()163π-C .()161πD .()163π例29.(2024·浙江丽水·高二统考期末)在四面体PABC 中,PA PB ⊥,ABC 是边长为2的等边三角形,若二面角P AB C --的大小为120︒,则四面体PABC 的外接球的表面积为()A .13π9B .26π9C .52π9D .104π9例30.(2024·广东·校联考模拟预测)已知四棱锥,S ABCD SA -⊥平面,,4ABCD AD DC SA BC ⊥==,二面角S BC A --的大小为π3.若点,,,,S A B C D 均在球O 的表面上,则该球O 的表面积为()A .152π3B .52πC .160π3D .54π变式36.(2024·福建·高一福建师大附中校考期末)在四面体ABCD 中,ABC 与BCD △都是边长为6的等边三角形,且二面角A BC D --的大小为60︒,则四面体ABCD 外接球的表面积是()A .52πB .54πC .56πD .60π变式37.(2024·甘肃张掖·高台县第一中学校考模拟预测)图1为两块大小不同的等腰直角三角形纸板组成的平面四边形ABCD ,其中小三角形纸板的斜边AC 与大三角形纸板的一条直角边长度相等,小三角形纸板的直角边长为a ,现将小三角形纸板ACD 沿着AC 边折起,使得点D 到达点M 的位置,得到三棱锥M ABC -,如图2.若二面角M AC B --的大小为23π,则所得三棱锥M -ABC 的外接球的表面积为()A .273a πB .24a πC .2143a πD .227a 变式38.(2024·全国·高三专题练习)如图1,在PBC 中,PA BC ⊥,AM PB ⊥,6BC =,4PA =,沿PA 将PAB 折起,使得二面角B PA C --为60°,得到三棱锥-P ABC ,如图2,若AM PC ⊥,则三棱锥-P ABC 的外接球的表面积为()A .32πB .36πC .64πD .80π变式39.(2024·湖南岳阳·统考三模)已知三棱锥D ABC -的所有顶点都在球O 的球面上,30AD BD AC BC DAB CBA ∠∠⊥⊥== ,,,二面角D AB C --的大小为60 ,若球O 的表面积等于36π,则三棱锥D ABC -的体积等于()AB .8C D变式40.(2024·全国·高一专题练习)在三棱锥A BCD -中,,,224AB BC BC CD CD AB BC ⊥⊥===,二面角A BC D --为60︒,则三棱锥A BCD -外接球的表面积为()A .16πB .24πC .18πD .20π题型十一:外接球之侧棱为球的直径模型例31.(2024·贵州黔东南·高二凯里一中校考期中)已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA AC =,SB BC =,三棱锥S ABC-的体积为83,则球O 的体积为()A .4πB .203πC .6πD .323π例32.(2024·四川巴中·高三统考期末)已知三棱锥S ABC -的体积为12,1AC BC ==,120ACB ∠=︒,若SC 是其外接球的直径,则球的表面积为()A .4πB .6πC .8πD .16π例33.(2024·重庆九龙坡·高二重庆市育才中学校考期中)已知三棱锥S ABC -的所有顶点都在球O 的球面上,SA 为球的直径,ABC ∆是边长为2的等边三角形,三棱锥S ABC -的体积为3,则球的表面积为()A .8πBC .16πD .1283π变式41.(2024·重庆·校联考一模)已知三棱锥S ABC -各顶点均在球O 上,SB 为球O 的直径,若2AB BC ==,23ABC π∠=,三棱锥S ABC -的体积为4,则球O 的表面积为A .120πB .64πC .32πD .16π变式42.(2024·河北唐山·统考三模)三棱锥S ABC -的四个顶点都在球面上,SA 是球的直径,AC AB ⊥,2BC SB SC ===,则该球的表面积为()A .4πB .6πC .9πD .12π变式43.(2024·河南南阳·统考模拟预测)已知三棱锥-P ABC 的所有顶点都在球O 的球面上,PC 是球O 的直径.若平面PCA ⊥平面PCB ,PA AC =,PB BC =,三棱锥-P ABC 的体积为a ,则球O 的体积为A .2a πB .4a πC .23a πD .43a π变式44.(2024·福建莆田·高三统考期中)三棱锥S ABC -的各顶点均在球O 上,SC 为该球的直径,1,120AC BC ACB ︒==∠=,三棱锥S ABC -的体积为12,则球的表面积为A .4πB .6πC .8πD .16π变式45.(2024·全国·高三专题练习)已知三棱锥-P ABC 的四个顶点均在某球面上,PC 为该球的直径,ABC 是边长为4的等边三角形,三棱锥-P ABC 的体积为163,则该三棱锥的外接球的表面积为()A .163πB .403πC .643πD .803π变式46.(2024·湖南长沙·高三长郡中学校考阶段练习)已知SC 是球O 的直径,,A B 是球O球面上的两点,且1,CA CB AB ===S ABC -的体积为1,则球O 的表面积为A .4πB .13πC .16πD .52π题型十二:外接球之共斜边拼接模型例34.(2022·江西·高二阶段练习(理))如图,在四棱锥P -ABCD 中,底面是菱形,PB ⊥底面ABCD ,O 是对角线AC 与BD 的交点,若1PB =,3APB π∠=,则三棱锥P BOC -的外接球的体积为()A .23πB .43πC .53πD .2π例35.(2022·安徽·芜湖一中高二期中)已知三棱锥P ABC -中,1PA =,3PB =,PC =,AB =2CA CB ==,则此三棱锥的外接球的表面积为()A .143πB .283πC .9πD .12π例36.(2022·江西赣州·高二期中(理))在三棱锥A SBC -中,10,,,4AB ASC BSC AC AS BC BS π=∠=∠===若该三棱锥的体积为153,则三棱锥A SBC -外球的体积为()A .πB .3πC .5πD .43π变式47.在矩形A B C D 中,==4,3A B B C ,沿A C 将矩形A B C D 折成一个直二面角--B A C D ,则四面体A B C D 的外接球的体积为()A .π12512B .π1259C .π1256D .π1253变式48.三棱锥-P A B C 中,平面⊥P A C 平面A B C ,=2A C ,⊥P A P C ,⊥A B B C ,则三棱锥-P A B C 的外接球的半径为题型十三:外接球之坐标法模型例37.(2024·浙江·高二校联考阶段练习)空间直角坐标系O xyz -中,(2,0,0),(0,3,0),(0,0,5),(2,3,5),A B C D 则四面体ABCD 外接球体积是()A .25πB .36πC .1083πD .288π例38.(2024·贵州·统考模拟预测)如图,某环保组织设计一款苗木培植箱,其外形由棱长为2(单位:m )的正方体截去四个相同的三棱锥(截面为等腰三角形)后得到.若将该培植箱置于一球形环境中,则该球表面积的最小值为2m 例39.(2024·河南开封·开封高中校考一模)如图,在三棱锥A BCD -中,,2,AD AB AB AD ACD ⊥== 为等边三角形,三棱锥A BCD -的体积为23,则三棱锥A BCD -外接球的表面积为.变式49.(2024·全国·高三专题练习)如图①,在Rt ABC 中,2C π=,2AC BC ==,D ,E 分别为AC ,AB 的中点,将ADE V 沿DE 折起到1A DE △的位置,使1A D CD ⊥,如图②.若F 是1A B 的中点,则四面体FCDE 的外接球体积是()A .2πBC .6D .12变式50.(2024·湖北武汉·高一武汉外国语学校(武汉实验外国语学校)期末)如图,已知四棱锥E ABCD -,底面ABCD 是边长为3的正方形,⊥AE 面ABCD ,2EQ QD = ,2EP PB = ,12ER RC = ,若RP RQ ==,则四棱锥E ABCD -外接球表面积为()A .44πB .54πC .176πD .216π变式51.(2024·河南郑州·模拟预测)在长方体中1111ABCD A B C D -中,11AB AA ==,AD =2,M 是棱11B C 的中点,过点B ,M ,1D 的平面α交棱AD 于点N ,点P 为线段1D N 上一动点,则三棱锥1P BB M -外接球表面积的最小值为.变式52.(2024·湖南郴州·高二统考期末)如图,棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱11A D 、1AA 的中点,G 为面对角线1B C 上一个动点,则三棱锥1A EFG -的外接球表面积的最小值为.变式53.(2024·广东阳江·高三阳春市第一中学阶段练习)已知正方体1111ABCD A B C D -的棱长为2,点P 是线段11B D 上的动点,则三棱锥-P ABC 的外接球半径的取值范围为.题型十四:外接球之空间多面体例40.(2024·全国·高三专题练习)自2015年以来,贵阳市着力建设“千园之城”,构建贴近生活、服务群众的生态公园体系,着力将“城市中的公园”升级为“公园中的城市”.截至目前,贵阳市公园数量累计达到1025个.下图为贵阳市某公园供游人休息的石凳,它可以看做是一个正方体截去八个一样的四面体得到的,如果被截正方体的的棱长为,则石凳所对应几何体的外接球的表面积为2cm .例41.(2024·山东青岛·高一山东省青岛第五十八中学校考阶段练习)截角四面体是一种半正八面体,可由四面体经过适当的截角,即截去四面体的四个顶点所产生的多面体.如图所示,将棱长为3的正四面体沿棱的三等分点作平行于底面的截面得到所有棱长均为1的截角四面体,则该截角四面体的外接球表面积为.例42.(2024·宁夏银川·银川二中校考一模)把一个棱长都是6的正四棱锥(底面是正方形,顶点在底面的射影是正方形的中心)每条棱三等分,沿与正四棱锥顶点相邻的三等分点做截面,将正四棱锥截去四个小正四面体和一个小正四棱锥(如图所示),则剩下的几何体的外接球的表面积等于.变式54.(2024·山东济南·高一山东省济南市莱芜第一中学校考阶段练习)取两个相互平行且全等的正n边形,将其中一个旋转一定角度,连接这两个多边形的顶点,使得侧面均为等边三角形,我们把这种多面体称作“n角反棱柱”.当n=4时,得到如图所示棱长均为2的“四角反棱柱”,则该“四角反棱柱”外接球的表面积等于()A .11πB .(8π+C .(8π+D 题型十五:与球有关的最值问题例43.(2024·江西抚州·统考模拟预测)如图,直三棱柱ABC A B C '''-中,,4AC BC AC BC ⊥==,棱柱的侧棱足够长,点P 在棱BB '上,点1C 在CC '上,且1PA PC ⊥,则当△1APC 的面积取最小值时,三棱锥-P ABC 的外接球的体积为.例44.(2024·全国·学军中学校联考二模)如图,直三棱柱111ABC A B C -中,3π,24BCA AC BC ∠===,点P 在棱1BB 上,且1PA PC ⊥,当1APC 的面积取最小值时,三棱锥-P ABC 的外接球的表面积为.