简谐振动实验ppt
合集下载
《简谐振动》课件
3
谐振共振现象
在一些特殊情况下,简谐振动会出现共振现象,引起丰富的物理现象和效应。
课堂练习与小结
实验:简谐振动的观测
通过实验,我们可以直观地观测 和验证简谐振动的各种特性和规 律。
练习题:简谐振动的计算
通过练习题,我们可以更加熟练 地掌握和运用简谐振动的计算方 法。
小结:简谐振动的本质及 其应用
简谐振动的本质是物体在恢复力 作用下的周期性振动,具有广泛 的应用价值和理论意义。
《简谐振动》PPT课件
什么是简谐振动?
定义
简谐振动是指物体在一个固 定轨迹上以恒定速度来回振 动的运动。
周期、频率与角频率的 关系
周期与频率是简谐振动的关 键参数,它们之间遵循特定 的数学关系。
物ห้องสมุดไป่ตู้实例
弹簧振子和单摆振动是常见 的简谐振动实例,它们展示 了简谐振动的特征。
简谐振动的数学描述
1 振动方程的一般形式
简谐振动可以用振动方程的一般形式来描述,这是简谐振动理论的核心。
2 欧拉公式及其应用
欧拉公式是描述简谐振动的数学工具,对于求解振动问题具有重要意义。
3 谐振曲线与相位差
谐振曲线和相位差是简谐振动中常见的图像表示形式,能帮助我们更好地理解振动的性 质。
简谐振动的能量
动能与势能的变化
简谐振动中的动能和势能随时 间的变化呈周期性规律,相互 转化。
振动量的计算方法
我们可以通过计算振动量来了 解简谐振动的强度和特性。
能量守恒定律
简谐振动遵循能量守恒定律, 能量在振动过程中始终保持不 变。
简谐振动的阻尼与受迫振动
1
阻尼振动的特征
阻尼振动是简谐振动受到阻碍或阻尼力的情况,具有一些特殊的行为与性质。
高二物理竞赛课件:简谐振动
简谐振动
01 简谐振动的特征
第
02 研究简谐振动的意义
一
03 简谐振动的动力学方程
讲
简
04 简谐振动的物理量
谐
振
05 振幅和初相的确定
动
06 简谐振动的矢量图示法
07 单摆和复摆
01/ 49
振动 —— 一个物理量在某一个值的附近作周期性变化 机械振动 —— 物体在稳定平衡位置作往返运动
傅科摆 —— 1851年在巴黎物理学家傅科用长67米的摆做了 实验。摆的周期T=16.5 秒, 相对地球摆面转过0.05° 经过32小时,摆面转动一周,证明地球自转
振荡电荷
P P0 sin(t )
LC 振荡电路
U U0 sin(t )
简谐振动的特征
物体坐标按余弦函数变化
x Acos(t )
简谐振动 —— 物体运动的位置与时间关系按余弦规律变化
05 / 49
02 研究简谐振动的意义
振动是研究波动的基础
驻波
机械波 —— 各向均匀介质中质点共同振动形成
晶体中原子在平衡位置做微小振动 —— 简谐振动 晶格振动形成格波
电荷的振荡 —— 空间电场和磁场发生变化 电场和磁场相互激发,相互作用形成电磁波
微观粒子的物质波 —— 几率波 波函数 —— 粒子在空间出现几率
经典物理眼中的电子运动
量子物理眼中的电子运动
复杂振动 —— 用傅立叶变换展开为 若干个不同频率简谐振动的叠加
10 / 49
简谐振动的动力学方程
一维弹簧振子 —— 物体m做一维运动
弹性力
F kx
动力学方程
m
d2x dt 2
kx
x 2x 0
2 k —— 圆频率
01 简谐振动的特征
第
02 研究简谐振动的意义
一
03 简谐振动的动力学方程
讲
简
04 简谐振动的物理量
谐
振
05 振幅和初相的确定
动
06 简谐振动的矢量图示法
07 单摆和复摆
01/ 49
振动 —— 一个物理量在某一个值的附近作周期性变化 机械振动 —— 物体在稳定平衡位置作往返运动
傅科摆 —— 1851年在巴黎物理学家傅科用长67米的摆做了 实验。摆的周期T=16.5 秒, 相对地球摆面转过0.05° 经过32小时,摆面转动一周,证明地球自转
振荡电荷
P P0 sin(t )
LC 振荡电路
U U0 sin(t )
简谐振动的特征
物体坐标按余弦函数变化
x Acos(t )
简谐振动 —— 物体运动的位置与时间关系按余弦规律变化
05 / 49
02 研究简谐振动的意义
振动是研究波动的基础
驻波
机械波 —— 各向均匀介质中质点共同振动形成
