16北京市西城区八年级数学_学习·探究·诊断(上册)第十六章_分式

合集下载

八年级上册第十六章知识点

八年级上册第十六章知识点

八年级上册第十六章知识点本章主要涉及数学中的三角函数和它们的应用。

1. 三角函数的定义及性质三角函数包括正弦函数、余弦函数、正切函数,它们的定义如下:正弦函数sinA = 对边/斜边余弦函数cosA = 邻边/斜边正切函数tanA = 对边/邻边在直角三角形中,对于某个角A,它的正弦值、余弦值、正切值都与A所对的边有关。

在一个标准的单位圆上,对于某个角A,它的正弦值、余弦值、正切值都与A对应的点坐标有关。

除了定义,三角函数还有以下的性质:(1)正弦函数和余弦函数都是偶函数,即sin(-A) = -sinA,cos(-A) = cosA;(2)正切函数是奇函数,即tan(-A) = -tanA;(3)对于任意角A,有sin²A + cos²A = 1,这个等式被称为“三角恒等式”。

2. 角度制与弧度制我们通常使用角度制来度量角度,但在某些数学问题中,使用弧度制更为方便。

弧度制的定义是:一个圆的一条弧所对的圆心角的度数等于这条弧的长度对圆的半径的比,这个比就是这个圆心角的弧度数。

角度制和弧度制的转换公式如下:角度制转换为弧度制:弧度数 = 角度数x π/180弧度制转换为角度制:角度数 = 弧度数x 180/π3. 三角函数的图像和性质正弦函数的图像是一个周期函数,以y = sinx为例,它的一个周期是2π,即在[0,2π]内有一个完整的正弦波形。

正弦函数在x = kπ时取到最小值,k为整数;在x = (2k+1)π/2时取到最大值,k为整数。

余弦函数的图像与正弦函数相似,两函数的波形正好相差1/4个周期。

正切函数的图像是一个周期性的函数,每个周期长度都是π,即在[-π/2,π/2]内有一个完整的正切波形。

而在x = (2k+1)π/2时,正切函数的值无意义。

4. 三角函数的应用三角函数有很多的应用,例如:(1)三角函数可以用于解决直角三角形的问题,如求某一边的长度、某一角度的大小等;(2)正弦定理和余弦定理可以用于解决任意三角形的问题,如求某一边的长度、某一角度的大小等;(3)在几何与比例中,三角函数可以帮助我们求解大量问题,如平面几何、空间几何、质心问题、相似比例等。

北京西城区学习探究诊断数学八上第十六章二次根式2

北京西城区学习探究诊断数学八上第十六章二次根式2

第十六章 二次根式测试1 二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______. 2.当x ______时,12--x 有意义,当x ______时,31+x 有意义. 3.假设无意义2+x ,那么x 的取值范围是______. 4.直接写出以下各式的结果: (1)49=_______;(2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______. 二、选择题5.以下计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=- A .①、② B .③、④C .①、③D .②、④6.以下各式中一定是二次根式的是( ). A .23-B .2)3.0(-C .2-D .x7.当x =2时,以下各式中,没有意义的是( ). A .2-xB .x -2C .22-xD .22x -8.,21)12(2a a -=-那么a 的取值范围是( ).A .21>aB .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时,以下式子有意义? (1);1x -(2);2x -(3);12+x (4)⋅+-xx2110.计算以下各式:(1);)23(2 (2);)1(22+a(3);)43(22-⨯-(4).)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.411+=-+-y x x ,那么x y 的平方根为______. 14.当x =-2时,2244121x x x x ++-+-=________. 二、选择题15.以下各式中,x 的取值范围是x >2的是( ).A .2-xB .21-xC .x -21D .121-x16.假设022|5|=++-y x ,那么x -y 的值是( ). A .-7B .-5C .3D .7三、解答题17.计算以下各式:(1);)π14.3(2-(2);)3(22--(3);])32[(21-(4).)5.03(2218.当a =2,b =-1,c =-1时,求代数式aacb b 242-±-的值.拓广、探究、思考19.数a ,b ,c 在数轴上的位置如下图:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC的c 边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立,x ,y 必须满足条件______.2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______. 二、选择题4.以下计算正确的选项是( ). A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是( ). A .±3 B .3 C .-3 D .9三、解答题7.计算:(1);26⨯(2));33(35-⨯- (3);8223⨯(4);1252735⨯ (5);131aab ⋅(6);5252ac c b b a ⋅⋅(7);49)7(2⨯- (8);51322-(9).7272y x8.三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算“@〞的运算法那么为:,4@+=xy y x 那么(2@6)@6=______.10.矩形的长为cm 52,宽为cm 10,那么面积为______cm 2.11.比拟大小:(1)23_____32;(2)25______34;(3)-22_______-6. 二、选择题12.假设b a b a -=2成立,那么a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内,结果等于( ). A .11- B .11C .44-D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.15.假设(x -y +2)2与2-+y x 互为相反数,求(x +y )x 的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把以下各式化成最简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______;(5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 二、选择题 3.xx x x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.以下计算不正确的选项是( ). A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最简二次根式为( ). A .3232 B .32321C .281 D .241 三、计算题 6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525 (6);3366÷(7);211311÷(8).125.02121÷综合、运用、诊断一、填空题7.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________ 8.计算以下各式,使得结果的分母中不含有二次根式: (1)=51_______(2)=x 2_________(3)=322__________(4)=y x5__________ 9.,732.13≈那么≈31______;≈27_________.(结果精确到0.001) 二、选择题10.13+=a ,132-=b ,那么a 与b 的关系为( ). A .a =b B .ab =1C .a =-bD .ab =-111.以下各式中,最简二次根式是( ).A .yx -1 B .ba C .42+x D .b a 25三、解答题12.计算:(1);3b a ab ab ⨯÷(2);3212y xy ÷(3)⋅++ba b a13.当24,24+=-=y x 时,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.(1)=+2271_______;(2)=+10111_______;(3)=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减(一)学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.以下二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______.2.计算:(1)=+31312________; (2)=-x x 43__________.二、选择题3.化简后,与2的被开方数相同的二次根式是( ). A .10B .12C .21 D .61 4.以下说法正确的选项是( ). A .被开方数相同的二次根式可以合并 B .8与80可以合并 C .只有根指数为2的根式才能合并 D .2与50不能合并5.以下计算,正确的选项是( ). A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+ 三、计算题6..48512739-+7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.二次根式b a b +4与b a +3是同类二次根式,(a +b )a 的值是______.13.3832ab 与ba b 26无法合并,这种说法是______的.(填“正确〞或“错误〞) 二、选择题14.在以下二次根式中,与a 是同类二次根式的是( ).A .a 2B .23aC .3aD .4a三、计算题 15..)15(2822180-+-- 16.).272(43)32(21--+ 17.⋅+-+bb a b a a124118..21233ab bb a aba bab a-+-四、解答题19.化简求值:y y xy xx 3241+-+,其中4=x ,91=y .20.当321-=x 时,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:(1)判断以下各式是否成立?你认为成立的,在括号内画“√〞,否那么画“×〞.①322322=+〔 〕 ②833833=+〔 〕 ③15441544=+〔 〕 ④24552455=+〔 〕(2)你判断完以上各题后,发现了什么规律?请用含有n 的式子将规律表示出来,并写出n 的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二)学习要求会进行二次根式的混合运算,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时,最简二次根式12-a 与73--a 可以合并. 2.假设27+=a ,27-=b ,那么a +b =______,ab =______. 3.合并二次根式:(1)=-+)18(50________;(2)=+-ax xax45________. 二、选择题4.以下各组二次根式化成最简二次根式后的被开方数完全相同的是( ). A .ab 与2abB mn 与nm 11+ C .22n m +与22n m - D .2398b a 与4329b a5.以下计算正确的选项是( ). A .b a b a b a -=-+2))(2( B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=-6.)32)(23(+-等于( ). A .7 B .223366-+- C .1D .22336-+三、计算题(能简算的要简算) 7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+- 12..)18212(2-综合、运用、诊断一、填空题13.(1)规定运算:(a *b )=|a -b |,其中a ,b 为实数,那么=+7)3*7(_______.(2)设5=a ,且b 是a 的小数局部,那么=-baa ________. 二、选择题14.b a -与a b -的关系是( ). A .互为倒数 B .互为相反数 C .相等D .乘积是有理式15.以下计算正确的选项是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题 16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+ 19..)()(22b a b a --+四、解答题20.,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值.21.25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式. 试写以下各式的有理化因式: (1)25与______;(2)y x 2-与______;(3)mn 与______; (4)32+与______; (5)223+与______;(6)3223-与______.23.,732.13,414.12≈≈求)23(6-÷.(精确到0.01)答案与提示第十六章 二次根式测试11.a ≥-1.2.<1, >-3.3.x <-2.4.(1)7; (2)7; (3)7; (4)-7; (5)0.7; (6)49. 5.C . 6.B . 7.D . 8.D .9.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≤1且x ≠-2.10.(1)18;(2)a 2+1;(3);23- (4)6.11.x ≤0. 12.x ≥0且⋅=/21x 13.±1. 14.0. 15.B . 16.D . 17.(1)π-3.14;(2)-9;(3);23 (4)36. 18.21-或1.19.0. 20.提示:a =2,b =3,于是1<c <5,所以c =2,3,4.测试2 1.x ≥0且y ≥0.2.(1);6 (2)24;(3)-0.18.3.(1)42;(2)0.45;(3).53- 4.B . 5.B . 6.B .7.(1);32 (2)45; (3)24; (4);53 (5);3b(6);52(7)49; (8)12; (9)⋅y xy 263 8..cm 629..72 10.210. 11.(1)>;(2)>;(3)<. 12.B . 13.D .14.(1);245y x (2);332b a + (3) ;34 (4)9. 15.1. 16.(1);12- (2).2测试31.(1);32 (2);23x (3);342xy y x (4);xxy (5);36 (6);223 (7);32+x x (8)630. 2..3)5(;3)4(;3)3(;2)2(;3)1(a a 3.C . 4.C . 5.C . 6..4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7.⋅-339)3(;42)2(;32)1( 8.⋅y y x x x 55)4(;66)3(;2)2(;55)1( 9.0.577,5.196. 10.A . 11.C . 12..)3(;33)2(;)1(b a x bab+ 13..112;2222222=+=+-y x xy y xy x14..1)3(;1011)2(;722)1(n n -+--15.当a ≥0时,a a a ==22)(;当a <0时,a a -=2,而2)(a 无意义.测试41..454,125;12,27;18,82,32 2.(1).)2(;33x 3.C . 4.A . 5.C . 6..33 7..632+ 8.⋅827 9..23+ 10..214x 11..3x 12.1. 13.错误. 14.C . 15..12+ 16.⋅-423411 17..321b a + 18.0.19.原式,32y x+=代入得2. 20.1. 21.(1)都画“√〞;(2)1122-=-+n n nn n n (n ≥2,且n 为整数);(3)证明:⋅-=-=-+-=-+111)1(1223222n nn n n n n n n n n n 测试51.6. 2..3,72 3.(1);22 (2) .3ax - 4.D . 5.D . 6.B . 7.⋅668..1862-- 9..3314218-10.⋅417 11..215 12..62484-13.(1)3;(2).55-- 14.B . 15.D .16.⋅-4117.2. 18..21-19.ab 4(可以按整式乘法,也可以按因式分解法).20.(1)9; (2)10. 21.4.22.(1)2; (2)y x 2-; (3)mn ; (4)32-; (5)223-; (6)3223+(答案)不唯一. 23.约7.70.第十六章 二次根式全章测试一、填空题 1.mnm 1+-有意义,那么在平面直角坐标系中,点P (m ,n )位于第______象限. 2.322-的相反数是______,绝对值是______.3.假设3:2:=y x ,那么=-xy y x 2)(______.4.直角三角形的两条直角边长分别为5和52,那么这个三角形的周长为______. 5.当32-=x 时,代数式3)32()347(2++++x x 的值为______. 二、选择题6.当a <2时,式子2)2(,2,2,2-+--a a a a 中,有意义的有( ). A .1个 B .2个 C .3个 D .4个7.以下各式的计算中,正确的选项是( ). A .6)9(4)9()4(=-⨯-=-⨯- B .7434322=+=+C .9181404122=⨯=-D .2323= 8.假设(x +2)2=2,那么x 等于( ). A .42+B .42-C .22-±D .22± 9.a ,b 两数满足b <0<a 且|b |>|a |,那么以下各式中,有意义的是( ). A .b a +B .a b -C .b a -D .ab10.A 点坐标为),0,2(A 点B 在直线y =-x 上运动,当线段AB 最短时,B 点坐标( ).A .(0,0)B .)22,22(- C .(1,-1) D .)22,22(-三、计算题11..1502963546244-+- 12.).32)(23(--13..25341122÷⋅ 14.).94(323ab ab ab a aba b+-+15.⋅⋅-⋅ba b a ab ba 3)23(35 16.⋅÷+--+xy yx y x xy yx y )(四、解答题17.a 是2的算术平方根,求222<-a x 的正整数解.18.:如图,直角梯形ABCD 中,AD ∥BC ,∠A =90°,△BCD 为等边三角形,且AD 2=,求梯形ABCD 的周长.附加题19.先观察以下等式,再答复以下问题.①;2111111112111122=+-+=++②;6111212113121122=+-+=++③⋅=+-+=++12111313114131122(1)请根据上面三个等式提供的信息,猜测2251411++的结果;(2)请按照上面各等式反映的规律,试写出用n(n为正整数)表示的等式.20.用6个边长为12cm的正方形拼成一个长方形,有多少种拼法?求出每种长方形的对角线长(精确到0.1cm,可用计算器计算).答案与提示第十六章 二次根式全章测试1.三. 2..223,223-- 3..2665- 4..555+ 5..32+ 6.B . 7.C . 8.C . 9.C . 10.B . 11..68- 12..562- 13.⋅1023 14..2ab - 15..293ab b a - 16.0. 17.x <3;正整数解为1,2. 18.周长为.625+ 19.(1);2011141411=+-+(2).)1(111111)1(11122++=+-+=+++n n n nn n20.两种:(1)拼成6×1,对角线);cm (0.733712721222≈=+(2)拼成2×3,对角线3.431312362422≈=+(cm).。

冀教版数学八年级上册第十六章 分式.docx

冀教版数学八年级上册第十六章  分式.docx

第十六章分式【知识要点】一、分式的概念1形如__________________________________________________叫做分式.2.分式有意义的条件是_____________,分式的值为零的条件是____________.二、分式的基本性质1.分式的基本性质:分式的分子与分母____________________________,分式的值不变.用式子表示为:_________________________,(其中A、B、C是整式,0C≠).2.分式的变号法则:_______________________________,可简记为“________,值不变”.3.通分:根据分式的基本性质,分子和分母同乘以适当的整式,不改变分式的值.把几个异分母的分式化成同分母的分式,这样的分式变形叫做分式的通分.通分的关键是__________________.最简公分母用下面的方法确定:(1)最简公分母的系数,取各分母系数的最小公倍数;(2)凡出现的字母为底的幂的因式都要取(3) 相同字母的幂的因式取指数最大的特别注意:为了确定最简公分母,通常先将各分母分解因式.4.约分:根据分式的基本性质,把一个分式的分子和分母的________约去,这样的分式变形叫做分式的约分.约分的关键是确定分子与分母的__________.约分的结果应化为最简分式.三、分式的运算法则1.分式的乘法法则:_________________________________________用式子表示为:a c a cb d b d⋅⋅=⋅.2.分式的除法法则:__________________________________________用式子表示为:a c a d a db d bc b c⋅÷=⋅=⋅.3.分式的乘方法则:___________________________,用式子表示为:()n nna ab b=.4.分式的加减法法则:同分母分式相加减,_________________异分母分式相加减,_______________________________用式子表示为:a c a bc d c±±=;a c ad bc ad bcb d bd bd bd±±=±=.5.分式的混合运算分式的混合运算,关键是弄清楚运算顺序.进行运算时要先算__________,再算___________,最后算__________;有括号要先算括号里面的;计算结果_________________________.四、分式方程1.分式方程的特征是_________________,这是分式方程与整式方程的根本区别. 2.解分式方程的基本思路是“___________”,即把分式方程化为我们熟悉的____________,转化的途径是“____________”,即方程两边都乘以____________.3.解分式方程的一般步骤:①_________________________________________;②_____________;③_______________,把整式方程的解代人__________________,使__________________不等于零的解是原分式方程的解,使__________________等于零的解不是原分式方程的解.注意:因为解分式方程时可能产生_____________,所以解分式方程必须_________.【例题精析】考点一:分式的有关概念 1、分式的概念例1:在 x1,32b a ,-0.5xy+y2,a cb + ,y z x +-5 , πa3中,是分式的有 ;练习1:在下列有理式中,哪些是整式?哪些是分式?43a ,a 34,3n m +,n m a -8,x x 2,π45-x2、分式有意义:例2:当x 取什么值时,下列分式有意义:(1) 32-x x (2) 141+-x x (3) 422+x x(4)1212+-+x x x (5) 4-x x (6)21102xx -+3、分式的值为零:例3:当x 为什么数时,下列分式的值为零(1) 5412+-x x (2) 221--x x练习2:(1) 13+x x(2) 392--x x例4:(1)当x 时,分式x -84的值为正; (2)当x 时,分式1212+-x x的值为负.练习3:(1) 若分式122+--m m m 的值为零,则m=(2) 若分式x417--的值为正数,则x 范围是 (3) 若分式122+-x x 的值为负,则x 范围是(4) 若分式632-x x无意义,则x= 考点二:分式的性质: 1、基本性质例5:下列等式的右边是怎样从左边得到的?(1)22a ac b bc=;(0)c ≠ (2)32x x xy y =.例6:在什么条件下,下列各等式中的左式可以化为右式? (1)22(3)2(3)(2)x x x x +=-+-; (2)232132x x x x-=-. 练习4:填空:(1)b a ab b a 2)(=+ (2)ba ab a 22)(2=- (3))(22y x x xy x +=+ (4)2)(22-=-x x x x(5))()(222yx y x y x -=+- (6))(232622=-++x x x例7:不改变分式的值,把下列分式的值,把下列各式的分子与分母中各项的系数都化为整数:(1)=-+y x y x 32213221 (2)=+-+7.04.03.02.01.0b a b a2、分式的符号法则:例8:不改变分式的值,使下列分子与分母都不含“-”号: (1)=-y x 52 (2)=-n m 2 (3)=--b a 73 (4)=--nm310例9:不改变分式的值,使下列各式的分子与分母按降幂排列,并使最高次项系数是正数:(1)22;3xx --+ (2)22132x x x +--- (3)22312x x x --+--练习5: 1、填空:)()()(-+=+--=+-=-+yx y x y x y x y x2、(1)如果把分式63xx y-中的x,y 都扩大10倍,那么分式的值一定( )A.扩大10倍B.扩大100倍C.缩小10倍D.不变 (2)在分式a bab+(a 、b 为正数)中,字母a 、b 的值分别扩大为原来的2倍,则分式的值是原来的( )倍? 3.下列从左到右的变形正确的是( ).A .122122x yx y x y x y --=++ B .0.220.22a b a b a b a b ++=++ C .11x x x y x y +--=-- D .a b a ba b a b+-=-+ 3、分式的通分、约分:例10:下面的等式中右式是怎样从左式得到的?这种变换的根据是什么?(1)23326384a b ba b a=; (2)222x xy x x y x y +=--. 最简分式:例11:约分:(1)2322515a bc ab c - (2)22969x x x -++ (3)2239m mm --例12:通分: (1)2232a b a b ab c -与 (2)2355x x x x -+与 (3)2142x x -与214x -. 最简公分母是:考点三、分式的运算例13.计算:(1))(22a b ab b a -÷-; (2)aa --+242;(3)a a a 2)441(2+⋅-+; (4))242(2222a a a a a a -+-⋅+;(5)11)1211(22-÷-++-x x x x x ; (6)x x x x x x x --+⋅+÷+--36)3(446222.考点四、分式的化简求值例14.(1)已知:a =3,2b =-,求222)11(b ab a abb a ++⋅+的值.(2)先化简xx x x x x x 1)121(22÷+---+,再选择一个适当的x 值代入并求值.例15.(1)已知(23)(2)0x x ---=,求xx x x x x x x 36)431(22+-+÷----的值.(2)已知12x x -+=,求22x x -+的值.考点五、零指数和负整指数练习6:(1)3132)2(b a b a - (2)3132)()(---bc a(3)2322123)5()3(z xy z y x --- (4)33222)4()3(----mn n m例16:计算:(1)2231)32(--÷x xy (2)3323)25()23(--÷-y x xy例17:计算:(1)2321326)3(------b a b a b a (2)23232222)()3()()2(--⋅⋅ab b a b a ab考点五、科学记数法例18.一种细胞的直径约为61.5610-⨯米,那么它的一百万倍相当于( ).A .玻璃跳棋棋子的直径B .数学课本的宽度C .初中学生小丽的身高D .五层楼房的高度练习7:用科学计数法表示下列小数:0.1= 0.01= 0.001= 0.0001= 0.00001= 0.000001= 0.000 000 000 001= 0.0012= 0.000 000 345= -0.00003= 0.000 000 010 8=例19:把下列科学计数法表示的数还原成小数:310102112)1(,,)384(,1,)1.0(,3,)21(,1001----------a 、计算=⨯-4105.3 =⨯-81034.2考点六、解分式方程 例20.解方程:(1)132x x =-; (2)11522xx x-+=--.例21.解关于x 的方程:01m nx x-=-(m n ≠).例22.已知:公式21111R R R +=中,(R )1R ≠,求出表示R 2的公式.练习14:解下列分式方程(4)2142111x x x x x -+-=+--(5)11114736x x x x -=-++++3(1)2122x x x =---33(2)122x x x -+=--22(3)1212x x x =--+例23:(1)关于x 的方程2323=---x a x x 有增根,那么增根是多少?此时a 是多少?(2)当a 为何值时,关于x 的方程234222+=-+-x x ax x 有增根?(3)当a 为何值时,关于x 的方程21122---+=--x x x x x x m 的解为正数?【创新题型】例24.请你阅读下列计算过程,再回答所提出的问题.23311x x x---- =()()33111x x x x --+-- (A )= ()()()()()3131111x x x x x x +--+-+- (B ) = x - 3 - 3 (x +1) (C ) = -2x - 6 (D )(1) 上述计算过程中, 哪一步开始出现错误? __________;(2) 从(B )到(C )是否正确? _________;若不正确,错误的原因是 _________. (3) 请你写出正确的解答过程.例25.对于正数x ,规定f(x)=1x x +.例如33(3)134f ==+,1113()13413f ==+;计算:++)20061()20071(f f …+++++)2()1()1()21(f f f f …+)2007()2006(f f += .【专题复习】一、分式的条件求值例1.已知43x y =,则分式3223x y x y--的值为 . 例2.已知2232x y xy -=(x 、y 均为正数),则22x yx y+-的值为 .例3.已知115a b a b +=+,求b aa b+的值.例4.若2210a a --=,求代数式441a a+的值.二、含字母系数的分式方程例5.m 为何值时,关于x 的方程361(1)x m x x x x ++=--有解? 例6.关于x 的方程11ax =+的解是负数,则a 的取值范围是( ). A .1a < B .1a <且0a ≠ C .1a ≤ D .1a ≤且0a ≠ 例7.已知关于x 的方程233x mx x -=--有正数解,则( ). A .0m >且3m ≠ B .6m <且3m ≠ C .0m < D .6m > 例8.当m 为何值时,关于x 的方程223242mx x x x +=--+无解?.初中数学试卷鼎尚图文**整理制作。

