概率论与随机过程考点总结定稿版
随机过程知识点汇总
随机过程知识点汇总随机过程是指一组随机变量{X(t)},其中t属于某个集合T,每个随机变量X(t)都与一个时刻t相关联。
2.随机过程的分类随机过程可以分为离散时间随机过程和连续时间随机过程。
离散时间随机过程是指在离散的时间点上取值的随机过程,例如随机游走。
连续时间随机过程是指在连续的时间区间上取值的随机过程,例如XXX运动。
3.随机过程的数字特征随机过程的数字特征包括均值函数和自相关函数。
均值函数E[X(t)]描述了随机过程在不同时刻的平均取值。
自相关函数R(t1,t2)描述了随机过程在不同时刻的相关程度。
4.平稳随机过程平稳随机过程是指其均值函数和自相关函数都不随时间变化而变化的随机过程。
弱平稳随机过程的自相关函数只与时间差有关,而不依赖于具体的时间点。
强平稳随机过程的概率分布在时间上是不变的。
5.高斯随机过程高斯随机过程是指其任意有限个随机变量的线性组合都服从正态分布的随机过程。
高斯随机过程的均值函数和自相关函数可以唯一确定该过程。
6.马尔可夫随机过程马尔可夫随机过程是指其在给定当前状态下,未来状态的条件概率分布只依赖于当前状态,而与过去状态无关的随机过程。
马尔可夫性质可以用转移概率矩阵描述,并且可以用马尔可夫链来建模。
7.泊松过程泊松过程是指在一个时间段内随机事件发生的次数服从泊松分布的随机过程。
泊松过程的重要性质是独立增量和平稳增量。
8.随机过程的应用随机过程在金融学、信号处理、通信工程、控制理论等领域有广泛的应用。
例如,布朗运动被广泛应用于金融学中的期权定价,马尔可夫链被应用于自然语言处理中的语言模型。
t)|^2]协方差函数BZs,t)E[(ZsmZs))(ZtmZt))],其中Zs和Zt是Z在时刻s和t的取值。
复随机过程是由实部和虚部构成的随机过程,其均值和方差函数分别由实部和虚部的均值和方差函数计算得到。
协方差函数和相关函数也可以类似地计算得到。
复随机过程在通信系统中有广泛的应用,例如调制解调、信道编解码等。
随机过程知识点汇总3
第一章随机过程的基本概念与基本类型一. 随机变量及其分布1随机变量X,分布函数F(x)二P(X < x)X连续型随机变量X的概率分布用概率密度 f (x) 分布函数F(x)二f (t)dt2. n维随机变量X =(X i,X2,…,X n)其联合分布函数F(x) H F a’X?,…,X n) =P(X1空X-X2乞x2,…,X n乞x n,)离散型联合分布列连续型联合概率密度3 .随机变量的数字特征数学期望:离散型随机变量X EX =二x k p k连续型随机变量X EX二"xf (x)dx匚方差:DX = E(X -EX)2二EX2-(EX)2反映随机变量取值的离散程度协方差(两个随机变量X,Y ):B XY =E[(X — EX)(Y —EY)] =E(XY) — EX .EY独立=不相关:=:-=0予oO 予离散g(t)二' e iX k P k 连续g(t) e iX f (x)dx'J重要性质:g(0)=1 , g(t) <1 , g(—t)=g(t) , g k(0)=i k EX k5 •常见随机变量的分布列或概率密度、期望、方差0 —1分布P(X =1) =p,P(X =0) =q EX二p DX = p q二项分布k k n -kP(X = k) = C n p q EX=np DX=n pq泊松分布-kP(X =k) =e EXk!DX=扎均匀分布略离散型随机变量X的概率分布用分布列P k 二P(X 二X k)分布函数F(x) = 7 P k相关系数(两个随机变量X,Y ):B XYDX DY若'=0,则称X,Y不相关。
4 .特征函数g(t)二E(e itX)6.N 维正态随机变量 X =(X ,,X 2^ ,X n )的联合概率密度II T A.f(X i ,X 2, ,X n )二 ---------- n-exo{(x-a) B (x-a)} 2 (2 二)2|B|2a =(a .,a 2,…,aj , x =(x i , X 2,…,X n ), B = (b ij )nn 正定协方差阵二•随机过程的基本概念 1•随机过程的一般定义设r 1, P)是概率空间,T 是给定的参数集,若对每个r T ,都有一个随机变量 X 与之对应, 则称随机变量族fx (t,e),t ・T /是 (JP)上的随机过程。
概率论与随机过程考点总结
概率论与随机过程考点总结Company number:【0089WT-8898YT-W8CCB-BUUT-202108】第一章 随机过程的基本概念与基本类型 一.随机变量及其分布1.随机变量X , 分布函数)()(x X P x F ≤=离散型随机变量X 的概率分布用分布列 )(k k x X P p == 分布函数∑=k p x F )( 连续型随机变量X 的概率分布用概率密度)(x f 分布函数⎰∞-=xdt t f x F )()(2.n 维随机变量),,,(21n X X X X =其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤== 离散型 联合分布列 连续型 联合概率密度 3.随机变量的数字特征数学期望:离散型随机变量X ∑=k k p x EX 连续型随机变量X⎰∞∞-=dx x xf EX )(方差:222)()(EX EX EX X E DX -=-= 反映随机变量取值的离散程度 协方差(两个随机变量Y X ,):EY EX XY E EY Y EX X E B XY ⋅-=--=)()])([( 相关系数(两个随机变量Y X ,):DYDX B XY XY ⋅=ρ 若0=ρ,则称Y X ,不相关。
独立⇒不相关⇔0=ρ4.特征函数)()(itX e E t g = 离散 ∑=k itx p e t g k )( 连续 ⎰∞∞-=dx x f e t g itx )()(重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,k k k EX i g =)0(母函数:∑∞===0)()(k kk kz p z E z g !)0()(k g p k k = )1()('g X E =2''")]1([)1()1()(g g g X D -+=5.常见随机变量的分布列或概率密度、期望、方差0-1分布 q X P p X P ====)0(,)1( p EX = pq DX =二项分布 kn k k nq p C k X P -==)( np EX = npq DX = 泊松分布 !)(k ek X P kλλ-== λ=EX λ=DX 均匀分布略正态分布),(2σa N222)(21)(σσπa x ex f --=a EX = 2σ=DX指数分布⎩⎨⎧<≥=-0,00,)(x x e x f x λλ λ1=EX 21λ=DX 6.N维正态随机变量),,,(21n X X X X =的联合概率密度),(~B a N XT n a a a a ),,,(21 =,T n x x x x ),,,(21 =,n n ij b B ⨯=)(正定协方差阵3.随机向量的变换 二.随机过程的基本概念 1.随机过程的一般定义设),(P Ω是概率空间,T 是给定的参数集,若对每个T t ∈,都有一个随机变量X 与之对应,则称随机变量族{}T t e t X ∈),,(是),(P Ω上的随机过程。
随机过程例题和知识点总结
随机过程例题和知识点总结随机过程是研究随机现象随时间演变的数学学科,在通信、金融、物理等众多领域都有广泛应用。
下面我们通过一些例题来深入理解随机过程的相关知识点。
一、随机过程的基本概念随机过程可以看作是一族随机变量的集合,其中每个随机变量都对应着某个特定的时刻。
例如,考虑一个在时间段0, T内的股票价格变化过程,对于每个时刻 t∈0, T,都有一个对应的随机变量 X(t)表示股票的价格。
二、常见的随机过程类型1、泊松过程泊松过程常用于描述在一定时间内随机事件发生的次数。
例如,某电话交换台在单位时间内接到的呼叫次数就可以用泊松过程来建模。
例题:假设某电话交换台在上午 9 点到 10 点之间接到的呼叫次数是一个泊松过程,平均每分钟接到 2 次呼叫。
求在 9 点 10 分到 9 点 20 分这 10 分钟内接到至少 5 次呼叫的概率。
解:设 X(t) 表示在时间段 0, t 内接到的呼叫次数,且 X(t) 是一个强度为λ = 2 的泊松过程。
10 分钟内接到的呼叫次数 X(10) 服从参数为λt = 2×10 = 20 的泊松分布。
P(X(10) ≥ 5) = 1 P(X(10) < 5) = 1 P(X(10) = 0) + P(X(10) = 1) + P(X(10) = 2) + P(X(10) = 3) + P(X(10) = 4)通过泊松分布的概率质量函数可以计算出每个概率值,进而求得最终结果。
2、马尔可夫过程马尔可夫过程具有“无记忆性”,即未来的状态只与当前状态有关,而与过去的状态无关。
例题:一个状态空间为{0, 1, 2} 的马尔可夫链,其一步转移概率矩阵为 P = 05 03 02; 02 06 02; 01 03 06 ,初始状态为 0,求经过 3 步转移后处于状态 2 的概率。
解:通过计算 P³得到 3 步转移概率矩阵,然后取出第 0 行第 2 列的元素即为所求概率。
概率论与随机过程考点总结
