椭圆中互相垂直的弦中点过定点问题
圆锥曲线垂直弦中点轨迹过定点问题
意椭圆与双曲线的差异性:非封闭图形,因此横双竖双内部的点要分开讨论)。 4. 局限:椭圆与双曲线和抛物线的表达形式有较大差异,对于抛物线中的上述结论需要重新讨论。
kMN
yM xM
yN xN
mb2 x0 a2 b2m2
a2 x0
mb2 x0 a2m2 b2
a2m2 x0
m a2 b2 =
a2 m2 1
a2 b2m2 a2m2 b2
m a2 b2 直线 lMN : y a2 m2 1
m a2 b2
x xM yM y a2 m2 1
a2
b2
椭圆分别交于
A、B、C、D
四点。设弦
AC、BD
的中点分别为
M、N,lMN
恒过定点
a2
b2
x0 , a2
b2
y0
x2 y2
结论6:双曲线方程
C: a2 b2
1 ,过点 P 0, y0
y0 , b b,
作两条相互垂直的
1/4
2014.11.30
直线 l1 、 l2 与椭圆分别交于 A、B、C、D 四点。设弦 AC、BD 的中点分别为 M、N, lMN 恒过定点
且满足 MA MB=0 ,则 lAB 过定点 x0 , y0 2 p iv. 抛物线方程 C: x2 2 py p 0 上一点 P x0 , y0 ,抛物线上存在不同于点 P 的点 A、B,
且满足 MA MB=0 ,则 lAB 过定点 x0, y0 2 p
五、 联系
《圆锥曲线曲线上直角弦过定点结论》其实是与《圆锥曲线垂直弦中点轨迹过定点结论》有巨大联系
椭圆中互相垂直的弦过定点问题 - (原创)
椭圆中互相垂直的弦中点过定点问题(1)过椭圆22221x y a b +=的右焦点(,0)F c 作两条互相垂直的弦AB ,CD 。
若弦AB ,CD的中点分别为M ,N ,那么直线MN 恒过定点222(,0)a ca b+。
(2)过椭圆22221x y a b +=的长轴上任意一点(,0)()S s a s a -<<作两条互相垂直的弦AB ,CD 。
若弦AB ,CD 的中点分别为M ,N ,那么直线MN 恒过定点222(,0)a sa b+。
设AB 的直线为x my s =+,则CD 的直线方程为1x y s m=-+, 222222x my s b x a y a b =+⎧⎨+-=⎩,22222222()2()0m b a y b msy b s a +++-=, 2222224()0a b m b a s ∆=+->,2112222msb y y m b a -+=+,22211222()a s a y y mb a-⋅=+, 由中点公式得M 22222222(,)a s msb m b a m b a -++, 将m 用1m-代换,得到N 的坐标222222222(,)a sm msb m a b m a b ++ MN 的直线方程为222222222222()()(1)b sm a b m a s y x b m a a m b m a ++=-+-+,令0y =,得222a s x a b=+ 所以直线MN 恒过定点222(,0)a sa b+。
(3)过椭圆22221x y a b +=的短轴上任意一点(0,)()T t t t t -<<作两条互相垂直的弦AB ,CD 。
若弦AB ,CD 的中点分别为M ,N ,那么直线MN 恒过定点222(0,)b ta b+。
(4)过椭圆22221x y a b +=内的任意一点2222(,)(1)s t Q s t a b +<作两条互相垂直的弦AB ,CD 。
椭圆的弦的中点问题的解题方法及技巧
斜截式 y kx b
两点式
y y1 x x1 y2 y1 x2 x1
截距式
x y 1 ab
一般式 Ax+By+C=0
不垂直于x轴的直线 不垂直于x轴的直线 不垂直于x、y轴的直线
不垂直于x、y轴,不过原点的直线
2、斜率公式:k y2 y1 (或k y1 y2 )
AB
1 1 k2
y2 y1 2 4 y1 y2
例1.求直线y=x+1被椭圆x2 +2y2 =4所截得的 弦的中点坐标.
依据:中点坐标公式 法一:求交点,得中点 法二: 根系法.
设而不求,避免繁琐的运算
例2.已知一直线与椭圆4 x2+9 y2=36 交于A、B 两点,且
弦AB的中点坐标M 1,1 ,求直线AB的方程.
AB的中点M 1,1
x1 x2 1
2
y1 y2 1
2
8 x1 x2 18 y1 y2 0
AB:4 x 9y 13 0
k AB
4 9
检验:AB确实与椭圆相交
故:4 x 9y 13 0 为所求
一.直线方程的五种形式
点斜式 y y0 k(x x0)
2
A
求弦的中点的轨迹 法一;中点可用根系法
M
B
法二:点差法
例4.已知椭圆 1 2
x2 +y2 =1,及椭圆外一点M
0,2 ,过M的
直线与椭圆交于A、B 两点,求AB的中点的轨迹方程.
M A
B
解决与弦的中点有关问题: 三种类型;求中点,求以定点为中点的弦的直线方程
与椭圆焦点弦相关的过定点问题结论推导
与椭圆焦点弦相关的过定点问题结论推导下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!与椭圆焦点弦相关的过定点问题结论推导椭圆是一种常见的几何图形,其焦点和直径轴是定义其形状和特性的重要元素。
椭圆中定点定值问题(与焦点弦有关)
椭圆中的“定”二、与椭圆的焦点弦有关4. 椭圆12222=+by a x C :()0>>b a 的离心率为e ,PQ 为过椭圆焦点2F 而不垂直于x 轴的弦,且PQ的中垂线交x 轴于R ,则22PQ F R e=. 5.PQ 为过椭圆12222=+by a x C :()0>>b a 的一个焦点2F 的弦,2F K 为焦准距,e 为椭圆的离心率,则222112PF QF e F K+=.6.(1)PQ 为过椭圆12222=+by a x C :()0>>b a 焦点F 的弦,PQ 的中垂线交F 所在的椭圆的对称轴于R ,直线RF 交F 所对应的准线于K ,则P 、K 、Q 、R 四点共圆.(2)弦MN (异于长轴)过椭圆12222=+by a x C :()0>>b a 的右焦点2F ,过椭圆左顶点1A 的两条直线11,A M A N交椭圆的准线l 于,S T 两点,则以ST 为直径的圆一定过椭圆的右焦点2F 和2F 关于准线的对称点.(3)弦MN 过椭圆12222=+by a x C :()0>>b a 的右焦点2F ,椭圆的准线l 交椭圆的对称轴于点D ,则22MDF NDF ∠=∠.(4)P 为椭圆12222=+by a x C :()0>>b a 上任一点,2F 为椭圆右焦点,过P 作椭圆的切线交椭圆的右准线于点N ,则222ON PF b k k a=-.7.(1,2,3,)n n P Q n =为过圆锥曲线的一个焦点2F 的弦,n n P Q 的中垂线交2F 所在的曲线的对称轴于n R ,则过,,(1,2,3,)n n n P Q R n =的圆必交于同一点2,0a c ⎛⎫ ⎪⎝⎭.8. 弦AB (异于长轴)过椭圆12222=+b y a x C :()0>>b a 的焦点,过B A ,两点分别作椭圆的两条切线交圆222x y a +=于,M M '两点,则(1)MM '是圆222x y a +=的一条直径,且四边形MM BA '为梯形;(2)角APB ∠为锐角;(3)若两切线的交点为P ,当点P 为2,0a c ⎛⎫ ⎪⎝⎭时,APB ∆的面积最小,其最小值为4b ac.9.在椭圆12222=+by a x C :()0>>b a 通径(过焦点且垂直于焦点轴的弦)的延长线上任取一点()00,P x y 作椭圆两条切线12,PP PP ,则切点弦12PP ,x 轴和准线l 三线共点.10.直线l 是过椭圆12222=+b y a x C :()0>>b a 上一点P 的切线,它与经过椭圆左顶点1A 的切线交于点N ,椭圆的左焦点F 和点N 的的连线FN 与左准线交于点M ,则椭圆的右顶点2A ,切点P 及点M 三点共线.11.直线l 是过椭圆12222=+by a x C :()0>>b a 上一点P 的切线,它与经过椭圆右顶点2A 的切线交于点N ,椭圆的左焦点F 和点N 的的连线FN 与左准线交于点M ,则椭圆的左顶点1A ,切点P 及点M 三点共线.12.直线l 是过椭圆12222=+by a x C :()0>>b a 上一点P 的切线,过该椭圆右的左焦点1F 作1F N l ⊥,且与椭圆的左准线交于点M ,则椭圆的中心O ,切点P 及点M 三点共线.、13. 如图,点F 是椭圆12222=+b y a x C :()0>>b a 的右焦点,直线l 是椭圆的右准线,点P 在椭圆上且PF x ⊥轴,AB 是经过右焦点F的任一弦(不经过点P ),设直线AB 与直线l 相交于点M ,则2PA PB PM k k k +=.14. 过椭圆12222=+by a x C :()0>>b a 的焦点(),0F c 作倾斜角为θ的直线,交椭圆于,A B 两点,则2221cos ep AB e θ=-(e 为离心率,p 为焦参数(通径长的一半)). 15. 弦AB 过椭圆12222=+by a x C :()0>>b a 的焦点F ,且AF FB λ=(点A 位于点B 之上),则弦AB 所在直线的斜率()()()222110,11e k λλλλ+=-≠≠±-.。
相交弦中点所在直线过定点问题探究
即
y1 - y2
3
( x - 2) + .
x1 - x2
4
B( mꎬn) 的两直线 l1 ꎬl2 斜率分别为 k1 ꎬk2 ꎬk1 ≠k2 且
H( x2 ꎬy2 ) ꎬC ( x3 ꎬy3 )ꎬD ( x4 ꎬy4 )ꎬ因为 CꎬD 两点在椭
即
y1 - y2
x1 y2 - x2 y1
x +
x1 - x2
2
1
因为 k1 + k2 = - 1ꎬ所以
3
3
整理ꎬ得 y = æç k21 + k1 + ö÷( x - 1) + .
4
4
è
ø
即-
3
所以直线 GH 过定点 æç 1ꎬ ö÷
è 4 ø
方法 2 ( 作差法) 由题意设直线 l1 ꎬl2 的方程
分别是 y = k1 ( x - 1) ꎬy = k2 ( x - 1) .
- k2 ) + 4b( k1 + k2 ) ( k1 - k2 ) .
由于 k1 ≠k2 ꎬ所以 - 3 = 4k(k1 + k2 ) + 4b(k1 + k2 ).
所以 GH 所在直线方程为 y = kx - k +
即 y = k( x - 1) +
3
.
4
所以直线 GH 过定点(1ꎬ
3
.
4
③ - ④ꎬ得
.
b2 + a2 k21
k21 ma2 - k1 na2 nb2 - mb2 k1
ꎬ 2 2
).
b2 + a2 k21
a k1 + b2
k22 ma2 - k2 na2 nb2 - mb2 k2
ꎬ 2 2
).