例45.(2024·湖南长沙·高三长沙一中校考阶段练习)正方体1111ABCD A B C D -的棱长为2,点E ∈平面11AA B B ,点F 是线段1AA 的中点,若1D E CF ⊥,则当EBC 的面积取得最小值时,三棱锥1E BCC -外接球的体积为.变式55.(2024·广东深圳·高三深圳中学校考开学考试)如图,直三棱柱111ABC A B C -中,AC⊥BC ,AC =3BC =,点P 在棱1BB 上,且1PA PC ⊥,当1APC 的面积取最小值时,三棱锥-P ABC 的外接球的表面积为.变式56.(2024·黑龙江齐齐哈尔·高一校联考期末)已知三棱锥-P ABC 的四个顶点均在同一个球面上,底面ABC 为等腰直角三角形且4BA BC ==,若该三棱锥体积的最大值为323,则其外接球的表面积为.变式57.(2024·四川泸州·高三四川省泸县第一中学校考阶段练习)已知四棱锥S -ABCD 中,底面ABCD 为正方形,侧面SAB 为等边三角形,AB =3,则当四棱锥的体积取得最大值时,其外接球的表面积为.变式58.(2024·湖南长沙·高三宁乡一中校考阶段练习)在三棱锥-P ABC 中,PA ⊥底面ABC ,2PA =,2AB AC BC m ===,M 为AC 的中点,若三棱锥P ABM -的顶点均在球O 的球面上,D 是球O 上一点,且三棱锥-D PAC O 的体积为.变式59.(2024·江西南昌·南昌十中校考模拟预测)点A ,B ,C ,D 在同一个球的球面上,AB BC AC ===,若四面体ABCD,则这个球的表面积为.题型十六:内切球之正方体、正棱柱模型例46.(2024·广东肇庆·高一校考阶段练习)棱长为2的正方体1111ABCD A B C D -的内切球的球心为O ,则球O 的体积为()A .23πB .43πC .2πD .83π例47.(2024·河北邯郸·高一大名县第一中学校考阶段练习)已知直三棱柱111ABC A B C -存在内切球,若3,4,AB BC AB BC ==⊥,则该三棱柱外接球的表面积为()A .26πB .27πC .28πD .29π例48.(2024·山西太原·高一校考阶段练习)已知正方体的内切球(球与正方体的六个面都相切)的体积是32π3,则该正方体的体积为()A .4B .16C .8D .64变式60.(2024·全国·高一专题练习)若一个正三棱柱存在外接球与内切球,则它的外接球与内切球体积之比为()A .B .5:1C .:1D .6:1变式61.(2024·辽宁·高二沈阳二中校联考开学考试)在正三棱柱ABC A B C '''-中,D 是侧棱BB '上一点,E 是侧棱CC '上一点,若线段AD DE EA '++的最小值是在一个内切球(与该棱柱的所有面均相切),则该棱柱的外接球表面积为()A .4πB .5πC .6πD .8π变式62.(2024·全国·高一专题练习)若一个正六棱柱既有外接球又有内切球,则该正六棱柱的外接球和内切球的表面积的比值为()A .2:1B .3:2C .7:3D .7:4变式63.(2024·全国·高三专题练习)已知点O 到直三棱柱111ABC A B C -各面的距离都相等,。
高考数学外接球与内切球十大模型(例题+练习共10个专题)(学生版+解析版)
专题一 墙角模型如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点与难点,也是高考考查的一个热点.考查学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,解决这类问题的关键是抓住内接的特点,即球心到多面体的顶点的距离等于球的半径.并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.球的内切问题主要是指球外切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果外切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.当球与多面体的各个面相切时,注意球心到各面的距离相等即球的半径,求球的半径时,可用球心与多面体的各顶点连接,球的半径为分成的小棱锥的高,用体积法来求球的半径.空间几何体的外接球与内切球十大模型1.墙角模型;2.对棱相等模型;3.汉堡模型;4.垂面模型;5.切瓜模型;6.斗笠模型;7.鳄鱼模型;8.已知球心或球半径模型;9.最值模型;10.内切球模型.【方法总结】墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模型,用构造法(构造长方体)解决.外接球的直径等于长方体的体对角线长(在长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.),秒杀公式:R 2=a 2+b 2+c 24.可求出球的半径从而解决问题.有以下四种类型:【例题选讲】[例] (1)已知三棱锥A -BCD 的四个顶点A ,B ,C ,D 都在球O 的表面上,AC ⊥平面BCD ,BC ⊥CD ,且AC =3,BC =2,CD =5,则球O 的表面积为( )A .12πB .7πC .9πD .8π答案 A 解析 由AC ⊥平面BCD ,BC ⊥CD 知三棱锥A -BCD 可构造以AC ,BC ,CD 为三条棱的长方体,设球O 的半径为R ,则有(2R )2=AC 2+BC 2+CD 2=3+4+5=12,所以S 球=4πR 2=12π,故选A .(2)若三棱锥ABC S -的三条侧棱两两垂直,且2=SA ,4==SC SB ,则该三棱锥的外接球半径为( ). A .3 B .6 C .36 D .9ABC D A 1B 1C 1D 1类型ⅠA BC DA 1B 1C 1D 1类型ⅡABC D A 1B 1C 1D 1类型ⅢABC D A 1B 1C 1D 1例外型答案 A 解析 616164)2(2=++=R ,3=R ,故选A .(3)已知S ,A ,B ,C ,是球O 表面上的点,SA ⊥平面ABC ,AB ⊥BC ,SA =AB =1,BC,则球O 的表面积等于( ).A .4πB .3πC .2πD .π 答案 解析由已知,22R =, 244S R π∴==球π.(4)在正三棱锥S -ABC 中,M ,N 分别是棱SC ,BC 的中点,且AM MN ⊥,若侧棱SA =三棱锥S -ABC 外接球的表面积是________.答案 π36 解析 MN AM ⊥,MN SB //,∴SB AM ⊥, SB AC ⊥,∴⊥SB 平面SAC ,∴SA SB ⊥,SC SB ⊥, SA SB ⊥,SA BC ⊥,∴⊥SA 平面SBC ,∴SC SA ⊥,故三棱锥ABC S -的三棱条侧棱两两互相垂直,222(2)R ∴=+2+36=,即3642=R ,∴正三棱锥ABC S -外接球的表面积是π36.(5)(2019全国Ⅰ)已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为( ).A. B. C. D答案 D 解析 解法一:, PA PB PC ABC ==△为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CE AC C EF =∴⊥平面PAC ,∴PB ⊥平面PAC, APB PA PB PC ∴∠=90︒,∴===P ABC ∴-为正方体的一部分,2R,=,即344π33R V R π=∴==,故选D .解法二:设2PA PB PC x ===,, E F 分别为, PA AB 的中点,EF PB ∴∥,且12EF PB x ==,ABC△为边长为2的等边三角形,CF ∴=,又90CEF ∠=︒,12CE AE PA x ∴==,AEC △中,ABCSMN ABCP EF(解法一)AC(解法二)由余弦定理可得()2243cos 22x x EAC x+--∠=⨯⨯,作PD AC ⊥于D ,PA PC =,D ∴为AC 的中点,cos E ∠12AD AC PA x ==,2243142x x x x +-+∴=,221212 2x x x ∴+=∴==,,,PA PB PC ∴===2AB BC AC ===,, , PA PB PC ∴两两垂直,2R ∴,R ∴,34433V R ππ∴==⨯==,故选D . (6)已知二面角α-l -β的大小为π3,点P ∈α,点P 在β 内的正投影为点A ,过点A 作AB ⊥l ,垂足为点B ,点C ∈l ,BC =22,P A =23,点D ∈β,且四边形ABCD 满足∠BCD +∠DAB =π.若四面体P ACD 的四个顶点都在同一球面上,则该球的体积为________.答案 86π 解析 ∵∠BCD +∠DAB =π,∴A ,B ,C ,D 四点共圆,直径为AC ,∵P A ⊥平面β,AB ⊥l ,∴易得PB ⊥l ,即∠PBA 为二面角α-l -β的平面角,即∠PBA =π3,∵P A =23,∴BA =2,∵BC=22,∴AC =23.设球的半径为R ,则23-R 2-()32=R 2-()32,∴R =6,V =4π3(6)3=86π.【对点训练】1.点A ,B ,C ,D 均在同一球面上,且AB ,AC ,AD 两两垂直,且AB =1,AC =2,AD =3,则该球的 表面积为( )A .7πB .14πC .72πD .714π32.等腰△ABC 中,AB =AC =5,BC =6,将△ABC 沿BC 边上的高AD 折成直二面角B -AD -C ,则三棱 锥B -ACD 的外接球的表面积为( )A .5πB .203π C .10π D .34π3.已知球O 的球面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体 积等于________.4.已知四面体P -ABC 四个顶点都在球O 的球面上,若PB ⊥平面ABC ,AB ⊥AC ,且AC =1,AB =PB =2,则球O 的表面积为________.5.三棱锥P -ABC 中,△ABC 为等边三角形,P A =PB =PC =3,P A ⊥PB ,三棱锥P -ABC 的外接球的体 积为( )A .272πB .2732π C .273π D .27π6.在空间直角坐标系Oxyz 中,四面体ABCD 各顶点的坐标分别为A (2,2,1),B (2,2,-1),C (0,2, 1),D (0,0,1),则该四面体外接球的表面积是( )A .16πB .12πC .43πD .6π7.在平行四边形ABCD 中,∠ABD =90°,且AB =1,BD =2,若将其沿BD 折起使平面ABD ⊥平面BC D ,则三棱锥A -BDC 的外接球的表面积为( D )A .2πB .8πC .16πD .4π8.在正三棱锥S-ABC中,点M是SC的中点,且AM⊥SB,底面边长AB=22,则正三棱锥S-ABC的外接球的表面积为()A.6πB.12πC.32πD.36π9.在古代将四个面都为直角三角形的四面体称之为鳖臑,已知四面体A-BCD为鳖臑,AB⊥平面BCD,且AB=BC=36CD,若此四面体的体积为833,则其外接球的表面积为________.10.