西城区学习探究诊断全本共计29章(第1--29章)(共计675页)

西城区学习探究诊断全本共计29章(第1--29章)(共计675页)

学习探究诊断全册29章(共计675页)目录第1章__有理数(29页)第2章__整式的加减(12页)第3章__一元一次方程(18页)第4章__图形认识初步(26页)第5章__相交线与平行线(33页)第6章__平面直角坐标系(17页)第7章__三角形(24页)第8章__二元一次方程组(23页)第9章__不等式与不等式组(22页)第10章__数据的收集、整理与描述(24页)第11章__全等三角形(25页)第12章__轴对称(22页)第13章__实数(10页)第14章__一次函数(26页)第15章_整式(18页)第17章__反比例函数(22页)第18章__勾股定理(25页)第19章__四边形(45页)第20章__数据的分析(20页)第21章__二次根式(17页)第22章__一元二次方程(19页)第23章__旋__转(18页)第24章__圆(22页)第25章__概率初步(23页)第26章__二次函数(30页)第27章__相似(30页)第28章__锐角三角函数(32页)第29章__投影与视图(20页)第一章有理数测试1正数和负数学习要求了解正数、负数、有理数的概念,会用正数和负数表示相反意义的量.课堂学习检测一、判断题(正确的在括号内画“√”,错误的画“×”)()1.某仓库运出30吨货记作-30吨,则运进20吨货记作+20吨.()2.节约4吨水与浪费4吨水是一对具有相反意义的量.()3.身高增长1.2cm和体重减轻1.2kg是一对具有相反意义的量.()4.在小学学过的数前面添上“-”号,得到的就是负数.二、填空题5.学校在大桥东面9千米处,那么大桥在学校______面-9千米处.6.如果以每月生产180个零件为准,超过的零件数记作正数,不足的零件数记作负数,那么1月生产160个零件记作______个,2月生产200个零件记作______个.7.甲冷库的温度为-6℃,乙冷库的温度比甲冷库低5℃,则乙冷库的温度是______.8.______既不是正数,也不是负数;它______整数,______有理数(填“是”或“不是”).9.整数可以看作分母为1的______,有理数包括____________.10.把下列各数填在相应的大括号内:74,6,0,14.3,5.0,432,14,5.8,51,27---- 正数集合{_______________________________________________________________…} 负数集合{_______________________________________________________________…} 非负数集合{_____________________________________________________________…} 有理数集合{_____________________________________________________________…}综合、运用、诊断一、填空题11.若把公元2008年记作+2008,那么-2008年表示______.12.潜水艇上浮为正,下潜为负.若潜水艇原先在距水面80米深处,后来两次活动记录的情况是-10米,+20米,则现在潜水艇在距水面______米的深处. 13.是正数而不是整数的有理数是____________________. 14.是整数而不是正数的有理数是____________________. 15.既不是正数,也不是负数的有理数是______________. 16.既不是真分数,也不是零的有理数是______________.17.在下列数中:,31- 11.11111,725.95 95.527,0,+2004,-2π,1.12122122212222,,111-非负有理数有__________________________________________. 二、判断题(正确的在括号里画“√”,错误的画“×”) ( )18.带有正号的数是正数,带有负号的数是负数. ( )19.有理数是正数和小数的统称.( )20.有最小的正整数,但没有最小的正有理数. ( )21.非负数一定是正数. ( )22.311-是负分数.三、解答题23.-3.782( ).(A)是负数,不是分数 (B)不是分数,是有理数 (C)是负数,也是分数 (D)是分数,不是有理数 24.下面说法中正确的是( ).(A)正整数和负整数统称整数 (B)分数不包括整数(C)正分数,负分数,负整数统称有理数 (D)正整数和正分数统称正有理数25.一种零件的长度在图纸上是(10±0.05)毫米,表示这种零件的标准尺寸是10毫米,加工要求最大不超过______毫米,最小不小于______毫米.拓展、探究、思考26.一批螺帽产品的内径要求可以有±0.02 mm 的误差,现抽查5个样品,超过规定的毫米值记为正数,不足值记为负数,检查结果如表.则合乎要求的产品数量为( ).+0.031+0.017 +0.023 -0.021-0.015(A)1个 (B)2个 (C)3个 (D)5个测试2 相反数 数轴学习要求掌握一个数的相反数的求法和性质,学习使用数轴,借助数轴理解相反数的几何意义,会借助数轴比较有理数的大小.课堂学习检测一、填空题1.________________的两个数,叫做互为相反数;零的相反数是______.2.0.4与______互为相反数,______与-(-7)互为相反数,a 的相反数是______. 3.规定了______、______和______的______叫数轴. 4.所有的有理数都能用数轴上的______来表示.5.数轴上,表示-3的点到原点的距离是______个单位长,与原点距离为3个单位长的点表示的数是______。