b2 + a2 k22
椭圆中互相垂直的弦中点过定点问题
椭圆中互相垂直的弦中点过定点问题(1)过椭圆22221x y a b +=的右焦点(,0)F c 作两条互相垂直的弦AB ,CD 。
若弦AB ,CD的中点分别为M ,N ,那么直线MN 恒过定点222(,0)a ca b+。
(2)过椭圆22221x y a b +=的长轴上任意一点(,0)()S s a s a -<<作两条互相垂直的弦AB ,CD 。
若弦AB ,CD 的中点分别为M ,N ,那么直线MN 恒过定点222(,0)a sa b+。
设AB 的直线为x my s =+,则CD 的直线方程为1x y s m=-+, 222222x my s b x a y a b =+⎧⎨+-=⎩,22222222()2()0m b a y b msy b s a +++-=, 2222224()0a b m b a s ∆=+->,2112222msb y y m b a -+=+,22211222()a s a y y mb a-⋅=+, 由中点公式得M 22222222(,)a s msb m b a m b a -++, 将m 用1m -代换,得到N 的坐标222222222(,)a sm msb m a b m a b++ MN 的直线方程为222222222222()()(1)b sm a b m a s y x b m a a m b m a ++=-+-+,令0y =,得222a s x a b =+ 所以直线MN 恒过定点222(,0)a sa b+。
(3)过椭圆22221x y a b +=的短轴上任意一点(0,)()T t t t t -<<作两条互相垂直的弦AB ,CD 。
若弦AB ,CD 的中点分别为M ,N ,那么直线MN 恒过定点222(0,)b ta b+。
(4)过椭圆22221x y a b +=内的任意一点2222(,)(1)s t Q s t a b +<作两条互相垂直的弦AB ,CD 。
高考数学讲义椭圆之中点弦问题
2014年二轮复习椭圆之中点弦问题内容明细内容要求层次了解理解 掌握 圆锥曲线椭圆的定义与标准方程 √ 椭圆的简单几何意义 √ 抛物线的定义及其标准方程√ 抛物线的简单几何意义 √ 双曲线的定义及标准方程 √ 双曲线的简单几何性质 √ 直线与圆锥曲线的位置关系√北京三年高考两年模拟统计中点弦 垂直角度弦长面积范围定点定值 共线比例其它 高考试题 4 1 1 模拟试题 7 8 11 14 4 4 共计78151455椭圆之中点弦问题高考大纲自检自查必考点圆锥曲线总结:直线与圆锥曲线相交所得弦中点问题,是解析几何中的重要内容之一,也是高考的一个热点问题。
这类问题一般有以下三种类型:(1)求中点弦所在直线方程问题; (2)求弦中点的轨迹方程问题;(3)求弦中点的坐标问题。
其解法有代点相减法、设而不求法、参数法、待定系数法及中心对称变换法等。
中点弦常考题型(1)1||||PQ ABPB PA PQ AB k k =⇔⊥⇔=-设1122(,),(,)A x y B x y ,注意一般只有弦与椭圆相交的两点才设为12,x x 的,其它点不要随便设为1122(,),(,)A x y B x y .Q 为弦AB 的中点.设直线方程为y kx m =+,不要设为y kx b =+,因为b 在椭圆标准方程中会出现. 联立直线与椭圆方程22221y kx m x y a b=+⎧⎪⎨+=⎪⎩消去y ,得2222()1x kx m a b ++=,即222222212()10k km m x x a b b b +++-= 设1122(,),(,)A x y B x y ,则22222222222222122222212222211()4()(1)4()02111km k m m k b a b b a b a b km b x x k a b m b x x k a b ⎧⎪⎪⎪∆=-+-=--->⎪⎪⎪⎪⎪⎪+=-⎨⎪+⎪⎪⎪⎪-⎪=⎪⎪+⎪⎩∆中的高次项是可消去的.自检自查必考点P QBAOyx21222212Q kmx x b x k a b+==-+ 22222222222222222111Q Q k m k m m k m m b b a b a y kx m m k k k a b a b a b -++=+=-+==+++ (由Q x 求Q y 分子是可消去的)故中点Q 的坐标为22222222(,)11km m b a k k a b a b-++ 定点P 设为(,)s t则222222222222222211()1()1Q PQQ m a tk m k t y t a b a a b k km km k x ss b b a b s k a b -+-+-===---+--+ 故222222221()11()m k t a a b km k k s b a b-+=---+ 2222222211()()km k km k kt s a a b b a b -+=++ 22222111()()()k km kt s a b a b -=++(2)以,OA OB 为邻边的平行四边形的顶点P 在椭圆上1212,22Q Q x x y yx y ++== 易知P 点坐标212222221P Q km b x x x x k a b ==+=-+1212122()P Q y y y y kx m kx m k x x ==+=+++=++ 222222222222222211k m m k m m b a b a k k a b a b -++==++注意:1.不能把P x 代入y kx m =+方程中求P y ,因为点P 不在直线上. 2.由P x 求P y 分子是可消去的.故2222222222(,)11km m b a P k k a b a b -++在椭圆上. 则22222222222222()()111km m b a k k a b a b a b-+++= 两边同时乘以22221()k a b +得22222222222441()k m m k a b a b a b +=+ 2222222241(1)()m k k a b a b+=+ 注意:分母不要通分和化简,均采用整体法进行处理. (3)弦AB 的垂直平分线交,x y 轴分别为点,N M中点Q 的坐标为22222222(,)11km mb a k k a b a b-++ 垂直平分线方程为222222221()11m km a b y x k k k a b a b-=-+++ 令0x =,得到M 点坐标为2222211()(0,)1m a b k a b -+ 令0y =,得到N 点坐标为2222211()(,0)1km a b k a b -+【例1】 已知椭圆2212x y +=,求斜率为2的平行弦中点的轨迹方程.【例2】 证明在椭圆222210x y a ba b +=(>>)中,若直线l 与椭圆相交于M N 、两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200ab x y k MN -=⋅.例题精讲【例3】 在直角坐标平面内,已知点(2,0),(2,0)A B -, P 是平面内一动点,直线PA 、PB 斜率之积为34-. (Ⅰ)求动点P 的轨迹C 的方程;(Ⅱ)过点1(,0)2作直线l 与轨迹C 交于E F 、两点,线段EF 的中点为M ,求直线MA 的斜率k 的取值范围.【例4】 设椭圆:C )0(12222>>=+b a by a x 的离心率为e =,点A 是椭圆上的一点,且点A 到椭圆C 两焦点的距离之和为4. (1)求椭圆C 的方程;(2)椭圆C 上一动点()00,P x y 关于直线x y 2=的对称点为()111,y x P ,求1143y x -的取值范围.【例5】 设椭圆方程为1422=+y x ,过点)1,0(M 的直线l 交椭圆于点A B O 、,为坐标原点,点P 满足1()2OP OA OB =+u u u r u u u r u u u r ,点N 的坐标为⎪⎭⎫⎝⎛21,21.当l 绕点M 旋转时,求:(1)动点P 的轨迹方程; (2)||NP 的最大值和最小值.。
解析几何第8讲-中点弦问题--椭圆垂径定理
第8课:中点弦问题--椭圆垂径定理一.学习目标:掌握点差法,能够在不同情境中用点差法解决中点弦问题,会推导椭圆垂径定理.二.知识梳理: 1.中点弦公式:(所谓中点弦公式是直线与圆锥曲线相交时,两交点中点与弦所在直线的关系,一般不联立方程,而用点差法求解) 椭圆:交点在x 轴上时直线m kx y +=与椭圆)0(12222>>=+b a by a x 相交于点A 、B设点A(11,y x ),B(22,y x )∵A 、B 在椭圆上∴1221221=+b y a x ……① 则2222122221-b yy a x x -=- 1222222=+b y a x ……② 即 2222212221-a b x x y y =-- ①-②得:02222122221=-+-b y y a x x 即2221212121))((ab x x y y x x y y -=++-- 则 22ab k k OMAB -=(其中M 为A 、B 中点,O 为原点)同理可以得到当焦点在y 轴上,即椭圆方程为)0(12222>>=+b a bx a y当直线交椭圆于A 、B 两点,M 为A 、B 中点 则22ba k k OMAB -=2.椭圆垂径定理:直线AB 的斜率与中点M 和原点O 所成直线斜率的乘积等于2y 下的系数比上2x 下的系数的相反数. 三.典例分析例1.已知椭圆193622=+y x ,弦AB 的中点是)1,3(M ,求弦AB 所在的直线方程.例2.已知椭圆),0(12222>>=+b a by a x 直线l 不经过原点O ,且不平行于坐标轴,l 与C 有两个交点B A ,,假设线段AB 中点为M ,证明:直线OM 的斜率与直线l 的斜率乘积为定值.四.练习题.1.已知椭圆22:14x C y +=,直线l 交椭圆于,A B 两点,若AB 的中点坐标为11,2⎛⎫- ⎪⎝⎭,则l 的方程为( )A .4250x y -+=B .220x y -+=C .4230x y +-=D .20x y +=2.已知椭圆221369x y +=,椭圆内一点(4,2)P ,则以P 为中点的弦所在的直线的斜率是 A.21 B.-21C.2D.-23.若椭圆122=+ny mx 与直线01=-+y x 交于A ,B 两点,过原点与线段AB 的中点的直线的斜率为22,则mn的值为( ) A .22 B .2C .23 D .92 4.已知椭圆)0(12222>>=+b a by a x 的右焦点为F ,过点F 的直线交椭圆交于A ,B 两点,若AB 的中点)21,1(-P ,且直线AB 的倾斜角为4π,则此椭圆的方程为( ) A .1949222=+y x B .19922=+y x C .15922=+y x D .192922=+y x5.中心在原点,一个焦点为1F ()50,0的椭圆截直线23:-=x y l 所得的弦的中点的横坐标为21,求椭圆的方程.6.已知椭圆C 的两个焦点分别为()1,0F c -、()()2,00F c c >,短轴的两个端点分别为1B 、2B ,且112F B B 为等边三角形.(1)若椭圆长轴的长为4,求椭圆C 的方程;(2)如果在椭圆C 上存在不同的两点P 、Q 关于直线112y x =+对称,求实数c 的取值范围;7.已知椭圆E 的焦点在x 轴上,短轴长为2,离心率为2. (1)求椭圆E 的标准方程;(2)直线l :12y x m =+与椭圆E 相交于A ,B 两点,且弦AB 中点横坐标为1,求m 值.8.已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,.(1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:FA ,FP ,FB 成等差数列,并求该数列的公差.第9课:面积计算一.学习目标: 二. 知识梳理: 1.三角形面积直线与圆锥曲线相交,弦和某个定点所构成的三角形的面积 处理方法: ①一般方法:d AB S 21=(其中AB 为弦长,d 为顶点到直线AB 的距离) =20011221214)(121k m y kx x x x x k ++--++(直线为斜截式y=kx+m ) =m y kx x x x x +--+00112214)(21②特殊方法:拆分法,可以将三角形沿着x 轴或者y 轴拆分成两个三角形,不过在拆分的时候给定的顶点一般在x 轴或者y 轴上,此 时,便于找到两个三角形的底边长。
椭圆的弦中点问题解析版(供参考)
东光一中 高二 年级 数学 学科课时练出题人: 许淑霞 出题时间:椭圆的中点弦问题学案学习目标:会求与椭圆的中点弦有关的问题掌握一种思想:设而不求,整体代换的思想体会两种方法:判别式法与点差法学习重点:能解决与椭圆的中点弦有关的问题 学习过程:一、方法总结:1、与椭圆的弦的中点有关的问题,我们称之为椭圆的中点弦问题。
2、解椭圆的中点弦问题的一般方法是:(1)判别式法:联立直线和椭圆的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式求解。
(2)点差法:若设直线与椭圆的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入椭圆的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。
我们称这种代点作差的方法为“点差法”。
3、设直线的技巧:(1)直线过定点时引入参数斜率,利用点斜式设方程,注意讨论斜率存在与不存在两种情况。
(2)直线斜率一定时引入参数截距,利用斜截式设方程。
(3)已知一般直线可设直线的斜截式方程,利用条件寻找k 与b 的关系。
3、直线与椭圆相交所得弦中点问题,是解析几何中的重要内容之一,也是高考的一个热点问题。
这类问题一般有以下三种类型:(1)求过中点的弦所在直线方程问题; (2)求弦中点的轨迹方程问题;(3)求与中点弦有关的圆锥曲线的方程二、题型复习:(一)、求过中点的弦所在直线方程问题例1、已知椭圆1222=+y x ,求过点p (12,12)且被点p 平分的弦所在直线方程 注意:解决过中点的弦的问题时判断点M 位置非常重要。
(1)若中点M 在圆锥曲线内,则被点M 平分的弦一般存在;(2)若中点M 在圆锥曲线外,则被点M 平分的弦可能不存在。
结论:(1) 设椭圆12222=+b y a x 的弦AB 的中点为P ),(00y x ()00≠y ,则0022y x a b k AB•-=,22AB op b k k a=- (2) 设双曲线12222=-b y a x 的弦AB 的中点为P ),(00y x ()00≠y 则0022y x a b k AB •=。
椭圆中过定点或有定向动弦问题的探讨
+ 2
-
abcos
+ 2
=0
+
+
cos x!
2
sin + y!
2 - cos -
=0
#
a
b
2
( 1) 若 m 1, 则 式化为:
+
x0 ( m+ 1) ! cos 2
m- 1
a
sin +
-
y0 ( m+ 1) m- 1
!
2 b
-
cos
2
=0
比较 # 、 两 式 可 知 直 线 BC 必 过 定 点
M
.
推论 1: 符 合定 理条 件( 1) 的直 线 BC 所 过
定点 M 在直线 y 0 x + x 0 y = 0 上; 符合 定理条 件 ( 2) 的直线 BC 与直线 y 0 x+ x 0 y= 0 平行.
初数方圆
91
推论 2: 当 m= -
1, kAB ! kAC = -
b2 a2
时,
动弦
BC 为椭圆的直径.