在长方体ABCD-A1B1C1D1中,底面ABCD是边长为32的正方形,AA1=3,E是线段A1B1上一点,若二面角A-BD-E的正切值为3,则三棱锥A-A1D1E外接球的表面积为________.专题一 墙角模型如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点与难点,也是高考考查的一个热点.考查学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,解决这类问题的关键是抓住内接的特点,即球心到多面体的顶点的距离等于球的半径.并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.球的内切问题主要是指球外切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果外切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.当球与多面体的各个面相切时,注意球心到各面的距离相等即球的半径,求球的半径时,可用球心与多面体的各顶点连接,球的半径为分成的小棱锥的高,用体积法来求球的半径.空间几何体的外接球与内切球十大模型1.墙角模型;2.对棱相等模型;3.汉堡模型;4.垂面模型;5.切瓜模型;6.斗笠模型;7.鳄鱼模型;8.已知球心或球半径模型;9.最值模型;10.内切球模型.【方法总结】墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模型,用构造法(构造长方体)解决.外接球的直径等于长方体的体对角线长(在长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.),秒杀公式:R 2=a 2+b 2+c 24.可求出球的半径从而解决问题.有以下四种类型:【例题选讲】[例] (1)已知三棱锥A -BCD 的四个顶点A ,B ,C ,D 都在球O 的表面上,AC ⊥平面BCD ,BC ⊥CD ,且AC =3,BC =2,CD =5,则球O 的表面积为( )A .12πB .7πC .9πD .8π答案 A 解析 由AC ⊥平面BCD ,BC ⊥CD 知三棱锥A -BCD 可构造以AC ,BC ,CD 为三条棱的长方体,设球O 的半径为R ,则有(2R )2=AC 2+BC 2+CD 2=3+4+5=12,所以S 球=4πR 2=12π,故选A .(2)若三棱锥ABC S -的三条侧棱两两垂直,且2=SA ,4==SC SB ,则该三棱锥的外接球半径为( ). A .3 B .6 C .36 D .9ABC D A 1B 1C 1D 1类型ⅠA BC DA 1B 1C 1D 1类型ⅡABC D A 1B 1C 1D 1类型ⅢABC D A 1B 1C 1D 1例外型答案 A 解析 616164)2(2=++=R ,3=R ,故选A .(3)已知S ,A ,B ,C ,是球O 表面上的点,SA ⊥平面ABC ,AB ⊥BC ,SA =AB =1,BC,则球O 的表面积等于( ).A .4πB .3πC .2πD .π答案 解析由已知,22R =, 244S R π∴==球π.(4)在正三棱锥S -ABC 中,M ,N 分别是棱SC ,BC 的中点,且AM MN ⊥,若侧棱SA =三棱锥S -ABC 外接球的表面积是________.答案 π36 解析 MN AM ⊥,MN SB //,∴SB AM ⊥, SB AC ⊥,∴⊥SB 平面SAC ,∴SA SB ⊥,SC SB ⊥, SA SB ⊥,SA BC ⊥,∴⊥SA 平面SBC ,∴SC SA ⊥,故三棱锥ABC S -的三棱条侧棱两两互相垂直,222(2)R ∴=+2+36=,即3642=R ,∴正三棱锥ABC S -外接球的表面积是π36.(5)(2019全国Ⅰ)已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为( ).A. B. C. D答案 D 解析 解法一:, PA PB PC ABC ==△为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CEAC C EF =∴⊥平面PAC ,∴PB ⊥平面PAC, APB PA PB PC ∴∠=90︒,∴===P ABC∴-为正方体的一部分,2R,即344π33R V R π∴===,故选D .解法二:设2PA PB PC x ===,, E F 分别为, PA AB 的中点,EF PB ∴∥,且12EF PB x ==,ABC △为边长为2的等边三角形,CF ∴=,又90CEF ∠=︒,12CE AE PA x ∴==,AEC △中,ABCSMN ACP EF(解法一)AC(解法二)由余弦定理可得()2243cos 22x x EAC x+--∠=⨯⨯,作PD AC ⊥于D ,PA PC =,D ∴为AC 的中点,cos E ∠12AD AC PA x ==,2243142x x x x +-+∴=,221212 2x x x ∴+=∴==,,,PA PB PC ∴===2AB BC AC ===,, , PA PB PC ∴两两垂直,2R ∴,R ∴,34433V R ππ∴==⨯==,故选D . (6)已知二面角α-l -β的大小为π3,点P ∈α,点P 在β 内的正投影为点A ,过点A 作AB ⊥l ,垂足为点B ,点C ∈l ,BC =22,P A =23,点D ∈β,且四边形ABCD 满足∠BCD +∠DAB =π.若四面体P ACD 的四个顶点都在同一球面上,则该球的体积为________.答案 86π 解析 ∵∠BCD +∠DAB =π,∴A ,B ,C ,D 四点共圆,直径为AC ,∵P A ⊥平面β,AB ⊥l ,∴易得PB ⊥l ,即∠PBA 为二面角α-l -β的平面角,即∠PBA =π3,∵P A =23,∴BA =2,∵BC=22,∴AC =23.设球的半径为R ,则23-R 2-()32=R 2-()32,∴R =6,V =4π3(6)3=86π.【对点训练】1.点A ,B ,C ,D 均在同一球面上,且AB ,AC ,AD 两两垂直,且AB =1,AC =2,AD =3,则该球的 表面积为( )A .7πB .14πC .72πD .714π31.答案 B 解析 三棱锥A -BCD 的三条侧棱两两互相垂直,所以把它补为长方体,而长方体的体对角 线长为其外接球的直径.所以长方体的体对角线长是12+22+32=14,它的外接球半径是142,外接球的表面积是4π×⎝⎛⎭⎫1422=14π.2.等腰△ABC 中,AB =AC =5,BC =6,将△ABC 沿BC 边上的高AD 折成直二面角B -AD -C ,则三棱 锥B -ACD 的外接球的表面积为( )A .5πB .203π C .10π D .34π2.答案 D 解析 依题意,在三棱锥B -ACD 中,AD ,BD ,CD 两两垂直,且AD =4,BD =CD =3, 因此可将三棱锥BACD 补形成一个长方体,该长方体的长、宽、高分别为3,3,4,且其外接球的直径2R =32+32+42=34,故三棱锥B -ACD 的外接球的表面积为4πR 2=34π3.已知球O 的球面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体 积等于________. 3.答案6π 解析 如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,则正方体的体对角线长即为球O 的直径.∴CD =(2)2+(2)2+(2)2=2R ,因此R =62,故球O 的体积V =4πR 33=6π.4.已知四面体P -ABC 四个顶点都在球O 的球面上,若PB ⊥平面ABC ,AB ⊥AC ,且AC =1,AB =PB =2,则球O 的表面积为________.4.答案 9π 解析 由PB ⊥平面ABC ,AB ⊥AC ,可得图中四个直角三角形,且PC 为△PBC ,△P AC 的公共斜边,故球心O 为PC 的中点,由AC =1,AB =PB =2,PC =3,∴球O 的半径为32,其表面积为9π.5.三棱锥P -ABC 中,△ABC 为等边三角形,P A =PB =PC =3,P A ⊥PB ,三棱锥P -ABC 的外接球的体 积为( )A .272πB .2732π C .273π D .27π5.答案 B 解析 因为三棱锥P -ABC 中,△ABC 为等边三角形,P A =PB =PC =3,所以△P AB ≌△PBC ≌△P AC .因为P A ⊥PB ,所以P A ⊥PC ,PC ⊥PB .以P A ,PB ,PC 为过同一顶点的三条棱作正方体(如图所示),则正方体的外接球同时也是三棱锥P -ABC 的外接球.因为正方体的体对角线长为32+32+32=33,所以其外接球半径R =332.因此三棱锥P -ABC 的外接球的体积V =4π3×⎝⎛⎭⎫3323=2732π,故选B .6.在空间直角坐标系Oxyz 中,四面体ABCD 各顶点的坐标分别为A (2,2,1),B (2,2,-1),C (0,2, 1),D (0,0,1),则该四面体外接球的表面积是( )A .16πB .12πC .43πD .6π6.答案 B 解析 在空间直角坐标系内画出A ,B ,C ,D 四个点,可得BA ⊥AC ,DC ⊥平面ABC , 因此可以把四面体ABCD 补成一个棱为2的正方体,其外接球的半径R =22+22+222= 3.所以外接球的表面积为4πR 2=12π,故选B.7.在平行四边形ABCD 中,∠ABD =90°,且AB =1,BD =2,若将其沿BD 折起使平面ABD ⊥平面BCD ,则三棱锥A -BDC 的外接球的表面积为( D )A .2πB .8πC .16πD .4π 7.答案 D 解析 画出对应的平面图形和立体图形,如图所示.AAB BC CD DO在立体图形中,设AC 的中点为O ,连接OB ,OD ,因为平面ABD ⊥平面BCD ,CD ⊥BD ,所以CD ⊥平面ABD ,又AB ⊥BD ,所以AB ⊥平面BCD ,所以△CDA 与△CBA 都是以AC 为斜边的直角三角形,所以OA =OC =OB =OD ,所以点O 为三棱锥A -BDC 的外接球的球心.于是,外接球的半径r =12AC=12CD 2+DA 2=1212+(3)2=1.故外接球的表面积S =4πr 2=4π.故选D .8.在正三棱锥S -ABC 中,点M 是SC 的中点,且AM ⊥SB ,底面边长AB =22,则正三棱锥S -ABC 的 外接球的表面积为( )A .6πB .12πC .32πD .36π8.答案 B 解析 因为三棱锥S -ABC 为正三棱锥,所以SB ⊥AC ,又AM ⊥SB ,AC ∩AM =A ,AC ,AM ⊂平面SAC ,所以SB ⊥平面SAC ,所以SB ⊥SA ,SB ⊥SC ,同理SA ⊥SC ,即SA ,SB ,SC 三线两两垂直,且AB =22,所以SA =SB =SC =2,所以(2R )2=3×22=12,所以球的表面积S =4πR 2=12π,故选B.9.