第一章 随机过程的基本概念与基本类型 一.随机变量及其分布1.随机变量X , 分布函数)()(x X P x F ≤=离散型随机变量X 的概率分布用分布列 )(k k x X P p == 分布函数∑=k p x F )( 连续型随机变量X 的概率分布用概率密度)(x f 分布函数⎰∞-=xdt t f x F )()( 2.n 维随机变量),,,(21n X X X X =其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤== 离散型 联合分布列 连续型 联合概率密度 3.随机变量的数字特征数学期望:离散型随机变量X ∑=k k p x EX 连续型随机变量X⎰∞∞-=dx x xf EX )(方差:222)()(EX EX EX X E DX -=-= 反映随机变量取值的离散程度 协方差两个随机变量Y X ,:EY EX XY E EY Y EX X E B XY ⋅-=--=)()])([( 相关系数两个随机变量Y X ,:DYDX B XY XY ⋅=ρ 若0=ρ,则称Y X ,不相关;独立⇒不相关⇔0=ρ4.特征函数)()(itX e E t g = 离散 ∑=k itx p e t g k)( 连续 ⎰∞∞-=dx x f e t g itx )()(重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,k k k EX i g =)0( 母函数:∑∞===0)()(k kk kzp z E z g!)0()(k g p k k =)1()('g X E =2''")]1([)1()1()(g g g X D -+=5.常见随机变量的分布列或概率密度、期望、方差0-1分布 q X P p X P ====)0(,)1( p EX = pq DX = 二项分布 k n k k n q p C k X P -==)( np EX = npq DX = 泊松分布 !)(k ek X P kλλ-== λ=EX λ=DX 均匀分布略正态分布),(2σa N 222)(21)(σσπa x ex f --=a EX = 2σ=DX指数分布 ⎩⎨⎧<≥=-0,00,)(x x e x f x λλ λ1=EX 21λ=DX6.N维正态随机变量),,,(21n X X X X =的联合概率密度),(~B a N XT n a a a a ),,,(21 =,T n x x x x ),,,(21 =,n n ij b B ⨯=)(正定协方差阵3.随机向量的变换 二.随机过程的基本概念 1.随机过程的一般定义设),(P Ω是概率空间,T 是给定的参数集,若对每个T t ∈,都有一个随机变量X 与之对应,则称随机变量族{}T t e t X ∈),,(是),(P Ω上的随机过程;简记为{}T t t X ∈),(;含义:随机过程是随机现象的变化过程,用一族随机变量才能刻画出这种随机现象的全部统计规律性;另一方面,它是某种随机实验的结果,而实验出现的样本函数是随机的;当t 固定时,),(e t X 是随机变量;当e 固定时,),(e t X 时普通函数,称为随机过程的一个样本函数或轨道;分类:根据参数集T 和状态空间I 是否可列,分四类; 也可以根据)(t X 之间的概率关系分类,如独立增量过程,马尔可夫过程,平稳过程等; 2.随机过程的分布律和数字特征用有限维分布函数族来刻划随机过程的统计规律性;随机过程{}T t t X ∈),(的一维分布,二维分布,…,n 维分布的全体称为有限维分布函数族;随机过程的有限维分布函数族是随机过程概率特征的完整描述;在实际中,要知道随机过程的全部有限维分布函数族是不可能的,因此用某些统计特征来取代;1均值函数)()(t EX t m X = 表示随机过程{}T t t X ∈),(在时刻t 的平均值; 2方差函数2)]()([)(t m t X E t D X X -=表示随机过程在时刻t 对均值的偏离程度; 3协方差函数)()()]()([))]()())(()([(),(t m s m t X s X E t m t X s m s X E t s B X X X X X -=--= 且有)(),(t D t t B X X =4相关函数)]()([),(t X s X E t s R X = 3和4表示随机过程在时刻s ,t 时的线性相关程度;5互相关函数:{}T t t X ∈),(,{}T t t Y ∈),(是两个二阶距过程,则下式称为它们的互协方差函数;)()()]()([))]()())(()([(),(t m s m t Y s X E t m t Y s m s X E t s B Y X Y X Y X -=--=,那么)]()([),(t Y s X E t s R XY =,称为互相关函数;若)()()]()([t m s m t Y s X E Y X =,则称两个随机过程不相关; 3.复随机过程 t t t jY X Z += 均值函数tt Z jEY EX t m +=)( 方差函数]))(())([(|])([|)(2t m Z t m Z E t m Z E t D Z t Z t Z t Z --=-=协方差函数)()(][]))(())([(),(t m s m Z Z E t m Z s m Z E t s B Z Z t s Z t Z s Z -=--=相关函数][),(t s Z Z Z E t s R =4.常用的随机过程1二阶距过程:实或复随机过程{}T t t X ∈),(,若对每一个T t ∈,都有∞<2)(t X E 二阶距存在,则称该随机过程为二阶距过程;2正交增量过程:设{}T t t X ∈),(是零均值的二阶距过程,对任意的T t t t t ∈<<<4321,有0]))()(())()([(3412=--t X t X t X t X E ,则称该随机过程为正交增量过程;其协方差函数)),(m in(),(),(2t s t s R t s B XX X σ== 3独立增量过程:随机过程{}T t t X ∈),(,若对任意正整数2≥n ,以及任意的T t t t n ∈<<< 21,随机变量)()(,),()(),()(13412----n n t X t X t X t X t X t X 是相互独立的,则称{}T t t X ∈),(是独立增量过程; 进一步,如{}T t t X ∈),(是独立增量过程,对任意t s <,随机变量)()(s X t X -的分布仅依赖于s t -,则称{}T t t X ∈),(是平稳独立增量过程;4马尔可夫过程:如果随机过程{}T t t X ∈),(具有马尔可夫性,即对任意正整数n 及T t t t n ∈<<< 21,0))(,,)((1111>==--n n x t X x t X P ,都有{}{}111111)()()(,,)()(----=≤===≤n n n n n n n n x t X x t X P x t X x t X x t X P ,则则称{}T t t X ∈),(是马尔可夫过程;5正态过程:随机过程{}T t t X ∈),(,若对任意正整数n 及T t t t n ∈,,,21 ,)()(),(21n t X t X t X 是n 维正态随机变量,其联合分布函数是n 维正态分布函数,则称{}T t t X ∈),(是正态过程或高斯过程; 6维纳过程:是正态过程的一种特殊情形;设{}∞<<-∞t t W ),(为实随机过程,如果,①0)0(=W ;②是平稳独立增量过程;③对任意t s ,增量)()(s W t W -服从正态分布,即0),0(~)()(22>--σσs t N s W t W ;则称{}∞<<-∞t t W ),(为维纳过程,或布朗运动过程;另外:①它是一个Markov 过程;因此该过程的当前值就是做出其未来预测中所需的全部信息;②维纳过程具有独立增量;该过程在任一时间区间上变化的概率分布独立于其在任一的其他时间区间上变化的概率;③它在任何有限时间上的变化服从正态分布,其方差随时间区间的长度呈线性增加; 7平稳过程:严狭义平稳过程:{}T t t X ∈),(,如果对任意常数τ和正整数n 及Tt t t n ∈,,,21 ,Tt t t n ∈+++τττ,,,21 ,)()(),(21n t X t X t X 与)()(),(21τττ+++n t X t X t X 有相同的联合分布,则称{}T t t X ∈),(是严狭义平稳过程;广义平稳过程:随机过程{}T t t X ∈),(,如果①{}T t t X ∈),(是二阶距过程;②对任意的T t ∈, 常数==)()(t EX t m X ;③对任意T t s ∈,,)()]()([),(s t R t X s X E t s R X X -==,或仅与时间差s t -有关;则满足这三个条件的随机过程就称为广义平稳过程,或宽平稳过程,简称平稳过程;第三章 泊松过程一.泊松过程的定义两种定义方法1,设随机计数过程{}(),0X t t ≥,其状态仅取非负整数值,若满足以下三个条件,则称:{}T t t X ∈),(是具有参数λ的泊松过程;①(0)0X =;②独立增量过程,对任意正整数n ,以及任意的T t t t n ∈<<< 21)()(,),()(),()(12312----n n t X t X t X t X t X t X 相互独立,即不同时间间隔的计数相互独立;③在任一长度为t 的区间中,事件A发生的次数服从参数0t λ>的的泊松分布,即对任意,0t s >,有{}()()()0,1,!ntt P X t s X s n en n λλ-+-===[()]E X t t λ=,[()]E X t tλ=,表示单位时间内时间A发生的平均个数,也称速率或强度;2,设随机计数过程{}(),0X t t ≥,其状态仅取非负整数值,若满足以下三个条件,则称:{}(),0X t t ≥是具有参数λ的泊松过程;①(0)0X =;②独立、平稳增量过程;③{}{}()()1()()()2()P X t h X t h o h P X t h X t o h λ+-==+⎧⎪⎨+-≥=⎪⎩; 第三个条件说明,在充分小的时间间隔内,最多有一个事件发生,而不可能有两个或两个以上事件同时发生,也称为单跳性; 二.基本性质1,数字特征 ()[()][()]X m t E X t t D X t λ=== (1)(,)(1)X s t s t R s t t s s tλλλλ+<⎧=⎨+≥⎩(,)(,)()()min(,)X X X X B s t R s t m s m t s t λ=-= 推导过程要非常熟悉2,n T 表示第1n -事件A发生到第n 次事件发生的时间间隔,{},1n T n ≥是时间序列,随机变量n T 服从参数为λ的指数分布;概率密度为,0()0,0t e t f t t λλ-⎧≥=⎨<⎩,分布函数1,0()0,0n t T e t F t t λ-⎧-≥=⎨<⎩均值为1n ET λ=证明过程也要很熟悉 到达时间的分布 略 三.