晶体中原子在平衡位置做微小振动 —— 简谐振动 晶格振动形成格波
电荷的振荡 —— 空间电场和磁场发生变化 电场和磁场相互激发,相互作用形成电磁波
微观粒子的物质波 —— 几率波 波函数 —— 粒子在空间出现几率
经典物理眼中的电子运动
量子物理眼中的电子运动
复杂振动 —— 用傅立叶变换展开为 若干个不同频率简谐振动的叠加
10 / 49
简谐振动的动力学方程
一维弹簧振子 —— 物体m做一维运动
弹性力
F kx
动力学方程
m
d2x dt 2
kx
x 2x 0
2 k —— 圆频率
简谐振动的叠加(课堂PPT)
例2 已知某简谐振动的振动曲线如图所示,试写
出该振动的位移与时间的关系。
x/cm
解 由图知 A = 4.0×102 m
4.0
P
当t =0 时,
A x0 = 2,v0 >0
2.0 O
1
t/s
{ 由式 x0 = A cos v0 = A sin
-2.0 -4.0
解得
所以
3 x4.01
02c
π
o(st )
两个分振动的频率相差 较大,但有简单的整数比 关系,这样的合振动曲线 称为利萨如图形。
不同频率的垂直振动运动的合成。
§7-3 阻尼振动、受迫振动和共振
一、阻尼振动(damped vibration)
振幅随时间减小的振动称为阻尼振动。
以物体受流体阻力作用下的振动为例:
阻力为 F v dx
dt
物体的振动方程 md2x dxkx0
AB
以sin乘以(3)式,sin乘以(4)式后两式相减得
xsin ysin co tssi n () (6)
AB
(5)式、(6)式分别平方后相加得合振动的轨迹方程
A x2 2B y2 22 A xcy B o s) (si2(n )
此式表明,两个互相垂直的、频率相同的简谐
振动合成,其合振动的轨迹为一椭圆,而椭圆的
一、同一直线上两个同频率简谐振动的合成
设有两个同频率的谐振动
x1A 1co ts (1) x2A 2co ts (2)
合振动 x x 1 x 2 A 1 co t 1 ) s A 2 c ( o t 2 ) s(
由矢量图得 xAcots()(仍为同频率谐振动)
而
A A 1 2A 2 22A 1A 2co2s (1) arctanA A 1 1c so in s 1 1 A A2 2scio ns 2 2
出该振动的位移与时间的关系。
x/cm
解 由图知 A = 4.0×102 m
4.0
P
当t =0 时,
A x0 = 2,v0 >0
2.0 O
1
t/s
{ 由式 x0 = A cos v0 = A sin
-2.0 -4.0
解得
所以
3 x4.01
02c
π
o(st )
两个分振动的频率相差 较大,但有简单的整数比 关系,这样的合振动曲线 称为利萨如图形。
不同频率的垂直振动运动的合成。
§7-3 阻尼振动、受迫振动和共振
一、阻尼振动(damped vibration)
振幅随时间减小的振动称为阻尼振动。
以物体受流体阻力作用下的振动为例:
阻力为 F v dx
dt
物体的振动方程 md2x dxkx0
AB
以sin乘以(3)式,sin乘以(4)式后两式相减得
xsin ysin co tssi n () (6)
AB
(5)式、(6)式分别平方后相加得合振动的轨迹方程
A x2 2B y2 22 A xcy B o s) (si2(n )
此式表明,两个互相垂直的、频率相同的简谐
振动合成,其合振动的轨迹为一椭圆,而椭圆的
一、同一直线上两个同频率简谐振动的合成
设有两个同频率的谐振动
x1A 1co ts (1) x2A 2co ts (2)
合振动 x x 1 x 2 A 1 co t 1 ) s A 2 c ( o t 2 ) s(
由矢量图得 xAcots()(仍为同频率谐振动)
而
A A 1 2A 2 22A 1A 2co2s (1) arctanA A 1 1c so in s 1 1 A A2 2scio ns 2 2
单摆简谐运动的图像PPT课件
能力·思维· 方法
【例3】将某一在北京准确的摆钟,移到南 极长城站,它是走快了还是慢了?若此钟在 北京和南极的周期分别为T北、T南,一昼夜 相差多少?应如何调整?