北京市西城区八年级数学 学习·探究·诊断(上册)第十六章 分式

北京市西城区八年级数学 学习·探究·诊断(上册)第十六章 分式

第十六章 分式测试1 从分数到分式学习要求掌握分式的概念,能求出分式有意义,分式值为0、为1的条件.课堂学习检测一、填空题1.用A 、B 表示两个整式,A ÷B 就可以表示成______的形式,如果除式B 中______,该分式的分式.2.把下列各式写成分式的形式: (1)5÷xy 为______. (2)(3x +2y )÷(x -3y )为______.3.甲每小时做x 个零件,做90个零件所用的时间,可用式子表示成______小时. 4.n 公顷麦田共收小麦m 吨,平均每公顷的产量可用式子表示成______吨.5.轮船在静水中每小时走a 千米,水流速度是b 千米/时,轮船在逆流中航行s 千米所需要的时间可用式子表示成______小时. 6.当x =______时,分式13-x x没有意义. 7.当x =______时,分式112--x x 的值为0.8.分式yx,当字母x 、y 满足______时,值为1;当字母x ,y 满足______时值为-1. 二、选择题 9.使得分式1+a a有意义的a 的取值范围是( ) A .a ≠0 B .a ≠1 C .a ≠-1D .a +1>010.下列判断错误..的是( ) A .当32=/x 时,分式231-+x x 有意义 B .当a ≠b 时,分式22ba ab-有意义 C .当21-=x 时,分式x x 412+值为0D .当x ≠y 时,分式x y y x --22有意义 11.使分式5+x x值为0的x 值是( ) A .0 B .5C .-5D .x ≠-512.当x <0时,xx ||的值为( ) A .1 B .-1 C .±1 D .不确定13.x 为任何实数时,下列分式中一定有意义的是( )A .xx 12+B .112--x x C .11+-x x D .112+-x x 三、解答题14.下列各式中,哪些是整式?哪些是分式?⋅----++++-π1;)1(;2;3;3;13;222x x x x y x y x y x x y x y x 15.x 取什么值时,2)3)(2(---x x x 的值为0?综合、运用、诊断一、填空题16.当x =______时,分式632-x x无意义. 17.使分式2)3(2+x x有意义的条件为______.18.分式2)1(522+++x x 有意义的条件为______. 19.当______时,分式44||--x x 的值为零. 20.若分式x--76的值为正数,则x 满足______. 二、选择题21.若x 、y 互为倒数,则用x 表示y 的正确结果是( )A .x =-yB .y x 1=C .x y 1=D .xy 1±=22.若分式ba ba 235+-有意义,则a 、b 满足的关系是( )A .3a ≠2bB .b a 51=/C .a b 32-=/ D .b a 32-=/23.式子222--+x x x 的值为0,那么x 的值是( )A .2B .-2C .±2D .不存在24.若分式6922---a a a 的值为0,则a 的值为( )A .3B .-3C .±3D .a ≠-225.若分式1212+-b b的值是负数,则b 满足( )A .b <0B .b ≥1C .b <1D .b >1三、解答题 26.如果分式323||2-+-y y y 的值为0,求y 的值.27.当x 为何值时,分式121+x 的值为正数?28.当x 为何整数时,分式124+x 的值为正整数?拓展、探究、思考29.已知分式,by ay +-当y =-3时无意义,当y =2时分式的值为0,求当y =-7时分式的值.测试2 分式的基本性质学习要求掌握分式的基本性质,并能利用分式的基本性质将分式约分.课堂学习检测一、填空题1.,MB M A B A ⨯⨯=其中A 是整式,B 是整式,且B ≠0,M 是______. 2.把分式xy中的x 和y 都扩大3倍,则分式的值______.3.⋅-=--)(121xx x4..y x xy x 22353)(= 5.22)(1y x y x -=+.6.⋅-=--24)(21y y x 二、选择题7.把分式bab a 392+-约分得( )A .33++b a B .33+-b a C .ba 3- D .ba 3+ 8.如果把分式yx yx ++2中的x 和y 都扩大10倍,那么分式的值( ) A .扩大10倍B .缩小10倍C .是原来的32D .不变9.下列各式中,正确的是( )A .b am b m a =++ B .0=++b a ba C .1111--=-+c b ac abD .y x y x y x +=--122三、解答题 10.约分:(1)ac ab 1510-(2)yx yx 322.36.1-(3)112--m m(4)yx x xy y -+-2442211.不改变分式的值,使下列分式的分子、分母都不含负号.(1);53a- (2);y x 532- (3);52a b-- (4)⋅---x y 1511综合、运用、诊断一、填空题12.化简分式:(1)=--3)(x y yx _____;(2)=+--22699xx x _____. 13.填空:)()1(=++-nm n m =-----ba n m m n 212)2(;)(⋅-ba221 14.填入适当的代数式,使等式成立.(1)⋅+=--+b a b a b ab a )(22222(2).a b ba b a-=-+)(11 二、选择题 15.把分式yx x-2中的x 、 y 都扩大m 倍(m ≠0),则分式的值( )A .扩大m 倍B .缩小m 倍C .不变D .不能确定16.下面四个等式:;22;22;22yx y x y x y x y x y x +-=+---=----=+-③②①⋅-+=--22yx y x ④其中正确的有( ) A .0个B .1个C .2个D .3个17.化简22222b ab a b a ++-的正确结果是( )A .b a b a -+B .b a b a +-C .ab21 D .ab21- 18.化简分式2222639ab b a b a -后得( )A .223b aB .263ab a ab-C .ba ab23- D .bb a ab2332-三、解答题 19.约分:(1)322)(27)(12b a a b a --(2)62322--++x x x x(3)22164m m m --(4)2442-+-x x x20.不改变分式的值,使分子、分母中次数最高的项的系数都化为正数.(1)yx x --22(2)aa b --2(3)x x x x +---2211(4)2213m m m ---拓展、探究、思考21.(1)阅读下面解题过程:已知,5212=+x x 求142+x x 的值.解:),0(5212=/=+x x x,5211=+∴xx 即⋅=+251x x ⋅=-=-+=+=+∴1742)25(12)1(1111222242x x x x x x (2)请借鉴(1)中的方法解答下面的题目:已知,2132=+-x x x求1242++x x x 的值.测试3 分式的乘法、除法学习要求1.学会类比方法、总结出分式乘法、除法法则. 2.会进行分式的乘法、除法运算.课堂学习检测一、填空题1.=-⋅)29(283x yy x ______. 2.=+-÷-x y x x xy x 33322______. 3.=+÷+)(1b a b a ______.4.=--++⋅+aba b a .b ab a b ab 2222222______. 5.已知x =2008,y =2009,则4422))((y x y x y x -++的值为______.二、选择题 6.)(22m n n m a-⋅-的值为( )A .nm a+2 B .nm a+ C .nm a+-D .nm a--7.计算cdaxcd ab 4322-÷等于( ) A .x b 322B .232x bC .xb 322-D .222283dc x b a -8.当x >1时,化简xx --1|1|得( ) A .1B .-1C .±1D .0三、计算下列各题9.xy x y 212852⋅10.nm mnm mn m n m --÷--24222211.11.11)1(122+-÷--x x x x 12.2222294255)23(x a x b a b a a x --⋅++四、阅读下列解题过程,然后回答后面问题13.计算:⋅⨯÷⨯÷⨯÷dd c c b b a 1112解:dd c c b b a 1112⨯÷⨯÷⨯÷ =a 2÷1÷1÷1①=a 2. ②请判断上述解题过程是否正确?若不正确,请指出在①、②中,错在何处,并给出正确的解题过程.综合、运用、诊断一、填空题14.cc b a 1⨯÷_____. 15.x y xy 3232÷-_____.16.一份稿件,甲单独打字需要a 天完成,乙单独打字需b 天完成,两人共同打需_____天完成. 二、选择题 17.计算xx x x x x +-÷---2231)2)(3(的结果是( ) A .22--x x xB .xx x 212--C .xx x --22D .122--x x x18.下列各式运算正确的是( )A .m ÷n ·n =mB .m n n m =÷1.C .111=÷⋅÷mm m m D .1123=÷÷m mm 三、计算下列各题 19.44)16(.2-+÷-a a a20.2222)1()1(a a a a .a a a -+--21.a b bab a b ab a b a a 22222224.2+÷+-- 22.xx x x x x --+÷+--32.)3(446222拓展、探究、思考23.小明在做一道化简求值题:,.2)(2222xyx xy y xy x x xy -+-÷-他不小心把条件x 的值抄丢了,只抄了y =-5,你说他能算出这道题的正确结果吗?为什么?测试4 分式的乘法、除法、乘方学习要求掌握乘方的意义,能根据乘方的法则,先乘方,再乘除进行分式运算.课堂学习检测一、填空题1.分式乘方就是________________.2.=323)2(bca ____________. 3.=-522)23(z y x ____________. 二、选择题4.分式32)32(ba 的计算结果是( )A .3632b aB .3596baC .3598b aD .36278b a5.下列各式计算正确的是( ) A .yx y x =33B .326m mm =C .b a ba b a +=++22D .b a a b b a -=--23)()( 6.22222nm m n m n ⋅÷-的结果是( )A .2nm -B .32nm -C .4mn -D .-n7.计算⨯-32)2(b a 2)2(a b )2(a b -⨯的结果是( ) A .68ba - B .38a - C .216aD .216a -三、计算题 8.32)32(cb a9.22)52(a y x --10.223)2(8y x y ÷11.232)4()2(ba ba -÷-四、解答题12.先化简,再求值:(1),144421422xx x x x ++÷--其中⋅-=41x(2),ab .b b a a b a b a a 222224)()(+÷--其中,21=a b =-1.综合、运用、诊断一、填空题13.=⋅-⋅76252)1()()(aba b a ______.14.=-÷-32223)3()3(ac b c ab ______. 二、选择题15.下列各式中正确的是( )A .363223)23(yx y x =B .22224)2(b a a ba a +=+ C .22222)(yx y x y x y x +-=+- D .333)()()(n m n m nm n m -+=-+16.na b 22)(-(n 为正整数)的值是( )A .n n a b 222+B .n nab 24C .n n a b 212+-D .n nab 24-17.下列分式运算结果正确的是( )A .nm m n n m =3454.B .bc add c b a =.C .22224)2(b a a ba a -=- D .33343)43(y x yx =三、计算下列各题18.2222)2()()(ab abb a -÷⋅-19.23212313.-+-n nn n ba a c b20.22321).()(ba ab a ab b a -÷---四、化简求值21.若m 等于它的倒数,求32222)2.()22(444m m m m m m m --+÷-++的值.拓展、探究、思考22.已知.0)255(|13|2=-+-+b a b a 求2232332).6().()3(a bb a ab b a -÷--的值.测试5 分式的加减学习要求1.能利用分式的基本性质通分. 2.会进行同分母分式的加减法. 3.会进行异分母分式的加减法.课堂学习检测一、填空题1.分式2292,32acbc b a 的最简公分母是______. 2.分式3241,34,21x x x x x +--的最简公分母是______. 3.分式)2(,)2(++m b nm a m 的最简公分母是______. 4.分式)(,)(x y b yy x a x --的最简公分母是______.5.同分母的分式相加减的法则是______.6.异分母的分式相加减,先______,变为______的分式,再加减. 二、选择题 7.已知=++=/xx x x 31211,0( ) A .x 21 B .x61 C .x65 D .x611 8.x y y a y x a x +--+++3333等于( )A .y x y x +-33B .x -yC .x 2-xy +y 2D .x 2+y 29.cab c a b +-的计算结果是( ) A .abc a c b 222+-B .abcb a ac c b 222--C .abcb a ac c b 222+-D .abcac b +- 10.313---a a 等于( ) A .aa a --+1622B .1242-++-a a a C .1442-++-a a a D .a a -111.21111xx x x n n n +-+-+等于( ) A .11+n xB .11-n xC .21xD .1三、解答题 12.通分:(1)abb a a b 41,3,22 (2))2(2,)2(-+x b x a y(3)aa a a -+21,)1(2 (4)aba b a b a --+2222,1,1四、计算下列各题 13.x x x x x -+--+22422214.xx x x x x x x +---+--+++3522363422215.412234272--+--x x x16.xyy xxy x y -+-22综合、运用、诊断一、填空题17.计算a a -+-329122的结果是____________. 18.=-+abb a 6543322____________. 二、选择题19.下列计算结果正确的是( )A .)2)(2(42121-+=--+x x x x B .))((211222222222x y y x x xy y x ---=--- C .yx xy y x x 231223622-=- D .33329152+-=----x x x x 20.下列各式中错误..的是( ) A .ad a d c d c a d c a d c 2-=---=+-- B .1522525=+++a aaC .1-=---xy yy x x D .11)1(1)1(22-=---x x x x 三、计算下列各题21.ba aa b b b a b a ---+-+22 22.zx y zy z x y z x z y x y ------+++-223.941522333222-++-++a a a a 24.43214121111xx x x x x +-++-+--25.先化简,1)121(22xx x x x x x ÷+---+再选择一个恰当的x 值代入并求值.拓展、探究、思考26.已知,10345252---=++-x x x x B x A 试求实数A 、B 的值.27.阅读并计算:例:计算:⋅+++++++)3)(2(1)2)(1(1)1(1x x x x x x原式31212111111+-+++-+++-=x x x x x x⋅+=+-=)3(3311x x x x 仿照上例计算:⋅+++++++)6)(4(2)4)(2(2)2(2x x x x x x测试6 分式的混合运算学习要求1.掌握分式的四则运算法则、运算顺序、运算律. 2.能正确进行分式的四则运算.课堂学习检测一、填空题1.化简=-2222639ab b a b a ______.2.化简2426a a ab -=______. 3.计算)1()1111(2-⨯+--m m m 的结果是______. 4.)1(y x yy x +-÷的结果是______. 二、选择题5.2222y x y x y x y x -+÷+-的结果是( ) A .222)(y x y x ++B .222)(y x y x -+C .222)(y x y x +-D .222)(yx y x ++6.222)(b a bb b a -⨯-的结果是( ) A .b1 B .2bab ba +- C .ba ba +- D .)(1b a b +7.ba ba b a b a b a b a -+⨯-+÷-+22)()(的结果是( ) A .ba ba +- B .ba ba -+ C .2)(ba b a -+ D .1三、计算题 8.xxx -+-111 9.291232mm -+-10.242-++x x11.121)11(22+-+-÷--a a a a a a12.)()(nm mnm n m mn m +-÷-+13.)131()11(22a a a a --÷++综合、运用、诊断一、填空题14.=-+-+-b a ba b a b a ______. 15.=++-+-32329122m m m ______. 二、选择题 16.(1-m )÷(1-m 2)×(m +1)的结果是( )A .2)1(1m +B .2)1(1m -C .-1D .117.下列各分式运算结果正确的是( ).24435232510.25bc b a c c b a =①abc b a a c b 32332=⋅②1131).3(1122+=--÷+x x x x ③1111.2=+÷--xyx x x xy ④ A .①③ B .②④C .①②D .③④18.abb a b a 2223231⨯--等于( ) A .aba - B .bab - C .aba 323- D .bab 232- 19.实数a 、b 满足ab =1,设,11,1111b ba aN b a M +++=+++=则M 、N 的大小关系为( ) A .M >N B .M =NC .M <ND .不确定三、解答下列各题 20.yy y y y yy y 4)44122(22-÷+--+-+21.)1214()11(22-----+÷+x x x x x x四、化简求值22.,)]3(232[x y x y x x y x y x x -÷--++-其中5x +3y =0.拓展、探究、思考23.甲、乙两名采购员去同一家饲料公司购买两次饲料,两次购买时饲料的价格各不相同.两位采购员的购货方式也各不相同,甲每次购买1000千克,乙每次只购买800元的饲料,设两次购买的饲料单价分别为m 元/千克和n 元/千克(m ,n 为正整数,且m ≠n ),那么甲、乙两名采购员两次购得饲料的平均价格分别是多少?谁的购买方法更合算?测试7 整数指数幂学习要求1.掌握零指数幂和负整数指数幂的意义. 2.掌握科学记数法.课堂学习检测一、填空题1.3-2=______,=--3)51(______.2.(-0.02)0=______,=0)20051(______. 3.(a 2)-3=______(a ≠0),=-2)3(______,=--1)23(______.4.用科学记数法表示:1cm =______m ,2.7mL =______L . 5.一种细菌的半径为0.0004m ,用科学记数法表示为______m .6.用小数表示下列各数:10-5=______,2.5×10-3=______.7.(3a 2b -2)3=______,(-a -2b )-2=______.8.纳米是表示微小距离的单位,1米=109纳米,已知某种植物花粉的直径为35000纳米,用科学记数法表示成______m . 二、选择题9.计算3)71(--的结果是( )A .3431-B .211- C .-343 D .-21 10.下列各数,属于用科学记数法表示的是( )A .20.7×10-2B .0.35×10-1C .2004×10-3D .3.14×10-5 11.近似数0.33万表示为( )A .3.3×10-2 B .3.3000×103 C .3.3×103 D .0.33×104 12.下列各式中正确的有( ) ①;9)31(2=-②2-2=-4;③a 0=1;④(-1)-1=1;⑤(-3)2=36.A .2个B .3个C .4个D .1个 三、解答题13.用科学记数法表示:(1)0.00016 (2)-0.0000312 (3)1000.5 (4)0.00003万14.计算:(1)98÷98 (2)10-3 (3)2010)51(-⨯15.地球的质量为6×1013亿吨,太阳的质量为1.98×1019亿吨,则地球的质量是太阳质量的多少倍(用负指数幂表示)?综合、运用、诊断一、填空题16.=-+-01)π()21(______,-1+(3.14)0+2-1=______.17.=-+---|3|)12()21(01______.18.计算(a -3)2(ab 2)-2并把结果化成只含有正整数指数幂形式为______. 19.“神威一号”计算机运算速度为每秒384000000000次,其运算速度用科学记数法表示,为______次/秒.20.近似数-1.25×10-3有效数字的个数有______位. 二、选择题21.2009200908)125.0()13(⨯+-的结果是( )A .3B .23-C .2D .022.将201)3(,)2(,)61(---这三个数按从小到大的顺序排列为()A .21)3()61()2(-<<-- B .201)3()2()61(-<-<-C .12)61()2()3(-<-<-D .12)61()3()2(-<-<-三、解答题23.计算下列各式,并把结果化成只含有正整数指数幂的形式:(1)(a 2b -3)-2(a -2b 3)2 (2)(x -5y -2z -3)2(3)(5m -2n 3)-3(-mn -2)-224.用小数表示下列各数:(1)8.5×10-3 (2)2.25×10-8 (3)9.03×10-5测试8 分式方程的解法学习要求了解分式方程的概念和检验根的意义,会解可化为一元一次方程的分式方程.课堂学习检测一、填空题 1.分式方程1712112-=-++x x x 若要化为整式方程,在方程两边同乘的最简公分母是______. 2.方程111=+x 的解是______.3.方程625--=-x x x x 的解是______. 4.x =2是否为方程32121---=-x x x 的解?答:______. 5.若分式方程127723=-+-xax x 的解是x =0,则a =______.二、选择题6.下列关于x 的方程中,不是分式方程的是( ) A .11=+x xB .4132=+x xC .52433=+x xD .6516-=x x 7.下列关于x 的方程中,是分式方程的是( ) A .55433+=--x x B .abb x b a a x +=- C .11)1(2=--x xD .nx m n n x =- 8.将分式方程yyy y 2434216252--=+-+化为整式方程时,方程两边应同乘( ). A .(2y -6)(4-2y ) B .2(y -3)C .4(y -2)(y -3)D .2(y -3)(y -2)9.方程4321+-=+-x x x x 的解是( ) A .x =-4 B .21-=x C .x =3 D .x =110.方程34231--=+-x xx 的解是( ) A .0 B .2C .3D .无解11.分式方程)2(6223-+=-x x x x 的解是( ) A .0B .2C .0或2D .无解三、解分式方程12.0227=-+x x13.3625+=-x x 14.45411--=--x xx 15.1617222-=-++x xx xx综合、运用、诊断一、填空题16.当x =______时,分式x 3与x-62的值互为相反数. 17.下列每小题中的两个方程的解是否相同? (1)2322-=-+x x x 与x +2=3 ( ) (2)2422-=-+x x x 与x +2=4 ( ) (3)113112-+=-++x x x 与x +2=3 ( ) 18.当m =______时,方程312=-xm 的解为1. 19.已知分式方程 424-+=-x a x x 有增根,则a 的值为______. 二、选择题 20.若分式方程58)1()(2-=-+x a a x 的解为,51-=x 则a 等于( )A .65 B .5C .65-D .-521.已知,11,11cb b a -=-=用a 表示c 的代数式为( ) A .b c -=11 B .ca -=11 C . aac -=1 D .aa c 1-=22.若关于x 的方程0111=----x xx m 有增根,则m 的值是( ) A .3 B .2 C .1D .-123.将公式21111R R R +=(R ,R 1,R 2均不为零,且R ≠R 2)变形成求R 1的式子,正确的是( )A .R R RR R -=221B .R R RR R +=221 C .2211R RR RR R +=D .221R R RR R -=三、解分式方程 24.1211422+=+--x xx x x25.2224412-++=--x x x x x26.32)3)(2(122-=-----x x x x x x x 27.xx x x x x ---+-=-+41341216852拓展、探究、思考28.若关于x 的分式方程211=--x m 的解为正数,求m 的取值范围. 29.(1)如下表,方程1、方程2、方程3……是按照一定规律排列的一列方程.猜想方程1的解,并将它们的解填在表中的空白处.(2)若方程)(11b a bx x a >=--的解是x 1=6,x 2=10,猜想a 、b 的值,该方程是不是(1)中所给出的一列方程中的一个?如果是,是第几个?(3)请写出这列方程中的第n 个方程和它的解.测试9 列分式方程解应用题学习要求会列出分式方程解简单的应用问题.课堂学习检测一、选择题1.某班学生军训打靶,有m 人各中靶a 环,n 人各中靶b 环,那么所有中靶学生的平均环数是( ) A .nm ba ++ B .nm bnam ++ C .)(21nb m a +D .)(21bn am +2.某农场挖一条480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x 米,那么下列方程正确的是( )A .420480480=+-x xB .204480480=+-x xC .448020480=--x x D .204804480=--xx 二、列方程解应用题3.一辆汽车先以一定速度行驶120千米,后因临时有任务,每小时加5千米,又行驶135千米,结果行驶这两段路程所用时间相等,求汽车先后行驶的速度.4.一个车间加工720个零件,预计每天做48个,就能如期完成,现在要提前5天完成,每天应该做多少个?5.甲、乙两同学学习电脑打字,甲打一篇3000字的文章与乙打一篇2400字的文章所用的时间相同,已知甲每分钟比乙多打12个字,问甲、乙两人每分钟各打字多少个?6.某煤矿现在平均每天比原计划多采330吨煤,已知现在采33000吨煤所需的时间和原计划采23100吨煤的时间相同.问现在平均每天采煤多少吨?综合、运用、诊断一、填空题7.仓库贮存水果a 吨,原计划每天供应市场m 吨,若每天多供应2吨,则要少供应______天.8.某人上山,下山的路程都是s ,上山速度v 1,下山速度v 2,则这个人上山和下山的平均速度是______.9.若一个分数的分子、分母同时加1,得;21若分子、分母同时减2,则得,31这个分数是______. 二、列方程解应用题10.某市决定修建一条从市中心到飞机场的轻轨铁路,为了使工程能提前3个月完成,需要将原定的工作效率提高12%,问原计划完成这项工程用多少月?11.某一工程招标时,接到甲、乙两工程队的投标书,每施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元.目前有三种施工方案:方案一:甲队单独完成此项工程刚好如期完成;方案二:乙队单独完成此项工程比规定日期多5天;方案三:若甲、乙两队合作4天,剩下的工程由乙队单独做也正好如期完成.哪一种方案既能如期完工又最节省工程款?。