非齐次泊松过程 到达强度是t 的函数①(0)0X =;②独立增量过程;③{}{}()()1()()()()2()P X t h X t t h o h P X t h X t o h λ+-==+⎧⎪⎨+-≥=⎪⎩; 不具有平稳增量性;均值函数0()[()]()tX m t E X t s ds λ==⎰定理:{}(),0X t t ≥是具有均值为0()()tX m t s ds λ=⎰的非齐次泊松过程,则有 四.复合泊松过程设{}(),0N t t ≥是强度为λ的泊松过程,{},1,2,k Y k =是一列独立同分布的随机变量,且与{}(),0N t t ≥独立,令()1()N t kk X t Y==∑ 则称{}(),0X t t ≥为复合泊松过程;重要结论:{}(),0X t t ≥是独立增量过程;若21()E Y <∞,则1[()]()E X t tE Y λ=,21[()]()D X t tE Y λ=第四章 马尔可夫链泊松过程是时间连续状态离散的马氏过程,维纳过程是时间状态都连续的马氏过程;时间和状态都离散的马尔可夫过程称为马尔可夫链;马尔可夫过程的特性:马尔可夫性或无后效性;即:在过程时刻0t 所处的状态为已知的条件下,过程在时刻0t t >所处状态的条件分布与过程在时刻0t 之前所处的状态无关;也就是说,将来只与现在有关,而与过去无关;表示为{}{}111111)()()(,,)()(----=≤===≤n n n n n n n n x t X x t X P x t X x t X x t X P一.马尔可夫链的概念及转移概率1.定义:设随机过程{},∈n X n T ,对任意的整数∈n T 和任意的011,,,n i i i I +∈,条件概率满足{}{}11001111,,,n n n n n n n n P X i X i X i X i P X i X i ++++=======,则称{},∈n X n T 为马尔可夫链;马尔可夫链的统计特性完全由条件概率{}11n n n n P X i X i ++==所决定;2.转移概率 {}1n n P X j X i +==相当于随机游动的质点在时刻n 处于状态i 的条件下,下一步转移到j 的概率;记为()ij p n ;则()ij p n {}1n n P X j X i +===称为马尔可夫链在时刻n 的一步转移概率;若齐次马尔可夫链,则()ij p n 与n 无关,记为ij p ;[],1,2,ij P p i j II =∈= 称为系统的一步转移矩阵;性质:每个元素0ij p ≥,每行的和为1;3.n 步转移概率()n ij p ={}m n m P X j X i +== ;()()[],1,2,n n ij P p i j II =∈=称为n步转移矩阵;重要性质:①()()()n l n l ij ik kj k Ip p p -∈=∑ 称为C K -方程,证明中用到条件概率的乘法公式、马尔可夫性、齐次性;掌握证明方法:{}{}{}{}{}{}{}{}{}()()()()(),,,,,,,()()m m n n ijm nm m m m l m n k Tm m m l m n m m l k Tm m l m n l l l n l kj ik ik kj k Ik IP X i X j p P X j X i P X i P X i X k X j P X i P X i X k X j P X i X k P X i X k P X i p m l p m p p ++++∈+++∈+--∈∈==================⋅====+⋅=⋅∑∑∑∑②()n n P P = 说明n 步转移概率矩阵是一步转移概率矩阵的n 次乘方;4.{},∈n X n T 是马尔可夫链,称{}0j p P X j ==为初始概率,即0时刻状态为j 的概率;称{}()j n p n P X j ==为绝对概率,即n 时刻状态为j 的概率;{}12(0),,T P p p =为初始概率向量,{}12()(),(),T P n p n p n =为绝对概率向量;定理:①()()n j i ij i Ip n p p ∈=∑矩阵形式:()()(0)T T n P n P P =②()(1)j i ij i Ip n p n p ∈=-∑定理:{}111122,,,n n n n i iii i i IP X i X i X i p p p -∈====∑ 说明马氏链的有限维分布完全由它的初始概率和一步转移概率所决定; 二.马尔可夫链的状态分类1.周期:自某状态出发,再返回某状态的所有可能步数最大公约数,即{}():0n ii d GC D n p ⋅⋅=>;若1d >,则称该状态是周期的;若1d =,则称该状态是非周期的;2.首中概率:()n ij f 表示由i 出发经n 步首次到达j 的概率; 3.()1n ij ij n f f ∞==∑表示由i 出发经终于迟早要到达j 的概率;4.如果1ii f =,则状态i 是常返态;如果1ii f <,状态i 是非常返滑过态;5.()1n i ii n nf μ∞==∑表示由i 出发再返回到i 的平均返回时间;若i μ<∞,则称i 是正常返态;若i μ=∞,则称i 是零常返态;非周期的正常返态是遍历状态; 6.状态i 是常返充要条件是()0iin n p∞==∞∑;状态i 是非常返充要条件是()11iin n iip f ∞==-∑; 7.称状态i 与j 互通,,i j i j j i ↔→→即且;如果i j ↔,则他们同为常返态或非常返态,;若i ,j 同为常返态,则他们同为正常返态或零常返态,且i ,j 有相同的周期;8.状态i 是遍历状态的充要条件是()1lim 0n iin ip μ→∞=>;一个不可约的、非周期的、有限状态的马尔可夫链是遍历的;9.要求:熟悉定义定理,能由一步转移概率矩阵画出状态转移图,从而识别各状态; 三.状态空间的分解1.设C 是状态空间I 的一个闭集,如果对任意的状态i C ∈,状态j C ∉,都有0ij p =即从i 出发经一步转移不能到达j ,则称C 为闭集;如果C 的状态互通,则称C 是不可约的;如果状态空间不可约,则马尔可夫链{},∈n X n T 不可约;或者说除了C 之外没有其他闭集,则称马尔可夫链{},∈n X n T 不可约;2.C 为闭集的充要条件是:对任意的状态i C ∈,状态j C ∉,都有()0ijn p =;所以闭集的意思是自C 的内部不能到达C 的外部;意味着一旦质点进入闭集C 中,它将永远留在C 中运动;如果1ii p =,则状态i 为吸收的;等价于单点{}i 为闭集;3.马尔可夫链的分解定理:任一马尔可夫链的状态空间I ,必可唯一地分解成有限个互不相交的子集12,,,nD C C C 的和,①每一个n C 都是常返态组成的不可约闭集;②n C 中的状态同类,或全是正常返态,或全是零常返态,有相同的周期,且1ij f =;③D 是由全体非常返态组成; 分解定理说明:状态空间的状态可按常返与非常返分为两类,非常返态组成集合D ,常返态组成一个闭集C ;闭集C 又可按互通关系分为若干个互不相交的基本常返闭集12,,nC C C ; 含义:一个马尔可夫链如果从D 中某个非常返态出发,它或者一直停留在D 中,或某一时刻进入某个基本常返闭集n C ,一旦进入就永不离开;一个马尔可夫链如果从某一常返态出发,必属于某个基本常返闭集n C ,永远在该闭集n C 中运动;4.有限马尔可夫链:一个马尔可夫链的状态空间是一个有限集合;性质:①所有非常返态组成的集合不是闭集;②没有零常返态;③必有正常返态;④状态空间12n I D C C C =++++,D 是非常返集合,12,,n C C C 是正常返集合;不可约有限马尔可夫链只有正常返态;四.()n ij p 的渐近性质与平稳分布 1.为什么要研究转移概率()n ij p 的遍历性研究()n ij p 当n →∞时的极限性质,即{}0n P X j X i ==的极限分布,包含两个问题:一是()lim n ij n p →∞是否存在;二是如果存在,是否与初始状态有关;这一类问题称作遍历性定理;如果对,i j I ∈,存在不依赖于i 的极限()lim n ijn p →∞0j p =>,则称马尔可夫链具有遍历性; 一个不可约的马尔可夫链,如果它的状态是非周期的正常返态,则它就是一个遍历链; 具有遍历性的马尔可夫链,无论系统从哪个状态出发,当转移步数n 充分大时,转移到状态j 的概率都近似等于j p ,这时可以用j p 作为()n ij p 的近似值;2.研究平稳分布有什么意义判别一个不可约的、非周期的、常返态的马尔可夫链是否为遍历的,可以通过讨论()lim n ij n p →∞来解决,但求极限时困难的;所以,我们通过研究平稳分布是否存在来判别齐次马尔可夫链是否为遍历链;一个不可约非周期常返态的马尔可夫链是遍历的充要条件是存在平稳分布,且平稳分布即极限分布()lim n ij n p →∞=1,jj I μ∈;3.{},0≥n X n 是齐次马尔可夫链,状态空间为I ,一步转移概率为ij p ,概率分布{},j j I π∈称为马尔可夫链的平稳分布,满足1j i iji Ijj Ip πππ∈∈==∑∑4.定理:不可约非周期马尔可夫链是正常返的充要条件是存在平稳分布,且此平稳分布就是极限分布1,jj I μ∈; 推论:有限状态的不可约非周期马尔可夫链必存在平稳分布;5.在工程技术中,当马尔可夫链极限分布存在,它的遍历性表示一个系统经过相当长时间后达到平衡状态,此时系统各状态的概率分布不随时间而变,也不依赖于初始状态;6.对有限马尔可夫链,如果存在正整数k ,使()0k ij p >,即k 步转移矩阵中没有零元素,则该链是遍历的;第六章 平稳随机过程一.定义第一章严平稳过程:有限维分布函数沿时间轴平移时不发生变化;宽平稳过程:满足三个条件:二阶矩过程2[()]E X t <∞;均值为常数[()]E X t =常数;相关函数只与时间差有关,即(,)()()()X X R t t E X t X t R τττ⎡⎤-=-=⎣⎦;宽平稳过程不一定是严平稳过程,而严平稳过程一定是宽平稳过程; 二.