推论 3: 当 m= -
a2 b2 , kAC ! kAC = -
1, 即定点
A 对动弦 BC 所张的角为直 角时, 直线 BC 所过
定点 M
x0
( a2a2 +
b2 b2
)
,
-
y0 ( a2 - b2 ) a2 + b2
在椭圆过 A
点的法线上. ( 证略) 定理 2: 椭圆 b2 x 2 + a2 y2 = a2 b2 的 动 弦 BC
证明: 由 kAB = -
椭圆中的定点、定值问题(教师版)
椭圆中的定点、定值问题1.已知l 1,l 2是过点0,2 的两条互相垂直的直线,且l 1与椭圆Γ:x 24+y 2=1相交于A ,B 两点,l 2与椭圆Γ相交于C ,D 两点.(1)求直线l 1的斜率k 的取值范围;(2)若线段AB ,CD 的中点分别为M ,N ,证明直线MN 经过一个定点,并求出此定点的坐标.【答案】(1)-233,-32 ∪32,233 ;(2)证明见解析;定点0,25 .【解析】(1)根据题意直线l 1,l 2的斜率均存在且不为0直线l 1,l 2分别为y =kx +2,y =-1kx +2,联立y =kx +2x 24+y 2=1得4k 2+1 x 2+16kx +12=0,由Δ=16k 2-4×124k 2+1 >0得4k 2>3,则k <-32或k >32,同理4-1k2>3,则-233<k <233,所以k 的取值范围为-233,-32 ∪32,233 .(2)设A x 1,y 1 ,B x 2,y 2 ,由(1)得4k 2+1 2+16kx +12=0,所以x 1+x 2=-16k 4k 2+1,则x M =x 1+x 22=-8k4k 2+1,所以y M =kx M +2=-8k 24k 2+1+2=24k 2+1,则M -8k 4k 2+1,24k 2+1,同理N 8k k 2+4,2k 2k 2+4,则直线MN 的方程为y -24k 2+1=2k 2k 2+4-24k 2+18k k 2+4+8k 4k 2+1x +8k 4k 2+1 ,化简整理得y =k 2-15kx +25因此直线MN 经过一个定点0,25 .2.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右顶点为A (2,0),离心率为32.(1)求C 的方程;(2)设斜率为1的直线l 与C 交于P ,Q 两点,点P 关于x 轴的对称点为M ,若△PQM 的外接圆恰过坐标原点,求直线l 的方程.【答案】(1)x 24+y 2=1;(2)y =x ±263【解析】(1)依题意a =2c a =32a 2=b 2+c 2·解得a =2b =1,所以椭圆C 的标准方程为x 24+y 2=1(2)设l 的方程为y =x +m ,设P x 1,y 1 ,Q x 2,y 2 ,则M x 1,-y 1 .由y =x +m x 24+y 2=1消去y 得,5x 2+8mx +4m 2-4=0,依题意Δ=64m 2-204m 2-4 >0,即-5<m <5,所以x 1+x 2=-8m5x 1x 2=4m 2-45,所以y 1+y 2=x 1+x 2+2m =-8m 5+2m =2m5,所以线段PQ 的中点坐标为-4m 5,m5 ,所以线段PQ 的中垂线方程为y -m 5=-x +4m 5 ,即y =-x -3m5,·依题意,线段PQ 的中垂线与x 轴的交点E -3m5,0 ,即为△PQM 外接圆的圆心,点E 到直线l 的距离为d =2|m |5,|PQ |=2⋅x 1+x 22-4x 1x 2=2⋅-8m 5 2-16m 2-1 5=4255-m 2,·设△PQM 外接圆的半径为r ,则r 2=d 2+|PQ |22=40-6m 225,所以△PQM 外接圆的方程为x +3m 5 2+y 2=40-6m 225,因为△PQM 外接圆恰过原点O (0,0),所以3m 5 2=40-6m 225,解得m =±263,所以直线l 的方程为y =x ±263.3.已知A ,B 分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右顶点和上顶点,|AB |=5,直线AB 的斜率为-12.(1)求椭圆的方程;(2)直线l ⎳AB ,与x ,y 轴分别交于点M ,N ,与椭圆相交于点C ,D .证明:(i )△OCM 的面积等于△ODN 的面积;(ii )|CM |2+|MD |2为定值.【答案】(1)x 24+y 2=1;(2)(i )证明见解析;(ii )证明见解析【解析】(1)∵A 、B 是椭圆x 2a 2+y 2b2=1(a >b >0)的两个顶点,且|AB |=5,直线AB 的斜率为-12,由A (a ,0),B (0,b ),得|AB |=a 2+b 2=5,又k =b -00-a =-b a =-12,解得a =2,b =1,∴椭圆的方程为x 24+y 2=1;(2)设直线l 的方程为y =-12x +m ,则M (2m ,0),N (0,m ),联立方程y =-12x +mx 24+y 2=1消去y ,整理得x 2-2mx +2m 2-2=0.Δ=4m 2-8(m 2-4)=32-4m 2>0,得m 2<8设C (x 1,y 1),D (x 2,y 2).∴x 1+x 2=2m ,x 1x 2=2m 2-2.所以S △OCM =12|2m ||y 1|,S △ODN =12|m ||x 2|则有S △OCM S △ODN =|2y 1||x 2|=|2m -x 1||x 2|=|x 2||x 2|=1∴△OCM 的面积等于△ODN 的面积;∴|CM |2+|MD |2=(x 1-2m )2+y 12+(x 2-2m )2+y 22=x 12-4mx 1+4m 2+-12x 1+m 2+x 22-4mx 2+4m 2+-12x 2+m 2=54(x 1+x 2)2-52x 1x 2-5m (x 1+x 2)+10m 2=5m 2-52(2m 2-2)-10m 2+10m 2=54.如图,椭圆M :y 2a 2+x 2b2=1a >b >0 的两焦点为0,1 ,0,-1 ,A ,B 是左右顶点,直线l 与椭圆交于异于顶点的C ,D 两点,并与x 轴交于点P .直线AC 与直线BC 斜率之积为-2.(1)求椭圆M 的方程;(2)直线AC 与直线BD 交于点Q ,设点P 与点Q 横坐标分别为x P ,x Q ,则x P ⋅x Q 是否为常数,若是,求出该常数值;若不是,请说明理由.【答案】(1)y 22+x 2=1;(2)x P ⋅x Q 为常数,值为1【解析】(1)由题A -b ,0 ,B b ,0 ,设C x 1,y 1 ,则k AC ⋅k BC =y 1x 1+b ⋅y 1x 1-b =y 21x 21-b 2=a 21-x 21b2x 21-b2=-a2b 2=-2,∴a 2=2b 2,又a 2-b 2=1,∴a =2,b =1,∴椭圆M 的方程为:y 22+x 2=1.(2)直线l 若过原点,由对称性知AC ∥BD 不合题,设直线l :x =ty +m m ≠0 ,则x P =mx =ty +my 22+x 2=1,消去x 得2t 2+1 y 2+4mty +2m 2-2=0,设D x 2,y 2 ,则Δ=82t 2-m 2+1 >0y 1+y 2=-4tm2t 2+1y 1y 2=2m 2-22t 2+1∴y 1y 2=1-m22tm y 1+y 2 ①AC :y =y 1x 1+1x +1 ②,BD :y =y 2x 2-1x -1 ③②③联立得x -1x +1=y 1x 2-1 y 2x 1+1 =y 1ty 2+m -1 y 2ty 1+m -1 =t 1y 2+m -1 y 1ty 1y 2+m +1 y 2①代入得x -1x +1=1-m 1-m y 1+1+m y 2 m +1 1-m y 1+1+m y 2 =1-m1+m 解得x =1m ,即x Q =1m∴x P ⋅x Q =m ⋅1m=1,∴x P ⋅x Q 为常数,值为1.5.已知点A -22,0 ,B 22,0 ,Q 2,0 ,动点P 与点A ,B 连线的斜率之积为-78,过点Q 的直线l 交点P 的轨迹于C ,D 两点,设直线AC 和直线BD的斜率分别为k 1和k 2,记m =k1k 2(1)求点P 的轨迹方程(2)m 是否为定值?若是,请求出该值,若不是,请说明理由.【答案】(1)x 28+y 27=1(y ≠0);(2)是,3-22【解析】(1)设点P x ,y ,由题意k PA ⋅k PB =y x -22⋅y x +22=-78整理得x 28+y 27=1y ≠0(2)由题意,直线l 斜率不为0设l :x =ty +2,设C x 1,y 1 ,D x 2,y 2由x =ty +2x 28+y 27=1得7t 2+8 y 2+28ty -28=0则y 1+y 2=-28t 7t 2+8,y 1y 2=-287t 2+8所以y 1+y 2=ty 1y 2m =k 1k 2=y 1x 1+22y 2x 2-22=y 1x 2+22 y 2x 1-22 =y 1ty 2+2-22 y 2ty 1+2+22 =ty 1y 2+2-22 y 1ty 1y 2+2+22 y 2=y 1+y 2+2-22 y 1y 1+y 2+2+22 y 2=3-22 y 1+y 2y 1+3+22 y 2=3-22 y 1+13-22y 2 y 1+3+22 y 2=3-22 y 1+3+22 y 2 y 1+3+22 y 2=3-22所以m 为定值3-226.已知圆O :x 2+y 2=4与x 轴交于点A (-2,0),过圆上一动点M 作x 轴的垂线,垂足为H ,N 是MH 的中点,记N 的轨迹为曲线C .(1)求曲线C 的方程;(2)过-65,0 作与x 轴不重合的直线l 交曲线C 于P ,Q 两点,设直线AP ,AS 的斜率分别为k 1,k 2.证明:k 1=4k 2.【答案】(1)x 22+y 2=1;(2)证明见解析.【解析】(1)设N (x 0,y 0),则H (x 0,0),∵N 是MH 的中点,∴M (x 0,2y 0),又∵M 在圆O 上,∴x 20+(2y 0)2=4,即x 204+y 20=1;∴曲线C 的方程为:x 24+y 2=1;(2)①当直线l 的斜率不存在时,直线l 的方程为:x =-65,若点P 在轴上方,则点Q 在x 轴下方,则P -65,45 ,Q -65,-45,直线OQ 与曲线C 的另一交点为S ,则S 与Q 关于原点对称,∴S 65,45,k 1=k AP =45-0-65+2=1,k 2=k AS =45-065+2=14,∴k 1=4k 2;若点P 在x 轴下方,则点Q 在x 轴上方,同理得:P -65,-45 ,Q -65,45 ,S 65,-45 ,∴k 1=k AP =-45-0-65+2=-1,k 2=k AS =-45-065+2=-14,∴k 1=4k 2;②当直线l 的斜率存在时,设直线l 的方程为:x =my -65,,由x =my -65,与x 24+y 2=1联立可得(m 2+4)y 2-12m 5y -6425=0,其中Δ=144m 225+4×(m 2+4)×6425>0,设P (x 1,y 1),Q (x 2,y 2),则S (-x 2,-y 2),则y 1+y 2=12m 5m 2+4,y 1y 2=-6425m 2+4,∴k 1=k AP =y 1-0x 1+2=y 1x 1+2,k 2=k AS =-y 2-0-x 2+2=y 2x 2-2,则k 1k 2=y 1x 1+2⋅x 2-2y 2=y 1my 2-165my 1+45 y 2=my 1y 2-165y 1my 1y 2+45(y 1+y 2)-45y 1=-6425m 2+4-165y1-6425m m 2+4+45⋅125m m 2+4-45y 1=-6425m 2+4-165y 1-1625m 2+4-45y 1=4,∴k 1=4k 2.7.已知M ,N 分别是x 轴,y 轴上的动点,且MN =4+23,动点P 满足MP =32PN ,设点P 的轨迹为曲线C .(1)求曲线C 的轨迹方程;(2)直线l 1:3x -2y =0与曲线C 交于A ,B 两点,G 为线段AB 上任意一点(不与端点重合),倾斜角为α的直线l 2经过点G ,与曲线C 交于E ,F 两点.若|EF |2|GA |⋅|GB |的值与点G 的位置无关,求|GE |:|GF |的值.【答案】(1)x 216+y 212=1;(2)1【解析】(1)设M x 0,0 ,N 0,y 0 ,则x 20+y 20=4+23 2.设P x ,y ,则MP =x -x 0,y ,PN=-x ,y 0-y .由题意得x -x 0=-32x y =32y 0-y,解得x 0=1+32 x y 0=231+32y,所以1+322x 2+431+32 2y 2=4+23 2,化简得x 216+y 212=1,即曲线C 的方程为x 216+y 212=1.