北京西城区学探诊电子版和答案.分式

北京西城区学探诊电子版和答案.分式

第十六章 分式测试1 从分数到分式学习要求掌握分式的概念,能求出分式有意义,分式值为0、为1的条件.课堂学习检测一、填空题1.用A 、B 表示两个整式,A ÷B 就可以表示成______的形式,如果除式B 中______,该分式的分式.2.把下列各式写成分式的形式:(1)5÷xy 为______. (2)(3x +2y )÷(x -3y )为______.3.甲每小时做x 个零件,做90个零件所用的时间,可用式子表示成______小时. 4.n 公顷麦田共收小麦m 吨,平均每公顷的产量可用式子表示成______吨.5.轮船在静水中每小时走a 千米,水流速度是b 千米/时,轮船在逆流中航行s 千米所需要的时间可用式子表示成______小时. 6.当x =______时,分式13-x x没有意义. 7.当x =______时,分式112--x x 的值为0.8.分式yx,当字母x 、y 满足______时,值为1;当字母x ,y 满足______时值为-1. 二、选择题 9.使得分式1+a a有意义的a 的取值范围是( ) A .a ≠0 B .a ≠1 C .a ≠-1D .a +1>010.下列判断错误的是( )A .当32=/x 时,分式231-+x x 有意义 B .当a ≠b 时,分式22b a ab-有意义C .当21-=x 时,分式x x 412+值为0D .当x ≠y 时,分式x y y x --22有意义 11.使分式5+x x值为0的x 值是( ) A .0 B .5C .-5D .x ≠-512.当x <0时,xx ||的值为( ) A .1 B .-1 C .±1 D .不确定13.x 为任何实数时,下列分式中一定有意义的是( )A .x x 12+B .112--x x C .11+-x xD .112+-x x 三、解答题14.下列各式中,哪些是整式?哪些是分式?⋅----++++-π1;)1(;2;3;3;13;222x x x x y x y x y x x y x y x 15.x 取什么值时,2)3)(2(---x x x 的值为0?综合、运用、诊断一、填空题16.当x =______时,分式632-x x无意义. 17.使分式2)3(2+x x有意义的条件为______.18.分式2)1(522+++x x 有意义的条件为______. 19.当______时,分式44||--x x 的值为零. 20.若分式x--76的值为正数,则x 满足______. 二、选择题21.若x 、y 互为倒数,则用x 表示y 的正确结果是( )A .x =-yB .y x 1=C .x y 1=D .xy 1±=22.若分式ba ba 235+-有意义,则a 、b 满足的关系是( )A .3a ≠2bB .b a 51=/C .a b 32-=/ D .b a 32-=/23.式子222--+x x x 的值为0,那么x 的值是( )A .2B .-2C .±2D .不存在24.若分式6922---a a a 的值为0,则a 的值为( )A .3B .-3C .±3D .a ≠-225.若分式1212+-b b的值是负数,则b 满足( )A .b <0B .b ≥1C .b <1D .b >1三、解答题 26.如果分式323||2-+-y y y 的值为0,求y 的值.27.当x 为何值时,分式121+x 的值为正数?28.当x 为何整数时,分式124+x 的值为正整数?拓展、探究、思考29.已知分式,by ay +-当y =-3时无意义,当y =2时分式的值为0,求当y =-7时分式的值.测试2 分式的基本性质学习要求掌握分式的基本性质,并能利用分式的基本性质将分式约分.课堂学习检测一、填空题1.,MB M A B A ⨯⨯=其中A 是整式,B 是整式,且B ≠0,M 是______. 2.把分式xy中的x 和y 都扩大3倍,则分式的值______.3.⋅-=--)(121xx x4..y x xy x 22353)(= 5.22)(1y x y x -=+.6.⋅-=--24)(21y y x 二、选择题7.把分式bab a 392+-约分得( )A .33++b a B .33+-b a C .ba 3- D .ba 3+ 8.如果把分式yx yx ++2中的x 和y 都扩大10倍,那么分式的值( ) A .扩大10倍B .缩小10倍C .是原来的32 D .不变9.下列各式中,正确的是( )A .b am b m a =++ B .0=++b a ba C .1111--=-+c b ac abD .y x y x y x +=--122 三、解答题 10.约分:(1)ac ab1510-(2)yx yx 322.36.1-(3)112--m m(4)yx x xy y -+-2442211.不改变分式的值,使下列分式的分子、分母都不含负号.(1);53a- (2);y x 532- (3);52a b -- (4)⋅---x y 1511综合、运用、诊断一、填空题12.化简分式:(1)=--3)(x y yx _____;(2)=+--22699xx x _____. 13.填空:)()1(=++-nm n m =-----ba n m m n 212)2(;)(⋅-ba221 14.填入适当的代数式,使等式成立.(1)⋅+=--+ba b a b ab a )(22222(2).a b ba b a-=-+)(11 二、选择题 15.把分式yx x-2中的x 、 y 都扩大m 倍(m ≠0),则分式的值( )A .扩大m 倍B .缩小m 倍C .不变D .不能确定16.下面四个等式:;22;22;22yx y x y x y x y x y x +-=+---=----=+-③②①⋅-+=--22yx y x ④其中正确的有( ) A .0个B .1个C .2个D .3个17.化简22222b ab a b a ++-的正确结果是( )A .ba ba -+ B .ba ba +- C .ab21 D .ab21- 18.化简分式2222639ab b a b a -后得( )A .222223ab b a b a -B .263ab a ab-C .ba ab23- D .bb a ab2332-三、解答题 19.约分:(1)322)(27)(12b a a b a --(2)62322--++x x x x(3)22164m m m --(4)2442-+-x x x20.不改变分式的值,使分子、分母中次数最高的项的系数都化为正数.(1)yx x --22(2)aa b --2(3)x x x x +---2211(4)2213m m m ---拓展、探究、思考21.(1)阅读下面解题过程:已知,5212=+x x 求142+x x 的值.解:),0(5212=/=+x x x,5211=+∴xx 即⋅=+251x x ⋅=-=-+=+=+∴1742)25(12)1(1111222242x x x x x x (2)请借鉴(1)中的方法解答下面的题目:已知,2132=+-x x x求1242++x x x 的值.测试3 分式的乘法、除法学习要求1.学会类比方法、总结出分式乘法、除法法则. 2.会进行分式的乘法、除法运算.课堂学习检测一、填空题1.=-⋅)29(283x yy x ______. 2.=+-÷-x y x x xy x 33322______. 3.=+÷+)(1b a ba ______.4.=--++⋅+ab a b a .b ab a b ab 2222222______. 5.已知x =2008,y =2009,则4422))((y x y x y x -++的值为______.二、选择题 6.)(22m n n m a-⋅-的值为( )A .nm a+2 B .nm a+ C .nm a+-D .nm a--7.计算cdaxcd ab 4322-÷等于( ) A .x b 322B .232x bC .x b 322-D .222283dc x b a -8.当x >1时,化简xx --1|1|得( ) A .1B .-1C .±1D .0三、计算下列各题9.xy x y 212852⋅10.nm mnm mn m n m --÷--24222211.11.11)1(122+-÷--x x x x12.2222294255)23(x a x b a b a a x --⋅++四、阅读下列解题过程,然后回答后面问题13.计算:⋅⨯÷⨯÷⨯÷dd c c b b a 1112解:dd c c b b a 1112⨯÷⨯÷⨯÷ =a 2÷1÷1÷1①=a 2. ②请判断上述解题过程是否正确?若不正确,请指出在①、②中,错在何处,并给出正确的解题过程.综合、运用、诊断一、填空题14.cc b a 1⨯÷_____. 15.x y xy 3232÷-_____.16.一份稿件,甲单独打字需要a 天完成,乙单独打字需b 天完成,两人共同打需_____天完成. 二、选择题17.计算xx x x x x +-÷---2231)2)(3(的结果是( ) A .22--x x x B .xx x 212--C .xx x --22D .122--x x x18.下列各式运算正确的是( )A .m ÷n ·n =mB .m n n m =÷1.C .111=÷⋅÷mm m m D .1123=÷÷m mm 三、计算下列各题 19.44)16(.2-+÷-a a a20.2222)1()1(a a a a .a a a -+--21.a b b ab a b ab a b a a 22222224.2+÷+--22.xx x x x x --+÷+--32.)3(446222拓展、探究、思考23.小明在做一道化简求值题:,.2)(2222xyx xy y xy x x xy -+-÷-他不小心把条件x 的值抄丢了,只抄了y =-5,你说他能算出这道题的正确结果吗?为什么?测试4 分式的乘法、除法、乘方学习要求掌握乘方的意义,能根据乘方的法则,先乘方,再乘除进行分式运算.课堂学习检测一、填空题1.分式乘方就是________________.2.=323)2(bca ____________. 3.=-522)23(z y x ____________. 二、选择题4.分式32)32(ba 的计算结果是( ) A .3632b a B .3596baC .3598b aD .36278b a5.下列各式计算正确的是( ) A .yx y x =33B .326m mm =C .b a ba b a +=++22D .b a a b b a -=--23)()(6.22222nm m n m n ⋅÷-的结果是( )A .2n m -B .32nm -C .4mn -D .-n7.计算⨯-32)2(b a 2)2(a b )2(a b -⨯的结果是( ) A .68ba - B .638b a - C .5216b aD .5216ba -三、计算题 8.32)32(c b a9.22)52(a y x --10.223)2(8y x y ÷11.232)4()2(ba ba -÷-四、解答题12.先化简,再求值:(1),144421422xx x x x ++÷--其中⋅-=41x(2),a b .b b a a b a b a a 222224)()(+÷--其中,21=a b =-1.综合、运用、诊断一、填空题13.=⋅-⋅-76252)1()()(aba b b a ______.14.=-÷-32223)3()3(ac b c ab ______. 二、选择题15.下列各式中正确的是( )A .363223)23(yx y x =B .22224)2(b a a b a a +=+C .22222)(yx y x y x y x +-=+- D .333)()()(n m n m nm n m -+=-+16.na b 22)(-(n 为正整数)的值是( )A .n n a b 222+B .n n ab 24C .n n a b 212+-D .n nab 24-17.下列分式运算结果正确的是( )A .nm m n n m =3454.B .bc add c b a =.C .22224)2(b a a ba a -=-D .33343)43(y x yx =三、计算下列各题18.2222)2()()(ab a bb a -÷⋅-19.23212313.-+-n nn n ba a c b20.22321).()(ba ab a ab b a -÷---四、化简求值21.若m 等于它的倒数,求32222)2.()22(444m m m m m m m --+÷-++的值.拓展、探究、思考22.已知.0)255(|13|2=-+-+b a b a 求2232332).6().()3(a bb a ab b a -÷--的值.测试5 分式的加减学习要求1.能利用分式的基本性质通分. 2.会进行同分母分式的加减法. 3.会进行异分母分式的加减法.课堂学习检测一、填空题1.分式2292,32acbc b a 的最简公分母是______. 2.分式3241,34,21x x x x x +--的最简公分母是______. 3.分式)2(,)2(++m b nm a m 的最简公分母是______.4.分式)(,)(x y b yy x a x --的最简公分母是______. 5.同分母的分式相加减的法则是______.6.异分母的分式相加减,先______,变为______的分式,再加减. 二、选择题 7.已知=++=/xx x x 31211,0( ) A .x 21 B .x61 C .x65 D .x611 8.x y y a y x a x +--+++3333等于( )A .y x y x +-33 B .x -y C .x 2-xy +y 2 D .x 2+y 29.cab c a b +-的计算结果是( ) A .abca cb 222+-B .abcb a ac c b 222--C .abc b a ac c b 222+-D .abcac b +- 10.313---a a 等于( )A .aa a --+1622B .1242-++-a a a C .1442-++-a a a D .a a -111.21111xx x x n n n +-+-+等于( ) A .11+n xB .11-n xC .21xD .1三、解答题 12.通分:(1)abb a a b 41,3,22 (2))2(2,)2(-+x b x a y(3)aa a a -+21,)1(2(4)aba b a b a --+2222,1,1四、计算下列各题 13.x x x x x -+--+22422214.xx x x x x x x +---+--+++3522363422215.412234272--+--x x x 16.xyy xxy x y -+-22综合、运用、诊断一、填空题17.计算a a -+-329122的结果是____________. 18.=-+abb a 6543322____________.二、选择题19.下列计算结果正确的是( )A .)2)(2(42121-+=--+x x x x B .))((211222222222x y y x x x y y x ---=---C .yx xy y x x 231223622-=- D .33329152+-=----x x x x 20.下列各式中错误的是( )A .ad a d c d c a d c a d c 2-=---=+-- B .1522525=+++a aaC .1-=---xy yy x x D .11)1(1)1(22-=---x x x x 三、计算下列各题21.ba aa b b b a b a ---+-+22 22.zx y zy z x y z x z y x y ------+++-223.941522333222-++-++a a a a 24.43214121111xx x x x x +-++-+--25.先化简,1)121(22xx x x x x x ÷+---+再选择一个恰当的x 值代入并求值.拓展、探究、思考26.已知,10345252---=++-x x x x B x A 试求实数A 、B 的值.27.阅读并计算:例:计算:⋅+++++++)3)(2(1)2)(1(1)1(1x x x x x x原式31212111111+-+++-+++-=x x x x x x⋅+=+-=)3(3311x x x x仿照上例计算:⋅+++++++)6)(4(2)4)(2(2)2(2x x x x x x测试6 分式的混合运算学习要求1.掌握分式的四则运算法则、运算顺序、运算律. 2.能正确进行分式的四则运算.课堂学习检测一、填空题1.化简=-2222639ab b a b a ______.2.化简2426a a ab -=______. 3.计算)1()1111(2-⨯+--m m m 的结果是______. 4.)1(y x y y x +-÷的结果是______.二、选择题5.2222y x y x y x y x -+÷+-的结果是( ) A .222)(y x y x ++B .222)(y x y x -+C .222)(y x y x +-D .222)(yx y x ++6.222)(ba bb b a -⨯-的结果是( ) A .b1 B .2bab ba +- C .ba ba +- D .)(1b a b +7.ba ba b a b a b a b a -+⨯-+÷-+22)()(的结果是( ) A .ba ba +- B .ba ba -+ C .2)(ba b a -+ D .1三、计算题 8.xxx -+-111 9.291232mm -+-10.242-++x x11.121)11(22+-+-÷--a a a a a a12.)()(nm mnm n m mn m +-÷-+13.)131()11(22a a a a --÷++综合、运用、诊断一、填空题14.=-+-+-b a ba b a b a ______. 15.=++-+-32329122m m m ______. 二、选择题16.(1-m )÷(1-m 2)×(m +1)的结果是( )A .2)1(1m +B .2)1(1m -C .-1D .117.下列各分式运算结果正确的是( ).24435232510.25bc b a c c b a =①abc b a a c b 32332=⋅②1131).3(1122+=--÷+x x x x ③1111.2=+÷--xyx x x xy ④ A .①③ B .②④C .①②D .③④18.abb a b a 2223231⨯--等于( ) A .aba - B .b ab - C .a ba 323- D .bab 232- 19.实数a 、b 满足ab =1,设,11,1111b ba aN b a M +++=+++=则M 、N 的大小关系为( ) A .M >N B .M =NC .M <ND .不确定三、解答下列各题 20.yy y y y yy y 4)44122(22-÷+--+-+21.)1214()11(22-----+÷+x x x x x x四、化简求值22.,)]3(232[x y x y x x y x y x x -÷--++-其中5x +3y =0.拓展、探究、思考23.甲、乙两名采购员去同一家饲料公司购买两次饲料,两次购买时饲料的价格各不相同.两位采购员的购货方式也各不相同,甲每次购买1000千克,乙每次只购买800元的饲料,设两次购买的饲料单价分别为m 元/千克和n 元/千克(m ,n 为正整数,且m ≠n ),那么甲、乙两名采购员两次购得饲料的平均价格分别是多少?谁的购买方法更合算?测试7 整数指数幂学习要求1.掌握零指数幂和负整数指数幂的意义. 2.掌握科学记数法.课堂学习检测一、填空题1.3-2=______,=--3)51(______.2.(-0.02)0=______,=0)20051(______. 3.(a 2)-3=______(a ≠0),=-2)3(______,=--1)23(______.4.用科学记数法表示:1cm =______m ,2.7mL =______L . 5.一种细菌的半径为0.0004m ,用科学记数法表示为______m .6.用小数表示下列各数:10-5=______,2.5×10-3=______.7.(3a 2b -2)3=______,(-a -2b )-2=______.8.纳米是表示微小距离的单位,1米=109纳米,已知某种植物花粉的直径为35000纳米,用科学记数法表示成______m . 二、选择题9.计算3)71(--的结果是( )A .3431-B .211- C .-343 D .-21 10.下列各数,属于用科学记数法表示的是( )A .20.7×10-2B .0.35×10-1C .2004×10-3D .3.14×10-5 11.近似数0.33万表示为( )A .3.3×10-2 B .3.3000×103 C .3.3×103 D .0.33×104 12.下列各式中正确的有( ) ①;9)31(2=-②2-2=-4;③a 0=1;④(-1)-1=1;⑤(-3)2=36.A .2个B .3个C .4个D .1个 三、解答题13.用科学记数法表示:(1)0.00016 (2)-0.0000312 (3)1000.5 (4)0.00003万14.计算:(1)98÷98 (2)10-3 (3)2010)51(-⨯15.地球的质量为6×1013亿吨,太阳的质量为1.98×1019亿吨,则地球的质量是太阳质量的多少倍(用负指数幂表示)?综合、运用、诊断一、填空题16.=-+-01)π()21(______,-1+(3.14)0+2-1=______.17.=-+---|3|)12()21(01______.18.计算(a -3)2(ab 2)-2并把结果化成只含有正整数指数幂形式为______. 19.“神威一号”计算机运算速度为每秒384000000000次,其运算速度用科学记数法表示,为______次/秒.20.近似数-1.25×10-3有效数字的个数有______位. 二、选择题21.2009200908)125.0()13(⨯+-的结果是( ) A .3 B .23- C .2 D .022.将201)3(,)2(,)61(---这三个数按从小到大的顺序排列为()A .21)3()61()2(-<<-- B .201)3()2()61(-<-<-C .12)61()2()3(-<-<-D .12)61()3()2(-<-<-三、解答题23.计算下列各式,并把结果化成只含有正整数指数幂的形式:(1)(a 2b -3)-2(a -2b 3)2 (2)(x -5y -2z -3)2(3)(5m -2n 3)-3(-mn -2)-224.用小数表示下列各数:(1)8.5×10-3 (2)2.25×10-8 (3)9.03×10-5测试8 分式方程的解法学习要求了解分式方程的概念和检验根的意义,会解可化为一元一次方程的分式方程.课堂学习检测一、填空题 1.分式方程1712112-=-++x x x 若要化为整式方程,在方程两边同乘的最简公分母是______. 2.方程111=+x 的解是______.3.方程625--=-x x x x 的解是______. 4.x =2是否为方程32121---=-x x x 的解?答:______. 5.若分式方程127723=-+-xax x 的解是x =0,则a =______.二、选择题6.下列关于x 的方程中,不是分式方程的是( ) A .11=+x xB .4132=+x xC .52433=+x xD .6516-=x x 7.下列关于x 的方程中,是分式方程的是( ) A .55433+=--x x B .abb x b a a x +=- C .11)1(2=--x xD .nx m n n x =- 8.将分式方程yyy y 2434216252--=+-+化为整式方程时,方程两边应同乘( ). A .(2y -6)(4-2y ) B .2(y -3) C .4(y -2)(y -3) D .2(y -3)(y -2)9.方程4321+-=+-x x x x 的解是( ) A .x =-4 B .21-=x C .x =3 D .x =110.方程34231--=+-x xx 的解是( ) A .0 B .2C .3D .无解11.分式方程)2(6223-+=-x x x x 的解是( ) A .0B .2C .0或2D .无解三、解分式方程12.0227=-+x x13.3625+=-x x 14.45411--=--x xx 15.1617222-=-++x xx xx综合、运用、诊断一、填空题16.当x =______时,分式x 3与x-62的值互为相反数. 17.下列每小题中的两个方程的解是否相同? (1)2322-=-+x x x 与x +2=3 ( ) (2)2422-=-+x x x 与x +2=4 ( ) (3)113112-+=-++x x x 与x +2=3 ( ) 18.当m =______时,方程312=-xm 的解为1. 19.已知分式方程 424-+=-x ax x 有增根,则a 的值为______. 二、选择题 20.若分式方程58)1()(2-=-+x a a x 的解为,51-=x 则a 等于( )A .65 B .5C .65-D .-521.已知,11,11cb b a -=-=用a 表示c 的代数式为( ) A .b c -=11 B .ca -=11 C . aa c -=1 D .a a c 1-=22.若关于x 的方程0111=----x xx m 有增根,则m 的值是( ) A .3B .2C .1D .-123.将公式21111R R R +=(R ,R 1,R 2均不为零,且R ≠R 2)变形成求R 1的式子,正确的是( ) A .R R RR R -=221 B .R R RR R +=221 C .2211R RR RR R +=D .221R R RR R -=三、解分式方程 24.1211422+=+--x xx x x 25.2224412-++=--x x x x x26.32)3)(2(122-=-----x x x x x x x 27.xx x x x x ---+-=-+41341216852拓展、探究、思考28.若关于x 的分式方程211=--x m 的解为正数,求m 的取值范围.29.(1)如下表,方程1、方程2、方程3……是按照一定规律排列的一列方程.猜想方程(2)若方程)(11b a bx x a >=--的解是x 1=6,x 2=10,猜想a 、b 的值,该方程是不是(1)中所给出的一列方程中的一个?如果是,是第几个?(3)请写出这列方程中的第n 个方程和它的解.测试9 列分式方程解应用题学习要求会列出分式方程解简单的应用问题.课堂学习检测一、选择题1.某班学生军训打靶,有m 人各中靶a 环,n 人各中靶b 环,那么所有中靶学生的平均环数是( ) A .nm ba ++ B .nm bnam ++ C .)(21nb m a +D .)(21bn am +2.某农场挖一条480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x 米,那么下列方程正确的是( ) A .420480480=+-x x B .204480480=+-x xC .448020480=--x x D .204804480=--xx 二、列方程解应用题3.一辆汽车先以一定速度行驶120千米,后因临时有任务,每小时加5千米,又行驶135千米,结果行驶这两段路程所用时间相等,求汽车先后行驶的速度.4.一个车间加工720个零件,预计每天做48个,就能如期完成,现在要提前5天完成,每天应该做多少个?5.甲、乙两同学学习电脑打字,甲打一篇3000字的文章与乙打一篇2400字的文章所用的时间相同,已知甲每分钟比乙多打12个字,问甲、乙两人每分钟各打字多少个?6.某煤矿现在平均每天比原计划多采330吨煤,已知现在采33000吨煤所需的时间和原计划采23100吨煤的时间相同.问现在平均每天采煤多少吨?综合、运用、诊断一、填空题7.仓库贮存水果a 吨,原计划每天供应市场m 吨,若每天多供应2吨,则要少供应______天.8.某人上山,下山的路程都是s ,上山速度v 1,下山速度v 2,则这个人上山和下山的平均速度是______.9.若一个分数的分子、分母同时加1,得;21若分子、分母同时减2,则得,31这个分数是______. 二、列方程解应用题10.某市决定修建一条从市中心到飞机场的轻轨铁路,为了使工程能提前3个月完成,需要将原定的工作效率提高12%,问原计划完成这项工程用多少月?11.某一工程招标时,接到甲、乙两工程队的投标书,每施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元.目前有三种施工方案:方案一:甲队单独完成此项工程刚好如期完成;方案二:乙队单独完成此项工程比规定日期多5天;方案三:若甲、乙两队合作4天,剩下的工程由乙队单独做也正好如期完成. 哪一种方案既能如期完工又最节省工程款?。

北京市西城区2017年9月初二数学人教版八年级上册第十五章 《分式》教材分析 课件(共64张PPT)

北京市西城区2017年9月初二数学人教版八年级上册第十五章 《分式》教材分析 课件(共64张PPT)
3、基础知识:分式的概念、分式的基本性质 ,分式的约分和通分法则、分式的四则运算 法则、整数指数幂的运算性质、掌握可以化 为一元一次方程的分式方程的解法.
4、基本技能:熟练掌握分式的约分和通分 、分式的四则运算、可以化为一元一次方程 的分式方程的解法.
5、基本的数学思想:化归思想、类比思想 、整体思想、数学建模思想.
※对增根与无解的辨识: ①分式方程无解不一定就产生增根 ②分式方程产生增根时也不一定就无解
x 1 3 x 2 x2 2x
1 3 1 x x2 2x
无解,没有增根 有增根,所以无解
1 4x x x 2 x2 4 x 2
有增根,方程也有解
分式方程应用
用类比的方法,解分式方程应用题类比一元一次方程的应用题。
三、主要内容、重点难点及数学思想
1、重点:本章学习的重点是分式的四则运算 ,它是整式四则运算的进一步发展,是代数 式恒等变形的重要内容之一.
(1)分式的基本性质是本章学习的重点 (2)分式的四则运算是本章的重点内容 (3)注意类比学习方法的掌握
2、难点: (1)分式的四则混合运算 (2)分式方程的增根问题 (3)列分式方程解决实际问题
约分,化为最简分式 分式基本性质
3 落实基础知识和运算技能,突出数学思想方法.
基本知识 :分式的概念、基本性质、分式运算法则 基本技能: 运用分式的性质和运算法则正确、规范、
迅速进行分式运算,具有一定的代数化 归能力。 基本思想 :类比的思想(类比分数) 整体的思想(化简求值、分式方程) 化归的思想 (化繁为简,化分为整) 建模的思想 (应用题) 基本活动经验 :积累分式运算的方法,总结进行分式
的规律