联合平稳过程及相关函数的性质1.定义:设{}(),X t t T ∈和{}(),X t t T ∈是两个平稳过程,若它们的互相关函数()()E X t Y t τ⎡⎤-⎣⎦及()()E Y t X t τ⎡⎤-⎣⎦仅与时间差τ有关,而与起点t 无关,则称()X t 和()Y t 是联合平稳随机过程;即,(,)()()()XY XY R t t E X t Y t R τττ⎡⎤-=-=⎣⎦ (,)()()()YX YX R t t E Y t X t R τττ⎡⎤-=-=⎣⎦当然,当两个平稳过程联合平稳时,其和也是平稳过程;2.相关函数的性质:①(0)0X R ≥;②()()X X R R ττ≥,对于实平稳过程,()X R τ是偶函数;③()(0)X X R R τ≤④非负定;⑤若()X t 是周期的,则相关函数()X R τ也是周期的,且周期相同;⑥如果()X t 是不含周期分量的非周期过程,()X t 与()X t τ+相互独立,则||()lim X X X R m m ττ→∞=;联合平稳过程()X t 和()Y t 的互相关函数,()(0)(0)XY X Y R R R τ≤,()(0)(0)YX X Y R R R τ≤;()()XY YX R R ττ-=;()X t 和()Y t 是实联合平稳过程时,则,()()XY YX R R ττ-=;三.随机分析 略四.平稳过程的各态历经性 1.时间均值1()..()2TTT X t l i mX t dt T-→∞=⎰时间相关函数1()()..()()2TTT X t X t l i mX t X t dt Tττ-→∞-=-⎰2.如果()[()]()X X t E X t m t ==以概率1成立,则称均方连续的平稳过程的均值有各态历经性;如果()()[()()]()X X t X t E X t X t R τττ-=-= 以概率1成立,则称均方连续的平稳过程的相关函数有各态历经性;如果均方连续的平稳过程的均值和相关函数都有各态历经性,则称该平稳过程是各态历经的或遍历的;一方面表明各态历经过程各样本函数的时间平均实际上可以认为是相同的;另一方面也表明[()]E X t 与[()()]E X t X t τ-必定与t 无关,即各态历经过程必是平稳过程;3.讨论平稳过程的历经性,就是讨论能否在较宽松的条件下,用一个样本函数去近似计算平稳过程的均值、协方差函数等数字特征,即用时间平均代替统计平均; 只在一定条件下的平稳过程,才具有各态历经性;4.均值各态历经性定理:均方连续的平稳过程的均值具有各态历经的充要条件是5.相关函数各态历经性定理:均方连续的平稳过程的相关函数具有各态历经的充要条件是第七章 平稳过程的谱分析 一.平稳过程的谱密度 推导过程:随机过程{}(),X t t -∞<<∞为均方连续过程,作截尾处理(),()0,T X t t TX t t T ⎧≤⎪=⎨>⎪⎩,由于()T X t 均方可积,所以存在FT,得(,)()()Tj tj t T TF T X t edt X t e dt ωωω∞---∞-==⎰⎰,利用paserval 定理及IFT 定义得2221()()(,)2TT TX t dt X t dt F T d ωωπ∞∞-∞--∞==⎰⎰⎰该式两边都是随机变量,取平均值,这时不仅要对时间区间[,]T T -取,还要取概率意义下的统计平均,即 定义221()2lim TTT E X t dt Tψ-→∞⎡⎤=⎢⎥⎣⎦⎰为{}(),X t t -∞<<∞平均功率;21()(,)2limX T s E F T T ωω→∞⎡⎤=⎣⎦为{}(),X t t -∞<<∞功率谱密度,简称谱密度; 可以推出当{}(),X t t -∞<<∞是均方连续平稳过程时,有 21()2X s d ψωωπ∞-∞=⎰说明平稳过程的平均功率等于过程的均方值,或等于谱密度在频域上的积分;2.平稳过程的谱密度和相关函数构成FT 对;若平稳随机序列{},0,1,2,n X n =±±,则其谱密度和相关函数构成FT 对二.谱密度的性质1.①()X s ω是()X R τ的FT;()()j X X s R e d ωτωττ∞--∞=⎰如果{}(),X t t -∞<<∞是均方连续的实平稳过程,有()()X X R R ττ=-,()X s ω是也实的非负偶函数,则②()X s ω是ω的有理分式,分母无实根;2.谱密度的物理含义,()X s ω是一个频率函数,从频率域来描绘()X t 统计规律的数字特征,而()X t 是各种频率简谐波的叠加,()X s ω就反映了各种频率成分所具有的能量大小;3.计算 可以按照定义计算,也可以利用常用的变换对()1t δ↔ 12()πδω↔ 2220a ae a a τω-↔>+22τω↔-00()()j X X R e s ωττωω⋅↔- ()()j T X X R T s e ωτω+↔⋅001,sin 0,ωωωτωωπτ⎧<⎪↔⎨≥⎪⎩等 三.窄带过程及白噪声过程的功率谱密度1.窄带随机过程:随机过程的谱密度限制在很窄的一段频率范围内;2.白噪声过程:设{}(),X t t -∞<<∞为实值平稳过程,若它的均值为零,且谱密度在所有的频率范围内为非零的常数,即0()X s N ω=,则称{}(),X t t -∞<<∞为白噪声过程; 是平稳过程;其相关函数为0()()X R N τδτ=;表明在任意两个时刻1t 和2t ,1()X t 和2()X t 不相关,即白噪声随时间的变换起伏极快,而过程的功率谱极宽,对不同输入频率的信号都有可能产生干扰;四.联合平稳过程的互谱密度互谱密度没有明确的物理意义,引入它主要是为了能在频率域上描述两个平稳过程的相关性;1.互谱密度与互相关函数成FT对关系 2.性质()()XY XY s s ωω= ()XY s ω的实部是ω的偶函数,虚部是ω的奇函数,()YX s ω也是; 2()()()XY X Y s s s ωωω≤;若()X t 和()Y t 相互正交,有()0XY R τ=,则()()0XY YX s s ωω== ;五.平稳过程通过线性系统1.系统的频率响应函数()H ω也可以写成()H j ω一般是一个复值函数,是系统单位脉冲响应的FT;2.系统输入()X t 为实平稳随机过程,则输出()Y t 也是实平稳随机过程;即输出过程的均值为常数,相关函数是时间差的函数;且有()()()()()()Y XY X R R h R h h ττττττ=*-=**-说明输出过程的相关函数可以通过两次卷积产生;()()()XY X R R h τττ=*的应用:给系统一个白噪声过程()X t ,可以从实测的互相关资料估计线性系统的未知脉冲响应;因为0()()X R N τδτ=,00()()()()()()XY X R R h N u h u du N h τττδττ∞-∞=*=-=⎰,从而3.输入输出谱密度之间的关系 2()()()Y X s H s ωωω=2()()()H H H ωωω=称为系统的频率增益因子或频率传输函数;有时,采用时域卷积的方法计算输出的相关函数比较烦琐,可以先计算输出过程的谱密度,然后反FT 计算出相关函数;2()()()()()X Y X Y R s H s R τωωωτ→=→另外()()()XY X R R h τττ=*,所以()()()XY X s H s ωωω= ,()()()YX X s H s ωωω= 补充:排队轮平均间隔时间=总时间/到达顾客总数 平均服务时间=服务时间总和/顾客总数平均到达率=到达顾客总数/总时间 平均服务率=顾客总数/服务时间总和一.当顾客到达符合泊松过程时,顾客相继到达的间隔时间T 必服从负指数分布;对于泊松分布,λ表示单位时间平均到达的顾客数,所以1λ表示顾客相继到达的平均间隔时间;服务时间符合负指数分布时,设它的概率密度函数和分布函数分别为()(){}[]1tttt t tf t e F t P T t e dt d e e μμμμμμ----==≤==-=-⎰⎰ 其中μ表示单位时间能够服务完的顾客数,为服务率;而1μ表示一个顾客的平均服务时间; 二.排队模型的求解把系统中的顾客数称为系统的状态;若系统中有n 个顾客,则称系统的状态是n ;瞬态和稳态:考虑在t 时刻系统的状态为n 的概率,它是随时刻t 而变化的,用()n P t 表示,称为系统的瞬态;求瞬态解是很不容易的,求出也很难利用;因此我们常用稳态概率n P ,表示系统中有n 个顾客的概率; 各运行指标:1队长:把系统中的顾客数称为队长,它的期望值记作s L ,也叫平均队长,即系统中的平均顾客数;而把系统中排队等待服务的顾客数称为排队长队列长,它的期望值记作q L ,也叫平均排队长,即系统中的排队的平均顾客数; 显然有 队长=排队长+正被服务的顾客数;2逗留时间:一个顾客从到达排队系统到服务完毕离去的总停留时间称为逗留时间,它的期望值记作s W ;一个顾客在系统中排队等待的时间称为等待时间,它的期望值记作q W ;逗留时间=等待时间+服务时间;3忙期:从顾客到达空闲服务机构起,到服务台再次变为空闲为止; 4顾客损失率:由于服务能力不足而造成顾客损失的比率;5服务强度服务机构利用率:指服务设备工作时间占总时间的比例; 三.几种典型的排队模型1.//1//M M ∞∞:单服务台,系统容量无限,顾客源无限;λ到达率,μ服务率,λρμ=服务强度; 状态转移图 , 稳态概率方程 得 系统中无顾客的01P ρ=- 系统中有n 个顾客的概率0(1)n n n P P ρρρ=-=且必有s q L L uλ=+qq L W λ=1s q W W μ=+2.//1//M M N ∞:单服务台,系统容量为N 说明若到了系统最大容量,顾客将不能进入系统,顾客源无限;λ到达率,μ服务率,λρμ=服务强度;☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆状态转移图 , 稳态概率方程 得 系统中无顾客的0111N P ρρ+-=- 系统中有n 个顾客的概率0n n P P ρ= 3.//1//M M m ∞:单服务台,系统容量无限,顾客源m;λ到达率,μ服务率;状态转移图 , 稳态概率方程 得 系统中无顾☆客的001!()!()mii P m m i λμ==-∑系统中有n 个顾客的概率0!()()!n n m P P m n λμ=-1n m ≤≤0(1)s L m P μλ=--;00()(1)(1)q s P L m L P λμλ+-=-=--01(1)s m W P μλ=--1q s W W μ=-4. ////M M c ∞∞:多服务台,系统容量无限,顾客源无限;λ到达率,μ服务率,c λρμ=服务强度; 状态转移图 , 稳态概率方程 得☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆系统中无顾客的110011!!1k c c k P k c λλμμρ--=⎡⎤⎛⎫⎛⎫=+⎢⎥ ⎪ ⎪-⎝⎭⎝⎭⎢⎥⎣⎦∑系统中有n 个顾客的概率001()!1()!nn n n c P n c n P P n c c cλμλμ-⎧≤⎪⎪=⎨⎪>⎪⎩。