能力·思维·
方法
【解析】单摆周期公式T= 2
l ,由于北京和南极
g
的重力加速度g北、g南不相等,且g北<g南,因此
周期关系为:T北>T南.
(5)单摆的等时性:在小振幅摆动时,单摆的 振动周期跟振幅和振子的质量都没关系.
要点·疑点· 考点
2.简谐运动图像
(1)物理意义:表示振动物体的位移随时间变化 的规律.注意振动图像不是质点的运动轨迹.
(2)特点:简谐运动的图像是正弦(或余弦)曲线 .
要点·疑点·
考点
(3)作图:以横轴表示时间,纵轴表示位移.如 图7-2-2所示.
能力·思维·
方法
【例1】如图7-2-4所示,一块涂有 碳黑的玻璃板,质量为2kg,在拉 力F的作用下,由静止开始竖直向 上做匀变速运动,一个装有水平振 针的振动频率为5Hz的固定电动音 叉在玻璃板上画出了图示曲线,量 得OA=1cm,OB=4cm,OC=9cm,求外 力的大小.(g=10m/s2)
说明在南极振动一次时间变短了,所以在南极摆 钟变慢了.
设此钟每摆动一次指示时间为t0s,在南极比在 北京每天快(即示数少)△ts.
能力·思维· 方法
则在北京(24×60×60/T北)t0=24×60×60①
在南极(24×60×60/T南)t0=24×60×60-△t②
由①②两式解得△t=24×60×60(T北-T南)/T南.
为使该钟摆在南极走时准确,必须将摆长加长.
摆钟是单摆做简谐运动的一个典型应用,其快慢 不同是由摆钟的周期变化引起的,分析时应注意:
实验简谐振动的研究PPT共18页
• 二、检验弹簧振子振动周期T与m的关系.
• 1.测出指示镜和砝码盘的质量.逐次改变 砝码盘中的砝码质量为1克,2克…n克.使 弹簧振子振动,测出相应的周期,共测n组, 重复一次(测准周期十分重要,在用停表 测量周期时,要测量连续振动50个周期的 时间.握停表的手最好和负载同步振 动).
• 2.将所测数据填入自行设计的表中.
• 焦利秤附有几个倔强系数不同的弹簧,其最大负荷在仪 器说明书中标出(如西安教学仪器厂生产的焦利秤所附 的磷铜丝弹簧的最大负荷为30克或15克).实验时应根 据要求选择适当的弹簧,实验操作过程中务必保护弹簧 不受折损,并注意不可超过其量程.
[实验内容]
一、测定弹簧的倔强系数
1.调节焦利秤三பைடு நூலகம்底座上的水平螺丝K1 。K2及弹簧上 端的夹头,使指示镜能镜面朝前自由地在指标管D中上 下振动.平衡时,转动旋钮G使指示镜上刻线与指示管 上标记线及其在指示镜中的像三条线完全对齐,即三条 线重合.以下简称“三线重合”.记下套杆B和游标V 上的读数值,确定平衡l位0 值 ,作为坐标原点. 2.依次使砝码盘中砝码质量为1克、2克…,n克。每 次增加砝码后影转动旋钮G;使“三线重合”,记下立柱 B和游标V上的相应的读数值iL (i=1.2…n) 3.逐次将所增加的砝码取出(每次1克)每减少一次 砝码克数,都要转动旋钮G,重新调至“三线重合”记 下相应读数iL 。
三、研究弹簧自身质量对振动的影响
用天平测出弹簧自身质量m,其余步骤及要求与
实验内容二相同,不必重新测量.可利用上述的 测量数据.