方程 与不 等式
分式方程

北京西城区学习探究诊断数学八上-第十五章分式

北京西城区学习探究诊断数学八上-第十五章分式

第十五章 分式测试1 从分数到分式学习要求掌握分式的概念,能求出分式有意义,分式值为0、为1的条件.课堂学习检测一、填空题1.用A 、B 表示两个整式,A ÷B 就可以表示成______的形式,如果除式B 中______,该分式的分式.2.把下列各式写成分式的形式:(1)5÷xy 为______. (2)(3x +2y )÷(x -3y )为______.3.甲每小时做x 个零件,做90个零件所用的时间,可用式子表示成______小时. 4.n 公顷麦田共收小麦m 吨,平均每公顷的产量可用式子表示成______吨.5.轮船在静水中每小时走a 千米,水流速度是b 千米/时,轮船在逆流中航行s 千米所需要的时间可用式子表示成______小时. 6.当x =______时,分式13-x x没有意义. 7.当x =______时,分式112--x x 的值为0.8.分式yx,当字母x 、y 满足______时,值为1;当字母x ,y 满足______时值为-1. 二、选择题 9.使得分式1+a a有意义的a 的取值范围是( ) A .a ≠0 B .a ≠1 C .a ≠-1D .a +1>010.下列判断错误的是( )A .当32=/x 时,分式231-+x x 有意义 B .当a ≠b 时,分式22b a ab-有意义C .当21-=x 时,分式x x 412+值为0D .当x ≠y 时,分式x y y x --22有意义 11.使分式5+x x值为0的x 值是( ) A .0 B .5C .-5D .x ≠-512.当x <0时,xx ||的值为( ) A .1 B .-1 C .±1 D .不确定13.x 为任何实数时,下列分式中一定有意义的是( )A .x x 12+B .112--x x C .11+-x xD .112+-x x 三、解答题14.下列各式中,哪些是整式?哪些是分式?⋅----++++-π1;)1(;2;3;3;13;222x x x x y x y x y x x y x y x 15.x 取什么值时,2)3)(2(---x x x 的值为0?综合、运用、诊断一、填空题16.当x =______时,分式632-x x无意义. 17.使分式2)3(2+x x有意义的条件为______.18.分式2)1(522+++x x 有意义的条件为______. 19.当______时,分式44||--x x 的值为零. 20.若分式x--76的值为正数,则x 满足______. 二、选择题21.若x 、y 互为倒数,则用x 表示y 的正确结果是( )A .x =-yB .y x 1=C .x y 1=D .xy 1±=22.若分式ba ba 235+-有意义,则a 、b 满足的关系是( )A .3a ≠2bB .b a 51=/C .a b 32-=/ D .b a 32-=/23.式子222--+x x x 的值为0,那么x 的值是( )A .2B .-2C .±2D .不存在24.若分式6922---a a a 的值为0,则a 的值为( )A .3B .-3C .±3D .a ≠-225.若分式1212+-b b的值是负数,则b 满足( ) A .b <0 B .b ≥1C .b <1D .b >1三、解答题 26.如果分式323||2-+-y y y 的值为0,求y 的值.27.当x 为何值时,分式121+x 的值为正数?28.当x 为何整数时,分式124+x 的值为正整数?拓展、探究、思考29.已知分式,by ay +-当y =-3时无意义,当y =2时分式的值为0,求当y =-7时分式的值.测试2 分式的基本性质学习要求掌握分式的基本性质,并能利用分式的基本性质将分式约分.课堂学习检测一、填空题1.,MB M A B A ⨯⨯=其中A 是整式,B 是整式,且B ≠0,M 是______. 2.把分式xy中的x 和y 都扩大3倍,则分式的值______.3.⋅-=--)(121xx x4..y x xy x 22353)(= 5.22)(1y x y x -=+.6.⋅-=--24)(21y y x 二、选择题7.把分式bab a 392+-约分得( )A .33++b a B .33+-b a C .ba 3- D .ba 3+ 8.如果把分式yx yx ++2中的x 和y 都扩大10倍,那么分式的值( ) A .扩大10倍B .缩小10倍C .是原来的32 D .不变9.下列各式中,正确的是( )A .b am b m a =++ B .0=++b a ba C .1111--=-+c b ac abD .y x y x y x +=--122 三、解答题 10.约分:(1)ac ab1510-(2)yx yx 322.36.1-(3)112--m m(4)yx x xy y -+-2442211.不改变分式的值,使下列分式的分子、分母都不含负号.(1);53a- (2);y x 532- (3);52a b-- (4)⋅---x y 1511综合、运用、诊断一、填空题12.化简分式:(1)=--3)(x y yx _____;(2)=+--22699xx x _____. 13.填空:)()1(=++-nm n m =-----ba n m m n 212)2(;)(⋅-ba221 14.填入适当的代数式,使等式成立.(1)⋅+=--+ba b a b ab a )(22222(2).a b ba b a-=-+)(11 二、选择题 15.把分式yx x-2中的x 、 y 都扩大m 倍(m ≠0),则分式的值( )A .扩大m 倍B .缩小m 倍C .不变D .不能确定16.下面四个等式:;22;22;22yx y x y x y x y x y x +-=+---=----=+-③②①⋅-+=--22yx y x ④其中正确的有( ) A .0个B .1个C .2个D .3个17.化简22222b ab a b a ++-的正确结果是( )A .ba ba -+ B .ba ba +- C .ab21 D .ab21- 18.化简分式2222639ab b a b a -后得( )A .222223ab b a b a -B .263ab a ab-C .ba ab23- D .bb a ab2332-三、解答题 19.约分:(1)322)(27)(12b a a b a --(2)62322--++x x x x(3)22164m m m --(4)2442-+-x x x20.不改变分式的值,使分子、分母中次数最高的项的系数都化为正数.(1)yx x --22(2)aa b --2(3)x x x x +---2211(4)2213m m m ---拓展、探究、思考21.(1)阅读下面解题过程:已知,5212=+x x 求142+x x 的值.解:),0(5212=/=+x x x,5211=+∴xx 即⋅=+251x x ⋅=-=-+=+=+∴1742)25(12)1(1111222242x x x x x x (2)请借鉴(1)中的方法解答下面的题目:已知,2132=+-x x x求1242++x x x 的值.测试3 分式的乘法、除法学习要求1.学会类比方法、总结出分式乘法、除法法则. 2.会进行分式的乘法、除法运算.课堂学习检测一、填空题1.=-⋅)29(283x yy x ______. 2.=+-÷-x y x x xy x 33322______. 3.=+÷+)(1b a ba ______.4.=--++⋅+ab a b a .b ab a b ab 2222222______. 5.已知x =2008,y =2009,则4422))((y x y x y x -++的值为______.二、选择题 6.)(22m n n m a-⋅-的值为( )A .nm a+2 B .nm a+ C .nm a+-D .nm a--7.计算cdaxcd ab 4322-÷等于( ) A .x b 322B .232x bC .x b 322-D .222283dc x b a -8.当x >1时,化简xx --1|1|得( ) A .1B .-1C .±1D .0三、计算下列各题9.xy x y 212852⋅10.nm mnm mn m n m --÷--24222211.11.11)1(122+-÷--x x x x12.2222294255)23(x a x b a b a a x --⋅++四、阅读下列解题过程,然后回答后面问题13.计算:⋅⨯÷⨯÷⨯÷dd c c b b a 1112解:dd c c b b a 1112⨯÷⨯÷⨯÷ =a 2÷1÷1÷1①=a 2. ②请判断上述解题过程是否正确?若不正确,请指出在①、②中,错在何处,并给出正确的解题过程.综合、运用、诊断一、填空题14.cc b a 1⨯÷_____. 15.x y xy 3232÷-_____.16.一份稿件,甲单独打字需要a 天完成,乙单独打字需b 天完成,两人共同打需_____天完成. 二、选择题17.计算xx x x x x +-÷---2231)2)(3(的结果是( ) A .22--x xx B .xx x 212--C .xx x --22D .122--x x x18.下列各式运算正确的是( )A .m ÷n ·n =mB .m n n m =÷1.C .111=÷⋅÷mm m m D .1123=÷÷m mm 三、计算下列各题 19.44)16(.2-+÷-a a a20.2222)1()1(a a a a .a a a -+--21.a b b ab a b ab a b a a 22222224.2+÷+--22.xx x x x x --+÷+--32.)3(446222拓展、探究、思考23.小明在做一道化简求值题:,.2)(2222xyx xy y xy x x xy -+-÷-他不小心把条件x 的值抄丢了,只抄了y =-5,你说他能算出这道题的正确结果吗?为什么?测试4 分式的乘法、除法、乘方学习要求掌握乘方的意义,能根据乘方的法则,先乘方,再乘除进行分式运算.课堂学习检测一、填空题1.分式乘方就是________________.2.=323)2(bca ____________. 3.=-522)23(z y x ____________. 二、选择题4.分式32)32(ba 的计算结果是( ) A .3632b a B .3596baC .3598b aD .36278b a5.下列各式计算正确的是( ) A .yx y x =33B .326m mm =C .b a ba b a +=++22D .b a a b b a -=--23)()(6.22222nm m n m n ⋅÷-的结果是( )A .2n m -B .32nm -C .4mn -D .-n7.计算⨯-32)2(b a 2)2(a b )2(a b -⨯的结果是( ) A .68ba - B .638b a - C .5216b aD .5216ba -三、计算题 8.32)32(c b a9.22)52(a y x --10.223)2(8y x y ÷11.232)4()2(ba ba -÷-四、解答题12.先化简,再求值:(1),144421422xx x x x ++÷--其中⋅-=41x(2),a b .b b a a b a b a a 222224)()(+÷--其中,21=a b =-1.综合、运用、诊断一、填空题13.=⋅-⋅-76252)1()()(aba b b a ______.14.=-÷-32223)3()3(ac b c ab ______. 二、选择题15.下列各式中正确的是( )A .363223)23(yx y x =B .22224)2(b a a b a a +=+C .22222)(yx y x y x y x +-=+- D .333)()()(n m n m nm n m -+=-+16.na b 22)(-(n 为正整数)的值是( )A .n n a b 222+B .n n ab 24C .n n a b 212+-D .n nab 24-17.下列分式运算结果正确的是( )A .nm m n n m =3454.B .bc add c b a =.C .22224)2(b a a ba a -=-D .33343)43(y x yx =三、计算下列各题18.2222)2()()(ab a bb a -÷⋅-19.23212313.-+-n nn n ba a c b20.22321).()(ba ab a ab b a -÷---四、化简求值21.若m 等于它的倒数,求32222)2.()22(444m m m m m m m --+÷-++的值.拓展、探究、思考22.已知.0)255(|13|2=-+-+b a b a 求2232332).6().()3(a bb a ab b a -÷--的值.测试5 分式的加减学习要求1.能利用分式的基本性质通分. 2.会进行同分母分式的加减法. 3.会进行异分母分式的加减法.课堂学习检测一、填空题1.分式2292,32acbc b a 的最简公分母是______. 2.分式3241,34,21x x x x x +--的最简公分母是______. 3.分式)2(,)2(++m b nm a m 的最简公分母是______.4.分式)(,)(x y b yy x a x --的最简公分母是______. 5.同分母的分式相加减的法则是______.6.异分母的分式相加减,先______,变为______的分式,再加减. 二、选择题 7.已知=++=/xx x x 31211,0( ) A .x 21 B .x61 C .x65 D .x611 8.x y y a y x a x +--+++3333等于( )A .y x y x +-33 B .x -y C .x 2-xy +y 2 D .x 2+y 29.cab c a b +-的计算结果是( ) A .abca cb 222+-B .abcb a ac c b 222--C .abc b a ac c b 222+-D .abcac b +- 10.313---a a 等于( )A .aa a --+1622B .1242-++-a a a C .1442-++-a a a D .a a -111.21111xx x x n n n +-+-+等于( ) A .11+n xB .11-n xC .21xD .1三、解答题 12.通分:(1)abb a a b 41,3,22 (2))2(2,)2(-+x b x a y(3)aa a a -+21,)1(2(4)aba b a b a --+2222,1,1四、计算下列各题 13.x x x x x -+--+22422214.xx x x x x x x +---+--+++3522363422215.412234272--+--x x x 16.xyy xxy x y -+-22综合、运用、诊断一、填空题17.计算a a -+-329122的结果是____________. 18.=-+abb a 6543322____________.二、选择题19.下列计算结果正确的是( )A .)2)(2(42121-+=--+x x x x B .))((211222222222x y y x x x y y x ---=---C .yx xy y x x 231223622-=- D .33329152+-=----x x x x 20.下列各式中错误的是( )A .ad a d c d c a d c a d c 2-=---=+-- B .1522525=+++a aaC .1-=---xy yy x x D .11)1(1)1(22-=---x x x x 三、计算下列各题21.ba aa b b b a b a ---+-+22 22.zx y zy z x y z x z y x y ------+++-223.941522333222-++-++a a a a 24.43214121111xx x x x x +-++-+--25.先化简,1)121(22xx x x x x x ÷+---+再选择一个恰当的x 值代入并求值.拓展、探究、思考26.已知,10345252---=++-x x x x B x A 试求实数A 、B 的值.27.阅读并计算:例:计算:⋅+++++++)3)(2(1)2)(1(1)1(1x x x x x x原式31212111111+-+++-+++-=x x x x x x⋅+=+-=)3(3311x x x x仿照上例计算:⋅+++++++)6)(4(2)4)(2(2)2(2x x x x x x测试6 分式的混合运算学习要求1.掌握分式的四则运算法则、运算顺序、运算律. 2.能正确进行分式的四则运算.课堂学习检测一、填空题1.化简=-2222639ab b a b a ______.2.化简2426a a ab -=______. 3.计算)1()1111(2-⨯+--m m m 的结果是______. 4.)1(y x y y x +-÷的结果是______.二、选择题5.2222y x y x y x y x -+÷+-的结果是( ) A .222)(y x y x ++B .222)(y x y x -+C .222)(y x y x +-D .222)(yx y x ++6.222)(ba bb b a -⨯-的结果是( ) A .b1 B .2bab ba +- C .ba ba +- D .)(1b a b +7.ba ba b a b a b a b a -+⨯-+÷-+22)()(的结果是( ) A .ba ba +- B .ba ba -+ C .2)(ba b a -+ D .1三、计算题 8.xxx -+-111 9.291232mm -+-10.242-++x x11.121)11(22+-+-÷--a a a a a a12.)()(nm mnm n m mn m +-÷-+13.)131()11(22a a a a --÷++综合、运用、诊断一、填空题14.=-+-+-b a ba b a b a ______. 15.=++-+-32329122m m m ______. 二、选择题16.(1-m )÷(1-m 2)×(m +1)的结果是( )A .2)1(1m +B .2)1(1m -C .-1D .117.下列各分式运算结果正确的是( ).24435232510.25bc b a c c b a =①abc b a a c b 32332=⋅②1131).3(1122+=--÷+x x x x ③1111.2=+÷--xyx x x xy ④ A .①③ B .②④C .①②D .③④18.abb a b a 2223231⨯--等于( ) A .aba - B .b ab - C .a ba 323- D .bab 232- 19.实数a 、b 满足ab =1,设,11,1111b ba aN b a M +++=+++=则M 、N 的大小关系为( ) A .M >N B .M =NC .M <ND .不确定三、解答下列各题 20.yy y y y yy y 4)44122(22-÷+--+-+21.)1214()11(22-----+÷+x x x x x x四、化简求值22.,)]3(232[x y x y x x y x y x x -÷--++-其中5x +3y =0.拓展、探究、思考23.甲、乙两名采购员去同一家饲料公司购买两次饲料,两次购买时饲料的价格各不相同.两位采购员的购货方式也各不相同,甲每次购买1000千克,乙每次只购买800元的饲料,设两次购买的饲料单价分别为m 元/千克和n 元/千克(m ,n 为正整数,且m ≠n ),那么甲、乙两名采购员两次购得饲料的平均价格分别是多少?谁的购买方法更合算?测试7 整数指数幂学习要求1.掌握零指数幂和负整数指数幂的意义. 2.掌握科学记数法.课堂学习检测一、填空题1.3-2=______,=--3)51(______.2.(-0.02)0=______,=0)20051(______. 3.(a 2)-3=______(a ≠0),=-2)3(______,=--1)23(______.4.用科学记数法表示:1cm =______m ,2.7mL =______L . 5.一种细菌的半径为0.0004m ,用科学记数法表示为______m .6.用小数表示下列各数:10-5=______,2.5×10-3=______.7.(3a 2b -2)3=______,(-a -2b )-2=______.8.纳米是表示微小距离的单位,1米=109纳米,已知某种植物花粉的直径为35000纳米,用科学记数法表示成______m . 二、选择题9.计算3)71(--的结果是( )A .3431-B .211- C .-343 D .-21 10.下列各数,属于用科学记数法表示的是( )A .20.7×10-2B .0.35×10-1C .2004×10-3D .3.14×10-5 11.近似数0.33万表示为( )A .3.3×10-2 B .3.3000×103 C .3.3×103 D .0.33×104 12.下列各式中正确的有( ) ①;9)31(2=-②2-2=-4;③a 0=1;④(-1)-1=1;⑤(-3)2=36.A .2个B .3个C .4个D .1个 三、解答题13.用科学记数法表示:(1)0.00016 (2)-0.0000312 (3)1000.5 (4)0.00003万14.计算:(1)98÷98 (2)10-3 (3)2010)51(-⨯15.地球的质量为6×1013亿吨,太阳的质量为1.98×1019亿吨,则地球的质量是太阳质量的多少倍(用负指数幂表示)?综合、运用、诊断一、填空题16.=-+-01)π()21(______,-1+(3.14)0+2-1=______.17.=-+---|3|)12()21(01______.18.计算(a -3)2(ab 2)-2并把结果化成只含有正整数指数幂形式为______. 19.“神威一号”计算机运算速度为每秒384000000000次,其运算速度用科学记数法表示,为______次/秒.20.近似数-1.25×10-3有效数字的个数有______位. 二、选择题21.2009200908)125.0()13(⨯+-的结果是( ) A .3 B .23- C .2 D .022.将201)3(,)2(,)61(---这三个数按从小到大的顺序排列为()A .21)3()61()2(-<<-- B .201)3()2()61(-<-<-C .12)61()2()3(-<-<-D .12)61()3()2(-<-<-三、解答题23.计算下列各式,并把结果化成只含有正整数指数幂的形式:(1)(a 2b -3)-2(a -2b 3)2 (2)(x -5y -2z -3)2(3)(5m -2n 3)-3(-mn -2)-224.用小数表示下列各数:(1)8.5×10-3 (2)2.25×10-8 (3)9.03×10-5测试8 分式方程的解法学习要求了解分式方程的概念和检验根的意义,会解可化为一元一次方程的分式方程.课堂学习检测一、填空题 1.分式方程1712112-=-++x x x 若要化为整式方程,在方程两边同乘的最简公分母是______. 2.方程111=+x 的解是______.3.方程625--=-x x x x 的解是______. 4.x =2是否为方程32121---=-x x x 的解?答:______. 5.若分式方程127723=-+-xax x 的解是x =0,则a =______.二、选择题6.下列关于x 的方程中,不是分式方程的是( ) A .11=+x xB .4132=+x xC .52433=+x xD .6516-=x x 7.下列关于x 的方程中,是分式方程的是( ) A .55433+=--x x B .abb x b a a x +=- C .11)1(2=--x xD .nx m n n x =- 8.将分式方程yyy y 2434216252--=+-+化为整式方程时,方程两边应同乘( ). A .(2y -6)(4-2y ) B .2(y -3) C .4(y -2)(y -3) D .2(y -3)(y -2)9.方程4321+-=+-x x x x 的解是( ) A .x =-4 B .21-=x C .x =3 D .x =110.方程34231--=+-x xx 的解是( ) A .0 B .2C .3D .无解11.分式方程)2(6223-+=-x x x x 的解是( ) A .0B .2C .0或2D .无解三、解分式方程12.0227=-+x x13.3625+=-x x 14.45411--=--x xx 15.1617222-=-++x xx xx综合、运用、诊断一、填空题16.当x =______时,分式x 3与x-62的值互为相反数. 17.下列每小题中的两个方程的解是否相同? (1)2322-=-+x x x 与x +2=3 ( ) (2)2422-=-+x x x 与x +2=4 ( ) (3)113112-+=-++x x x 与x +2=3 ( ) 18.当m =______时,方程312=-xm 的解为1. 19.已知分式方程 424-+=-x ax x 有增根,则a 的值为______. 二、选择题 20.若分式方程58)1()(2-=-+x a a x 的解为,51-=x 则a 等于( )A .65 B .5C .65-D .-521.已知,11,11cb b a -=-=用a 表示c 的代数式为( ) A .b c -=11 B .ca -=11 C . aa c -=1 D .a a c 1-=22.若关于x 的方程0111=----x xx m 有增根,则m 的值是( ) A .3B .2C .1D .-123.将公式21111R R R +=(R ,R 1,R 2均不为零,且R ≠R 2)变形成求R 1的式子,正确的是( ) A .R R RR R -=221 B .R R RR R +=221 C .2211R RR RR R +=D .221R R RR R -=三、解分式方程 24.1211422+=+--x xx x x 25.2224412-++=--x x x x x26.32)3)(2(122-=-----x x x x x x x 27.xx x x x x ---+-=-+41341216852拓展、探究、思考28.若关于x 的分式方程211=--x m 的解为正数,求m 的取值范围.29.(1)如下表,方程1、方程2、方程3……是按照一定规律排列的一列方程.猜想方程(2)若方程)(11b a bx x a >=--的解是x 1=6,x 2=10,猜想a 、b 的值,该方程是不是(1)中所给出的一列方程中的一个?如果是,是第几个?(3)请写出这列方程中的第n 个方程和它的解.测试9 列分式方程解应用题学习要求会列出分式方程解简单的应用问题.课堂学习检测一、选择题1.某班学生军训打靶,有m 人各中靶a 环,n 人各中靶b 环,那么所有中靶学生的平均环数是( ) A .nm ba ++ B .nm bnam ++ C .)(21nb m a +D .)(21bn am +2.某农场挖一条480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x 米,那么下列方程正确的是( ) A .420480480=+-x x B .204480480=+-x x21 C .448020480=--x x D .204804480=--xx 二、列方程解应用题3.一辆汽车先以一定速度行驶120千米,后因临时有任务,每小时加5千米,又行驶135千米,结果行驶这两段路程所用时间相等,求汽车先后行驶的速度.4.一个车间加工720个零件,预计每天做48个,就能如期完成,现在要提前5天完成,每天应该做多少个?5.甲、乙两同学学习电脑打字,甲打一篇3000字的文章与乙打一篇2400字的文章所用的时间相同,已知甲每分钟比乙多打12个字,问甲、乙两人每分钟各打字多少个?6.某煤矿现在平均每天比原计划多采330吨煤,已知现在采33000吨煤所需的时间和原计划采23100吨煤的时间相同.问现在平均每天采煤多少吨?综合、运用、诊断一、填空题7.仓库贮存水果a 吨,原计划每天供应市场m 吨,若每天多供应2吨,则要少供应______天.8.某人上山,下山的路程都是s ,上山速度v 1,下山速度v 2,则这个人上山和下山的平均速度是______.9.若一个分数的分子、分母同时加1,得;21若分子、分母同时减2,则得,31这个分数是______. 二、列方程解应用题10.某市决定修建一条从市中心到飞机场的轻轨铁路,为了使工程能提前3个月完成,需要将原定的工作效率提高12%,问原计划完成这项工程用多少月?11.某一工程招标时,接到甲、乙两工程队的投标书,每施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元.目前有三种施工方案:方案一:甲队单独完成此项工程刚好如期完成;方案二:乙队单独完成此项工程比规定日期多5天;方案三:若甲、乙两队合作4天,剩下的工程由乙队单独做也正好如期完成. 哪一种方案既能如期完工又最节省工程款?...................。