随机过程知识点总结
∈
且
∑ = 1
∈
矩阵表示
= ()
3、 各状态平均返回时间
=
1
第五章 连续时间马尔可夫链
1、 转移概率 (, ) = {( + ) = |() = }
齐次转移概率 (, ) = ()
2、 转移速率
()
() = ∑ , ≥ 0
=1
[()] = [1 ];[()] =
[12]
第四章 马尔可夫链
4.1 马尔可夫链概念与状态转移概率
1、
2、
马尔可夫过程:未来状态只与当前状态有关,而与过去状态无关。
时间、状态都是离散的,称为马尔可夫链。
马尔可夫链的统计特性完全由条件概率{+1 = +1 | = }确定。
随机矩阵:各元素非负且各行元素之和为 1;
步转移矩阵是随机矩阵;
闭集 C 上所有状态构成的步转移矩阵仍是随机矩阵。
周期为的不可约马氏链,其状态空间可唯一地分解为个互不相交的子集之和,即
−1
= ⋃ , ∩ = ∅, ≠
=0
且使得自 中任一状态出发,经一步转移必进入+1 中( = 0 )。
[ ( + ) − ()] −[ (+)− ()]
!
+
( + ) − () = ∫
()
相较与齐次泊松过程 → ( + ) − ()
5、 复合泊松过程(独立增量过程)
是由对泊松过程的每一点赋予一独立同分布的随机变量而得的随机过程。
=1
′′ (0)(− 2 )
(完整版)概率论知识点总结
概率论知识点总结第一章 随机事件及其概率第一节 基本概念随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E 表示。
随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。
不可能事件:在试验中不可能出现的事情,记为Ф。
必然事件:在试验中必然出现的事情,记为Ω。
样本点:随机试验的每个基本结果称为样本点,记作ω.样本空间:所有样本点组成的集合称为样本空间. 样本空间用Ω表示.一个随机事件就是样本空间的一个子集。
基本事件—单点集,复合事件—多点集 一个随机事件发生,当且仅当该事件所包含的一个样本点出现。
事件的关系与运算(就是集合的关系和运算)包含关系:若事件 A 发生必然导致事件B 发生,则称B 包含A ,记为A B ⊇或B A ⊆。
相等关系:若A B ⊇且B A ⊆,则称事件A 与事件B 相等,记为A =B 。
事件的和:“事件A 与事件B 至少有一个发生”是一事件,称此事件为事件A 与事件B 的和事件。
记为 A ∪B 。
事件的积:称事件“事件A 与事件B 都发生”为A 与B 的积事件,记为A∩ B 或AB 。
事件的差:称事件“事件A 发生而事件B 不发生”为事件A 与事件B 的差事件,记为 A -B 。
用交并补可以表示为B A B A =-。
互斥事件:如果A ,B 两事件不能同时发生,即AB =Φ,则称事件A 与事件B 是互不相容事件或互斥事件。
互斥时B A ⋃可记为A +B 。
对立事件:称事件“A 不发生”为事件A 的对立事件(逆事件),记为A 。
对立事件的性质:Ω=⋃Φ=⋂B A B A ,。
事件运算律:设A ,B ,C 为事件,则有 (1)交换律:A ∪B=B ∪A ,AB=BA(2)结合律:A ∪(B ∪C)=(A ∪B)∪C=A ∪B ∪C A(BC)=(AB)C=ABC(3)分配律:A ∪(B∩C)=(A ∪B)∩(A ∪C) A(B ∪C)=(A∩B)∪(A∩C)= AB ∪AC (4)对偶律(摩根律):B A B A ⋂=⋃ B A B A ⋃=⋂第二节 事件的概率 概率的公理化体系: (1)非负性:P(A)≥0; (2)规范性:P(Ω)=1(3)可数可加性: ⋃⋃⋃⋃n A A A 21两两不相容时++++=⋃⋃⋃⋃)()()()(2121n n A P A P A P A A A P概率的性质: (1)P(Φ)=0(2)有限可加性:n A A A ⋃⋃⋃ 21两两不相容时)()()()(2121n n A P A P A P A A A P +++=⋃⋃⋃当AB=Φ时P(A ∪B)=P(A)+P(B) (3))(1)(A P A P -=(4)P(A -B)=P(A)-P(AB)(5)P (A ∪B )=P(A)+P(B)-P(AB)第三节 古典概率模型1、设试验E 是古典概型, 其样本空间Ω由n 个样本点组成,事件A 由k 个样本点组成.则定义事件A 的概率为nk A P =)( 2、几何概率:设事件A 是Ω的某个区域,它的面积为 μ(A),则向区域Ω上随机投掷一点,该点落在区域 A 的概率为)()()(Ω=μμA A P 假如样本空间Ω可用一线段,或空间中某个区域表示,则事件A 的概率仍可用上式确定,只不过把μ理解为长度或体积即可.第四节 条件概率条件概率:在事件B 发生的条件下,事件A 发生的概率称为条件概率,记作 P(A|B).)()()|(B P AB P B A P =乘法公式:P(AB)=P(B)P(A|B)=P(A)P(B|A)全概率公式:设n A A A ,,,21 是一个完备事件组,则P(B)=∑P(i A )P(B|i A ) 贝叶斯公式:设n A A A ,,,21 是一个完备事件组,则∑==)|()()|()()()()|(jj i i i i A B P A P A B P A P B P B A P B A P第五节 事件的独立性两个事件的相互独立:若两事件A 、B 满足P(AB)= P(A) P(B),则称A 、B 独立,或称A 、B 相互独立.三个事件的相互独立:对于三个事件A 、B 、C ,若P(AB)= P(A) P(B),P(AC)= P(A)P(C),P(BC)= P(B) P(C),P(ABC)= P(A) P(B)P(C),则称A 、B 、C 相互独立三个事件的两两独立:对于三个事件A 、B 、C ,若P(AB)= P(A) P(B),P(AC)= P(A)P(C),P(BC)= P(B) P(C),则称A 、B 、C 两两独立独立的性质:若A 与B 相互独立,则A 与B ,A 与B ,A 与B 均相互独立总结:1.条件概率是概率论中的重要概念,其与独立性有密切的关系,在不具有独立性的场合,它将扮演主要的角色。
考研随机过程知识点浓缩
考研随机过程知识点浓缩随机过程是概率论中的重要分支,研究随机事件在时间上的演变规律。
在考研数学中,随机过程是一个重要的知识点,涉及到概率论和数理统计等多个领域。
本文将对考研随机过程的知识点进行浓缩总结,帮助考生更好地掌握重点内容。
1. 随机过程的定义随机过程是一个定义在时间轴上的随机变量族,即一系列随机变量组成的集合。
随机过程可分为连续时间随机过程和离散时间随机过程,根据时间参数的取值范围来进行区分。
2. 随机过程的分类根据随机过程的状态空间,可以将随机过程分为离散状态随机过程和连续状态随机过程。
离散状态随机过程中,状态空间为有限集合或者可列无限集合,如泊松过程;连续状态随机过程中,状态空间为连续集合,如布朗运动。
3. 马尔可夫性质马尔可夫性质是随机过程的重要性质之一,指的是在给定当前状态的条件下,未来的发展只依赖于当前状态,与过去的状态无关。
具有马尔可夫性质的随机过程可以简化计算和分析。
4. 随机过程的平稳性平稳性是随机过程的另一个重要性质,分为弱平稳和严平稳。
弱平稳指的是均值和自协方差不依赖于时间的特性;严平稳则要求联合分布在时间上的平移具有不变性。
平稳性的性质可以简化对随机过程的研究。
5. 随机过程的独立增量性质随机过程的独立增量性质指的是在不相交的时间间隔内,随机变量之间是相互独立的。
具有独立增量性质的随机过程可以通过对各个时间间隔内的随机变量进行独立分析。
6. 随机过程的马尔可夫链马尔可夫链是一种特殊的离散时间随机过程,具有马尔可夫性质。
马尔可夫链的状态空间是离散的,状态转移概率只与当前状态有关,与过去的状态无关。
马尔可夫链通常用状态转移矩阵来描述状态之间的转移规律。
7. 泊松过程泊松过程是一类具有无记忆性的离散状态随机过程,是一种常用的数学模型。
泊松过程描述了在一段时间内随机事件发生的次数,具有独立增量和稳定增量的性质。
8. 布朗运动布朗运动是连续时间的连续状态随机过程,具有平稳增量、独立增量和高斯增量的特性。
最终版随机过程总复习汇总.ppt
分析 先求 X (t) 的概率分布
整理
解 对每一个确定的时刻 t, X (t) 的概率分布为
t
X (t) 3
t
e
2
1
P
3
3
所以
F(t1;x1 ) P( X(t1) x1)
0,
2, 3 1,
t x1 3
t 3
x1
et
x1 et
整理
随机过程的数字特征
1.均值函数 X (t) E[X (t)]
计算协方差时通常用下列关系式:
C ov( X ,Y ) E(XY ) E(X )E(Y )
整理
三、矩母函数
1.定义 称 e tX的数学期望 (t) E[etX ]
为X的矩母函数
2.原点矩 利用矩母函数可求得X的各阶矩,即对
的求法
(t)逐次求导并计算在 t 0 点的值:
(t) E[XetX ] (n)(t) E[X netX ]
Y X1 X2 Xr 的特征函数为
Y (t) 1(t ) 2 (t ) … r (t )
两个相互独立的随机变量之和的特征函数等于它 们的特征函数之积.