(2)证明:由3x -2y =0x 216+y 212=1,解得x =2y =3 或x =-2y =-3 ,(不妨设点A 在第一象限),所以A (2,3),B (-2,-3).设点G (2m ,3m ),其中-1<m <1,则|GA |=13(1-m ),|GB |=13(1+m ),所以|GA |⋅|GB |=131-m 2 .若直线l 2的斜率不存在,则直线l 2的方程为x =2m ,此时E 2m ,12-3m 2,F 2m ,-12-3m 2,故|EF |2|GA |⋅|GB |=124-m 2131-m 2不为定值.若直线l 2的斜率存在,设直线l 2的斜率为k ,则直线l 2的方程为y =kx -(2k -3)m .将直线l 2的方程代入曲线C 的方程化简、整理,得4k 2+3 x 2-8km (2k -3)x +4(2k -3)2m 2-48=0.设E x 1,y 1 ,F x 2,y 2 ,则x 1+x 2=8km (2k -3)4k 2+3,x 1x 2=4(2k -3)2m 2-484k 2+3,所以|EF |2=1+k 2 x 1-x 2 2=1+k 264k 2m 2(2k -3)2-164k 2+3 (2k -3)2m 2-124k 2+32=-481+k 2 (2k -3)2m 2-16k 2+12 4k 2+32,故|EF |2|GA |⋅|GB |=481+k 2 (2k -3)2m 2-16k 2+12 134k 2+3 2m 2-1.因为|EF |2|GA |⋅|GB |的值与m 的值无关,所以(2k -3)2=16k 2+12,解得k =-12,所以x 1+x 22=4km (2k -3)4k 2+3=2m ,所以G 是EF 的中点,即|GE |=|GF |.所以|GE |:|GF |=1.8.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为22,其左、右焦点分别为F 1,F 2,T 为椭圆C 上任意一点,△TF 1F 2面积的最大值为1.(1)求椭圆C 的标准方程;(2)已知A 0,1 ,过点0,12的直线l 与椭圆C 交于不同的两点M ,N ,直线AM ,AN 与x 轴的交点分别为P ,Q ,证明:以PQ 为直径的圆过定点.【答案】(1)x 22+y 2=1;(2)证明见解析【解析】(1)因为椭圆C 的离心率为22,所以c a =22.又当T 位于上顶点或者下顶点时,△TF 1F 2面积最大,即bc =1.又a 2=b 2+c 2,所以b =c =1,a = 2.所以椭圆C 的标准方程为x 22+y 2=1.(2)由题知,直线l 的斜率存在,所以设直线l 的方程为y =kx +12,设M x 1,y 1 ,N x 2,y 2 ,将直线l 代入椭圆C 的方程得:4k 2+2 x 2+4kx -3=0,由韦达定理得:x 1+x 2=-4k 4k 2+2,x 1x 2=-34k 2+2,直线AM 的方程为y =y 1-1x 1x +1,直线AN 的方程为y =y 2-1x 2x +1,所以P -x 1y 1-1,0 ,Q -x 2y 2-1,0,所以以PQ 为直径的圆为x +x 1y 1-1 x +x 2y 2-1 +y 2=0,整理得:x 2+y 2+x 1y 1-1+x 2y 2-1 x +x 1x 2y 1-1 y 2-1=0.①因为x 1x 2y 1-1 y 2-1 =x 1x 2kx 1-12 kx 2-12=4x 1x 24k 2x 1x 2-2k x 1+x 2+1=-12-12k 2+8k 2+4k 2+2=-6,令①中的x =0,可得y 2=6,所以,以PQ 为直径的圆过定点0,±6 .9.已知平面内两点F 1(-2,0),F 2(2,0),动点P 满足:PF 1 +PF 2 =2 3.(1)求动点P 的轨迹C 的方程;(2)设M ,N 是轨迹C 上的两点,直线MN 与曲线x 2+y 2=1(x >0)相切.证明:M ,N ,F 2三点共线的充要条件是|MN |= 3.【答案】(1)x 23+y 2=1;(2)证明见解析.【解析】(1)因为PF 1 +PF 2 =23>F 1F 2 .所以点P 的轨迹是以F 1,F 2为焦点的椭圆,其中2a =23,c =2,b 2=1,所以轨迹C 的方程为x 23+y 2=1.(2)当直线MN 的斜率不存在时,直线MN :x =1,不合题意;当直线MN 的斜率存在时,设M x 1,y 1 ,N x 2,y 2 ,必要性:若M ,N ,F 2三点共线,可设直线MN :y =k (x -2),即kx -y -2k =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得|2k |k 2+1=1,解得k =±1,联立y =±(x -2),x 23+y 2=1,可得4x 2-62x +3=0,所以x 1+x 2=322,x 1⋅x 2=34,所以|MN |=1+1⋅x 1+x 2 2-4x 1⋅x 2=3,所以必要性成立;充分性:设直线MN :y =kx +b ,(kb <0)即kx -y +b =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得|b |k 2+1=1,所以b 2=k 2+1,联立y =kx +b ,x 23+y 2=1,可得1+3k 2 x 2+6kbx +3b 2-3=0,所以x 1+x 2=-6kb 1+3k 2,x 1⋅x 2=3b 2-31+3k 2,所以|MN |=1+k 2⋅x 1+x 2 2-4x 1⋅x 2=1+k 2-6kb 1+3k 2 2-4⋅3b 2-31+3k 2=1+k 2⋅24k 21+3k 2=3,化简得3k 2-1 2=0,所以k =±1,所以k =1b =-2或k =-1b =2 ,所以直线MN :y =x -2或y =-x +2,所以直线MN 过点F (2,0),M ,N ,F 2三点共线,充分性成立;所以M ,N ,F 2三点共线的充要条件是|MN |= 3.10.已知F 1(-2,0),F 2(2,0)为椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,且A 2,53为椭圆上的一点.(1)求椭圆E 的方程;(2)设直线y =-2x +t 与抛物线y 2=2px (p >0)相交于P ,Q 两点,射线F 1P ,F 1Q 与椭圆E 分别相交于M 、N .试探究:是否存在数集D ,对于任意p ∈D 时,总存在实数t ,使得点F 1在以线段MN 为直径的圆内?若存在,求出数集D 并证明你的结论;若不存在,请说明理由.【答案】(1)x 29+y 25=1;(2)存在,D =(5,+∞),证明见解析【解析】(1)由题意知c =2,A 2,53为椭圆上的一点,且AF 2垂直于x 轴,则AF 2 =53,AF 1 =(2+2)2+53 2=133,所以2a =AF 1 +AF 2 =133+53=6,即a =3,所以b 2=32-22=5,故椭圆的方程为x 29+y 25=1;(2)l 方程为y =-2x +t ,联立抛物线方程,得y 2=2pxy =-2x +t ,整理得y 2+py -pt =0,则Δ=p 2+4tp >0,则p +4t >0①,设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=-p ,y 1y 2=-pt ,则x 1+x 2=t +p 2,x 1x 2=(y 1y 2)24p 2=t 24,由F 1的坐标为(-2,0),则F 1P =(x 1+2,y 1),F 1Q=(x 2+2,y 2),由F 1M 与F 1P 同向,F 1N 与F 1Q 同向,则点F 1在以线段MN 为直径的圆内,则F 1M ⋅F 1N <0,则F 1P ⋅F 1Q<0,则(x 1+2)(x 2+2)+y 1y 2<0,即x 1x 2+2(x 1+x 2)+4+y 1y 1<0,则t 24+2t +p 2 +4-pt <0,即t 24+(2-p )t +p +4<0②,当且仅当Δ=(2-p )2-4×14(p +4)>0,即p >5,总存在t >-p4使得②成立,且当p >5时,由韦达定理可知t 24+(2-p )t +p +4=0的两个根为正数,故使②成立的t >0,从而满足①,故存在数集D =(5,+∞),对任意p ∈D 时,总存在t ,使点F 1在线段MN 为直径的圆内.11.在平面直角坐标系xOy 中,设椭圆C :y 2a 2+x 2b2=1(a >b >0)的两个焦点分别为F 1,F 2,点P 在椭圆C 上,连结PF 1,PF 2并延长,分别交椭圆于点A ,B .已知△APF 2的周长为82,△F 1PF 2面积最大值为4.(1)求椭圆C 的标准方程;(2)当P 不是椭圆的顶点时,试分析直线OP 和直线AB 的斜率之积是否为定值?若是,求出该定值,若不是,请说明理由.【答案】(1)y 28+x 24=1;(2)是定值;-6【解析】(1)如图所示:由题意得4a =82bc =4a 2=b 2+c 2,解得a =22b =2所以椭圆C 的方程为y 28+x 24=1(2)设直线PA 的方程为y =kx +2,P x 0,y 0 ,A x 1,y 1 ,F 10,2 ,由y =kx +2y 2+2x 2=8,得k 2+2 x 2+4kx -4=0,∴x 0x 1=-4k 2+2,即x 0x 1=-4y 0-2x 0 2+2=-4x 20y 20-4y 0+4+2x 20,=-4x 2012-4y 0=-x 203-y 0,∴x 1=-x 03-y 0,∴y 1=y 0-2x 0⋅-x 03-y 0+2=8-3y 03-y 0,∴A -x 03-y 0,8-3y 03-y 0,同理可得B -x 03+y 0,-3y 0-83+y 0 ,∴k AB =8-3y 03-y 0+3y 0+83+y 0x 03+y 0-x 03-y 0=48-6y 20-2x 0y 0=38-y 20 -x 0y 0=6x 20-x 0y 0=-6x 0y 0,∴k OP ⋅k AB =y 0x 0⋅-6x 0y 0=-6为定值12.已知点P 2,53 为椭圆C :x 2a 2+y 2b 2=1(a >b >0))上一点,A ,B 分别为C 的左、右顶点,且△PAB 的面积为5.(1)求C 的标准方程;(2)过点Q (1,0)的直线l 与C 相交于点G ,H (点G 在x 轴上方),AG ,BH 与y 轴分别交于点M ,N ,记S 1,S 2分别为△AOM ,△AON (点O 为坐标原点)的面积,证明:S1S 2为定值.【答案】(1)x 29+y 25=1;(2)证明过程见解析.【解析】(1)因为△PAB 的面积为5,点P 2,53 为椭圆C :x 2a 2+y 2b2=1上一点,所以有12⋅2a ⋅53=522a 2+53 2b 2=1 ⇒a =3b =5 ⇒x 29+y 25=1;(2)由题意可知直线l 的斜率不为零,故设方程为x =my +1,与椭圆方程联立为:x 29+y 25=1x =my +1⇒y 2(5m 2+9)+10my -40=0,设G (x 1,y 1),H (x 2,y 2)(y 1>0),因为y 1y 2=-405m 2+9<0,所以y 2<0,A (-3,0),B (3,0),直线AG 的方程为:y -y 1y 1-0=x -x 1x 1+3,令x =0,得y =y 1-x 1y 1x 1+3=3y 1x 1+3,即M 0,3y 1x 1+3 ,同理可得:N 0,-3y 2x 2-3 ,S 1S 2=12OA ⋅yM 12OA ⋅y N =y M y N =3y 1x 1+3⋅x 2-33y 2=3y 1my 2-2 3y 2my 1+4 ,因为y 1+y 2=-10m 5m 2+9,y 1y 2=-405m 2+9,所以有4(y 1+y 2)=my 1y 2,于是有S 1S 2=3y 1(my 2-2)3y 2(my 1+4)=12y 1+12y 2-6y 112y 1+12y 2+12y 2=6(y 1+2y 2)12(y 1+2y 2)=12,因此S1S 2为定值.13.已知椭圆C :x 2a 2+y 2b2=1a >b >0 的短轴长为22,离心率为22.(1)求椭圆C 的方程;(2)点P 为直线x =4上的动点,过点P 的动直线l 与椭圆C 相交于不同的A ,B 两点,在线段AB 上取点Q ,满足AP ⋅QB =AQ ⋅PB ,证明:点Q 的轨迹过定点.【答案】(1)x 24+y 22=1;(2)证明见解析【解析】(1)由题意可知2b =22c a =22,解得a =2,b = 2.所以,所求椭圆的方程为x 24+y 22=1(2)设A x 1,y 1 ,B x 2,y 2 ,Q x ,y ,P 4,t ,直线AB 的斜率显然存在,设为k ,则AB 的方程为y =k x -4 +t .因为A ,P ,B ,Q 四点共线,不妨设x 2<x <x 1<4,则AP =1+k 24-x 1 ,AQ =1+k 2x 1-x ,QB =1+k 2x -x 2 ,PB =1+k 24-x 2由AP ⋅QB =AQ ⋅PB ,可得4-x 1 x -x 2 =x 1-x 4-x 2 ,化简得2x 1x 2-x 1+x 2 4+x +8x =0.