人教版八年级数学第十六章分式知识点总结

人教版八年级数学第十六章分式知识点总结

第十六章 分式知识点及典型例子一、分式的定义:如果A 、B 表示两个整式,且B 中含有未知数,那么式子BA 叫做分式。

二、在分式中,如果________,则分式AB 有意义;如果________,则分式A B无意义;如果________且_________不为零时,则分式A B的值为零;如果__________,则分式0A B > 如果____________,则分式0A B <; 例1.下列各式aπ,11x +,15x+y ,22a b a b --,-3x 2,0•中,是分式的有( )个。

例2.下列分式,当x 取何值时有意义。

(1)2132x x ++; (2)2323x x +-。

例3. 当x________时,分式2134x x +-的值为正数,当x________时,分式2134x x +-的值为负数 例4.当x______时,分式2134x x +-无意义。

当x_______时,分式2212x x x -+-的值为零。

当x_________时,分式2361x x -+的值为负数。

三、分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变,用字母表示为_________________________________.分式的分子、分母和分式本身的符号改变其中任何____个,分式的值不变.四、约分:把分式的分子与分母的公因式约去,这样的分式变形叫做分式的约分,约分的理论依据是分式的___________________。

约分的方法:分式的分子与分母同除以他们的公因式,如果分式的分子、分母都是单项式,就直接约去分子、分母的__________;如果分式的分子或分母是多项式,就先__________,再判断公因式进行约分。

最简分式:分子与分母没有____________的分式,叫做最简分式。

(注意约分一定要彻底)五、通分:利用分式的基本性质把几个异分母的分式化为_________的分式,这样的分式变形叫做分式的通分。

北京课改版数学八年级上册 10.1《分式》 课件3 (共23张PPT)

北京课改版数学八年级上册 10.1《分式》 课件3  (共23张PPT)

的值.
如果a=3呢? a = - 2 呢? 5
请你选择一个喜欢的数a来计算这个分式的值.
思考
问题2在分式 a 3 中,a的值可以取-2吗?为什
么?
a2
10.1 分式
问题3
当x取什么值时,x(-1)2 分式
x- 2 x-
2 无意义、有意 3
义?(2)分式 2 x - 3 的值为零?
在分式中,分母的值不能是零。如果 分母的值是零,则分式没有意义。
分母含有字母是分式,
分母不含字母是整式。
10.1 分式
交流
aaLeabharlann 分式 b 、 b - 1试举例说明。
可以表示不同的实际意义,
10.1 分式
1
x
1-x
-3
将其中2张卡片分别放在分子、分母上, 它们组成的式子是分式吗?如果是分式,它 什么时候有意义?
10.1 分式
问题1
求当a=1时,分式
a- a+
3 2
是否含字母无关.
2.在分式中,分母不能为零.如果分母为零, 则分式没有意义.
3.如果分子为零且分母不为零,则分式的值 为零.
在例分如式:m在9-分n中式,mas-n中≠,0a,≠即0m;≠n.
10.1 分式
做一做 1.填表:
x -1 3- x 2
-2 -1
5
4
01 2
2 无意义
2、当x取什么值时,下列分式有意义? 下列分式的值为零?
2+x (1)
x
x (2)
4-3x
1.有理式是分式还是整式的关键是观察分 母是否含有字母.如果分母不含字母,就是 整式;如果分母含有字母,就是分式,与分子
分式与整式有什么不同? 整式和分式统称有理式,即