在古代将四个面都为直角三角形的四面体称之为鳖臑,已知四面体A -BCD 为鳖臑,AB ⊥平面BCD , 且AB =BC =36CD ,若此四面体的体积为833,则其外接球的表面积为________. 9.答案 56π 解析 四面体A -BCD 为鳖臑,则由题意可知△BCD 中只能∠BCD 为直角,则四面体A -BCD 的体积为13×12×CD ·36CD ·36CD =833,解得CD =43.易知外接球的球心为AD 的中点,易求得AD =214,所以球的半径为14,所以球的表面积为56π.10.在长方体ABCD -A 1B 1C 1D 1中,底面ABCD 是边长为32的正方形,AA 1=3,E 是线段A 1B 1上一点,若二面角A -BD -E 的正切值为3,则三棱锥A -A 1D 1E 外接球的表面积为________.10.答案 35π 解析 过点E 作EF ∥AA 1交AB 于F ,过F 作FG ⊥BD 于G ,连接EG ,则∠EGF 为二面角A -BD -E 的平面角,∵tan ∠EGF =3,∴EFFG=3,∵EF =AA 1=3,∴FG =1,则BF =2=B 1E ,∴A 1E =22,则三棱锥A -A 1D 1E 外接球的直径为8+9+18=35,因此三棱锥A -A 1D 1E 外接球的表面积S =35π.专题二 对棱相等模型【方法总结】对棱相等模型是三棱锥的三组对棱长分别相等模型,用构造法(构造长方体)解决.外接球的直径等于长方体的体对角线长,即2R =长方体的长、宽、高分别为a 、b 、c ).秒杀公式:R 2=x 2+y 2+z 28(三棱锥的三组对棱长分别为x 、y 、z ).可求出球的半径从而解决问题.【例题选讲】[例] (1)________. 答案解析 这是特殊情况,但也是对棱相等的模式,放入长方体中,32=R ,23=R ,ππ2383334=⋅=V .(2)在三棱锥A -BCD 中,AB =CD =2,AD =BC =3,AC =BD =4,则三棱锥BCD A -外接球的表面积为________.答案292π 解析 构造长方体,三个长度为三对面的对角线长,设长宽高分别为c b a ,,,则922=+b a ,422=+c b ,1622=+a c ∴291649)(2222=++=++c b a ,291649)(2222=++=++c b a ,229222=++c b a ,22942=R ,π229=S . (3)在三棱锥A -BCD 中,AB =CD =6,AC =BD =AD =BC =5,则该三棱锥的外接球的体积为____. 答案43436π解析 依题意得,该三棱锥的三组对棱分别相等,因此可将该三棱锥补形成一个长方体,设该长方体的长、宽、高分别为a 、b 、c ,且其外接球的半径为R ,则⎩⎪⎨⎪⎧a 2+b 2=62,b 2+c 2=52,c 2+a 2=52,得a 2+b 2+c 2=43,即(2R )2=a 2+b 2+c 2=43,易知432R =,即为该三棱锥的外接球的半径,所以该三棱锥的外接球的表面积为34434336R ππ=.(4)在正四面体A BCD -中,E 是棱AD 的中点,P 是棱AC 上一动点,BP PE +,则该正四面体的外接球的体积是( )A B .6π C D .32π AB C D A 1B 1C 1D 1答案 A 解析 将侧面ABC ∆和ACD ∆展成平面图形,如图所示:设正四面体的棱长为a ,则BP PE +的最小值为1cos1202BE a a ===,2a ∴=.在正四面体A BCD -的边长为2,外接球的半径R ==,外接球的体积343V R π=.(5)已知三棱锥A BCD -,三组对棱两两相等,且1AB CD ==,AD BC ==A BCD -的外接球表面积为92π.则AC =________.答案解析 将四面体A BCD -放置于长方体中,四面体A BCD -的顶点为长方体八个顶点中的四个,∴长方体的外接球就是四面体A BCD -的外接球,1AB CD ==,AD BC ==棱两两相等,∴设AC BD x ==,可得外接球的直径2R =R =,三棱锥A BCD -的外接球表面积为92π,2942R ππ∴=,解得4R ==,解之得x AC BD == 【对点训练】1.已知正四面体ABCD 的外接球的体积为86π,则这个四面体的表面积为________.2.表面积为( )A .B .12πC .8πD .3.已知四面体ABCD 满足AB =CD =6,AC =AD =BC =BD =2,则四面体ABCD 的外接球的表面积是 ________.4.三棱锥中S -ABC ,SA =BC =13,SB =AC =5,SC =AB =10.则三棱锥的外接球的表面积为______. 5.已知一个四面体ABCD 的每个顶点都在表面积为9π的球O 的表面上,且AB =CD =a ,AC =AD =BC =BD =5,则a =________.6.正四面体ABCD 中,E 是棱AD 的中点,P 是棱AC 上一动点,BP PE + 体的外接球表面积是( )A .12πB .32πC .8πD . 24π专题二 对棱相等模型【方法总结】对棱相等模型是三棱锥的三组对棱长分别相等模型,用构造法(构造长方体)解决.外接球的直径等于长方体的体对角线长,即2R =长方体的长、宽、高分别为a 、b 、c ).秒杀公式:R 2=x 2+y 2+z 28(三棱锥的三组对棱长分别为x 、y 、z ).可求出球的半径从而解决问题.【例题选讲】[例] (1)________. 答案解析 这是特殊情况,但也是对棱相等的模式,放入长方体中,32=R ,23=R ,ππ2383334=⋅=V .(2)在三棱锥A -BCD 中,AB =CD =2,AD =BC =3,AC =BD =4,则三棱锥BCD A -外接球的表面积为________.答案292π 解析 构造长方体,三个长度为三对面的对角线长,设长宽高分别为c b a ,,,则922=+b a ,422=+c b ,1622=+a c ∴291649)(2222=++=++c b a ,291649)(2222=++=++c b a ,229222=++c b a ,22942=R ,π229=S . (3)在三棱锥A -BCD 中,AB =CD =6,AC =BD =AD =BC =5,则该三棱锥的外接球的体积为____. 答案43436π解析 依题意得,该三棱锥的三组对棱分别相等,因此可将该三棱锥补形成一个长方体,设该长方体的长、宽、高分别为a 、b 、c ,且其外接球的半径为R ,则⎩⎪⎨⎪⎧a 2+b 2=62,b 2+c 2=52,c 2+a 2=52,得a 2+b 2+c 2=43,即(2R )2=a 2+b 2+c 2=43,易知432R =,即为该三棱锥的外接球的半径,所以该三棱锥的外接球的表面积为34434336R ππ=.(4)在正四面体A BCD -中,E 是棱AD 的中点,P 是棱AC 上一动点,BP PE +,则该正四面体的外接球的体积是( )A B .6π C D .32π AB C D A 1B 1C 1D 1答案 A 解析 将侧面ABC ∆和ACD ∆展成平面图形,如图所示:设正四面体的棱长为a ,则BP PE +的最小值为1cos1202BE a a ==,2a ∴=.在正四面体A BCD -的边长为2,外接球的半径R =,外接球的体积343V R π=.(5)已知三棱锥A BCD -,三组对棱两两相等,且1AB CD ==,AD BC ==A BCD -的外接球表面积为92π.则AC =________.答案解析 将四面体A BCD -放置于长方体中,四面体A BCD -的顶点为长方体八个顶点中的四个,∴长方体的外接球就是四面体A BCD -的外接球,1AB CD ==,AD BC ==棱两两相等,∴设AC BD x ==,可得外接球的直径2R =R =,三棱锥A BCD -的外接球表面积为92π,2942R ππ∴=,解得R ==,解之得x AC BD == 【对点训练】1.已知正四面体ABCD 的外接球的体积为86π,则这个四面体的表面积为________.1.答案 163 解析 将正四面体ABCD 放在一个正方体内,设正方体的棱长为a ,设正四面体ABCD 的外接球的半径为R ,则43πR 3=86π,解得R =6,因为正四面体ABCD 的外接球和正方体的外接球是同一个球,则有3a =2R =26,所以a =22.而正四面体ABCD 的每条棱长均为正方体的面对角线长,所以正四面体ABCD 的棱长为2a =4,因此,这个正四面体的表面积为4×12×42×sin π3=163.2.表面积为( )A .B .12πC .8πD .2.答案 B 解析 表面积为将正四面体补成一个正方体,则正方体的棱长为2,正方体的对角线长为正四面体的外接球的直径为正方体的对角线长,∴外接球的表面积的值为24(3)12ππ=.3.已知四面体ABCD 满足AB =CD =6,AC =AD =BC =BD =2,则四面体ABCD 的外接球的表面积是 ________.3.答案 7π 解析 在四面体ABCD 中,取线段CD 的中点为E ,连接AE ,BE .∵AC =AD =BC =BD =2,∴AE ⊥CD ,BE ⊥CD .在Rt △AED 中,CD =6,∴AE =102.同理BE =102,取AB 的中点为F ,连接EF .由AE =BE ,得EF ⊥AB .在Rt △EF A 中,∵AF =12AB =62,AE =102,∴EF =1,取EF 的中点为O ,连接OA ,则OF =12.在Rt △OF A 中,OA =72.同理得OA =OB =OC =OD ,∴该四面体的外接球的半径是72,∴外接球的表面积是7π. 4.三棱锥中S -ABC ,SA =BC =13,SB =AC =5,SC =AB =10.则三棱锥的外接球的表面积为______. 4.答案 14π 解析 如图,在长方体中,设AE =a ,BE =b ,CE =c .则SC =AB =a 2+b 2=10,SA =BC =b 2+c 2=13,SB =AC =a 2+c 2=5,从而a 2+b 2+c 2=14=(2R )2,可得S =4πR 2=14π.故所求三棱锥的外接球的表面积为14π.5.已知一个四面体ABCD 的每个顶点都在表面积为9π的球O 的表面上,且AB =CD =a ,AC =AD =BC =BD =5,则a =________.5.答案 22 解析 由题意可知,四面体ABCD 的对棱都相等,故该四面体可以通过补形补成一个长 方体,如图所示.设AF =x ,BF =y ,CF =z ,则x 2+z 2=y 2+z 2=5,又4π×⎝ ⎛⎭⎪⎫x 2+y 2+z 222=9π,可得x =y =2,∴a =x 2+y 2=22.6.正四面体ABCD 中,E 是棱AD 的中点,P 是棱AC 上一动点,BP PE + 体的外接球表面积是( )A .12πB .32πC .8πD .24π6.答案 A 解析 将三角形ABC 与三角形ACD 展成平面,BP PE +的最小值,即为BE 两点之间连线的距离,则BE =2AB a =,则120BAD ∠=︒,由余弦定理221414222a a a a +--=,解得a =,则正四面体棱长为4倍,所以,设外接球半径为R ,则223R =,则表面积244312S R πππ===.