[数据处理]
1.用逐差法算出弹簧的倔强系数k
2.作 T2 m图验证其线性关系,由式(9-6 )转
化为
T24π k2 (mCm0).
简谐运动ppt课件
解:方法1
31.4
15.7
设振动方程为
0
x Acos(t 0 ) 15.7
31.4
1
t(s)
v0 A sin0 15.7cms 1 a0 2 Acos0 0
A vm 31.4cms 1
sin 0
v0
A
15.7 31.4
1 2
0
6
或
5 6
a0
0,则cos0
0
0
6
t 1 v 15.7cms 1 sin( 1 ) v v 1
两振动步调相反,称反相
0
2 超前于1 或 1滞后于 2
相位差反映了两个振动不同程度的参差错落
谐振动的位移、速度、加速度之间的位相关系
x Acos( t 0 )
v
A
sin(
t
0
)
vm
cos(
t
0
2
)
a A 2 cos( t 0 ) am cos( t 0 )
x.v.a. x
衡位置的运动。
• 平衡位置:质点在某位置所受的力(或沿 运动方向受的力)等于0,则此位置称为平 衡位置。
•线性回复力:若作用于质点的力总与质点相对于平 衡位置的位移(线位移或角位移)成正比,且指向 平衡位置,则称此作用力为线性回复力。
若以平衡位置为原点,以X表示质点相对于平衡
位置的位移,则
f kx
3
a 0.12 2 cos( 0.5 ) 0.103
3
(3) 当x = -0.06m时,该时刻设为t1,得 cos(t ) 1
13
2
t 2 , 4
133 3
因该时刻速度为负,应舍去
简谐运动课件ppt
单摆的简谐运动
总结词
单摆的简谐运动是指一个质点在重力作用下做周期性振 动。
详细描述
单摆的简谐运动是指一个质点在重力作用下绕固定点做 周期性振动。当质点从平衡位置出发,受到重力的作用 向下加速运动,到达最低点时速度达到最大值,然后受 到回复力的作用开始向上减速运动,到达最高点时速度 为零。在摆动过程中,回复力与质点的位移成正比,当 质点回到平衡位置时,回复力为零,质点的速度达到最 大值。
结果
通过实验,可以观察到弹簧振子 的振动轨迹呈正弦波形,并记录
下振幅、周期等数据。
分析
根据记录的数据,可以计算出弹 簧振子的振动频率和相位差,进
一步分析简谐运动的特性。
讨论
简谐运动在现实生活中有着广泛 的应用,如钟摆、乐器振动等。 通过实验,可以深入理解简谐运 动的原理,为后续的学习和实际
应用打下基础。
简谐运动的平衡位置是指 物体受到的回复力为零的 位置,通常也是振动的中 心点。
回复力
回复力是指使物体返回平 衡位置并指向平衡位置的 力,它是使物体做简谐运 动的力。
简谐运动的特点
往复性
简谐运动是一种往复运动 ,物体在运动过程中会不 断重复往返于平衡位置和 最大位移处。
周期性
简谐运动是一种周期性运 动,其运动周期是固定的 ,与振幅和角频率有关。
实验器材与步骤
器材:弹簧振子、示波器、数据采集器、电脑 等。
011. 准备实验器材,源自弹簧振子连接到数据 采集器上。03
02
步骤
04
2. 启动实验,观察弹簧振子的振动情况, 记录振幅、周期等数据。
3. 使用示波器观察振动的波形,了解相位 的概念。
05
06
4. 分析实验数据,得出结论。
大学物理系列之简谐振动PPT课件
同号时为加速 异号时为减速
O
X
A
A
第33页/共66页
振动质点位移、速度与特征点 (t=0时对应的φ)
v
xv x