(*)联立直线y =k x -4 +t 和椭圆的方程,x 24+y 22=1y =k x -4 +t,消去y ,得2k 2+1 x 2+4k t -4k x +2t -4k 2-4=0.由韦达定理,得x 1+x 2=-4k t -4k 2k 2+1,x 1x 2=2t -4k 2-42k 2+1.代入(*)化简得x=4kt+2-t2kt+2=4-6+t2kt+2,即6+t 2kt+2=4-x.又k=y-tx-4,代入上式,得6+t2y-tx-4t+2=4-x,化简得2x+ty-2=0.所以点Q总在一条动直线2x+ty-2=0上,且恒过定点1,0.14.在平面直角坐标系中,椭圆C:x2a2+y2b2=1(a>b>0)的离心率e=63,a=6,直线l与x轴相交于点E,与椭圆相交于点A,B;(1)求椭圆C的方程,(2)在x轴上是否存在点E,使得1|EA|2+1|EB|2为定值?若存在,请求出点E的坐标,若不存在,请说明理由.【答案】(1)x26+y22=1;(2)存在;E(±3,0)【解析】(1)由题意得:e=c a=63,a=6,∴c=2,∴b2=a2-c2=2, -所以椭圆的方程为x26+y22=1(2)设E(x0,0),A(x1,y1),B(x2,y2),(ⅰ)当直线AB与x轴不重合时,设AB的方程为x=my+x0代入x26+y22=1得:(m2+3)y2+2mx0y+x20-6=0,则y1+y2=-2mx0m2+3 y1⋅y2=x2-6m2+3|EA|2=(m2+1)y21,|EB|2=(m2+1)y22, -1 |EA|2+1|EB|2=(y1+y2)2-2y1y2(m2+1)y21y22=2×m2(x20+6)+(18-3x20) m2(x20-6)2+(x20-6)2-当x20+6=18-3x20,即x20=3时,无论m取何值,1|EA|2+1|EB|2的值恒为2,得点E(±3,0),(ⅱ)当直线AB与x轴重合时,有A(-6,0),B(6,0),E(3,0)或E(-3, 0),均有1|EA|2+1|EB|2=2由i和ii得,在x轴上是存在两点E(±3,0),使得1|EA|2+1|EB|2为定值.15.已知△ABC 的两个顶点A ,B 的坐标分别为(-3,0),(3,0),圆E 是△ABC 的内切圆,在边AC ,BC ,AB 上的切点分别为P ,Q ,R ,CP =2-3,动点C 的轨迹为曲线G .(1)求曲线G 的方程;(2)设直线l 与曲线G 交于M 、N 两点,点D 在曲线G 上,O 是坐标原点OM+ON =OD ,判断四边形OMDN 的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.【答案】(1)x 24+y 2=1y ≠0 ;(2)四边形OMDN 的面积是定值,其定值为3【解析】(1)因为圆E 为△ABC 的内切圆,所以CA +CB =CP +CQ +PA +QB =2CP +AR +BR =2CP +AB =4>AB ,所以点C 的轨迹为以点A 和点B 为焦点的椭圆,所以c =3,a =2,则b =1,所以曲线G 的方程为x 24+y 2=1y ≠0(2)由y ≠0可知直线l 的斜率存在,设直线l 方程是y =kx +m ,M x 1,y 1 ,N x 2,y 2 ,由平面图形OMDN 是四边形,可知m ≠0,代入到x 24+y 2=1,得1+4k 2 x 2+8kmx +4m 2-4=0所以Δ=184k 2+1-m 2>0,x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-41+4k 2.所以y 1+y 2=k x 1+x 2 +2m =2m1+4k 2,所以MN =1+k 2⋅44k 2-m 2+11+4k 2,又点O 到直线MN 的距离d =m1+k2,由OM +ON =OD ,得x D =-8km 1+4k ,y D =2m 1+4k 2,因为点D 在曲线C 上,所以将D 点坐标代入椭圆方程得1+4k 2=4m 2.由题意四边形OMDN 为平行四边形,所以OMDN 的面积为S =1+k 2×44k 2-m 2+11+4k 2×m1+k2=4m 4k 2-m 2+11+4k 2,由1+4k 2=4m 2,代入得S =3,故四边形OMDN 的面积是定值,其定值为3.16.已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右顶点为A (2,0),离心率为12.过点P (6,0)与x 轴不重合的直线l 交椭圆E 于不同的两点B ,C ,直线AB ,AC 分别交直线x =6于点M ,N .(1)求椭圆E 的方程;(2)设O 为原点.求证:∠PAN +∠POM =90°.【答案】(1)x 24+y 23=1;(2)证明见解析.【解析】(1)由题得a =2,c a =12,∴a =2,c =1,∴b =3,所以椭圆E 的方程为x 24+y 23=1.(2)要证∠PAN +∠POM =90°,只需证∠PAN =90°-∠POM ,只需证明tan ∠PAN =1tan ∠POM,只需证明tan ∠PAN ⋅tan ∠POM =1,只需证明k AN ⋅k OM =1,设M (6,m ),N (6,n ),只需证明n 6-2⋅m6=1,只需证明mn =24.设直线l 的方程为y =k (x -6),k ≠0,联立椭圆方程x 24+y 23=1得(3+4k 2)x 2-48k 2x +144k 2-12=0,设B (x 1,y 1),C (x 2,y 2),所以Δ>0,x 1+x 2=48k 23+4k 2,x 1x 2=144k 2-123+4k 2,又A ,B ,M 三点共线,所以m4=y 1x 1-2,∴m =4y 1x 1-2,同理n =4y 2x 2-2,所以mn =4y 1x 1-2×4y 2x 2-2=16k 2(x 1-6)(x 2-6)(x 1-2)(x 2-2),所以mn =16k 2[x 1x 2-6(x 1+x 2)+36]x 1x 2-2(x 1+x 2)+4所以mn =16k 2144k 2-123+4k 2-6×48k 23+4k 2+36144k 2-123+4k 2-2×48k 23+4k 2+4=16k 2×9664k 2=24.所以∠PAN +∠POM =90°.17.已知椭圆C :x 2a 2+y 2b2=1a >b >0 的焦距为2,且经过点P 1,32 .(1)求椭圆C 的方程;(2)经过椭圆右焦点F 且斜率为k k ≠0 的动直线l 与椭圆交于A 、B 两点,试问x 轴上是否存在异于点F 的定点T ,使AF ⋅BT =BF ⋅AT 恒成立?若存在,求出T 点坐标,若不存在,说明理由.【答案】(1)x 24+y 23=1;(2)存在,T 4,0 .【解析】(1)由椭圆C 的焦距为2,故c =1,则b 2=a 2-1,又由椭圆C 经过点P 1,32 ,代入C 得1a 2+94b2=1,得a 2=4,b 2=3,所以椭圆C 的方程为:x 24+y 23=1.(2)根据题意,直线l 的斜率显然不为零,令1k=m由椭圆右焦点F 1,0 ,故可设直线l 的方程为x =my +1,与C :x 24+y 23=1联立得,3m 2+4 y 2+6my -9=0,则Δ=36m 2-4-9 3m 2+4 =144m 2+1 >0,设A x 1,y 1 ,B x 2,y 2 ,y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4,设存在点T ,设T 点坐标为t ,0 ,由AF ⋅BT =BF ⋅AT ,得AF BF=AT BT,又因为AF BF =S △TFA S △TFB =12FT⋅AT sin ∠ATF12FT⋅BT sin ∠BTF =AT sin ∠ATF BT sin ∠BTF ,所以sin ∠ATF =sin ∠BTF ,∠ATF =∠BTF ,所以直线TA 和TB 关于x 轴对称,其倾斜角互补,即有k AT +k BT =0,则:k AT +k BT =y 1x 1-t +y 2x 2-t=0,所以y 1x 2-t +y 2x 1-t =0,所以y 1my 2+1-t +y 2my 1+1-t =0,2my 1y 2+1-t y 1+y 2 =0,即2m ×-93m 2+4+1-t ×-6m 3m 2+4=0,即3m 3m 2+4+1-tm3m 2+4=0,解得t =4,符合题意,即存在点T 4,0 满足题意.18.设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A ,B ,上顶点为D ,点P 是椭圆C 上异于顶点的动点,已知椭圆的离心率e =32,短轴长为2.(1)求椭圆C 的方程;(2)若直线AD 与直线BP 交于点M ,直线DP 与x 轴交于点N ,求证:直线MN 恒过某定点,并求出该定点.【答案】(1)x 24+y 2=1;(2)证明见解析,定点为(2,1)【解析】(1)由已知可得2b =2e =a 2-b 2a =32,解得a =2b =1 ,故椭圆C 的方程为x 24+y 2=1;(2)设直线BP 的方程为y =k 1(x -2)(k 1≠0且k 1≠±12),直线DP 的方程为y =k 2x +1(k 2≠0且k 2≠±12),则直线DP 与x 轴的交点为N -1k 2,0 ,直线AD 的方程为y =12x +1,则直线BP 与直线AD 的交点为M 4k 1+22k 1-1,4k 12k 1-1,将y =k 2x +1代入方程x 24+y 2=1,得4k 22+1 x 2+8k 2x =0,则点P 的横坐标为x P =-8k 24k 22+1,点P 的纵坐标为y P =k 2⋅-8k24k 22+1+1=1-4k 224k 22+1,将点P 的坐标代入直线BP 的方程y =k 1(x -2),整理得1+2k 2 1-2k 2 =-2k 11+2k 2 2,∵1+2k2≠0,∴2k 1+4k 1k 2=2k 2-1,由M ,N 点坐标可得直线MN 的方程为:y =4k 1k 24k 1k 2+2k 2+2k 1-1x +1k 2 =2k 1k 2x +2k 12k 2-1=2k 1k 2x +2k 2-1-4k 1k 22k 2-1,即y =2k 1k 22k 2-1(x -2)+1,则直线MN 过定点(2,1).19.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)经过点A (0,1),且右焦点为F (1,0).(1)求C 的标准方程;(2)过点0,12的直线l 与椭圆C 交于两个不同的点P .Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N .证明:以MN 为直径的圆过y 轴上的定点.【答案】(1)x 22+y 2=1;(2)证明见解析【解析】(1)由题意可得c =1,b =1从而a 2=2.所以椭圆的标准方程为x 22+y 2=1.(2)证明:由题意直线l 斜率存在,可设直线l :y =kx +12,设P x 1,y 1 ,Q x 2,y 2 ,将直线l 代入椭圆方程得4k 2+2 x 2+4kx -3=0,所以x 1+x 2=-4k 4k 2+2,x 1,x 2=-34k 2+2,直线AP 的方程为y =y 1-1x 1x +1,直线AQ 的方程为y =y 2-1x 2x +1.可得M -x 1y 1-1,0 ,N -x 2y 2-1,0,以MN 为直径的圆方程为,x +x 1y 1-1 x +x 2y 2-1 +y 2=0,即x 2+y 2+x 1y 1-1+x 2y 2-1 x +x 1x 2y 1-1 y 2-1 =0.①因为x 1x 2y 1-1 y 2-1=x 1x 2kx 1-12 kx 2-12 =4x 1x 24k 2x 1x 2-2k x 1+x 2 +1=-12-12k 2+8k 2+4k 2+2=-6.所以在①中令x =0,得y 2=6,即以MN 为直径的圆过y 轴上的定点(0,±6),20.已知椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),右焦点为F (2,0),且离心率为63.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线x 2+y 2=b 2(x >0)相切.证明:M ,N ,F 三点共线的充要条件是|MN |=3.【答案】(1)x 23+y 2=1;(2)证明见解析.