专题三 汉堡模型【方法总结】汉堡模型是直棱柱的外接球、圆柱的外接球模型,用找球心法(多面体的外接球的球心是过多面体的两个面的外心且分别垂直这两个面的直线的交点.一般情况下只作出一个面的垂线,然后设出球心用算术方法或代数方法即可解决问题.有时也作出两条垂线,交点即为球心.)解决.以直三棱柱为例,模型如下图,由对称性可知球心O 的位置是△ABC 的外心O 1与△A 1B 1C 1的外心O 2连线的中点,算出小圆O 1的半径AO 1=r ,OO 1=2h ,2224h R r ∴=+.【例题选讲】[例] (1) (2013辽宁)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上.若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( ).AB. C .132D. 答案 C 解析 如图所示,由球心作平面ABC 的垂线,则垂足为BC 的中点M .又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =⎝⎛⎭⎫522+62=132.另解 过C 点作AB 的平行线,过B 点作AC 的平行线,交点为D ,同理过C 1作A 1B 1的平行线,过B 1作A 1C 1的平行线,交点为D 1,连接DD 1,则ABCD -A 1B 1C 1D 1恰好成为球的一个内接长方体,故球的半径r 132=.故选C . (2)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( ).O 1C 1AA 1B 1O BC Rrh2hO 2A .2a πB .273a πC .2113a πD .237a π答案 B 解析 222222274312a a R OB OE BE a ==+=+=,22743S a a ππ∴==.故选B .(3)(2009全国Ⅰ)直三棱柱ABC -A 1B 1C 1的各顶点都在同一球面上,若AB =AC =AA 1=2,∠BAC =120°,则此球的表面积等于( ).A .10πB .20πC .30πD .40π答案 B 解析 如图,先由余弦定理求出BC =23,再由正弦定理求出r =AO 1=2,外接球的直径R =12+22=5,所以该球的表面积为4πR 2=20π.故选B .(4)已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于( )A .4πB .16π3C .32π3D .16π答案 D 解析 由题意知圆柱的中心O 为这个球的球心,于是,球的半径r =OB =OA 2+AB 2=12+(3)2=2.故这个球的表面积S =4πr 2=16π.故选D .(5)若一个圆柱的表面积为12π,则该圆柱的外接球的表面积的最小值为( )A .12)πB .C .3)πD .16π 答案 A 解析 设圆柱的底面半径为r ,高为h ,则22212r rh πππ+=,则6h r r=-.设该圆柱的外接球的半径为R ,则222222222165959()()32332444h R r r r r r r r r=+=+-=+--=,当且仅当22594r r=,即4365r =时,等号成立.故该圆柱的外接球的表面积的最小值为43)12)ππ=-. 【对点训练】1.一直三棱柱的每条棱长都是2,且每个顶点都在球O 的表面上,则球O 的表面积为( ) A .28π3 B .22π3 C .43π3D .7π2.一个正六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该 六棱柱的体积为98,底面周长为3,则这个球的体积为________.3.已知正三棱柱ABC -A 1B 1C 1中,底面积为334,一个侧面的周长为63,则正三棱柱ABC -A 1B 1C 1外接球的表面积为( )A .4πB .8πC .16πD .32π4.已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =1,∠BAC =60°,AA 1=2,则该三棱柱的外接球的体积为( )A .40π3B .4030π27C .32030π27D .20π5.已知矩形ABCD 中,AB =2AD =2,E ,F 分别为AB ,CD 的中点,将四边形AEFD 沿EF 折起,使二 面角A -EF -C 的大小为120°,则过A ,B ,C ,D ,E ,F 六点的球的表面积为( ) A .6π B .5π C .4π D .3π6.已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的表面上,若AB =AC =1,AA 1=23,∠BAC =2π3,则球O 的体积为( )A .32π3B .3πC .4π3D .8π7.有一个圆锥与一个圆柱的底面半径相等,此圆锥的母线与底面所成角为60︒,若此圆柱的外接球的表面积是圆锥的侧面积的4倍,则此圆柱的高是其底面半径的( )A B .2倍 C . D .3倍 8.正四棱柱1111ABCD A B C D -中,2AB =,二面角11A BD C --的大小为3π,则该正四棱柱外接球的表面积为( )A .12πB .14πC .16πD .18π9.正四棱柱1111ABCD A B C D -中,AB =12AA =,设四棱柱的外接球的球心为O ,动点P 在正方 形ABCD 的边上,射线OP 交球O 的表面点M ,现点P 从点A 出发,沿着A B C D A →→→→运动一次,则点M 经过的路径长为________.10.已知圆柱的上底面圆周经过正三棱锥P ABC -的三条侧棱的中点,下底面圆心为此三棱锥底面中心O .若三棱锥P ABC -的高为该圆柱外接球半径的2倍,则该三棱锥的外接球与圆柱外接球的半径的比值为________.专题三 汉堡模型【方法总结】汉堡模型是直棱柱的外接球、圆柱的外接球模型,用找球心法(多面体的外接球的球心是过多面体的两个面的外心且分别垂直这两个面的直线的交点.一般情况下只作出一个面的垂线,然后设出球心用算术方法或代数方法即可解决问题.有时也作出两条垂线,交点即为球心.)解决.以直三棱柱为例,模型如下图,由对称性可知球心O 的位置是△ABC 的外心O 1与△A 1B 1C 1的外心O 2连线的中点,算出小圆O 1的半径AO 1=r ,OO 1=2h ,2224h R r ∴=+.【例题选讲】[例] (1) (2013辽宁)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上.若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( ).A.2 B. C .132D. 答案 C 解析 如图所示,由球心作平面ABC 的垂线,则垂足为BC 的中点M .又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =⎝⎛⎭⎫522+62=132.另解 过C 点作AB 的平行线,过B 点作AC 的平行线,交点为D ,同理过C 1作A 1B 1的平行线,过B 1作A 1C 1的平行线,交点为D 1,连接DD 1,则ABCD -A 1B 1C 1D 1恰好成为球的一个内接长方体,故球的半径r 132=.故选C . (2)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( ).A .2a πB .273a πC .2113a πD .237a πO 1C 1AA 1B 1O BC Rrh2hO 2答案 B 解析 222222274312a a R OB OE BE a ==+=+=,22743S a a ππ∴==.故选B .(3)(2009全国Ⅰ)直三棱柱ABC -A 1B 1C 1的各顶点都在同一球面上,若AB =AC =AA 1=2,∠BAC =120°,则此球的表面积等于( ).A .10πB .20πC .30πD .40π答案 B 解析 如图,先由余弦定理求出BC =23,再由正弦定理求出r =AO 1=2,外接球的直径R =12+22=5,所以该球的表面积为4πR 2=20π.故选B .(4)已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于( )A .4πB .16π3C .32π3D .16π答案 D 解析 由题意知圆柱的中心O 为这个球的球心,于是,球的半径r =OB =OA 2+AB 2=12+(3)2=2.故这个球的表面积S =4πr 2=16π.故选D .(5)若一个圆柱的表面积为12π,则该圆柱的外接球的表面积的最小值为( )A .12)πB .C .3)πD .16π 答案 A 解析 设圆柱的底面半径为r ,高为h ,则22212r rh πππ+=,则6h r r=-.设该圆柱的外接球的半径为R ,则222222222165959()()32332444h R r r r r r r r r=+=+-=+--=,当且仅当22594r r=,即4365r =时,等号成立.故该圆柱的外接球的表面积的最小值为43)12)ππ=-. 【对点训练】1.一直三棱柱的每条棱长都是2,且每个顶点都在球O 的表面上,则球O 的表面积为( ) A .28π3 B .22π3 C .43π3D .7π1.答案 A 解析 由题知此直棱柱为正三棱柱ABC -A 1B 1C 1,设其上下底面中心为O ′,O 1,则外接球 的球心O 为线段O ′O 1的中点,∵AB =2,∴O ′A =33AB =233,OO ′=12O ′O 1=1,∴OA =O ′O 2+O ′A 2=213,因此,它的外接球的半径为213,故球O 的表面积为28π3.故选A . 2.一个正六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该。
高中数学 空间几何体的外接球与内切球 练习题(含答案)
八个有趣模型——搞定空间几何体的外接球与内切球球作为立体几何中重要的旋转体之一,成为考查的重点.要熟练掌握基本的解题技巧.还有球的截面的性质的运用,特别是其它几何体的内切球与外接球类组合体问题,以及与球有关的最值问题,更应特别加以关注的.试题一般以小题的形式出现,有一定难度.解决问题的关键是画出正确的截面,把空间“切接”问题转化为平面“问题”处理.类型一、墙角模型(三条线两个垂直,不找球心的位置即可求出球半径)图2图3方法:找三条两两垂直的线段,直接用公式2222)2(c b a R ++=,即2222c b a R ++=,求出R 例1 (1)已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是( C ) A .π16 B .π20C .π24D .π32 (2)若三棱锥的三个侧面两垂直,且侧棱长均为3,则其外接球的表面积是 π9 (3)在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且MN AM ⊥,若侧棱SA =,则正三棱锥ABC S -外接球的表面积是 。