(完整版)北京市西城区学探诊__八年级数学_第22章一元二次方程

(完整版)北京市西城区学探诊__八年级数学_第22章一元二次方程

第二十二章 一元二次方程测试1 一元二次方程的有关概念及直接开平方法一、填空题:1.只含有__________个未知数,并且未知数的__________次数是2的方程,叫做一元二次方程,它的一般形式为______________________________.2.把2x 2-1=6x 化一般形式为________,二次项系数为________,一次项系数为________,常数项为________.3.若(k +4)x 2-3x -2=0是关于x 的一元二次方程,则k 的取值范围是________.4.把(x +3)(2x +5)-x (3x -1)=15化成一般形式为________a =________,b =________,c =________.5.若(m -2)x m 2-2+x -3=0是关于x 的一元二次方程,则m 的值是________.6.方程y 2-12=0的根是________.二、选择题:7.下列方程中一元二次方程的个数为( )(1)2x 2-3=0; (2)x 2+y 2=5; (3);542=-x (4).2122=+xx (A)1个 (B)2个 (C)3个 (D)4个8.ax 2+bx +c =0是关于x 的一元二次方程的条件是 ( ).(A)a 、b 、c 为任意实数 (B)a 、b 不同时为零(C)a 不为零 (D)b 、c 不同时为零9.x 2-16=0的根是 ( ).(A)只有4 (B)只有-4 (C)±4 (D)±810.3x 2+27=0的根是 ( ).(A)x 1=3,x 2=-3 (B)x =3(C)无实数根 (D)以上均不正确三、解答题:用直接开平方法解一元二次方程:11.822=y .12.2)3(2=+x13..25)1(412=+x 14.012)12(32=--x .15.把方程x x x +=-2232化为一元二次方程的一般形式(二次项系数为正)是___________,一次项系数是_____________.16.把关于x 的一元二次方程(2-n )x 2-n (3-x )+1=0化为一般形式为___________,二次项系数为___________,一次项系数为___________,常数项为___________.17.关于x 的方程(m 2-9)x 2+(m +3)x +5m -1=0,当m =___________时,方程为一元二次方程;当m ___________时,方程为一元一次方程.二、选择题:18.若x =-2是方程x 2-2ax +8=0的一个根.则a 的值为 ( ).(A)-1 (B)1 (C)-3 (D)319.若x =b 是方程x 2+ax +b =0的一个根,b ≠0,则a +b 的值是 ( ).(A)-1 (B)1 (C)-3 (D)320.若(m -1)x 2+x m =4是关于x 的一元二次方程,则m 的取值范围是 ( ).(A)m ≠1 (B)m >1(C)m ≥0且m ≠1 (D)任何实数 三、解答题:(用直接开平方法解下列方程)21.(3x -2)(3x +2)=8.22.(5-2x )2=9(x +3)2.23..063)4(22=--x 24.(x -m )2=n .(n 为正数)25.如果一元二次方程ax 2+bx +c =0(a ≠0)有两根1和-1,那么a +b +c =_______,a -b +c =_______.26.如果(m -2)x |m |+mx -1=0是关于x 的一元二次方程,那么m 的值为( ).(A)2或-2 (B)2 (C)-2 (D)以上都不正确27.已知关于x 的一元二次方程(m -1)x 2+2x +m 2-1=0有一个根是0,求m 的值.28.已知m 是方程x 2-x -1=0的一个根,求代数式5m 2-5m +2004的值.测试2 配方法解一元二次方程一、填上适当的数使下面各等式成立:1.x 2-8x +_______=(x -_______)2.2.x 2+3x +_______=(x +_______)2.3.x x 232-+_______=(x -_______)2.4.++x x 232_______=(x +_______)2.5.+-px x 2_______=(x -_______)2.6.+-x a bx 2_______=(x -_______)2.二、选择题:7.用配方法解方程,01322=--x x 应该先把方程变形为 ( ) (A)98)31(2=-x (B)98)31(2-=-x (C)910)31(2=-x (D)0)32(2=-x8.把x 2-4x 配成完全平方式需加上 ( ).(A)4 (B)16 (C)8 (D)19.x x 212-配成完全平方式需加上 ( ).(A)1 (B)41 (C)161(D)8110.若x 2+px +16是一个完全平方式,则p 的值为 ( ).(A)±2 (B)±4 (C)±8 (D)±16三、解答题:(用配方法解一元二次方程)11.x 2-2x -1=0. 12.y 2-6y +6=0.13.4x 2-4x =3. 14.3x 2-4x =2.一、用适当的数填入空内,使等式成立:15.3x 2-6x +1=3(x -_________)2-_________.16.2x 2+5x -1=2(x +_________)2-_________.17.6x 2-5x +3=6(x -_________)2+_________.18.23222=--x x (x -_________)2-_________.二、选择题:19.若关于x 的二次三项式x 2-ax +2a -3是一个完全平方式,则a 的值为().(A)-2 (B)-4 (C)-6 (D)2或620.将4x 2+49y 2配成完全平方式应加上 ( )(A)14xy (B)-14xy (C)±28xy (D)021.用配方法解方程x 2+px +q =0,其配方正确的是 ( ). (A)44)2(22q p p x -=+ (B)44)2(22q p p x -=- (C)44)2(22p q P x -=+ (D)44)2(22p q p x -=- 三、解答题:(用配方法解一元二次方程) 22.3x 2-4x =2.23..231322=+x x24..06262=--y y 25.x 2+2mx =n .(n +m 2≥0)26.用配方法说明:无论x 取何值,代数式x 2-4x +5的值总大于0,再求出当x 取何值时,代数式x 2-4x +5的值最小?最小值是多少?测试3 公式法解一元二次方程一、填空题:1.关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的根是________.2.用公式法解一元二次方程3x 2-8x +2=0,它的两根是________.3.一元二次方程(2x +1)2-(x -3)(2x -1)=3x 中的二次项系数是________,一次项系数是________,常数项是________.4.方程013212=+-x x 的根为________. 二、选择题:5.方程x 2-2x -2=0的两根为 ( ).(A)x 1=1,x 2=-2 (B)x 1=-1,x 2=2 (C)31,3121-=+=x x (D)13,1321+=-=x x 6.用公式法解一元二次方程,2412x x =-它的根正确的应是 ( ). (A)25221±-=,x (B)2522,1±=x (C)2512,1±=x (D)2312,1±=x 7.方程mx 2-4x +1=0(m ≠0)的根是 ( ). (A)4121==x x (B)mm x -±=422,1 (C)m m x -±=4222,1 (D)mm m x -±=422,1 8.若代数式x 2-6x +5的值等于12,则x 的值应为 ( ).(A)1或5 (B)7或-1 (C)-1或-5 (D)-7或1三、解答题:(用公式法解一元二次方程)9.x 2+4x -3=0. 10.3x 2-8x +2=0.11.03232=--x x . 12.4x 2-3=11x .一、填空题:13.若关于x 的方程x 2+mx -6=0的一个根是2,则m =________,另一根是________.二、选择题:14.关于x 的一元二次方程ax a x 32222=+的两根应为 ( ). (A)2221ax ±-=, (B)a x a x 22,221==(C)4222,1a x ±=(D)a x 22,1±= 三、解答题:(用公式法解下列一元二次方程) 15.2x -1=-2x 2.16..32132x x =+17..06)23(2=++-x x 18..22)1)(1(x x x =-+19.用公式法解方程:(1)x 2+mx +2=mx 2+3x .(m ≠1)(2)x 2十4ax 十3a 2+2a -1=0.20.解关于x 的方程:mx 2-(m 2-1)x -m =0.测试4 一元二次方程根的判别式一、填空题:1.一元二次方程ax 2+bx +c =0(a ≠0)根的判别式为△=b 2-4ac ,当b 2-4ac ________0时,方程有两个不相等的实数根;当b 2-4ac ________0时,方程有两个相等的实数根;当b 2-4ac ________0时,方程没有实数根.2.若关于x 的方程x 2-2x -m =0有两个不相等的实数根,则m ________.3.若关于x 的方程x 2-2x -k +1=0有两个实数根,则k ________.4.若方程2x 2-(2m +1)x +m =0根的判别式的值是9,则m =________.二、选择题:5.方程x 2-3x =4根的判别式的值是 ( ).(A)-7 (B)25 (C)±5 (D)56.若一元二次方程ax 2+bx +c =0有两个实数根,则根的判别式的值应是( ).(A)正数 (B)负数 (C)非负数 (D)零7.下列方程中有两个相等实数根的是 ( ).(A)7x 2-x -1=0 (B)9x 2=4(3x -1)(C)x 2+7x +15=0 (D)02322=--x x 8.方程x 2+23x +3=0 ( ).(A)有两个不相等的实数根 (B)有两个相等的有理根(C)没有实数根 (D)有两个相等的无理根三、解答题:9.k 为何值时,一元二次方程kx 2-6x +9=0①有不相等的两个实数根;②有相等的两个实数根;③没有实数根.10.若方程(a -1)x 2+2(a +1)x +a +5=0有两个实数根,求正整数a 的值.11.求证:不论m 取任何实数,方程02)1(2=++-m x m x 都有两个不相等的实数根.一、选择题:12.方程ax 2+bx +c =0(a ≠0)根的判别式是 ( ). (A)242ac b b -±- (B)ac b 42-(C)b 2-4ac (D)a 、b 、c13.若关于x 的方程(x +1)2=1-k 没有实数根,则k 的取值范围是 ( )(A)k <1 (B)k <-1 (C)k ≥1 (D)k >114.若关于x 的方程3kx 2+12x +k +1=0有两个相等的实数根,则k 的值为( ).(A)-4 (B)3 (C)-4或3 (D)21或32- 15.若关于x 的一元二次方程(m -1)x 2+2mx +m +3=0有两个不相等的实数根,则m值的范围是 ( ). (A)23<m (B)23<m 且m ≠1 (C)23≤m 且m ≠1 (D)23>m 16.如果关于x 的二次方程a (1+x 2)+2bx =c (1-x 2)有两个相等的实数根,那么以正数a 、b 、c 为边长的三角形是 ( ).(A)锐角三角形 (B)钝角三角形(C)直角三角形 (D)任意三角形二、解答题:17.已知方程mx 2+mx +5=m 有两个相等的实数根,求方程的解.18.m 为何值时,关于x 的方程(m 2-1)x 2+2(m +1)x +1=0有实数根?19.求证:不论k 取何实数,方程(k 2+1)x 2-2kx +(k 2+4)=0都没有实根.(三)拓广、探究、思考20.已知方程x 2+2x -m +1=0没有实数根,求证:方程x 2+mx =1-2m 一定有两个不相等的实数根.21.已知12<m <60,且关于x 的二次方程x 2-2(m +1)x +m 2=0有两个整数根,求整数m 的值,并求此时方程的根.测试5 因式分解法解一元二次方程(1)一、写出下列一元二次方程的根:1.x (x -3)=0_______. 2.(2x -7)(x +2)=0 _______.3.3x 2=2x_______. 4.x 2+6x +9=0_______.5.03222=-x x _______.6.x x )21()21(2-=+ _______. 7.(x -1)2-2(x -1)=0 _______.8.(x -1)2-2(x -1)=-1 _______.二、选择题:9.方程(x -a )(x -b )=0的两根是 ( ).(A)x 1=a ,x 2=b (B)x 1=a ,x 2=-b(C)x 1=-a ,x 2=b (D)x 1=-a ,x 2=-b10.在下列解方程过程中正确的是 ( ).(A)x 2=x ,两边同除以x ,得x =1.(B)x 2+4=0,直接开平方法可得,x =±2.(C)(x -2)(x +1)=3×2 ∵x -2=3,x +1=2, ∴x 1=5, x 2=1.(D)(2-3x )+(3x -2)2=0整理得 3(3x -2)(x -1)=0 ∴.1,3221==x x 三、用因式分解法解下列方程(*题用十字相乘法因式分解解方程)11.3x (x -2)=2(x -2) 12.x 2-4x +4=(2-3x )2.*13.x 2-3x -28=0. *14.x 2-6x +8=0.*15.(2x -1)2-2(2x -1)=3. *16.x (x -3)=3x -9.一、写出下列一元二次方程的根:17.2x 2-26x =0._________________________.18.(x +1)(x -1)=2._________________________.19.(x -2)2=(2x +5)2._________________________.20.2x 2-x -15=0._________________________.二、选择题:21.方程x (x -2)=2(2-x )的根为 ( ).(A)x =-2 (B)x =2(C)x 1=2,x 2=-2 (D)x 1=x 2=222.方程(x -1)2=1-x 的根为 ( ).(A)0 (B)-1和0 (C)1 (D)1和023.若实数x 、y 满足(x -y )(x -y +3)=0,则x -y 的值是 ( )(A)-1或-2 (B)-1或2(C)0或3 (D)0或-3 三、用因式分解法解下列关于x 的方程:24.x 2+2mx +m 2-n 2=0.25..04222=-+-b a ax x26.x 2-bx -2b 2=0.*测试6 因式分解法解一元二次方程(2)(一)课堂学习检测一、填空题:1.方程x 2+(32+1)x +32=0的根是____________.2.方程y (y +5)=24的根是____________.3.解方程(x 2-x )2-4(2x 2-2x -3)=0,可将方程变形为____________,原方程的解为____________.4.若(m 2+n 2)(m 2+n 2-2)-3=0,则m 2+n 2=____________. 二、选择题:5.下列一元二次方程的解法中,正确的是 ( ). (A)(x -3)(x -5)=10×2. (B)(2-5x )+(5x -2)2=0. x -3=10,∴x 1=13. 整理得(5x -2)(5x -3)=0.x -5=2,∴x 2=7.∴521=x ,532=x . (C)(x +2)2+4x =0. (D)x 2=x .整理得x 2+4=0. 两边同除以x ,得x =1. ∴x 1=2,x 2=-2.三、用因式分解法解下列方程:6..32x x =7.).2(5)2(2x x -=-8..048)3(42=--p9..3155222x x x -=-四、解答题:10.x 取什么值时,代数式x 2-8x +12的值等于-4?11.x 取什么值时,代数式x 2+8x -12的值等于2x 2+x 的值?12.x 为何值时,最简二次根式x x 22+与2422+x 是同类二次根式?(二)综合运用诊断一、选择题:13.x x =25的解是( ).(A)55=x (B)x =0,55=x (C)55-=x (D)5,0==x x 二、解关于x 的方程:16.ax (a -x )-ab 2=b (b 2-x 2)(a ≠b ).17.abx 2-(1+a 2b 2)x +ab =0(ab ≠0).三、解答题:18.解关于x 的方程:x 2-2x 十1-k (x 2-1)=0.19.已知(2m -3)≤1,且m 为正整数,试解关于x 的方程:3mx (x +1)-5(x +1)(x -1)=x 2.(三)拓广、探究、思考解下列方程:20.2p 2-5p +3=0. 21.3y 2+5y -2=0.22.6x 2-5x -21=0.测试7 一元二次方程解法综合训练学习要求:会用适当的方法解一元二次方程,培养分析问题和解决问题的能力.(一)课堂学习检测一、写出下列一元二次方程的根:1.3(x -1)2-1=0.______________________.2.(2x +1)2-2(2x +1)=3.______________________.3.3x 2-5x +2=0.______________________. 4.x 2-4x -6=0.______________________. 二、选择题:5.方程x 2-4x +4=0的根是 ( ). (A)x =2 (B)x 1=x 2=2 (C)x =4(D)x 1=x 2=46.5.27.0512=+x 的根是 ( ).(A)x =3(B)x =±3(C)x =±9(D)3±=x7.072=-x x 的根是 ( ) (A)77=x(B)x 1=0,772=x (C)7,021==x x(D)7=x8.(x -1)2=x -1的根是 ( ). (A)x =2 (B)x =0或x =1 (C)x =1(D)x =1或x =2 三、用适当方法解下列方程:9.6x 2-x -2=0. 10.(x +3)(x -3)=3.四、解关于x 的方程:11.4x 2-4mx +m 2-n 2=0.12.2a 2x 2-5ax +2=0(a ≠0).(二)综合运用诊断一、填空题:13.若分式1872+--x x x 的值是0,则x =________________.14.x 2+2ax +a 2-b 2=0的根是________________. 二、选择题:15.关于方程3x 2=0和方程5x 2=6x 的根,下列结论正确的是 ( ).(A)它们的根都是x =0 (B)它们有一个相同根x =0 (C)它们的根都不相同 (D)以上结论都不正确16.关于x 的方程abx 2-(a 2+b 2)x +ab =0(ab ≠0)的根是 ( ).(A)bax a b x 2,221==(B)bax a b x ==21, (C)0,2221=+=x abb a x(D)以上都不正确.三、解下列方程:17.(2x +1)2=9(x -3)2.18.(y -5)(y +3)+(y -2)(y +4)=26.19.x 2+5x +k 2=2kx +5k -6. 20..066)3322(2=++-x x四、解答题:21.已知:x 2+3xy -4y 2=0(y ≠0),求yx yx +-的值.22.求证:关于x 的方程(a -b )x 2+(b -c )x +c -a =0(a ≠b )有一根为1.(三)拓广、探究、思考 23.已知一元二次方程ax 2+bx +c =0(a ≠0)中的两根为x 1,x 2=aacb b 242-±-,请你计算x 1+x 2=________,x 1x 2=________. 并由此结论,解决下面的问题:(1)方程2x 2+3x -5=0的两根之和为______,两根之积为______;(2)若方程2x 2+mx +n =0的两根之和为4,两根之积为-3,则m =______,n =______;(3)若方程x 2-4x +3k =0的一个根为2,则另一根为________,k 为______; (4)已知x 1,x 2是方程3x 2-2x -2=0的两根,求下列各式的值:①2111x x +; ②2221x x +;③(x 1-x 2)2; ④221221x x x x +; ⑤(x 1-2)(x 2-2).测试8 实际问题与一元二次方程(1)学习要求.会应用一元二次方程处理常见的各类实际问题. 一、填空题:1.实际问题中常见的基本等量关系:(1)工作效率=________;(2)距离=________;2.某工厂1993年的年产量为a (a >0),如果每年递增10%,那么1994年年产量是________,1995年年产量是________,这三年的总产量是________.3.某商品连续两次降价10%后的价格为a元,该商品的原价为________.二、选择题:4.两个连续奇数中,设较大一个为x,那么另一个为( ).(A)x十1 (B)x+2 (C)2x+1 (D)x-25.某厂一月份生产产品a件,如果二月份比一月份增加2倍,三月份的产量是二月份的2倍,那么三个月的产品总件数是( ).(A)5a(B)7a(C)9a(D)10a三、解答题:6.三个连续奇数的平方和为251,求这三个数.7.某工厂一月份产量是5万元,三月份的产值是11.25万元,求月平均增长率.8.有一块长方形铁皮,长32cm,宽24cm,在四角截去相同的小正方形,折起来做成一个无盖的盒子,要使盒底的面积为原来面积的一半,求这个盒子的高度.9.某钢厂今年1月份钢产量为4万吨,第一季度共生产钢13.24万吨.求2、3月份平均每月的增长率.10.如图,Rt△ACB中,∠C=90°,AC=8,BC=6.P、Q分别在AC、BC边上,同时由A、B两点出发,分别沿AC、BC方向向点C匀速移动,它们的速度都是1m/秒,几秒后△PCQ的面积为Rt△ACB面积的一半?11.张大叔从市场上买回一块矩形铁皮.他将此矩形铁皮的四个角各剪去一个边长为1m的正方形后,剩下的部分刚好能围成一个容积为15m3的无盖长方体运输箱,且运输箱底面的长比宽多2m.现已知购买这种铁皮每平方米需20元钱.问:张大叔购回这块矩形铁皮共花了多少元钱?测试9 实际问题与一元二次方程(2)学习要求:灵活地应用一元二次方程解决实际问题,提高分析问题和解决问题能力.解答题:1.上海市某电脑公司2007年的各项经营收入中,经营电脑配件的收入为600万元,占全年经营总收入的40%.该公司预计2009年经营总收入要达到2160万元,且计划从2007年到2009年,每年经营总收入的年增长率相同.问2008年预计经营总收入为多少万元?2.某商场销售一批衬衫,现在平均每天可售出20件,每件盈利40元,为扩大销售量,增加盈利,减少库存,商场决定采用适当降价措施,经调查发现,如果每件衬衫的售价每降低1元,那么商场平均每天可多售出2件,商场若要平均每天盈利1200元,每件衬衫应降价多少元?3.在一块长方形镜面玻璃的四周镶上与它的周长相等的边框,制成一面镜子,镜子的长与宽的比是2∶1.已知镜面玻璃的价格是每平方米120元,边框的价格是每米30元,另外制作这面镜子还需加工费45元.设制作这面镜子的总费用是y元,镜子的宽是x m.(1)求y与x之间的关系式;(2)如果制作这面镜子共花了195元,求这面镜子的长和宽.4.用长为100cm的铁丝做一个矩形框子.(1)王明做成的矩形框子为400cm2,张亮做成的矩形框子为600cm2.你知道为什么吗?(2)能做成面积为800cm2的矩形框子吗?为什么?5.如图,已知A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm.动点P、Q分别从A、C同时出发,点P以3cm/秒的速度向点B移动,一直到点B为止,点Q 以2cm/秒的速度向D移动.当P、Q两点从出发开始到几秒时,点P、Q间的距离是10cm?全章测试(1)一、填空题:1.将方程3x 2=5x +2化为一元二次方程的一般形式为________.2.一元二次方程2x 2+4x -1=0的二次项系数、一次项系数、常数项之和为________. 3.已知关于x 的方程x 2-5x +m -1=0.(1)若它有解x =1,则m =________.(2)若它有解x =-1,则m =________. 4.已知方程(x +1)(x +m )=0和x 2-2x -3=0的解相同,则m =________.5.已知关于x 的一元二次方程(m 2-1)x m -2+3mx -1=0,则m =________. 6.若关于x 的一元二次方程x 2+ax +a =0的一个根是3,则a =________. 7.已知a 是关于x 的方程x 2+bx +a =0的根,且a ≠0,则a +b =________.8.已知关于x 的方程x 2-2x +n -1=0有两个不相等的实数根,那么|n -2|+n +1的化简结果是________.二、选择题:9.下列方程中,是一元二次方程的是 ( ).(A)x 2+x +y =3(B)112=+xx (C)5x 2=0 (D)(x +1)(x -1)=x 2+x10.对于一元二次方程-3x 2+4x +2=0,若把它的二次项的系数变为正数,且使方程的根不变,则得方程 ( ). (A)3x 2+4x +2=0 (B)3x 2-4x -2=0 (C)3x 2-4x +2=0 (D)3x 2+4x -2=011.把x 2-3=-3x 化成一般形式ax 2+bx +c =0(a >0)后,a 、b 、c 的值分别为( ).(A)0、-3、-3 (B)1、-3、3 (C)1、3、-3 (D)1、-3、-312.方程(x +1)(x -1)=2x 2-4x -6化成一般形式为 ( ).(A)x 2-4x +5=0 (B)x 2+4x +5=0 (C)x 2-4x -5=0 (D)x 2+4x -5=013.方程x 2-px +q =0根的判别式△=4,则方程的根为 ( ).(A)x =±2(B)x =p ±4(C)x =p ±2(D)12±=p x 14.根据下列表格的对应值判断方程ax 2+bx +c =0(a ≠0,a 、b 、c 为常数)一个解x 的范围是 ( ).(A)3<x <3.23 (B)3.23<x <3.24 (C)3.24<x <3.25 (D)3.25<x <3.26三、解答题:15.解下列关于x 的方程:(1)(x +1)2=(1-2x )2.(直接开平方法)(2)x 2-6x +8=0.(因式分解法)(3).02222=+-x x (配方法)(4)x (x +4)=21.(公式法)(5)2.151522x x x -=-16.若关于x 的方程x 2+mx -6=0的一个根是2,求m 的值与另一个根.17.设关于x 的方程x 2-2mx -2m -4=0,证明:无论m 为何值时,方程总有两个不相等的实数根.18.一辆新的红旗轿车价值是25万元.若使用第一年后折旧20%,以后每年按另一折旧率进行折旧,第三年末这辆轿车的价值是16.2万元,问:这辆车在第二、三年中,平均每年的折旧率是多少?19.已知:a 、b 、c 分别是△ABC 的三边长.求证:方程b 2x 2+(b 2+c 2-a 2)x +c 2=0没有实数根.全章测试(2)一、填空题:1.当a =________时,方程(x -b )2=-a 有实数解,x 1=________,x 2=________. 2.已知(x 2+y 2+1)2=4,则x 2+y 2=________.3.已知多项式x 2-5x +2与x +2的值相等,则x =________.4.若最简二次根式72-m 与28+m 是同类二次根式,则m =________. 5.若x 2+4x +a 2+1是一个完全平方式,则a =________. 6.方程(x 2+2x -3)0=x 2-3x +3的根是________.7.若(x 2-5x +6)2+|x 2+3x -10|=0,则x =________. 8.将二次三项式x 2-2x -2进行配方,其结果等于________. 二、选择题:9.若分式122+--x x x 的值为0,则x 的值为( ).(A)-1或2 (B)0 (C)2 (D)-110.若),0(01212=/=+-a a a 则a -1等于 ( ).(A)-1 (B)1 (C)2 (D)-1或211.已知代数式x 2+3x +5的值为9,则代数式3x 2+9x -2的值为 ( ).(A)4 (B)6 (C)8 (D)1012.若关于x 的方程x 2-mx +2=0与x 2-(m +1)x +m =0有相同的实数根,则m 的值为 ( ). (A)3 (B)2 (C)4 (D)-313.若关于x 的方程3ax 2-32(a -1)x +a =0有实数根,则a 的取值范围是( ).(A)a ≤2且a ≠0(B)21≥a 且a ≠0(C)21<a (D)21≤a 且a ≠0 14.如果关于x 的一元二次方程0222=+-kx x 没有实数根,那么k 的最小整数值是 ( ). (A)0 (B)1 (C)2 (D)3三、解答题:15.用合适的方法解下列关于x 的一元二次方程:(1)4(2x +1)2=(x -3)2. (2)(x -1)2=2(1-x ).(3)-2x 2+2x +1=0. (4)x 2-(2a -b )x +a 2-ab =0.16.若关于x 的方程x 2+2(a +1)x +a 2+4a -5=0有实数根.求正整数a 的值.17.应用配方法把关于x 的二次三项式2x 2-4x +6变形,然后证明:无论x 取任何实数值,此二次三项式的值都是正数.18.已知a >b ,且有3a 2+5a -1=0,3b 2+5b -1=0,求a 、b 的值.19.已知a 、b 、c 分别是△ABC 的三边长,当m >0时,关于x 的一元二次方程c (x 2+m )+b (x 2-m )-2ax m =0有两个相等的实数根,试说明△ABC 一定是直角三角形.20.有100米长的篱笆材料,想围成一矩形仓库.要求面积为600平方米,在场地的北面有一堵50米的旧墙,有人用这个篱笆围成一个长40米,宽10米的仓库,但面积只有400平方米,不合要求,问应如何设计矩形的长与宽才能符合要求呢?。