【解析】(1)由题意,椭圆半焦距c =2且e =c a =63,所以a =3,又b 2=a 2-c 2=1,所以椭圆方程为x 23+y 2=1;(2)由(1)得,曲线为x 2+y 2=1(x >0),当直线MN 的斜率不存在时,直线MN :x =1,不合题意;当直线MN 的斜率存在时,设M x 1,y 1 ,N x 2,y 2 ,必要性:若M ,N ,F 三点共线,可设直线MN :y =k x -2 即kx -y -2k =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得2kk 2+1=1,解得k =±1,联立y =±x -2x 23+y 2=1可得4x 2-62x +3=0,所以x 1+x 2=322,x 1⋅x 2=34,所以MN =1+1⋅x 1+x 2 2-4x 1⋅x 2=3,所以必要性成立;充分性:设直线MN :y =kx +m ,km <0 即kx -y +m =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得mk 2+1=1,所以m 2=k 2+1,联立y =kx +m x 23+y 2=1可得1+3k 2 x 2+6kmx +3m 2-3=0,所以x 1+x 2=-6km 1+3k 2,x 1⋅x 2=3m 2-31+3k 2,所以MN =1+k 2⋅x 1+x 2 2-4x 1⋅x 2=1+k 2-6km 1+3k 2 2-4⋅3m 2-31+3k 2=1+k 2⋅24k 21+3k 2=3,化简得3k 2-1 2=0,所以k =±1,所以k =1m =-2或k =-1m =2 ,所以直线MN :y =x -2或y =-x +2,所以直线MN 过点F (2,0),M ,N ,F 三点共线,充分性成立;所以M ,N ,F 三点共线的充要条件是|MN |=3.21.圆O :x 2+y 2=4与x 轴的两个交点分别为A 1-2,0 ,A 22,0 ,点M 为圆O 上一动点,过M 作x 轴的垂线,垂足为N ,点R 满足NR =12NM(1)求点R 的轨迹方程;(2)设点R 的轨迹为曲线C ,直线x =my +1交C 于P ,Q 两点,直线A 1P 与A 2Q 交于点S ,试问:是否存在一个定点T ,当m 变化时,A 2TS 为等腰三角形【答案】(1)x 24+y 2=1;(2)存在,证明见解析【解析】(1)设点M x 0,y 0 在圆x 2+y 2=4上,故有x 20+y 2=4,设R x ,y ,又NR =12NM ,可得x =x 0,y =12y 0,即x 0=x ,y 0=2y代入x 20+y 20=4可得x 2+2y 2=4,化简得:x 24+y 2=1,故点R 的轨迹方程为:x 24+y 2=1.(2)根据题意,可设直线l 的方程为x =my +1,取m =0,可得P 1,32 ,Q 1,-32 ,可得直线A 1P 的方程为y =36x +33,直线A 2Q 的方程为y =32x -3联立方程组,可得交点为S 14,3 ;若P 1,-32,Q 1,32 ,由对称性可知交点S 24,-3 ,若点S 在同一直线上,则直线只能为l :x =4上,以下证明:对任意的m ,直线A 1P 与直线A 2Q 的交点S 均在直线l :x =4上.由x =my +1x 24+y 2=1,整理得m 2+4 y 2+2my -3=0设P x 1,y 1 ,Q x 2,y 2 ,则y 1+y 2=-2m m 2+4,y 1y 2=-3m 2+4设A 1P 与l 交于点S 04,y 0 ,由y 04+2=y 1x 1+2,可得y 0=6y 1x 1+2设A 2Q 与l 交于点S 04,y0 ,由y 04-2=y 2x 2-2,可得y 0=2y 2x 2-2,因为y 0-y 0=6y 1x 1+2-2y 2x 2-2=6y 1my 2-1 -2y 2my 1+3 x 1+2 x 2-2=4my 1y 2-6y 1+y 2 x 1+2 x 1-2 =-12m m 2+4--12mm 2+4x 1+2 x 2-2 =0,因为y 0=y 0,即S 0与S 0重合,所以当m 变化时,点S 均在直线l :x =4上,因为A 22,0 ,S 4,y ,所以要使A 2TS 恒为等腰三角形,只需要x =4为线段A 2T 的垂直平分线即可,根据对称性知,点T 6,0 .故存在定点T 6,0 满足条件.22.已知点F 2,0 ,动点M x ,y 到直线l :x =22的距离为d ,且d =2MF ,记M 的轨迹为曲线C .(1)求C 的方程;(2)过M 作圆O 1:x 2+y 2=43的两条切线MP 、MQ (其中P 、Q 为切点),直线MP 、MQ 分别交C 的另一点为A 、B .从下面①和②两个结论中任选其一进行证明.①PA ⋅PM 为定值;②MA =MB .【答案】(1)x 24+y 22=1;(2)条件选择见解析,证明见解析【解析】(1)由题意知22-x =2⋅x -2 2+y 2,两边平方整即得x 2+2y 2=4,所以,曲线C 的方程为x 24+y 22=1.(2)证明:设M x 0,y 0 、A x 1,y 1 、B x 2,y 2 ,当x 20=43时,y 20=43,则不妨设点M 233,233 ,则点A 233,-233 或A -233,233 ,此时OM ⋅OA=0,则OM ⊥OA ;当x 20≠43时,设直线MA :y =kx +m ,由直线MA 与圆O :x 2+y 2=43相切可得m 1+k2=23,即3m 2=41+k 2 ,联立y =kx +m x 2+2y 2=4可得2k 2+1 x 2+4kmx +2m 2-4=0,Δ=16k 2m 2-42k 2+1 2m 2-4 =84k 2+2-m 2 =1634k 2+1 >0,由韦达定理可得x 0+x 1=-4km 2k 2+1,x 1x 2=2m 2-42k 2+1,则OM ⋅OA=x 0x 1+y 0y 1=x 0x 0+kx 0+m kx 1+m =1+k 2 x 0x 1+km x 0+x 1 +m 2=1+k 22m 2-4 -4k 2m 2+m 21+2k 21+2k 2=3m 2-41+k 21+2k 2=0,所以,OM ⊥OA ,同理可得OM ⊥OB .选①,由OM ⊥OA 及OP ⊥AM 可得Rt △MOP ∽Rt △AOP ,则PM OP=OP PA,所以,PM ⋅PA =OP 2=43;选②,出OM ⊥OA 及OM ⊥OB 可得:A 、O 、B 三点共线,则OA =OB ,又MA 2=OA 2+OM 2=OB 2+OM 2=MB 2,因此,MA =MB .23.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为22,且过点A 2,1 .(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得DQ 为定值.【答案】(1)x 26+y 23=1;(2)详见解析.【解析】(1)由题意可得:c a =224a 2+1b 2=1a 2=b 2+c 2,解得:a 2=6,b 2=c 2=3,故椭圆方程为:x 26+y 23=1.(2)[方法一]:通性通法设点M x 1,y 1 ,N x 2,y 2 ,若直线MN 斜率存在时,设直线MN 的方程为:y =kx +m ,代入椭圆方程消去y 并整理得:1+2k 2 x 2+4kmx +2m 2-6=0,可得x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-61+2k 2,因为AM ⊥AN ,所以AM ·AN=0,即x 1-2 x 2-2 +y 1-1 y 2-1 =0,根据y 1=kx 1+m ,y 2=kx 2+m ,代入整理可得:k 2+1 x 1x 2+km -k -2 x 1+x 2 +m -1 2+4=0,所以k 2+1 2m 2-61+2k 2+km -k -2 -4km 1+2k 2 +m -1 2+4=0,整理化简得2k +3m +1 2k +m -1 =0,因为A (2,1)不在直线MN 上,所以2k +m -1≠0,故2k +3m +1=0,k ≠1,于是MN 的方程为y =k x -23 -13k ≠1 ,所以直线过定点直线过定点P 23,-13.当直线MN 的斜率不存在时,可得N x 1,-y 1 ,由AM ·AN=0得:x 1-2 x 1-2 +y 1-1 -y 1-1 =0,得x 1-2 2+1-y 21=0,结合x 216+y 213=1可得:3x 12-8x 1+4=0,解得:x 1=23或x 2=2(舍).此时直线MN 过点P 23,-13.令Q 为AP 的中点,即Q 43,13,若D 与P 不重合,则由题设知AP 是Rt △ADP 的斜边,故DQ =12AP =223,若D 与P 重合,则DQ =12AP ,故存在点Q 43,13,使得DQ 为定值.[方法二]【最优解】:平移坐标系将原坐标系平移,原来的O 点平移至点A 处,则在新的坐标系下椭圆的方程为(x +2)26+(y +1)23=1,设直线MN 的方程为mx +ny =4.将直线MN 方程与椭圆方程联立得x 2+4x +2y 2+4y =0,即x 2+(mx +ny )x +2y 2+(mx+ny )y =0,化简得(n +2)y 2+(m +n )xy +(1+m )x 2=0,即(n +2)y x2+(m +n )yx+(1+m )=0.设M x 1 ,y 1 ,N x 2,y 2 ,因为AM ⊥AN 则k AM ⋅k AN =y 1x 1⋅y 2x 2=m +1n +2=-1,即m =-n -3.代入直线MN 方程中得n (y -x )-3x -4=0.则在新坐标系下直线MN 过定点-43,-43 ,则在原坐标系下直线MN 过定点P 23,-13.又AD ⊥MN ,D 在以AP 为直径的圆上.AP 的中点43,13即为圆心Q .经检验,直线MN 垂直于x 轴时也成立.故存在Q 43,13,使得|DQ |=12|AP |=223.[方法三]:建立曲线系A 点处的切线方程为2×x6+1×y 3=1,即x +y -3=0.设直线MA 的方程为k 1x -y -2k 1+1=0,直线MB 的方程为k 2x -y -2k 2+1=0,直线MN 的方程为kx -y +m =0.由题意得k 1⋅k 2=-1.则过A ,M ,N 三点的二次曲线系方程用椭圆及直线MA ,MB 可表示为x 26+y 23-1+λk 1x -y - 2k 1+1 k 2x -y -2k 2+1 =0(其中λ为系数).用直线MN 及点A 处的切线可表示为μ(kx -y +m )⋅(x +y -3)=0(其中μ为系数).即x 26+y 23-1+λk 1x -y -2k 1+1 k 2x - y -2k 2+1 =μ(kx -y +m )(x +y -3).对比xy 项、x 项及y 项系数得λk 1+k 2 =μ(1-k ),①λ4+k 1+k 2 =μ(m -3k ),②2λk 1+k 2-1 =μ(m +3).③将①代入②③,消去λ,μ并化简得3m +2k +1=0,即m =-23k -13.故直线MN 的方程为y =k x -23 -13,直线MN 过定点P 23,-13.又AD ⊥MN ,D 在以AP 为直径的圆上.AP 中点43,13 即为圆心Q .经检验,直线MN 垂直于x 轴时也成立.故存在Q 43,13,使得|DQ |=12|AP |=223.[方法四]:设M x 1,y 1 ,N x 2,y 2 .若直线MN 的斜率不存在,则M x 1,y 1 ,N x 1,-y 1 .因为AM ⊥AN ,则AM ⋅AN =0,即x 1-2 2+1-y 21=0.由x 216+y 213=1,解得x 1=23或x 1=2(舍).所以直线MN 的方程为x =23.若直线MN 的斜率存在,设直线MN 的方程为y =kx +m ,则x 2+2(kx +m )2-6=1+2k 2 x -x 1 x -x 2 =0.令x =2,则x 1-2 x 2-2 =2(2k +m -1)(2k +m +1)1+2k 2.又y -m k 2+2y 2-6=2+1k 2 y -y 1 y -y 2 ,令y =1,则y 1-1 y 2-1 =(2k +m -1)(-2k +m -1)1+2k 2.因为AM ⊥AN ,所以AM ⋅AN=x 1-2 x 2-2 +y 1-1 y 2-1 =(2k +m -1)(2k +3m +1)1+2k 2=0,即m =-2k +1或m =-23k -13.当m =-2k +1时,直线MN 的方程为y =kx -2k +1=k (x -2)+1.所以直线MN 恒过A (2,1),不合题意;当m =-23k -13时,直线MN 的方程为y =kx -23k -13=k x -23 -13,所以直线MN 恒过P 23,-13 .综上,直线MN 恒过P 23,-13 ,所以|AP |=423.又因为AD ⊥MN ,即AD ⊥AP ,所以点D 在以线段AP 为直径的圆上运动.取线段AP 的中点为Q 43,13,则|DQ |=12|AP |=223.所以存在定点Q ,使得|DQ |为定值.24.已知△ABC 的顶点A -4,0 ,B 4,0 ,满足:tan A tan B =916.