π36(4)在四面体S ABC -中,ABC SA 平面⊥,,1,2,120====∠︒AB AC SA BAC 则该四面体的外接球的表面积为( D )π11.A π7.Bπ310.C π340.D (5)如果三棱锥的三个侧面两两垂直,它们的面积分别为6、4、3,那么它的外接球的表面积是 29π(6)已知某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几何体外接球的体积为2类型二、垂面模型(一条直线垂直于一个平面) 1.题设:如图5,⊥PA 平面ABC 解题步骤:第一步:将ABC ∆画在小圆面上,A 为小圆直径的一个端点,作小圆的直径AD ,连接PD ,则PD 必过球心O ;第二步:1O 为ABC ∆的外心,所以⊥1OO 平面ABC ,算出小圆1O 的半径r D O =1(三角形的外接圆直径算法:利用正弦定理,得r C c B b A a 2sin sin sin ===),PA OO 211=; 第三步:利用勾股定理求三棱锥的外接球半径:①222)2()2(r PA R +=⇔22)2(2r PA R +=;图5②2122OO r R +=⇔212OO r R +=2.题设:如图6,7,8,P 的射影是ABC ∆的外心⇔三棱锥ABC P -的三条侧棱相等⇔三棱锥ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的顶点图6PADO 1OCB图7-1PAO 1O CB图7-2PAO 1O CB图8PAO 1OCB图8-1DPOO 2ABC图8-2POO 2ABC图8-3DPOO 2AB解题步骤:第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线;第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高);第三步:勾股定理:21212O O A O OA +=⇒222)(r R h R +-=,解出R方法二:小圆直径参与构造大圆。
高三数学理科综合内切球和外接球问题附习题
一、如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,有关多面体外接球的问题,是立体几何的一个重点,也是高考这个球称为多面体的外接球 考查的一个热点。
)(公式法一、直接法 -----------------------、求正方体的外接球的有关问题 1.则该球的表面积为 1若棱长为3的正方体的顶点都在同一球面上,例 27.解 析:球的半径可转化为先求正方体的体对角线长,再计算半径 .故表面积为24,则该球一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为例 234 __________ 的体积为、求长方体的外接球的有关问题2年天津高考题)一个长方体的各顶点均在同一球面上,且一个顶点上的三,则此球的表面积为1414 .,故球的表面积为解析:体对角线正好为球的直径。
长方体体对角线长为例4、已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为.)(C32242016 D.B. A.C. 解析:长、宽、高分别为2, 2, 4高考数学中的内切球和外接球问题有关外接球的问题 2007 例 3 ( 2,31,.条棱长分别为求多面体的外接球的有关问题3.一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为,底面周长为3,则这个球的体积为3, 6x1 ,x _ 2 3戲6 xh, i . 3h84 x h解设正六棱柱的底面边长为,则有,高为_ £13 r d22「.外接球的半径.•••正六棱柱的底面圆的半径,球心到底面的距离4 V 球 ___ 221 dR r3..222d R r.小结本题是运用公式求球的半径的,该公式是求球的半径的常用公式)补形法二、构造法(__________________、构造正方体1讨丨3,则其外接球的表面积是例5若三棱锥的三条侧棱两两垂直,且侧棱长均为9 _________ ._______ 广3于是正方体的外接球就是三棱锥把这个三棱锥可以补成一个棱长为的正方体,则有.•••故表面积.cb、、a,则就一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为小结于是长方体的体对角线的长就是该三棱锥的外接球的直可以将这个三棱锥补成一个长方体,222cabR2R.设其外接球的半径为.径,则有岀现“墙角”结构利用补形知识,联系长方体。
高中多面体的外接球和内切球(含解析)
蹴鞠(如图所示),又名蹴球、蹴圆、筑球、踢圆等,蹴有用脚蹴、踢的含义,鞠最早系外包皮革、内实米糠的球.因而蹴鞠就是指古人以脚蹴、塌、踢皮球的活动,类似今日的足球.2006年5月20日,蹴鞠已作为非物质文化遗产经国务院批准列入第一批国家非物质文化遗传名录.已知某蹴鞠的表面上有四个点S 、A 、B 、C ,满足S ABC -为正三棱锥,M 是SC 的中点,且AM SB ⊥,侧棱2SA =,则该蹴鞠的表面积为( )A .6πB .12πC .32πD .36π【答案】B【详解】取AC 中点N ,连接BN 、SN ,N 为AC 中点,SA SC =,AC SN ∴⊥,同理AC BN ⊥,SN BN N =,AC ∴⊥平面SBN ,SB ⊂平面SBN ,AC SB ∴⊥,SB AM ⊥且AC AM A ⋂=,SB ∴⊥平面SAC ,SA 、SC ⊂平面SAC ,SA SB ∴⊥,SB SC ⊥,三棱锥S ABC -是正三棱锥,SA ∴、SB 、SC 三条侧棱两两互相垂直.将正三棱锥S ABC -补成正方体SADB CEFG -,如下图所示:因为2SA =,所以正方体SADB CEFG -的体对角线长为323SF SA ==,所以,正三棱锥S ABC -的外接球的直径223R =,所以,正三棱锥S ABC -的外接球的表面积是()224212S R R πππ==⨯=,ABC 与SBC 均为面积是 D .6423π,ABC 与, SAC ∴是等腰三角形,又SA ,22R ∴=()334464222333V R πππ∴===.2.已知圆锥的顶点和底面圆周都在球O 面上,圆锥的侧面展开图的圆心角为23π,面积为3π,则球O 的表面积等于( ) A .818πB .812πC .1218πD .1212π【答案】A【详解】设圆锥母线为l ,底面半径为r ,则2223133r l l ππππ⎧=⎪⎪⎨⎪⨯=⎪⎩,解得31l r =⎧⎨=⎩,如图,ABC 是圆锥轴截面,外接圆O 是球的大圆,设球半径为R ,1cos 3r ABC l ∠==,22sin 3ABC ∠=, 3922sin 4223l R ABC ===∠,928R =,所以球表面积为2292814488S R πππ⎛⎫==⨯= ⎪ ⎪⎝⎭.3.为了给数学家帕西奥利的《神奇的比例》画插图,列奥纳多·达·芬奇给他绘制了一些多面体,如图的多面体就是其中之一.它是由一个正方体沿着各棱的中点截去八个三棱锥后剩下的部分,这个多面体的各棱长均为2,则该多面体外接球的体积等于( )A .16πB .8πC .16π3D .32π3【答案】D 【详解】如图,把该多面体补形为正方体,由所给多面体的棱长为2,得正方体的棱长为22,正方体的中心即为多面体的外接球球心,球心到多面体顶点的距离为()()22222+=,即所求外接球的半径2R =,其体积3432ππ33V R ==. 4.已知各顶点都在同一球面上的正四棱柱的底面边长为a ,高为h ,球的体积为86π,则这个正四棱柱的侧面积的最大值为( ) A .482 B .242C .962D .122【答案】B【详解】设球的半径为R ,则34863R ππ=,解得6R =.如图, 正四棱柱底面对角线2BD a =,在Rt D DB '中,由2222(2)(2)4a h R R +==,22(2)2422a h ah +=≥,62ah ∴≤,则侧面积4242S ah =≤,即侧面积的最大值为242.5.长方体1111ABCD A B C D -各顶点都在球O 面上,1::1:1:2AB AD AA =,,A B 两点球面距离m ,A 、1D 两点球面距离n ,则mn值( ) A .33B .3C .12D .2【答案】C【解析】如图所示:设AB a ,则AD a =,12AA a =⇒球的直径222222R a a a a =++=,即R a =,则OAB 是等边三角形11263m a a ππ⇒=⋅=,在1AOD 中,1OA OD a ==,13AD a =,1112023AOD n a π∠︒⇒=⋅= 故12m n =. 6.已知球O 与棱长为2的正方体1111ABCD A B C D -的各面都相切,则平面1ACB 截球O 所得的截面圆与球心O 所构成的圆锥的体积为 ( ) A .239π B .318π C .2327π D .354π 【答案】C【解析】因为球O 与棱长为2的正方体1111ABCD A B C D -的各面都相切,所以球O 为正方体1111ABCD A B C D -的内切球,则球O 的半径1r = ,球心O 到A 的距离为22222232OA ++==底面1ACB 为等边三角形,所以球心O 到平面1ACB 的距离为()22233633d ⎛⎫=-⨯= ⎪⎝⎭,所以平面1ACB 截球O 所得的截面圆的半径为2236133⎛⎫-= ⎪ ⎪⎝⎭ ,所以圆锥的体积为21632333327V ππ⎛⎫=⨯⨯⨯= ⎪ ⎪⎝⎭,所以选C 7.在四棱锥S ABCD -中,四边形ABCD 是边长为2的正方形,SAD 是正三角形,且侧面SAD ⊥底面ABCD .若点S ,A ,B ,C ,D 都在同一个球面上,则该球的表面积为_________.【答案】283π【详解】由题意,可将该四棱锥补形为正三棱柱SAD PBC -,则该四棱锥的外接球即为正三棱柱SAD PBC -的外接球,记球心为O ,分别取BC 、AD 的中点为E 、F ;分别记SAD 与PBC 的外接圆圆心为H 、G ,连接SF ,PE ,HG ,因为SAD 与PBC 都是正三角形,所以22222213333SH SF ==-=,//HG AB 且2HG AB ==,根据球的性质,以及正棱柱的结构特征可得,球心O 必在HG 上,且O 为HG 的中点,连接OS ,则外接球的半径为2247133OS OH SH =+=+=,因此,外接球的表面积为2732843ππ⎛⎫⨯= ⎪ ⎪⎝⎭. 8.已知正三棱锥P ABC -内接于半径为2的球O ,且扇形OPA 的面积为4π3,则正三棱锥P ABC -的体积为______.【答案】934【详解】设底面ABC 的中心为O ',平面PAO 如图所示,由扇形OPA 的面积为4π3,2OA OP ==,所以2π3POA ∠=,所以π3AOO '∠=,所以3O A '=,1OO '=,所以正三棱锥P ABC -的高为3PO '=, 底面ABC 的面积为934,因此体积为193933344⨯⨯=.9.已知边长为1的正ABC 的三点都在球O 的球面上,AO 的延长线与球面的交点为S ,若三棱锥S ABC -的体积为26,则球O 的体积为___________. 