x0>0时Φ在1,4象限 v0>0时Φ在3,4象限
x
v
x
第34页/共66页
x
x
xv x
例1. 一物体沿 x 轴作简谐振动,A= 12cm, T = 2s
x 当t = 0时, 0= 6cm, 且向x正方向运动。
t 时刻与x轴的夹角
( t﹢ )
相位
A
A
第32页/共66页
11
旋转矢量端续点 上M 作匀速圆周运动
其 速率
A
振子的运动速度(与 X 轴同向为正)
A
t
旋转矢量端点 M 的加速度为
法向加速度,其大小为
A
和
t
A
X O
振子的运动加速度(与 X 轴同向为正)
A
t
任一时刻的 和 值,
其正负号仅表示方向。
• 任意位置
Fmsgin
悬线的张力和重力的合力沿悬线的垂直方向指向平衡位置。
第16页/共66页
Fmsgin
当θ很小时 sinθ ≈ θ ( θ < 5 °)
恢复力 Fmg
符合简谐振动的动力学定义
由牛顿第二定律
mat mg
d2
ml
mg
dt2
令 2 g l
d2 2 0
dt2
T 2 2
l g
单摆运动学方程: mcots()
弹簧振子 t= 0 时
m = 5×10 -3 kg
例三 k = 2×10 -4 N·m -1
相互垂直的简谐振动的合成ppt课件
1.频率相差很小,合运动轨迹缓慢变化。
2.频率相差较大,数值有简单的整数比值关系时,运动轨迹 为闭合曲线,称为李萨如图形。
y
x
A1
A2
o
-A2
- A1
如图所示,图中所描绘的是 x :y=3:2, 2 0= 0, 10 = /4 时的 李萨如图形。
图形与y轴切点数
图形与x轴切点数
不同频率比不同初相位差的李萨如图
2、
合振动运动轨迹为直线
合振动运动轨迹为直线
3、
4、 两个简谐振动振幅相同时
合振动运动轨迹为正椭圆
合振动运动轨迹为园
二、两个频率不同的相互垂直的简谐振动的合成
两个频率不同的相互垂直的简谐振动合成之后运动轨迹随时间变化,不是稳定曲线。
设一个质点同时参与两个相互垂直的同频率简谐振动
一、两个频率相同的相互垂直的简谐振动的合成
消去时间t得轨迹方程:
两个频率相同的相互垂直的简谐振动的合成为椭圆
椭圆的形状由两个振动的初相位差 决定
用旋转矢量描绘振动合成动画
两个频率相同的相互垂直的简谐振动的合成为椭圆
当初相位差不同时两个沿垂直方向的同频简谐振动的合成
在电子技术中常用李萨如图测定未知频率
2.频率相差较大,数值有简单的整数比值关系时,运动轨迹 为闭合曲线,称为李萨如图形。
y
x
A1
A2
o
-A2
- A1
如图所示,图中所描绘的是 x :y=3:2, 2 0= 0, 10 = /4 时的 李萨如图形。
图形与y轴切点数
图形与x轴切点数
不同频率比不同初相位差的李萨如图
2、
合振动运动轨迹为直线
合振动运动轨迹为直线
3、
4、 两个简谐振动振幅相同时
合振动运动轨迹为正椭圆
合振动运动轨迹为园
二、两个频率不同的相互垂直的简谐振动的合成
两个频率不同的相互垂直的简谐振动合成之后运动轨迹随时间变化,不是稳定曲线。
设一个质点同时参与两个相互垂直的同频率简谐振动
一、两个频率相同的相互垂直的简谐振动的合成
消去时间t得轨迹方程:
两个频率相同的相互垂直的简谐振动的合成为椭圆
椭圆的形状由两个振动的初相位差 决定
用旋转矢量描绘振动合成动画
两个频率相同的相互垂直的简谐振动的合成为椭圆
当初相位差不同时两个沿垂直方向的同频简谐振动的合成
在电子技术中常用李萨如图测定未知频率