(1)记点C 的轨迹为曲线Γ,求Γ的轨迹方程;(2)过点M 0,2 且斜率为k 的直线l 与Γ相交于P ,Q 两点,是否存在与M 不同的定点N ,使得NP ⋅MQ =NQ ⋅MP 恒成立?若存在,求出点N 的坐标;若不存在,请说明理由.【答案】(1)x 216+y 29=1x ≠±4 ;(2)N 0,92【解析】(1)设C x ,y ,则tan A tan B =y x +4⋅y 4-x =916,整理得x 216+y 29=1,故Γ的轨迹方程为x 216+y 29=1 x ≠±4 ;(2)设直线l 为y =kx +2,当k =0时,可得点P ,Q 关于y 轴对称,可得MQ =MP ,要使NP ⋅MQ =NQ ⋅MP 恒成立,即NP NQ=MP MQ=1成立,即点N 在y 轴上,可设为N 0,a ,a ≠2.当k ≠0时,联立方程组y =kx +2x 216+y 29=1x ≠±4整理得9+16k 2 x 2+64kx -80=0,设P x 1,y 1 ,Q x 2,y 2则x 1+x 2=-64k 9+16k 2,x 1x 2=-809+16k 2,要使NP ⋅MQ =NQ ⋅MP 恒成立,即NP NQ =MPMQ成立,由角平分线定理则只需使得y 轴为∠PNQ 的平分线,即只需k NP +k NQ =0,即y 1-ax 1+y 2-ax 2=0⇒x 2y 1-a +x 1y 2-a =x 2kx 1+2-a +x 1kx 2+2-a =0,即2kx 1x 2+2-a x 1+x 2 =2k ⋅-809+16k 2+2-a⋅-64k9+16k 2=0⇒-288+64a k =0解得:a =92,综上可得,存在与M 不同的定点N 0,92,使得NP ⋅MQ =NQ ⋅MP 恒成立25.如图,已知椭圆C :x 2a2+y 2=1(a >1),其左、右焦点分别为F 1,F 2,过右焦点F 2且垂直于x 轴的直线交椭圆于第一象限的点P ,且sin ∠PF 1F 2=13.(1)求椭圆C 的方程;(2)过点S 0,-13且斜率为k 的动直线l 交椭圆于A ,B 两点,在y 轴上是否存在定点M ,使以AB 为直径的圆恒过这个点?若存在,求出点M 的坐标;若不存在,说明理由.【答案】(1)x 22+y 2=1;(2)存在,0,1 .【解析】(1)法一:∵sin ∠PF 1F 2=PF 2 PF 1=13,PF 1 +PF 2 =2a ,∴PF 1 =32a ,PF 2 =a2,∵PF 2 2+F 1F 2 2=PF 1 2,F 1F 2 =2c ,∴a =2c ,∵a 2=c 2+1,∴c =1,a =2,∴椭圆方程为:x 22+y 2=1..法二:设P c ,y 0 ,代入椭圆方程,由a 2=c 2+1,解得PF 2 =y 0=1a ,∵sin ∠PF 1F 2=PF 2 PF 1=13,∴PF 1 =3a,∵PF 1 +PF 2 =2a ,∴a =2,。
椭圆中互相垂直的弦过定点问题
(1)过椭圆22221x y a b +=的右焦点(,0)F c 作两条互相垂直的弦AB ,CD 。
若弦AB ,CD的中点分别为M ,N ,那么直线MN 恒过定点222(,0)a ca b +。
(2)过椭圆22221x y a b +=的长轴上任意一点(,0)()S s a s a -<<作两条互相垂直的弦AB ,CD 。
若弦AB ,CD 的中点分别为M ,N ,那么直线MN 恒过定点222(,0)a sa b+。
设AB 的直线为x my s =+,则CD 的直线方程为1x y s m=-+, 222222x my s b x a y a b =+⎧⎨+-=⎩,22222222()2()0m b a y b msy b s a +++-=, 2222224()0a b m b a s ∆=+->,2112222msb y y m b a -+=+,22211222()a s a y y mb a-⋅=+, 由中点公式得M 22222222(,)a s msb m b a m b a -++, 将m 用1m-代换,得到N 的坐标222222222(,)a sm msb m a b m a b ++ MN 的直线方程为222222222222()()(1)b sm a b m a s y x b m a a m b m a ++=-+-+,令0y =,得222a s x ab =+ 所以直线MN 恒过定点222(,0)a sa b +。
(3)过椭圆22221x y a b +=的短轴上任意一点(0,)()T t t t t -<<作两条互相垂直的弦AB ,CD 。
若弦AB ,CD 的中点分别为M ,N ,那么直线MN 恒过定点222(0,)b ta b+。
(4)过椭圆22221x y a b +=内的任意一点2222(,)(1)s t Q s t a b +<作两条互相垂直的弦AB ,CD 。
椭圆中的定点(精编文档).doc
【最新整理,下载后即可编辑】椭圆定点问题直线过定点问题处理模型:★★①点斜式:00)(y x x k y +-=,过定点),(00y x ②021=+l l λ恒过两直线交点。
例、已知椭圆1222=+y x 的右焦点F (1,0),作两条相互垂直的弦AB 、CD ,设AB 、CD 的中点分别为M 、N 。
证明MN 必过定点,并求出此定点坐标。
变式练习:1、已知椭圆12222=+b y a x (0 b a )过点⎪⎭⎫ ⎝⎛23,1,且离心率为21。
(1)求椭圆C 的方程(2)若动点P 在直线1-=x 上,过点P 作直线与椭圆C 相交于M ,N 两点,且P 为线段MN 的中点,再过点P 作直线l MN ⊥。
证明:直线l 横过定点,并求出该定点的坐标。
2、已知椭圆112222=-+a y a x 的焦点在X 轴上。
(1)若椭圆的焦距为1,求椭圆方程(2)设21,F F 分别是椭圆的左右焦点,P 为椭圆上第一象限内的点,直线P F 2交Y 轴于点Q ,并且Q F P F 11⊥,证明:当a 变化时,点P 在某定直线上。
3、已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线l :y kx m =+与椭圆C 相交于A ,B 两点(A B ,不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.4、设21,F F 为椭圆)0(14222>=+b b y x 的左右焦点,若点P 是椭圆上的动点,且21PF PF •的最大值为1.(1)求椭圆的方程;(2)设直线1-=ky x 与椭圆交于A 、B 两点,点A 关于x 轴对称点为A ’(A ’与B 不重合),则直线A ’B 与x 轴是否交于一个定点?若是,请写出该定点坐标,并证明你的结论;若不是,请说明理由。
二、圆过定点问题处理模型:★★①0)(22=++++C By Ax y x λ,恒过直线与圆的交点 ②0)(2222=+++++F Ey Dx y x y x λ,恒过两圆交点 处理运算:02=++c bx ax 对于任意实数均成立,则有0===c b a 例、已知椭圆121822=+y x 的左、右焦点分别为21F F 、,若M 、N 分别是直线5=x 上的两个动点,且满足N F M F 21⊥,证明:以MN 为直径的圆恒过定点,并求处定点坐标。
椭圆中定点问题
OxyPAB椭圆一个性质的应用性质 如图1,椭圆22221(0)x y a b a b +=>>PA PB k k ⋅为定值22b a-.已知椭圆上任意一点P 与过中心的弦AB 的两端点A 、B 连线PA 、PB 与坐标轴不平行,则直线PA 、PB 的斜率之积为定值22b a-证明 设(,)P x y ,11(,)A x y ,则11(,)B x y --.所以12222=+by a x ①1221221=+b y a x ② 由①-②得22122212by y a x x --=-, 所以22212212a b x x y y -=--, 所以222111222111PA PBy y y y y y b k k x x x x x x a-+-⋅=⋅==--+-为定值. 这条性质是圆的性质:圆上一点对直径所张成的角为直角在椭圆中的推广,它充分揭示了椭圆的本质属性,因而能简洁解决问题,下举例说明.一、证明直线垂直例1 如图2,已知椭圆22142x y +=,,A B 是其左、右顶点,动点M 满足MB AB ⊥,连结AM 交椭圆于点P .求证:MO PB ⊥.证明 设(2,)M y ,由性质知12PA PBk k ⋅=-,即12MA PB k k ⋅=- ③图1图2直线MA ,MO 的斜率分别为24MA y y k a == ,2MO y y k a ==, 所以12MA MO k k =④ 将④代入③得1MO PB k k ⋅=-,所以MO PB ⊥.例2 如图3,PQ 是椭圆不过中心的弦,A 1、A 2为长轴的两端点,A 1P 与Q A 2相交于M ,P A 2与A 1Q 相交于点N ,则MN ⊥A 1A 2.证明 设M (x 1,y 1),N (x 2,y 2).由性质知1222PA PA b k k a ⋅=-,即1222MA NA b k k a ⋅=-,所以222211ab a x y a x y -=-⋅+ ⑤1222QA QA b k k a ⋅=, 即2122MA NA b k k a ⋅=-,所以221122ab a x y a x y -=-⋅+ ⑥比较⑤与⑥得1221()()()()x a x a x a x a +-=+-,所以2112()()a x x a x x -=-, 所以12x x =.所以MN ⊥x 轴,即MN ⊥A 1A 2.二、证明直线定向例3 如图4,已知A (2,1),B (-2,-1)是椭圆E :x 26+y 23=1上的两点,C ,D 是椭圆E 上异于A ,B 的两点,且直线AC ,BD 相交于点M ,直线AD ,BC 相交于点N .CA ,CB ,DA ,DB 的斜率都存在.求证:直线MN 的斜率为定值.证明 设(,)M M M x y ,(,)N N N x y ,由性质知12CA CB k k ⋅=-,即12MA NB k k ⋅=-, 12DA DBk k ⋅=-,即12NA MB k k ⋅=-.所以111222N M M N y y x x +-⋅=--+,11(224)2M N M N M N M N y y y y x x x x +--=-+-- ⑦xy AOB CDMN 图4图3111222N M M N y y x x -+⋅=-+-,11(224)2M N M N M N M N y y y y x x x x -+-=--+- ⑧由⑦-⑧得()M N M N y y x x -=--所以1MN k =-,即直线MN 的斜率为定值1-.三、证明点的纵坐标之积为定值例4 如图5,已知椭圆C :x 24+y 23=1,过椭圆C 的右焦点F 且与x 轴不重合的直线与椭圆C 交于A ,B 两点,点B 关于坐标原点的对称点为P ,直线P A ,PB 分别交椭圆C 的右准线l 于M ,N 两点. 记M ,N 两点的纵坐标分别为y M ,y N ,求证:y M ·y N 为定值.证明 当直线AB 的斜率k 不存在时,易得y M ·y N =-9.当直线AB 的斜率k 存在时,由性质知k P A k =-34,所以k P A =-34k .设A (x 1,y 1),B (x 2,y 2),则P (-x 2,-y 2), 所以直线P A 的方程为y +y 2=-34k (x +x 2),因为右准线l 的方程为4x =, 所以y M =-34k(x 2+4)-y 2,因为,,A F B 三点共线,所以直线AB 的斜率k =y 2(x 2-1).所以y M =-3(x 2+4)(x 2-1)4y 2-y 2.因为直线PB 的方程为y =y 2x 2x ,所以y N =4y 2x 2.所以y M y N =-3×(x 2+4)(x 2-1)x 2-4y 22x 2.又因为x 224+y 223=1,所以4y 22=12-3x 22, 所以y M y N =-3×(x 2+4)(x 2-1)+4-x 22x 2=-9,所以y M y N 为定值-9.图5由以上几个例题,同学们会看到,这个性质解决问题中起到了化繁为简作用,希望同学们领悟其中的道理,并进一步运用这个性质解决更多的问题.巩固练习.已知椭圆22221(0)x ya ba b+=>>的离心率12e=,A、B分别是椭圆的左、右顶点,P是椭圆上不同于A、B的一点,直线P A、PB的倾斜角分别为α、β,则cos()cos()αβαβ-+的值为▲ .。
椭圆中定点定值问题课件
即有 l : y k(x 1) , 令 x 1 得,y=0,与实数 k 无关,
例5 已知 P(1,3),Q(1, 2) ,设过点 P 的动直线与抛物线 y x2 交于 A, B 两点,
直线 AQ, BQ 与该抛物线的另一交点分别为 C, D ,记直线 AB,CD 的
斜率分别为 k1, k2 .