【答案】43π 【详解】作SD ⊥平面ABC 交1AO 的延长线与D ,设SD h =,设球心为O ,球的半径R ,过ABC 三点的小圆的圆心为1O ,则1OO ⊥平面ABC ,所以1//SD OO ,由O ∈平面SDA ,得1O ∈平面ADS , 且1O AD ∈,又AO OS R ==,所以11AO DO =,由正弦定理得132sin 603AC AO ==, 22213313OO R R ⎛⎫=-=- ⎪⎝⎭,①三棱锥S ABC -高12SD OO =,①ABC 是边长为1的正三角形,三棱锥S ABC -的体积为26,①34ABCS =,①13226,3463S ABC V h h -⨯⨯===三棱锥, ①2126233R -=,①1R =,则球O 的体积为344133ππ⨯=,10.棱长为1的正方体1111ABCD A B C D -内有一个内切球O ,过正方体中两条互为异面直线的AB ,11A D 的中点,P Q 作直线,该直线被球面截在球内的线段的长为_______. 【答案】22【解析】以D 为坐标原点建立空间直角坐标系,所以球心111,,222O ⎛⎫⎪⎝⎭,111,,0,,0,122P Q ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,62PQ =,22OP OQ ==,故O 到直线PQ 的距离为22262244⎛⎫⎛⎫-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,而球的半径为12,所以在球内的线段长度为221222242⎛⎫⎛⎫-= ⎪ ⎪ ⎪⎝⎭⎝⎭.。
高考数学中的内切球和外接球问题 (1)
高考数学中的内切球和外接球问题一、 有关外接球的问题 一、直接法(公式法)1、求正方体的外接球的有关问题例1若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______________ .例2一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为______________.2、求长方体的外接球的有关问题例3一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3,则此球的表面积为 .例4已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为( ).A. 16πB. 20πC. 24πD. 32π3.求多面体的外接球的有关问题例5一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为89,底面周长为3,则这个球的体积为 .解 设正六棱柱的底面边长为x ,高为h ,则有⎪⎩⎪⎨⎧⨯==h x x 24368936⎪⎩⎪⎨⎧==213x h∴正六棱柱的底面圆的半径21=r ,球心到底面的距离23=d .∴外接球的半径22d r R +=. 体积:334R V π=. 小结 本题是运用公式222d r R +=求球的半径的,该公式是求球的半径的常用公式.二、构造法(补形法) 1、构造正方体例5 若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是_______________.例3 若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是 .故其外接球的表面积ππ942==r S .小结:一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为c b a ,,,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则有2222c b a R ++=. 出现“墙角”结构利用补形知识,联系长方体。
【原理】:长方体中从一个顶点出发的三条棱长分别为c b a ,,,则体对角线长为222c b a l ++=,几何体的外接球直径为R 2体对角线长l 即2222c b a R ++=练习:在四面体ABCD 中,共顶点的三条棱两两垂直,其长度分别为 3,6,1,若该四面体的四个顶点在一个球面上,求这个球的表面积。
高中必备比例及外接球内切球问题(含答案)
高考必背比例1. 三角形重心(中线的交点)分各条中线的比是2:1(这个在证明和计算题中可直接用,不会扣分)2.圆的内接四边形对角互补3.正方体的体对角线长a 根3(正方体边长a)4.还有圆的相交弦定理在与球体有关的计算题中很有用处5.正三角形四心共点(中心,重心,内心,外心)外接球内切球问题 内切球定义:球心到各面距离相等且等于半径的球半径的求法:一般在三棱锥中常用等体积法求半径,即大三棱锥体积等于以球心为顶点,分割成4三棱锥相加,即可求出半径(高) 下列各正立体的边长均为a 高均为h,内切球半径均为r,外接球半径均为R外接球定义外接球,意指一个空间几何图形的外接球,对于旋转体和多面体,外接球有不同的定义,广义理解为球将几何体包围,且几何体的顶点和弧面在此球上。
实例分析正方体的外接球就是正方形空间对角线的交点。
圆台的外接球就是经过上下圆(面),且圆心到两个圆面弧线距离相等的圆。
正四面体(棱长为a )的外接球半径R 与内切球半径r 之比为R :r=3:1。
外接球半径:四分之根号六正方体 r=a/2 R=(a 根3)/2正四面体 r=(a 根6)/12 R=(a 根6)/4 h=(a 根6)/3 正八面体 r=(a 根6)/6 R=(a 根2)/21. (陕西理•6)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是( )A .433 B .33 C . 43 D .123 2. 直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=︒,则此球的表面积等于 。
3.正三棱柱111ABC A B C -内接于半径为2的球,若,A B 两点的球面距离为π,则正三棱 柱的体积为 .4.表面积为的正八面体的各个顶点都在同一个球面上,则此球的体积为A .3B .13πC .23π D .3 5.已知正方体外接球的体积是π332,那么正方体的棱长等于( ) A.22 B.332 C.324 D.334 6.(2006山东卷)正方体的内切球与其外接球的体积之比为 ( )A . 1∶3B . 1∶3C . 1∶33D . 1∶97.(2008海南、宁夏理科)一个六棱柱的底面是正六边 形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 .8. (2007天津理•12)一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱 的长分别为1,2,3,则此球的表面积为 .9.(2007全国Ⅱ理•15)一个正四棱柱的各个顶点在一个直径为2 cm 的球面上。
高中数学几何体的外接球与内切球
.几何体的外接球与内切球1、内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等。
2、正多面体的内切球和外接球的球心重合。
3、正棱锥的内切球和外接球球心都在高线上,但不重合。
4、体积分割是求内切球半径的通用做法。
一、外接球(一)多面体几何性质法1、 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是 A.16π B.20π C.24π D.32π小结 本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的. 2、一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为 。
(二)补形法1、,则其外接球的表面积是 .2、设,,,P A B C 是球O 面上的四点,且,,PA PB PC 两两互相垂直,若PA PB PC a ===, 则球心O 到截面ABC 的距离是 .小结 一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R,则有2R =3、三棱锥O ABC -中,,,OA OB OC 两两垂直,且22OA OB OC a ===,则三棱锥O ABC -外接球的表面积为( )A .26a π B .29a π C .212a π D .224a π4、三棱锥ABC P -的四个顶点均在同一球面上,其中ABC ∆是正三角形 ⊥PA 平面62,==AB PA ABC 则该球的体积为( )A. π316B. π332C. π48D. π364.答案及解析:10.B点评: 本题考查球的内接体与球的关系,考查空间想象能力,利用割补法结合球内接多面体的几何特征求出球的半径是解题的关键.5、如图的几何体是长方体 1111ABCD A B C D -的一部分,其中 113,2AB AD DD BB cm ====则该几何体的外接球的表面积为 (A 211cm π (B) 222cm π (C)211223cm ( D)21122cm π答案及解析:12.【知识点】几何体的结构. G1B 解析:该几何体的外接球即长方体1111ABCD A BCD -的外接球,而若长方体1111ABCD A B C D -的外接球半径为R ,则长方体1111ABCD A B C D -的体对角线为2R ,所以2222211(2)332222R R =++=⇒=,所以该几何体的外接球的表面积222cm π,.故选 B.【思路点拨】分析该几何体的外接球与长方体1111ABCD A B C D 的外接球的关系,进而得结论.6、一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积是( )A . 12πB . 4πC . 3πD . 12π答案及解析:14.考点: 由三视图求面积、体积.分析: 三视图复原几何体是四棱锥,扩展为正方体,它的体对角线,就是球的直径,求出半径,解出球的表面积.解答: 解:由三视图知该几何体为四棱锥,记作S ﹣ABCD ,其中SA⊥面ABCD .面ABCD 为正方形,将此四棱锥还原为正方体,易知正方体的体对角线即为外接球直径,所以2r=.∴S 球=4πr 2=4π×=3π. 答案:C点评: 本题考查三视图求表面积,几何体的外接球问题,是基础题..(三)寻求轴截面圆半径法1、正四棱锥S ABCD 的底面边长和各侧棱长都为2,S A B C D 、、、、都在同一球面上,则此球的体积为 .小结 根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.2、求棱长为 a 的正四面体 P – ABC 的外接球的表面积3、三棱柱ABC ﹣A 1B 1C 1中,AA 1=2且AA 1⊥平面ABC ,△ABC 是边长为的正三角形,该三棱柱的六个顶点都在一个球面上,则这个球的体积为() A . 8πB .C .D . 8π 答案及解析:7.C考点: 球的体积和表面积.专题: 计算题;空间位置关系与距离.