整理
练习:设随机变量X的概率密度函数为
p(
x)
1 2
x
0 x2
0 其 它
试求X的矩母函数。
解: (t ) E[etX ] 2 etx 1 xdx
Y (t) E[Ut2] t 2E[U] 所以 X (t) 和Y (t) 的互协方差函数
XY (t1 , t2 ) E{[X(t1) t1E(U)][Y(t2 ) t22E(U)]}
t1t22E[(U E(U))2] t1t22D(U ) 3t1t22
随机过程知识点总结
知识点总结第1章 概率论基础1.1概论空间随机试验,它是指其结果不能事先确定且在相同条件下可以重复进行的试验。
其中,一个试验所有可能出现的结果的全体称为随机试验的样本空间,记为Ω,试验的一个结果称为样本点,记为ω,即}{ω=Ω. 样本空间的某个子集称为随机事件,简称事件.定义1.1.1 设Ω样本空间,是Ω的某些子集构成的集合,如果:(1)∈Ω (2)若∈A ,则∈A(3)若∈n A ,,, ,21n =则∈∞= 1n nA那么称为一事件域,也称为σ域.显然,如果是一事件域,那么(1)∈φ(2)若∈B A ,,则∈-B A(3)若∈n A , ∞==1n n 2,1n A ,则,,定义 1.1.2 设Ω是样本空间,是一事件域,定义在上的实值函数)(⋅P 如果满足:(1)∈∀A 0)(,≥A P ,(2)1)(=ΩP , (3)若∈n A ,,2,1, =n 且,,2,1,,, =≠=j i j i A A j i φ则∞=∞=∑=11)()(n n n n A P A P那么称P 是二元组(,Ω)上的概率,称P (A )为事件A 的概率,称三元组,(Ω),P 为概率空间。
关于事件的概率具有如下性质:(1);0)(=φP(2)若∈nA ,,,2,1,,,,,,2,1,n j i j i A A n i j i =≠==φ 则ni ni i i A P A P 11)()(==∑=(3)若∈B A ,,,B A ⊂则)A P B P A B P ()()(-=-(4)若∈B A ,)()(,,B P A P B A ≤⊂则; (5)若∈A ;1)(,≤A P 则(6)若∈A );(1)(,A P A P -=则(7)若∈n A ,,2,1, =n 则∞=∞=∑≤11)()(n n n i A P A P(8)若∈i A ,,,2,1,n i =则-===∑ ni ni i i A P A P 11)()(∑∑≤<≤≤<<≤--+-+nj i nk j i n n kj ij i A A A P A A A P A A P 11211)()1()()(一列事件∈n A ,2,1,=n 称为单调递增的事件列,如果;,2,1,1 =⊂+n A A n n 一列事件∈n A ,2,1,=n 称为单调递减的事件列,如果,2,1,1=⊃+n A A n n .定理1.1.1 设 ∈n A ,2,1,=n(1)若 ,2,1,=n A n 是单调递增的事件列,则⎪⎪⎭⎫⎝⎛=∞=∞→ 1)(lim n n n n A P A P (2)若 ,2,1,=n A n 是单调递减的事件列,则⎪⎪⎭⎫⎝⎛=∞=∞→ 1)(lim n n n n A P A P 定义1.1.3.设,(Ω),P 为一概率空间,∈B A ,.且,0)(>A P 则称)()()(A P AB P A B P =为在事件A 发生的条件下事件B 发生的条件概率.不难验证,条件概率)|(A P ⋅符合定义1.1.2中的三个条件,即 (1)∈∀B , 0)|(≥A B P ;(2);1)|(=ΩA P (3)设∈n B ,,2,1,,,,2,1, =≠==j j i B B n j i φ则∞=∞=∑=11)|()|(n n n n A B P A B P定理 1.1.2. 设,Ω( ),P 是一概率空间,有: (1)(乘法公式)若∈i A ,,,,2,1n i =且0)(121>-n A A A P ,则)|()()(12121A A P A P A A A P n =(2)(全概率公式)设∈A ,∈iB ,,2,1,0)(, =>i B P i 且∞=⊃=≠=1,,,2,1,,,,i i j i A B j i j i B B φ则∑∞==1)|()()(i i i B A P B P A P(3)(贝叶斯(Bayes)公式)且∈A ∈>i B A P ,0)(,,,,2,1,0)( =>i B P i且 ∞=⊃==1,,,2,1,,i i j i A B j i B B φ则,2,1,)|()()|()()|(1==∑∞=i B A P B P B A P B P A B P j jji i i定义 1.1.4设,(Ω ),P 为一概率空间,,,,2,1,n i F A i =∈如果对于任意的)1(n k k ≤<及任意的,12n i i i k i ≤<<<≤ 有)()()()(2121k k i i i i i i A P A P A P A A A P =则称n 21,,,A A A 相互独立。
(完整)随机过程总结,推荐文档
第一章随机变量基础1历史上哪些学者对随机过程学科的基础理论做出了突出贡献?答:随机过程整个学科的理论基础是由柯尔莫哥洛夫和杜布奠定的。
这一学科最早源于对物理学的研究,如吉布斯、玻尔兹曼、庞加莱等人对统计力学的研究,及后来爱因斯坦、维纳、莱维等人对布朗运动的开创性工作。
1907年前后,马尔可夫研究了一系列有特定相依性的随机变量,后人称之为马尔可夫链。
1923年维纳给出布朗运动的数学定义,直到今日这一过程仍是重要的研究课题。
随机过程一般理论的研究通常认为开始于20世纪30年代。
1931年,柯尔莫哥洛夫发表了《概率论的解析方法》,1934年A·辛饮发表了《平稳过程的相关理论》,这两篇著作奠定了马尔可夫过程与平稳过程的理论基础。
1953年,杜布出版了名著《随机过程论》,系统且严格地叙述了随机过程基本理论。
2 全概率公式的含义?答:全概率公式的含义就是各种可能发生的情况的概率之和为1。
3 概率空间有哪几个要素,其概念体现了对随机信号什么样的建模思想?答:样本空间、事件集合、概率函数称为概率空间的三要素。
概率函数建立了随机事件与可描述随机事件可能性大小的实数间的对应关系,因此,概率空间是在观测者观测前对随机事件发生的可能性大小进行了量化,其有效性是通过多次观测体现出来的,也即在多次观测中,某个随机事件发生的频率可直接认为与其发生的概率相等,所以,概率空间的建模思想实际是对大量观测中某随机事件发生频率的稳定性的描述。
4 可用哪些概率函数完全描述一个随机变量?答:概率分布函数(cdf)、概率密度函数(pdf)、特征函数(cf)、概率生成函数(gf)。
5 可用哪些数字特征部分描述一个随机变量?答:均值、方差、协方差、相关系数和高阶矩。
6 随机变量与通常意义上的变量有何区别与联系?答:随机变量具有通常意义上的变量的所有性质和特征(即变量特性),还增加了变量取每个值的可能性大小的描述(即概率特性)。
因此,描述或刻画一个随机变量时,还必须要特别考察其概率函数或各阶矩函数。
随机过程知识点汇总52047
第一章 随机过程的基本概念与基本类型 一.随机变量及其分布1.随机变量X , 分布函数)()(x X P x F ≤=离散型随机变量X 的概率分布用分布列 )(k k x X P p == 分布函数∑=kpx F )(连续型随机变量X 的概率分布用概率密度)(x f 分布函数⎰∞-=xdt t f x F )()(2.n 维随机变量),,,(21n X X X X =其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤== 离散型 联合分布列 连续型 联合概率密度 3.随机变量的数字特征数学期望:离散型随机变量X ∑=k kp xEX 连续型随机变量X ⎰∞∞-=dx x xf EX )(方差:222)()(EX EX EX X E DX -=-= 反映随机变量取值的离散程度 协方差(两个随机变量Y X ,):EY EX XY E EY Y EX X E B XY ⋅-=--=)()])([( 相关系数(两个随机变量Y X ,):DYDX B XY XY ⋅=ρ 若0=ρ,则称Y X ,不相关。
独立⇒不相关⇔0=ρ4.特征函数)()(itXeE t g = 离散 ∑=k itx p e t g k )( 连续 ⎰∞∞-=dx x f e t g itx )()(重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,k k k EX i g =)0(5.常见随机变量的分布列或概率密度、期望、方差0-1分布 q X P p X P ====)0(,)1( p EX = pq DX =二项分布 kn k k n q p C k X P -==)( np EX = npq DX =泊松分布 !)(k ek X P kλλ-== λ=EX λ=DX 均匀分布略正态分布),(2σa N222)(21)(σσπa x ex f --=a EX = 2σ=DX指数分布 ⎩⎨⎧<≥=-0,00,)(x x e x f x λλ λ1=EX 21λ=DX6.N维正态随机变量),,,(21n X X X X =的联合概率密度),(~B a N X)}()(21ex p{||)2(1),,,(121221a x B a x B x x x f T nn ---=-π),,,(21n a a a a =,),,,(21n x x x x =,n n ij b B ⨯=)(正定协方差阵二.随机过程的基本概念 1.随机过程的一般定义设),(P Ω是概率空间,T 是给定的参数集,若对每个T t ∈,都有一个随机变量X 与之对应,则称随机变量族{}T t e t X ∈),,(是),(P Ω上的随机过程。