解:(Ⅰ)由题意:设直线 l : y kx n(n 0) ,
y kx n
由
x
2
3
y2
消
1
y
得:
(1 3k 2 )x2
6knx
3n2
3
0
,
36k 2n2 4(1 3k 2 )× 3(n2 1) 12(3k 2 1 n2 ) 0
设 A (x1, y1) 、B ( x2 , y2 ) ,AB 的中点 E ( x0 , y0 ) ,则由韦达定理得: [来源:学科网]
MB
( x1
7 3
,
y1 )( x2
7 3
,
y2
)
( x1
7 3
)(
x2
7) 3
y1 y2
( x1
7 3 )( x2
7) 3
k
2
(
x1
1)(
x2
1)
(1
k2
) x1 x2
(7 3
k2
)( x1
x2
)
49 9
k
2
(1
k
2
)
3k 2 3k 2
5 1
(
7 3
k
2
)(
6k 2
3k
2
) 1
49 9
k
2
椭圆弦中点问题探究
a
7
探究方法小结
上述研究表明,圆中的某些性质经过改造后
,可以迁移到椭圆中来,我们是通过数学实
验的方法来发现其中的规律,但是数学实验
中发现的规律还需理论推导证明,上述证明
中,主要用到点差法。其关键点是
(y1 y2)(y1 y2)
b2
它沟通了(x弦1 的x2斜)(x1率、x2)弦的中a 点2 坐标与椭圆基
本量a,b之间的紧密联系。
a
8
轨迹方程——方法的探究
问题2、过点P(2,1)作椭圆x2+4y2=16
的一条弦AB,若点P是弦AB的中点,求
直线AB的方程
YA
P(2,1)
O
X B
a
9
韦达定理法
设AB:y-1=k(x-2),代入椭圆方程 x 2 y 2 1 16 4
得x2+4[k(x-2)+1]2=16,
a
15
变式训练二
过P(2,1)作椭圆9x2+25y2=225的一条弦AB,若弦
AB的中点M在x轴上,求直线AB方程
思路:设A(x1,y1),B(x2,y2),M(x0,0),则
x
2 1
y
2 1
1
25 9
x
2 2
y
2 2
1
25 9
两式相减,得
x
2 1
x
2 2
y12 y22 0
∵M为AB的中点,
a
18
方法训练作业
x2 y2 设动A点、(B不为同椭于圆Aa、2 B)b,2 作1长AQ轴⊥的P两A,端B点Q,⊥PP为B,椭求圆直上线一
AQ与BQ的交点Q的轨迹方程。
设P(x0,y0),Q(x,y),xa022
椭圆中定点定值问题一般结论
椭圆中的“定”五、一般结论30. 已知点 A x 0 , y 0x 0 y 0x 2 y 2是椭圆 C : 22 1 a b 0 上一定点,过点 A 的两直ab线 l 1,l 2 与椭圆 C 的另一个交点分别为 P 、 Q ,直线 l 1 ,l 2 的斜率分别为 k 1, k 2 .(1)若 k 1 k 2b 2,直线 PQ 的斜率为定值y 0.反之亦然 .a 2 x 0(2)若 kk 2 0 ,直线 PQ 的斜率为定值 b 2y 0 .反之亦然 .12a x 0x 2 y 21 ab 0 的动弦 BC 的两端点与椭圆上定点A x 0 , y 031.椭圆 C :2b 2连线的斜率a存在,若斜率之积为定值b 2 m m 1 ,则直线 BC 必定过定点 M x 0m 1 , y 0 m 1 .a 2m 1 m 1x 2 y 21 ab0 的动弦 BC 的两端点与椭圆上定点A x 0 , y 0 连线的斜率 32.椭圆 C :2b 2a存在,若斜率之和为定值2b0 ,则直线 BC 必定过定点a b.a n n N x 0bny 0,anxy 033.( 1)一条经过点M m,0 的直线 l 与椭x 2 y 2圆C :2b 2 1 a b 0 交于 A, B 两 a点,作 A 关于长轴的对称点 A ,则直线 AB 过定点 Ta 2,0 .m(2)一条经过点 M 0,m b m b 的直线 lx 2 y 21 ab 0 交于 P,R 两点,与椭圆C : 2b 2a设点Q 0,b 2,则 PQM RQM .m( )过椭圆 C 的左(右)准线上任意一点 N 作椭圆的34. 1切线,切点为 A, B ,则直线 AB 必过椭圆的左 (右)焦点,反之, 当圆锥曲线的焦点弦 AB 绕焦点 F 运动时, 过弦的端点 A, B 的两切线交点的轨迹为F 对应的准线 .(2)过椭圆 C 的左(右)准线上任意一点 N 作椭圆的切线,切点为 A ,则以 NA 为直径的圆过椭圆的左(右)焦点,即NFA900 .35. 过 点 P x 0 , y 0x 2 y 21作直线交 C :b 2a 2a b 0 于 A, B 两点,点 P,Q 在椭圆的异侧且点Q 在直线AB上 , 若AP QB A ,Q 则点PQB 在定直线x 0 x y 0 y1上.a2b236.已知 P x 0 , y 0是椭圆 E :x 2 y 2 1 外 2 2a b 一点,过点 P 作椭圆的切线,切点为 A,B ,再过 P 作椭圆的割线交椭圆于M,N ,交 AB于点 Q ,令 s1, t1 ,u 1 ,则PMPN PQs,t ,u 的关系是 s t2u .37.自Px 0 , y 0x 2 y 2P 1, P 2 ,则切点作椭圆 C :22 1 a b 0 的两条切线,切点分别为ab点弦 PP 12 x 0 x y 0 y 1.的方程为 :b 2a 238. 过椭圆x 2 y 2 上一点 P 0x 0 x y 0 y 1.a 2b 21 a b 0x 0 , y 0 的切线方程为b 2a 239. ( 1)过圆 x 2y 2a 22上任意一点作椭圆x 2y 21 a b 0的两条切线,bC :2 b 2则这两条切线相互垂直. 反之,作椭圆ax 2 y 2 1 ab 0C : 22 的两条相互垂直的abx 2y 2 a 2 b 2切线,则切线交点一定在圆 上.(2)过圆 x 2y 2 a 2 b 2 上任意一点 P 作椭y 2圆 C :a 2 b 2 1 a b 0 的两条切线x 2PA, PB , A, B 为切点,中心 O 至切点弦的距离为d1 ,P 点至切点弦的距离为d2 ,则d 1 d 2a 2b 2a 2 .b 2x 2 y 21 ab 0 中,焦点分别为F 1 、 F 2 ,点 P 是椭圆上任意一点,40. 在椭圆 C : 2b 2aF 1PF 2,则 S FPFb 2 tan122。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆中互相垂直的弦中点过定点问题(1)过椭圆22221x y a b +=的右焦点(,0)F c 作两条互相垂直的弦AB ,CD 。
若弦AB ,CD的中点分别为M ,N ,那么直线MN 恒过定点222(,0)a ca b+。
(2)过椭圆22221x y a b +=的长轴上任意一点(,0)()S s a s a -<<作两条互相垂直的弦AB ,CD 。
若弦AB ,CD 的中点分别为M ,N ,那么直线MN 恒过定点222(,0)a sa b+。
设AB 的直线为x my s =+,则CD 的直线方程为1x y s m=-+, 222222x my s b x a y a b =+⎧⎨+-=⎩,22222222()2()0m b a y b msy b s a +++-=, 2222224()0a b m b a s ∆=+->,2112222msb y y m b a -+=+,22211222()a s a y y mb a-⋅=+, 由中点公式得M 22222222(,)a s msb m b a m b a -++, 将m 用1m-代换,得到N 的坐标222222222(,)a sm msb m a b m a b ++ MN 的直线方程为222222222222()()(1)b sm a b m a s y x b m a a m b m a ++=-+-+,令0y =,得222a s x a b=+ 所以直线MN 恒过定点222(,0)a sa b+。
(3)过椭圆22221x y a b +=的短轴上任意一点(0,)()T t t t t -<<作两条互相垂直的弦AB ,CD 。
若弦AB ,CD 的中点分别为M ,N ,那么直线MN 恒过定点222(0,)b ta b+。
(4)过椭圆22221x y a b +=内的任意一点2222(,)(1)s t Q s t a b +<作两条互相垂直的弦AB ,CD 。
若弦AB ,CD 的中点分别为M ,N ,那么直线MN 恒过定点222222(,)a s b ta b a b ++。
设AB 的直线为()x s m y t -=-,则CD 的直线方程为1()x s y t m-=--, 222222()0x s m y t b x a y a b -=-⎧⎨+-=⎩,2222222222()2()()0m b a y b ms m t y b s mt a b ++-+--=, 2112222()mb s mt y y m b a --+=+,由中点公式得22222222()()(,)a s mt mb mt s M m b a m b a --++ 直线MN 的方程为:22222222()()()MN b m mt s a s mt y k x b m a b m a ---=-++, 即222222()MN a s b t y k x a b a b -=-++,所以直线MN 恒过定点222222(,)a s b ta b a b++。
重庆高2018级理科二诊20(本题满分12分)已知1(1,0)F -,2(1,0)F 是椭圆22143x y +=的左右焦点。
(2)过2F 作两条互相垂直的直线1l 与2l (均不与x 轴重合)分别与椭圆交于ABCD 四点。
线段AB ,CD 的中点分别是M ,N ,求证:直线MN 过定点,并求出该定点坐标。
设直线:(1)AB y k x =-,联立椭圆方程223412x y +=得:2222(43)84120k x k x k +-+-=,222218424343M k k x k k =⋅=++,222218424343M k k y k k =⋅=++,222444343N k x k k==++,213(1)34N N k y x k k =--=+ 由题意,若直线BS 关于x 轴对称后得到直线B S '',则得到的直线S T ''与ST 关于y 轴对称,所以若直线ST 经过定点,则该定点一定是直线S T ''与ST 的交点,该点必在x 轴上。
设该定点坐标(,0)t ,N M M N M N MM N M N My y x y y x y t t x x x y y ---=⇒=---,代入,M N 坐标化简得47t =,所以过定点4(,0)7。
结论(一)以00(,)x y 为直角定点的椭圆22221x y a b +=内接直角三角形的斜边必过定点2222002222(,)a b b a x y a b b a --⨯⨯++。
推论1:以上顶点为直角顶点的椭圆内接直角三角形的斜边必过定点,且定点在y 轴上。
证明:设右顶点(0,)P b ,设y kx b =+,1y x b k=-+ 222222y kx b b x a y a b =+⎧⎨+-=⎩,22222()20a k b x a bkx ++=⇒, 212222,a bk x a k b -=+,将k 换成1k-得:222222a bk x a b k =+ 由题意,若直线BS 关于y 轴对称后得到直线B S '',则得到的直线S T ''与ST 关于x 轴对称,所以若直线ST 经过定点,则该定点一定是直线S T ''与ST 的交点,该点必在y 轴上。
设该定点坐标(0,)t ,1212121121212121211()()kx b x x x b t y y y y x x yk t x x x x x x x -+-+---=⇒==----,2222122211()x x k b b a t b k x x b a +-=⨯+=-+,所以过定点2222()(0,)b b a b a -+。
推论2:以右顶点为直角顶点的椭圆内接直角三角形的斜边必过定点,且定点在x 轴上。
证明:设右顶点(,0)P a ,设x my a =+,1y x a m=-+ 222222x my a b x a y a b =+⎧⎨+-=⎩,22222()20b m a y b amy ++=⇒, 212222b am y b m a -=+,将m 换成1m-得:222222b am y b a m =+由题意,若直线BS 关于x 轴对称后得到直线B S '',则得到的直线S T ''与ST 关于y 轴对称,所以若直线ST 经过定点,则该定点一定是直线S T ''与ST 的交点,该点必在x 轴上。
设该定点坐标(,0)t ,1212121121212121211()()my a y y y a y y y x y y xm t t x x x y y y y -+-+---=⇒==----,2222122211()y y m a a b t a m y y a b+-=⨯+=-+,所以过定点2222()(,0)a a b a b -+。
下面探求ABP ∆面积的最大值:2222()a a b x my a b -=++代入椭圆得:22442222222222()4()20()a a b a b b m a y b my a b a b --++⨯⨯+=++ 2422242224[()4]()a b a b m a a b ++∆=+,222242122222222221()2([]2()ABPa ab ab a b S a y y a b a b a b m a b ∆-=⨯-⨯-=⨯=++++242224()a b a b ≤+,当且仅当0m =时等号成立取最大值。
面积在2m ∈[0,)+∞单调递减。
结论2:以00(,)x y 为直角定点的抛物线22y px =内接直角三角形的斜边必过定点0(2x p +,0)y -结论3:以00(,)x y 为直角定点的双曲线22221x y a b -=内接直角三角形的斜边必过定点2222002222(,)a b a b x y a b b a++--重庆高2018级文科二诊20(本题满分12分)已知1(1,0)F -,2(1,0)F 是椭圆22143x y +=的左右焦点,B 为椭圆的上顶点。
(2)过点B 作两条互相垂直的直线与椭圆交于S ,T 两点(异于点B ),证明:直线ST过定点,并求该定点的坐标。
(2)解:设1122(,),(,)S x y T x y ,直线:BS y kx =,联立椭圆方程得:22(43)0k x ++=,1243x k -=+,2243k x k -==+, 由题意,若直线BS 关于y 轴对称后得到直线B S '',则得到的直线S T ''与ST 关于x 轴对称,所以若直线ST 经过定点,则该定点一定是直线S T ''与ST 的交点,该点必在y 轴上。
设该定点坐标(0,)t,1212121121212121211((kx x x x t y y y y x x yk t x x x x x x x -----=⇒==----,代入1x ,2x化简得t =,所以过定点。
重庆巴蜀中学高2018级届月考卷九理科20(本小题满分12分)已知椭圆2222:1x y C a b+=的左右焦点分别是1F ,2F ,上顶点M ,右顶点为(2,0)N ,12MF F ∆的外接圆半径为2。
(1)求椭圆C 的标准方程; (2)设直线l 与椭圆C 交于A ,B 两点,若以AB 为直径的圆经过点N ,求ABN ∆面积的最大值。
解:(Ⅰ)∵右顶点为(20),,∴2a =,122MF MF ==,∵121sin 2MO b bMF F MF a ∠===,2122424sin 2MF R b MF F b ====∠,∴1b =, ∴椭圆的标准方程为2214x y +=.……………………………………………(4分)(Ⅱ)设直线l 的方程为my x b =+,1122()()A x y B x y ,,,, 与椭圆联立得222(4)240m y mby b +-+-=,∴21212222444mb b y y y y m m -+==++,. ……………………………………………(6分)∵以AB 为直径的圆经过点N ,∴0NA NB =, ∵1122(2)(2)NA x y NB x y =-=-,,,, ∴1212122()40x x x x y y -+++=,①……………………………………………(7分)∵121228()24b x x m y y b m -+=+-=+,2222121212244()4b m x x m y y mb y y b m -=-++=+, 代入①式得2516120b b ++=,∴65b =-或2b =-(舍去),故直线l 过定点605⎛⎫⎪⎝⎭,. ……………………………………………………(9分)∴121622||255ABN S y y ⎛⎫=⨯-⨯-= ⎪⎝⎭△ …………(10分)令222564()[0)(4)t h t t m t +==∈+∞+,,, 则228()0251281120425h t t t t ⎛⎫'>⇒++<⇒∈-- ⎪⎝⎭,,∴()h t 在[0)t ∈+∞,上单调递减,max ()(0)4h t h ==, ∴0m =时,max 1625ABN S =△. …………………………………………………(12分)(一般化结论):直线AB 与椭圆2222:1x y C a b+=交于,A B 两点,P 为上顶点。