分析: 根据题意,正三棱柱的底面中心的连线的中点就是外接球的球心,求出球的半径即可求出球的体积.解答: 解:由题意可知:正三棱柱的底面中心的连线的中点就是外接球的球心, 因为△ABC 是边长为的正三角形,所以底面中心到顶点的距离为:1;CDA B SO1图3.因为AA 1=2且AA 1⊥平面ABC ,所以外接球的半径为:r==.所以外接球的体积为:V=πr 3=π×()3=.故选:C .点评: 本题给出正三棱柱有一个外接球,在已知底面边长的情况下求球的体积.着重考查了正三棱柱的性质、正三角形的计算和球的体积公式等知识,属于中档题. 8.4、已知三棱锥A BCD -中,2AB AC BD CD ====,2BC AD =,直线AD 与底面BCD 所成角为3π,则此时三棱锥外接球的体积为 A. 8π2π42π82答案及解析:11.D(四)球心定位法1、在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积为 A.12512π B.1259π C.1256π D.1253π2、如图所示是一个几何体的三视图,则这个几何体外接球的表面积为A O DB图4.A. 8πB. 16πC. 32πD. 64π3、三棱锥P ABC -中,底面ABC ∆是边长为2的正三角形, PA ⊥底面ABC ,且2PA =,则此三棱锥外接球的半径为( )A .2B .5C .2D .321 4、如图,在三棱锥A ﹣BCD 中,△ACD 与△BCD 是全等的等腰三角形,且平面ACD⊥平面BCD ,AB=2CD=4,则该三棱锥的外接球的表面积为.B .C .答案及解析:D .27.E .F.考点:球的体积和表面积;球内接多面体.G.专题:空间位置关系与距离.H.分析:取AB,CD中点分别为E,F,连接EF,AF,BF,求出EF,判断三棱锥的外接球球心O在线段EF上,连接OA,OC,求出半径,然后求解表面积.I.解答:解:取AB,CD中点分别为E,F,连接EF,AF,BF,由题意知AF⊥BF,AF=BF,EF=2,易知三棱锥的外接球球心O在线段EF上,连接OA,OC,有R2=AE2+OE2,R2=CF2+OF2,求得,所以其表面积为.J.故答案为:.K.L.点评:本小题主要考查球的内接几何体的相关计算问题,对考生的空间想象能力与运算求解能力以及数形结合思想都提出很高要求,本题是一道综合题,属于较难题.M.28.N.29.A-中,底面BCD为边长为2的正三角形,顶点A在底面BCD上的5、在三棱锥BCD∆的中心,若E为BC的中点,且直线AE与底面BCD所成角的正切值为射影为BCDA-外接球的表面积为__________.O.22,则三棱锥BCDP.答案及解析:Q.29.π6R.二、内切球问题1、一气球(近似看成球体)在不变形的前提下放在由长为2的12根木条搭成的正方体中,该气球球表面积最大是__________...2、正三棱锥的高为 1,底面边长为26 。
外接球内切球问题(含答案)
1球的表面积和体积练习:1. (球内接长方体问题)一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为 。
2.设,,,P A B C 是球O 面上的四点,且,,PA PB PC 两两互相垂直,若PA PB PC a ===, 则球心O 到截面ABC 的距离是 .3.(球内接正四面体问题)一个四面体的所有棱长都为2,四个顶点在同一球面上, 则此球的表面积为4.(球内接正四棱锥问题)半径为R 的球内接一个各棱长都相等的正四棱锥.则四棱锥的体积为 .5.一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是( )2 1.已知正方体外接球的体积是π332,那么正方体的棱长等于( ) A.22 B.332 C.324 D.334 2.(2006山东卷)正方体的内切球与其外接球的体积之比为 ( )A . 1∶3B . 1∶3C . 1∶33D . 1∶93. (2007天津理•12)一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱 的长分别为4,5,6,则此球的表面积为 .4.(2007全国Ⅱ理•15)一个正四棱柱的各个顶点在一个直径为2 cm 的球面上。
如果正四 棱柱的底面边长为1 cm ,那么该棱柱的表面积为 cm 2.5设正方体的棱长为233,则它的外接球的表面积为( ) A .π38B .2πC .4πD .π346.(2012辽宁文)已知点P,A,B,C,D 是球O 表面上的点,PA ⊥平面ABCD,四边形ABCD 是边长为.若则△OAB 的面积为______________..7(2009枣庄一模)一个几何体的三视图如右图所示,则该几何体外接球的表面积为 ( )A .π3B .π2C .316πD .以上都不对。
高考数学中的内切球和外接球问题(附习题)
高考数学中的内切球和外接球问题一、有关外接球的问题如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.考查学生的空间想象能力以及化归能力•研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.一、直接法(公式法)1、求正方体的外接球的有关问题例1若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为_________________ 27—例2 一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为_________________ 3届.2、求长方体的外接球的有关问题例3一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3,则此球的表面积为 _________ .14.例4、已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为().CA. 16兀B. 20兀C. 24兀D. 32兀3•求多面体的外接球的有关问题例5. 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知 8,底面周长为3,则这个球的体积为的半径的常用公式.二、构造法(补形法) 1、构造正方体例5若三棱锥的三条侧棱两两垂直,且侧棱长均为 ' 3,则其外 接球的表面积是 __________________ 护.例3若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外 接球的表面积是 ________ .2故其外接球的表面积S=4「:R =9二.小结:一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分 别为a 、b 、c,则就可以将这个三棱锥补成一个长方体, 于是长方体的 体对角线的长就是该三棱锥的外接球的直径•设其外接球的半径为R ,该六棱柱的顶点都在同一个球面上, 且该六棱柱的体积为 解 设正六棱柱的底面边长为x ,咼为h,则有6x =3, 9 3 2U 6 x h,841 x ,2_ h = . 3.二正六棱柱的底面圆的半径 接球的半径R ^-:r 2d 2.体积:小结本题是运用公式R 2 1r = 2 ,球心到底面的距离4兀3VR 3. 3d 2求球的半径的,该公式是求球则有 2R 二、•. a 2 b 2 c 2 .出现“墙角”结构利用补形知识,联系长方体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考必背比例
1. 三角形重心(中线的交点)分各条中线的比是2:1(这个在证明和计算题中可直接用,不会扣分)
2.圆的内接四边形对角互补
3.正方体的体对角线长a 根3(正方体边长a)
4.还有圆的相交弦定理在与球体有关的计算题中很有用处
5.正三角形四心共点(中心,重心,内心,外心)
外接球内切球问题
外接球半径:四分之根号六
正四面体 r=(a 根6)/12 R=(a 根6)/4 h=(a 根6)/3 正八面体 r=(a 根6)/6 R=(a 根2)/2
1. (陕西理•6)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是( )
A .4
33 B .33 C . 43 D .123 2. 直三棱柱111ABC A B C -的各顶点都在同一球面上,若
12AB AC AA ===,120BAC ∠=︒,则此球的表面积等于 。
3.正三棱柱111ABC A B C -内接于半径为2的球,若,A B 两点的球面距离为π,则正三棱 柱的体积为 .
4.表面积为的正八面体的各个顶点都在同一个球面上,则此球的体积为
A .3
B .13π
C .23
π D .3 5.已知正方体外接球的体积是
π332,那么正方体的棱长等于( ) A.22 B.332 C.324 D.3
34 6.(2006山东卷)正方体的内切球与其外接球的体积之比为 ( )
A . 1∶3
B . 1∶3
C . 1∶33
D . 1∶9
7.(2008海南、宁夏理科)一个六棱柱的底面是正六边 形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98
,底面周长为3,则这个球的体积为 .
8. (2007天津理•12)一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱 的长分别为1,2,3,则此球的表面积为 .
9.(2007全国Ⅱ理•15)一个正四棱柱的各个顶点在一个直径为2 cm 的球面上。
如果正四 棱柱的底面边长为1 cm ,那么该棱柱的表面积为 cm 2.
10.(2006辽宁)如图,半径为2的半球内有一内接正六棱锥P ABCDEF -,则此正六棱
锥的侧面积是________.
11.(辽宁省抚顺一中2009届高三数学上学期第一次月考)
棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图,则图中 三角形(正四面体的截面)的面积是 . 12.(2009枣庄一模)一个几何体的三视图如右图所示,则该几何体外接球的表面积为 ( ) A .π3 B .π2
C .3
16π D .以上都不对 13.(吉林省吉林市2008届上期末)设正方体的棱长为233,则它的外接球的表面积为( )
A .π38
B .2π
C .4π
D .π3
4 14.(2012新课标理)已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的
正三角形,SC 为球O 的直径,且2SC =;则此棱锥的体积为 ( )
A .26
B .36
C .23
D .22
15.(2012辽宁文)已知点P,A,B,C,D 是球O 表面上的点,PA ⊥平面ABCD,四边形ABCD 是边长
为23正方形.若PA=26,则△OAB 的面积为______________.
答案(前十三道):B 2420R ππ=.8 A D C 34π 14π 242+ 67 2 C C
A B C
P
D E
F。