随机过程例题和知识点总结
随机过程例题和知识点总结随机过程是研究随机现象随时间演变的数学理论,在通信、金融、物理等众多领域都有广泛的应用。
接下来,我们通过一些例题来深入理解随机过程的相关知识点。
一、随机过程的基本概念随机过程可以看作是一族随机变量的集合,其中每个随机变量对应于一个特定的时间点。
例如,考虑一个在时间段0, T内的股票价格变化过程,对于每个时刻 t∈0, T,股票价格就是一个随机变量。
知识点 1:随机过程的分类随机过程可以分为离散时间随机过程和连续时间随机过程。
离散时间随机过程的时间参数是离散的,比如每天的股票收盘价;连续时间随机过程的时间参数是连续的,比如股票价格在任意时刻的取值。
知识点 2:随机过程的概率分布描述随机过程在不同时刻的概率分布是研究随机过程的重要内容。
对于离散随机过程,常用概率质量函数;对于连续随机过程,常用概率密度函数。
例题 1假设一个离散时间随机过程{Xn},n = 0, 1, 2, ,其中 Xn 取值为 0 或 1,且 P(Xn = 0) = 06,P(Xn = 1) = 04,求 X0 和 X1 的联合概率分布。
解:X0 和 X1 的可能取值组合有(0, 0)、(0, 1)、(1, 0)、(1, 1)。
P(X0 = 0, X1 = 0) = P(X0 = 0) × P(X1 = 0) = 06 × 06 = 036P(X0 = 0, X1 = 1) = P(X0 = 0) × P(X1 = 1) = 06 × 04 = 024P(X0 = 1, X1 = 0) = P(X0 = 1) × P(X1 = 0) = 04 × 06 = 024P(X0 = 1, X1 = 1) = P(X0 = 1) × P(X1 = 1) = 04 × 04 = 016二、随机过程的数字特征数字特征可以帮助我们更简洁地描述随机过程的某些重要性质。
随机过程知识点汇总3
第一章随机过程的基本概念与基本类型一. 随机变量及其分布1随机变量X,分布函数F(x)二P(X < x)X连续型随机变量X的概率分布用概率密度 f (x) 分布函数F(x)二f (t)dt2. n维随机变量X =(X i,X2,…,X n)其联合分布函数F(x) H F a’X?,…,X n) =P(X1空X-X2乞x2,…,X n乞x n,)离散型联合分布列连续型联合概率密度3 .随机变量的数字特征数学期望:离散型随机变量X EX =二x k p k连续型随机变量X EX二"xf (x)dx匚方差:DX = E(X -EX)2二EX2-(EX)2反映随机变量取值的离散程度协方差(两个随机变量X,Y ):B XY =E[(X — EX)(Y —EY)] =E(XY) — EX .EY独立=不相关:=:-=0予oO 予离散g(t)二' e iX k P k 连续g(t) e iX f (x)dx'J重要性质:g(0)=1 , g(t) <1 , g(—t)=g(t) , g k(0)=i k EX k5 •常见随机变量的分布列或概率密度、期望、方差0 —1分布P(X =1) =p,P(X =0) =q EX二p DX = p q二项分布k k n -kP(X = k) = C n p q EX=np DX=n pq泊松分布-kP(X =k) =e EXk!DX=扎均匀分布略离散型随机变量X的概率分布用分布列P k 二P(X 二X k)分布函数F(x) = 7 P k相关系数(两个随机变量X,Y ):B XYDX DY若'=0,则称X,Y不相关。
4 .特征函数g(t)二E(e itX)6.N 维正态随机变量 X =(X ,,X 2^ ,X n )的联合概率密度II T A.f(X i ,X 2, ,X n )二 ---------- n-exo{(x-a) B (x-a)} 2 (2 二)2|B|2a =(a .,a 2,…,aj , x =(x i , X 2,…,X n ), B = (b ij )nn 正定协方差阵二•随机过程的基本概念 1•随机过程的一般定义设r 1, P)是概率空间,T 是给定的参数集,若对每个r T ,都有一个随机变量 X 与之对应, 则称随机变量族fx (t,e),t ・T /是 (JP)上的随机过程。
概率统计与随机过程-知识点总结--最终版
P(Bi ) 0(i 1, 2,L , n), 则恒有全概率公式:
n
P( A) P( A B1 )P(B1 ) P( A B2 )P(B2 ) L P( A Bn )P(Bn ) P Bi P A | Bi i 1
B 发生的概率,用古典概率公式,则
P(B
A)
AB 中基本事件数
,
SA 中基本事件数
P( AB)
AB 中基本事件数
,
S 中比 P( AB) 大。
五、事件的独立性 1、事件的相互独立性
定义:设 A,B 是两事件,如果满足等式 P( AB) P( A) P(B) ,则称事件 A,B 相互独立,
结论:
若事件 A1, A2 , L , An (n 2) 相互独立,则其中任意 k (2 k n) 个事件也是相互独立的。
2、几个重要定理
定理一:设 A, B 是两事件,且 P( A) 0 ,若 A, B 相互独立,则 P(B A) P(B).反之亦
i 1
P
Bi
A
。
3、乘法公式
由条件概率的定义: P( A | B) P( AB) 即得乘法定理: P(B)
若 P(B)>0,则 P(AB)=P(B)P(A|B); 若 P(A)>0 ,则 P(AB)=P(A)P(B|A). 乘法定理可以推广到多个事件的积事件的情况,
-3-
设 A、B、C 为三个事件,且 P AB 0 ,且 P ABC P C | ABP B | AP A,
一般地,设有 n 个事件 A1,A2 , , An ,n 2 , 并且 P A1 A2 An1 0 ,则由条件概率的
高二年级数学随机事件和概率重要知识点总结
高二年级数学随机事件和概率重要知识点总结数学是利用符号语言研究数量、结构、变化以及空间模型等概念的一门学科。
小编准备了高二年级数学随机事件和概率重要知识点,具体请看以下内容。
1. 事件的关系与运算,主要是利用它们计算概率或讨论概率。
(1)事件的关系主要有:包含、相等、互不相容、对立和相互对立。
前四种关系与独立性的定义上在本质的区别,因此不仅需要理解事件关系的基本概念,避免概念之间彼此混淆,同时会分析事件的结构,能够对事件关系之间的关系、事件的运算与事件的关系以及事件关系与概率之间的关系
有准确的理解和判断能力。
在此基础上,既能够利用事件的关系求事件的概率,也能够正确理解事件的概率与事件之间的关系。
(2)事件的运算主要有加法运算、乘法运算、减法运算,事件的运算满足交换律、结合律和分配律,还有德-摩根律。
在熟练掌握这些运算和运算律的基础上,进而讨论事件的概率。
2. 概率的公有化定义与性质,古典型概率、几何型概率。
对于随机试验,首先要识别是哪一种概率模型,再利用它们的定义与性质计算一些事件的概率。
3. 概率的基本公式,包括加法公式、减法公式、乘法公式、
条件概率公式、全概率公式和贝叶斯公式,要在具体题设条件下正确使用这些公式计算事件的概率,掌握必要的解题技巧。
4. 两个事件相互独立的概念和性质,并掌握相关理论:
5. 多个事件两两独立、相互独立以及两者之间的联系与区别,会判断多个事件的两两独立性和相互独立性,并能够利用独立性计算事件的概率。
高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理的高二年级数学随机事件和概率重要知识点,希望大家喜欢。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论与随机过程考点总结HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】第一章 随机过程的基本概念与基本类型一.随机变量及其分布1.随机变量X , 分布函数)()(x X P x F ≤=离散型随机变量X 的概率分布用分布列 )(k k x X P p == 分布函数∑=k p x F )( 连续型随机变量X 的概率分布用概率密度)(x f 分布函数⎰∞-=xdt t f x F )()(2.n 维随机变量),,,(21n X X X X =其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤==离散型 联合分布列 连续型 联合概率密度3.随机变量的数字特征数学期望:离散型随机变量X ∑=k k p x EX 连续型随机变量X⎰∞∞-=dx x xf EX )(方差:222)()(EX EX EX X E DX -=-= 反映随机变量取值的离散程度协方差(两个随机变量Y X ,):EY EX XY E EY Y EX X E B XY ⋅-=--=)()])([(相关系数(两个随机变量Y X ,):DYDX B XY XY ⋅=ρ 若0=ρ,则称Y X ,不相关。
独立⇒不相关⇔0=ρ4.特征函数)()(itX e E t g = 离散 ∑=k itx p e t g k )( 连续 ⎰∞∞-=dx x f e t g itx )()(重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,k k k EX i g =)0(母函数:∑∞===0)()(k kk kz p z E z g !)0()(k g p k k = )1()('g X E =2''")]1([)1()1()(g g g X D -+=5.常见随机变量的分布列或概率密度、期望、方差0-1分布 q X P p X P ====)0(,)1( p EX = pq DX =二项分布 k n k knq p C k X P -==)( np EX = npq DX = 泊松分布 !)(k ek X P kλλ-== λ=EX λ=DX 均匀分布略正态分布),(2σa N 222)(21)(σσπa x ex f --=a EX = 2σ=DX指数分布 ⎩⎨⎧<≥=-0,00,)(x x e x f x λλ λ1=EX 21λ=DX6.N维正态随机变量),,,(21n X X X X =的联合概率密度),(~B a N XT n a a a a ),,,(21 =,T n x x x x ),,,(21 =,n n ij b B ⨯=)(正定协方差阵3.随机向量的变换二.随机过程的基本概念1.随机过程的一般定义设),(P Ω是概率空间,T 是给定的参数集,若对每个T t ∈,都有一个随机变量X与之对应,则称随机变量族{}T t e t X ∈),,(是),(P Ω上的随机过程。
简记为{}T t t X ∈),(。
含义:随机过程是随机现象的变化过程,用一族随机变量才能刻画出这种随机现象的全部统计规律性。
另一方面,它是某种随机实验的结果,而实验出现的样本函数是随机的。
当t 固定时,),(e t X 是随机变量。
当e 固定时,),(e t X 时普通函数,称为随机过程的一个样本函数或轨道。
分类:根据参数集T 和状态空间I 是否可列,分四类。
也可以根据)(t X 之间的概率关系分类,如独立增量过程,马尔可夫过程,平稳过程等。
2.随机过程的分布律和数字特征用有限维分布函数族来刻划随机过程的统计规律性。
随机过程{}T t t X ∈),(的一维分布,二维分布,…,n 维分布的全体称为有限维分布函数族。
随机过程的有限维分布函数族是随机过程概率特征的完整描述。
在实际中,要知道随机过程的全部有限维分布函数族是不可能的,因此用某些统计特征来取代。
(1)均值函数)()(t EX t m X = 表示随机过程{}T t t X ∈),(在时刻t 的平均值。
(2)方差函数2)]()([)(t m t X E t D X X -=表示随机过程在时刻t 对均值的偏离程度。
(3)协方差函数)()()]()([))]()())(()([(),(t m s m t X s X E t m t X s m s X E t s B X X X X X -=--= 且有)(),(t D t t B X X =(4)相关函数)]()([),(t X s X E t s R X = (3)和(4)表示随机过程在时刻s ,t 时的线性相关程度。
(5)互相关函数:{}T t t X ∈),(,{}T t t Y ∈),(是两个二阶距过程,则下式称为它们的互协方差函数。
)()()]()([))]()())(()([(),(t m s m t Y s X E t m t Y s m s X E t s B Y X Y X Y X -=--=,那么)]()([),(t Y s X E t s R XY =,称为互相关函数。
若)()()]()([t m s m t Y s X E Y X =,则称两个随机过程不相关。
3.复随机过程 t t t jY X Z +=均值函数t t Z jEY EX t m +=)( 方差函数]))(())([(|])([|)(2t m Z t m Z E t m Z E t D Z t Z t Z t Z --=-=协方差函数)()(][]))(())([(),(t m s m Z Z E t m Z s m Z E t s B Z Z t s Z t Z s Z -=--=相关函数][),(t s Z Z Z E t s R =4.常用的随机过程(1)二阶距过程:实(或复)随机过程{}T t t X ∈),(,若对每一个T t ∈,都有∞<2)(t X E (二阶距存在),则称该随机过程为二阶距过程。
(2)正交增量过程:设{}T t t X ∈),(是零均值的二阶距过程,对任意的T t t t t ∈<<<4321,有0]))()(())()([(3412=--t X t X t X t X E ,则称该随机过程为正交增量过程。
其协方差函数)),(m in(),(),(2t s t s R t s B XX X σ== (3)独立增量过程:随机过程{}T t t X ∈),(,若对任意正整数2≥n ,以及任意的T t t t n ∈<<< 21,随机变量)()(,),()(),()(13412----n n t X t X t X t X t X t X 是相互独立的,则称{}T t t X ∈),(是独立增量过程。
进一步,如{}T t t X ∈),(是独立增量过程,对任意t s <,随机变量)()(s X t X -的分布仅依赖于s t -,则称{}T t t X ∈),(是平稳独立增量过程。
(4)马尔可夫过程:如果随机过程{}T t t X ∈),(具有马尔可夫性,即对任意正整数n 及T t t t n ∈<<< 21,0))(,,)((1111>==--n n x t X x t X P ,都有{}{}111111)()()(,,)()(----=≤===≤n n n n n n n n x t X x t X P x t X x t X x t X P ,则则称{}T t t X ∈),(是马尔可夫过程。
(5)正态过程:随机过程{}T t t X ∈),(,若对任意正整数n 及T t t t n ∈,,,21 ,()()(),(21n t X t X t X )是n 维正态随机变量,其联合分布函数是n 维正态分布函数,则称{}T t t X ∈),(是正态过程或高斯过程。
(6)维纳过程:是正态过程的一种特殊情形。
设{}∞<<-∞t t W ),(为实随机过程,如果,①0)0(=W ;②是平稳独立增量过程;③对任意t s ,增量)()(s W t W -服从正态分布,即0),0(~)()(22>--σσs t N s W t W 。
则称{}∞<<-∞t t W ),(为维纳过程,或布朗运动过程。
另外:①它是一个Markov 过程。
因此该过程的当前值就是做出其未来预测中所需的全部信息。
②维纳过程具有独立增量。
该过程在任一时间区间上变化的概率分布独立于其在任一的其他时间区间上变化的概率。
③它在任何有限时间上的变化服从正态分布,其方差随时间区间的长度呈线性增加。
(7)平稳过程:严(狭义)平稳过程:{}T t t X ∈),(,如果对任意常数τ和正整数n 及T t t t n ∈,,,21 ,T t t t n ∈+++τττ,,,21 ,()()(),(21n t X t X t X )与()()(),(21τττ+++n t X t X t X )有相同的联合分布,则称{}T t t X ∈),(是严(狭义)平稳过程。
广义平稳过程:随机过程{}T t t X ∈),(,如果①{}T t t X ∈),(是二阶距过程;②对任意的T t ∈, 常数==)()(t EX t m X ;③对任意T t s ∈,,)()]()([),(s t R t X s X E t s R X X -==,或仅与时间差s t -有关。
则满足这三个条件的随机过程就称为广义平稳过程,或宽平稳过程,简称平稳过程。
第三章 泊松过程一.泊松过程的定义(两种定义方法)1,设随机计数过程{}(),0X t t ≥,其状态仅取非负整数值,若满足以下三个条件,则称:{}T t t X ∈),(是具有参数λ的泊松过程。
①(0)0X =;②独立增量过程,对任意正整数n ,以及任意的T t t t n ∈<<< 21)()(,),()(),()(12312----n n t X t X t X t X t X t X 相互独立,即不同时间间隔的计数相互独立;③在任一长度为t 的区间中,事件A发生的次数服从参数0t λ>的的泊松分布,即对任意,0t s >,有{}()()()0,1,!n tt P X t s X s n en n λλ-+-===[()]E X t t λ=,[()]E X t tλ=,表示单位时间内时间A发生的平均个数,也称速率或强度。
2,设随机计数过程{}(),0X t t ≥,其状态仅取非负整数值,若满足以下三个条件,则称:{}(),0X t t ≥是具有参数λ的泊松过程。