北京西城学探诊八下数学答案

北京西城学探诊八下数学答案

参考答案第十七章 反比例函数测试1 反比例函数的概念1.xky =(k 为常数,k ≠0),自变量,函数,不等于0的一切实数. 2.(1)xy 8000=,反比例; (2)xy 1000=,反比例; (3)s =5h ,正比例,ha 36=,反比例; (4)xwy =,反比例. 3.②、③和⑧. 4.2,x y 1=. 5.)0(100>⋅=x xy 6.B . 7.A . 8.(1)xy 6=; (2)x =-4. 9.-2,⋅-=xy 410.反比例. 11.B . 12.D . 13.(1)反比例; (2)①Sh 48=; ②h =12(cm), S =12(cm 2). 14.⋅-=325x y 15..23x xy -=测试2 反比例函数的图象和性质(一)1.双曲线;第一、第三,减小;第二、第四,增大. 2.-2. 3.增大. 4.二、四. 5.1,2. 6.D . 7.B . 8.C . 9.C . 10.A . 11.列表:x … -6 -5 -4 -3 -2 -112 3 4 5 6 … y… -2 -2.4 -3 -4 -6 -12 126432.42…由图知,(1)y =3;(2)x =-6; (3)0<x <6.12.二、四象限. 13.y =2x +1,⋅=xy 1 14.A . 15.D 16.B 17.C 18.列表:x … -4 -3-2 -1 1 234… y…134 24-4-2 -34-1 …(1)y =-2; (2)-4<y ≤-1; (3)-4≤x <-1. 19.(1)xy 2-=, B (1,-2); (2)图略x <-2或0<x <1时; (3)y =-x .测试3 反比例函数的图象和性质(二)1.4. 2.3. 3.y 2. 4.①③④. 5.B . 6.B . 7.C . 8.xy 3=. 9.-3;-3. 10.(-2,-4). 11..221<<y . 12.B . 13.D. 14.D . 15.D . 16.(1)xy 3=,y =x +2;B (-3,-1); (2)-3≤x <0或x ≥1. 17.(1))0(3>=x x y ;(2).332+-=x y 18.(1)x y x y 9,==;(2)23=m ;;29-=x y(3)S 四边形OABC =1081.测试4 反比例函数的图象和性质(三)1.(-1,-2). 2.-1,y <-1或y >0,x ≥2或x <0. 3..224-- 4.0. 5.>;一、三. 6.B . 7.C 8.(1)m =n =3;(2)C ′(-1,0). 9.k =2. 10.⋅-=xy 311.5,12. 12.2. 13.<. 14.C . 15.A . 16.(1)m =6,y =-x +7;(2)3个. 17.A(4,0). 18.(1)解⎩⎨⎧=+-=+-0,5b ak b k 得15+=k a ;(2)先求出一次函数解析式95095+-=x y ,A (10,0),因此S △COA =25. 19.(1)2121,3--=-=x y x y ;(2).2=CD AD测试5 实际问题与反比例函数(一)1.xy 12=;x >0. 2.⋅=x y 903.A . 4.D . 5.D . 6.反比例;⋅=tV 3007.y =30πR +πR 2(R >0). 8.A . 9.(1))0(20>=x xy ; (2)图象略; (3)长cm.320.测试6 实际问题与反比例函数(二)1.).0(12>=V vρ 2.(1)5; (2)R I 5=; (3)0.4; (4)10.3.(1)48; (2))0(48>=t tV ; (3)8; (4)9.6. 4.(1))0(9>=ρρV ; (2)ρ=1.5(kg/m 3); (3)ρ有最小值1.5(kg/m 3).5.C . 6.(1)V p 96=; (2)96 kPa ; (3)体积不小于3m 3524. 7.(1))0(6>=R RI ; (2)图象略; (3)I =1.2A >1A ,电流强度超过最大限度,会被烧. 8.(1)x y 43=,0≤x ≤12;y =x108 (x >12); (2)4小时. 9.(1)xy 12000=;x 2=300;y 4=50;(2)20天第十七章 反比例函数全章测试1.m =1. 2.k <-1;k ≠0. 3..22 4.⋅-=xy 1. 5.⋅=x y 66.).4,49()4,49(21--Q Q 7.C . 8.C . 9.A . 10.D . 11.D . 12.C . 13.B . 14.B . 15.B .16.(1)y =-6; (2)4<x <6; (3)y <-4或y >6. 17.(1)第三象限;m >5; (2)A (2,4);⋅=xy 8 18.(1);8xy -= (2)S △AOC =12. 19.(1,0) 20.(1),8xy -= y =-x -2; (2)C (-2,0),S △AOB =6; (3)x =-4或x =2; (4)-4<x <0或x >2. 21.(1);6,32xy x y ==(2)0<x <3; (3)∵S △OAC =S △BOM =3,S 四边形OADM =6, ∴S 矩形OCDB =12; ∵OC =3, ∴CD =4: 即n =4,⋅=∴23m 即M 为BD 的中点,BM =DM . 22.k =12第十八章 勾股定理测试1 勾股定理(一)1.a 2+b 2,勾股定理. 2.(1)13; (2)9; (3)2,3; (4)1,2. 3.52. 4.52,5. 5.132cm . 6.A . 7.B . 8.C . 9.(1)a =45cm .b =60cm ; (2)540; (3)a =30,c =34; (4)63; (5)12.10.B . 11..5 12.4. 13..31014.(1)S 1+S 2=S 3;(2)S 1+S 2=S 3;(3)S 1+S 2=S 3.测试2 勾股定理(二)1.13或.119 2.5. 3.2. 4.10. 5.C . 6.A . 7.15米. 8.23米. 9.⋅3310 10.25. 11..2232- 12.7米,420元. 13.10万元.提示:作A 点关于CD 的对称点A ′,连结A ′B ,与CD 交点为O .测试3 勾股定理(三)1.;343415,34 2.16,19.2. 3.52,5. 4..432a5.6,36,33. 6.C . 7.D8..132 提示:设BD =DC =m ,CE =EA =k ,则k 2+4m 2=40,4k 2+m 2=25.AB =.1324422=+k m9.,3213,31102222+=+=图略.10.BD =5.提示:设BD =x ,则CD =30-x .在Rt △ACD 中根据勾股定理列出(30-x )2=(x +10)2+202,解得x =5.11.BE =5.提示:设BE =x ,则DE =BE =x ,AE =AD -DE =9-x .在Rt △ABE 中,AB 2+AE 2=BE 2,∴32+(9-x )2=x 2.解得x =5.12.EC =3cm .提示:设EC =x ,则DE =EF =8-x ,AF =AD =10,BF =622=-AB AF ,CF =4.在Rt △CEF 中(8-x )2=x 2+42,解得x =3. 13.提示:延长FD 到M 使DM =DF ,连结AM ,EM .14.提示:过A ,C 分别作l 3的垂线,垂足分别为M ,N ,则易得△AMB ≌△BNC ,则.172,34=∴=AC AB15.128,2n -1.测试4 勾股定理的逆定理1.直角,逆定理. 2.互逆命题,逆命题. 3.(1)(2)(3). 4.①锐角;②直角;③钝角. 5.90°. 6.直角.7.24.提示:7<a <9,∴a =8. 8.13,直角三角形.提示:7<c <17. 9.D . 10.C . 11.C . 12.CD =9. 13..51+14.提示:连结AE ,设正方形的边长为4a ,计算得出AF ,EF ,AE 的长,由AF 2+EF 2=AE 2得结论. 15.南偏东30°.16.直角三角形.提示:原式变为(a -5)2+(b -12)2+(c -13)2=0.17.等腰三角形或直角三角形.提示:原式可变形为(a 2-b 2)(a 2+b 2-c 2)=0. 18.352+122=372,[(n +1)2-1]2+[2(n +1)]2=[(n +1)2+1]2.(n ≥1且n 为整数)第十八章 勾股定理全章测试1.8. 2..3 3..10 4.30. 5.2.6.3.提示:设点B 落在AC 上的E 点处,设BD =x ,则DE =BD =x ,AE =AB =6, CE =4,CD =8-x ,在Rt △CDE 中根据勾股定理列方程. 7.26或.2658.6.提示:延长AD 到E ,使DE =AD ,连结BE ,可得△ABE 为Rt △. 9.D . 10.C 11.C . 12.B 13..2172提示:作CE ⊥AB 于E 可得,5,3==BE CE 由勾股定理得,72=BC 由三角形面积公式计算AD 长.14.150m 2.提示:延长BC ,AD 交于E . 15.提示:过A 作AH ⊥BC 于HAP 2+PB ·PC =AH 2+PH 2+(BH -PH )(CH +PH ) =AH 2+PH 2+BH 2-PH 2 =AH 2+BH 2=AB 2=16. 16.14或4.17.10; .16922n +18.(1)略; (2)定值, 12;(3)不是定值,.10226,1028,268+++ 19.在Rt △ABC 中,∠ACB =90°,AC =8,BC =6由勾股定理得:AB =10,扩充部分为Rt △ACD ,扩充成等腰△ABD ,应分以下三种情况.①如图1,当AB =AD =10时,可求CD =CB =6得△ABD 的周长为32m .图1②如图2,当AB =BD =10时,可求CD =4图2由勾股定理得:54=AD ,得△ABD 的周长为.m )5420(+. ③如图3,当AB 为底时,设AD =BD =x ,则CD =x -6,图3由勾股定理得:325=x ,得△ABD 的周长为.m 380 第十九章 四边形测试1 平行四边形的性质(一)1.平行,□ABCD . 2.平行,相等;相等;互补;互相平分;底边上的高. 3.110°,70°. 4.16cm ,11cm . 5.互相垂直. 6.25°. 7.25°. 8.21cm 2. 9.D . 10.C . 11.C .12.提示:可由△ADE ≌△CBF 推出. 13.提示:可由△ADF ≌△CBE 推出. 14.(1)提示:可证△AED ≌△CFB ;(2)提示:可由△GEB ≌△DEA 推出, 15.提示:可先证△ABE ≌△CDF .(三)16.B (5,0) C (4,3)D (-1,3). 17.方案(1)画法1:(1)过F作FH∥AB交AD于点H(2)在DC上任取一点G连接EF,FG,GH,HE,则四边形EFGH就是所要画的四边形;画法2:(1)过F作FH∥AB交AD于点H(2)过E作EG∥AD交DC于点G连接EF,FG,GH,HE,则四边形EFGH就是所要画的四边形画法3:(1)在AD上取一点H,使DH=CF(2)在CD上任取一点G连接EF,FG,GH,HE,则四边形EFGH就是所要画的四边形方案(2)画法:(1)过M点作MP∥AB交AD于点P,(2)在AB上取一点Q,连接PQ,(3)过M作MN∥PQ交DC于点N,连接QM,PN则四边形QMNP就是所要画的四边形测试2 平行四边形的性质(二)1.60°、120°、60°、120°.2.1<AB<7.3.20.4.6,5,3,30°.5.20cm,10cm.6.18.提示:AC=2AO.7.53cm,5cm.8.120cm2.9.D;10.B.11.C.12.C.13.B.14.AB =2.6cm ,BC =1.7cm .提示:由已知可推出AD =BD =BC .设BC =x cm ,AB =y cm ,则⎩⎨⎧=+=+.6.8)(2,62y x y x 解得⎩⎨⎧==,6.2,7.1y x15.∠1=60°,∠3=30°.16.(1)有4对全等三角形.分别为△AOM ≌△CON ,△AOE ≌△COF ,△AME ≌△CNF ,△ABC ≌△CDA .(2)证明:∵OA =OC ,∠1=∠2,OE =OF ,∴△OAE ≌△OCF .∴∠EAO =∠FCO .又∵在□ABCD 中,AB ∥CD ,∴∠BAO =∠DCO .∴∠EAM =∠NCF .17.9.测试3 平行四边形的判定(一)1.①分别平行; ②分别相等; ③平行且相等; ④互相平分; ⑤分别相等;不一定; 2.不一定是.3.平行四边形.提示:由已知可得(a -c )2+(b -d )2=0,从而⎩⎨⎧==.,d b c a4.6,4; 5.AD ,BC . 6.D . 7.C . 8.D .9.提示:先证四边形BFDE 是平行四边形,再由EM NF 得证. 10.提示:先证四边形AFCE 、四边形BFDE 是平行四边形,再由GE ∥FH ,GF ∥EH 得证. 11.提示:先证四边形EBFD 是平行四边形,再由EPQF 得证.12.提示:先证四边形EBFD 是平行四边形,再证△REA ≌△SFC ,既而得到RE SF .13.提示:连结BF ,DE ,证四边形BEDF 是平行四边形. 14.提示:证四边形AFCE 是平行四边形.15.提示:(1)DF 与AE 互相平分;(2)连结DE ,AF .证明四边形ADEF 是平行四边形. 16.可拼成6个不同的四边形,其中有三个是平行四边形.拼成的四边形分别如下:测试4 平行四边形的判定(二)1.平行四边形. 2.18. 3.2. 4.3. 5.平行四边形. 6.C . 7.D . 8.D . 9.C . 10.A . 11.B . 12.(1)BF (或DF ); (2)BF =DE (或BE =DF );(3)提示:连结DF (或BF ),证四边形DEBF 是平行四边形. 13.提示:D 是BC 的中点. 14.DE +DF =1015.提示:(1)∵△ABC 为等边三角形,∴AC =CB ,∠ACD =∠CBF =60°.又∵CD =BF ,∴△ACD ≌△CBF .(2)∵△ACD ≌△CBF ,∴AD =CF ,∠CAD =∠BCF .∵△AED 为等边三角形,∴∠ADE =60°,且AD =DE .∴FC =DE . ∵∠EDB +60°=∠BDA =∠CAD +∠ACD =∠BCF +60°, ∴∠EDB =∠BCF .∴ED ∥FC . ∵EDFC ,∴四边形CDEF 为平行四边形.16.(1)x y 1=;(2))2,21(--A ; (3)P 1(-1.5,-2),P 2(-2.5,-2)或P 3 (2.5,2). 17.(1)m =3,k =12;(2)232+-=x y 或.232--=x y 测试5 平行四边形的性质与判定1.60°,120°,60°,120°. 2.45°,135°,45°,135°. 3.90°. 4.10cm <x <22cm . 5..33+6.72.提示:作DE ∥AM 交BC 延长线于E ,作DF ⊥BE 于F ,可得△BDE 是直角三角形,⋅=536DF 7.315 提示:作CE ⊥BD 于E ,设OE =x ,则BE 2+CE 2=BC 2,得(x +5)2+27)3(=x .解出23=x .S □=2S △BCD =BD ×CE =.315 8.7. 9.=.提示:连结BM ,DN .10.(1)提示:先证∠E =∠F ; (2)EC +FC =2a +2b .11.提示:过E 点作EM ∥BC ,交DC 于M ,证△AEB ≌△AEM . 12.提示:先证DC =AF .13.提示:连接DE ,先证△ADE 是等边三角形,进而证明∠ADB =90°,∠ABD =30°. 14.(1)设正比例函数解析式为y =kx ,将点M (-2,-1)坐标代入得21=k ,所以正比例函数解析式为x y 21=,同样可得,反比例函数解析式为xy 2=; (2)当点Q 在直线MO 上运动时,设点Q 的坐标为)21,(m m Q ,于是S △OBQ =21|OB ·BQ |=21·21m ·m =41m 2而S OAP =21|(-1)(-2)|=1,所以有,1412=m ,解得m =±2所以点Q 的坐标为Q 1(2,1)和Q 2(-2,-1);(3)因为四边形OPCQ 是平行四边形,所以OP =CQ ,OQ =PC ,而点P (-1,-2)是定点,所以OP 的长也是定长,所以要求平行四边形OPCQ 周长的最小值就只需求OQ 的最小值.因为点Q 在第一象限中双曲线上,所以可设点Q 的坐标Q (n ,n2), 由勾股定理可得OQ 2=n 2+24n =(n -n 2)2+4,所以当(n -n 2)2=0即n -n2=0时,OQ 2有最小值4, 又因为OQ 为正值,所以OQ 与OQ 2同时取得最小值,所以OQ 有最小值2.由勾股定理得OP =5,所以平行四边形OPCQ 周长的最小值是2(OP +OQ )=2(5+2)=25+4.测试6 三角形的中位线1.(1)中点的线段;(2)平行于三角形的,第三边的一半. 2.16,64×(21)n -1. 3.18. 4.提示:可连结BD (或AC ). 5.略. 6.连结BE ,CEAB ⇒□ABEC ⇒BF =FC .□ABCD ⇒AO =OC ,∴AB =2OF .7.提示:取BE 的中点P ,证明四边形EFPC 是平行四边形.8.提示:连结AC ,取AC 的中点M ,再分别连结ME 、MF ,可得EM =FM . 9.ED =1,提示:延长BE ,交AC 于F 点.10.提示:AP =AQ ,取BC 的中点H ,连接MH ,NH .证明△MHN 是等腰三角形,进而证明∠APQ =∠AQP .测试7 矩形1.(1)有一个角是直角;(2)都是直角,相等,经过对边中点的直线; (3)平行四边形;对角线相等;三个角. 2.5,53. 3.⋅2344.60°. 5.⋅6136.C . 7.B . 8.B . 9.D .10.(1)提示:先证OA =OB ,推出AC =BD ;(2)提示:证△BOE ≌△COF . 11.(1)略;(2)四边形ADCF 是矩形. 12.7.5.13.提示:证明△BFE ≌△CED ,从而BE =DC =AB ,∴∠BAE =45°,可得AE 平分∠BAD . 14.提示:(1)取DC 的中点E ,连接AE ,BE ,通过计算可得AE =AB ,进而得到EB 平分 ∠AEC .(2)①通过计算可得∠BEF =∠BFE =30°,又∵BE =AB =2 ∴AB =BE =BF : ②旋转角度为120°.测试8 菱 形1.一组邻边相等.2.所有性质,都相等;互相垂直,平分一组对角;底乘以高的一半或两条对角线之积的一半;对角线所在的直线.3.平行四边形;相等,互相垂直. 4..310 5.20,24. 6.C . 7.C . 8.B . 9.D . 10.C . 11.120°;(2)83. 12.2.13.(1)略;(2)四边形BFDE 是菱形,证明略. 14.(1)略;(2)△ABC 是Rt △.15.(1)略;(2)略;(3)当旋转角是45°时,四边形BEDF 是菱形,证明略. 16.(1)略;(2)△BEF 是等边三角形,证明略.(3)提示:∵3≤△BEF 的边长<222)2(43)3(43<≤∴S .3343<≤∴S 17.略. 18..)23(1-n 测试9 正方形1.相等、直角、矩形、菱形.2.是直角;相等、对边平行,邻边垂直;相等、垂直平分、一组,四. 3.(1)有一组邻边相等,并且有一个角是直角; (2)有一组邻边相等. (3)有一个角是直角.4.互相垂直、平分且相等. 5.2a ,2∶1. 6.112.5°,82cm 2;7.5cm . 8.B . 9.B .10.55°. 提示:过D 点作DF ∥NM ,交BC 于F .11.提示:连结AF .12.提示:连结CH ,DH =3. 13.提示:连结BP . 14.(1)证明:△ADQ ≌△ABQ ;(2)以A 为原点建立如图所示的直角坐标系,过点Q 作QE ⊥y 轴于点E ,QF ⊥x 轴于点F .21AD ×QE =61S 正方形ABCD =38 ∴QE =34∵点Q 在正方形对角线AC 上 ∴Q 点的坐标为)34,34( ∴过点D (0,4),)34,34(Q 两点的函数关系式为:y =-2x +4,当y =0时,x =2,即P 运动到AB 中点时,△ADQ 的面积是正方形ABCD 面积的61; (3)若△ADQ 是等腰三角形,则有QD =QA 或DA =DQ 或AQ =AD①当点P 运动到与点B 重合时,由四边形ABCD 是正方形知 QD =QA 此时△ADQ 是等腰三角形;②当点P 与点C 重合时,点Q 与点C 也重合,此时DA =DQ ,△ADQ 是等腰三角形; ③如图,设点P 在BC 边上运动到CP =x 时,有AD =AQ∵AD ∥BC ∴∠ADQ =∠CPQ . 又∵∠AQD =∠CQP ,∠ADQ =∠AQD , ∴∠CQP =∠CPQ . ∴CQ =CP =x .∵AC =24,AQ =AD =4. ∴x =CQ =AC -AQ =24-4.即当CP =24-4时,△ADQ 是等腰三角形.测试10 梯形(一)1.不平行,长短,梯形的腰,距离,直角梯形,相等. 2.同一底边上,相等,相等,经过上、下底中点的直线. 3.两腰相等,相等.4.45. 5.7cm . 6..3 7.C . 8.B . 9.A .10.提示:证△AEB ≌△CAD . 11.(1)略;(2)CD =10. 12..3 13.(1)提示:证EN =FN =FM =EM ;(2)提示:连结MN ,证它是梯形的高.结论是.21BC MN = 14.(1)①α=30°,AD =1; ②α=60°,23=AD ;(2)略. 测试11 梯形(二)1.(1)作一腰的平行线; (2)作另一底边的垂线; (3)作对角线的平行线; (4)交于一点; (5)对称中心; (6)对称轴. 2.60°. 3.3; 4.12. 5.A . 6.A . 7.B .8.60°.提示:过D 点作DE ∥AC ,交BC 延长线于E 点. 9..348+ 10..22311..10 12.方法1:取)(21b a BM +=.连接AM ,AM 将梯形ABCD 分成面积相等的两部分.方法2:(1)取DC 的中点G ,过G 作EF ∥AB ,交BC 于点F ,交AD 的延长线于点E . (2)连接AF ,BE 相交于点O .(3)过O 任作直线MN 与AD ,BC 相交于点M ,N ,沿MN 剪一刀即把梯形ABCD 分成面积相等的两部分.13.(1)证明:分别过点C ,D 作CG ⊥AB ,DH ⊥AB .垂足为G ,H ,如图1,则∠CGA =∠DHB =90°.图1∴CG ∥DH∵△ABC 与△ABD 的面积相等 ∴CG =DH∴四边形CGHD 为平行四边形 ∴AB ∥CD .(2)①证明:连结MF ,如图2,NE 设点M 的坐标为(x 1,y 1),点N 的坐标为(x 2,y 2), ∵点M ,N 在反比例函数)0(>=k xky 的图象上,图2∴x 1y 1=k ,x 2y 2=k . ∵ME ⊥y 轴,NF ⊥x 轴, ∴OE =y 1,OF =x 2. ∴S △EFM =21x 1y 1=21k . ∴S △EFN =21x 2y 2=21k . ∴S △EFM =S △EEN .由(1)中的结论可知:MN ∥EF . ②如图3所示,MN ∥EF .图3第十九章 四边形全章测试1.D . 2.B . 3.D . 4.B . 5.C . 6.45. 7..13 8.).2,22(+9..13 10.⋅n2511.略. 12.BF =AE ;证明提示:△BAE ≌△CFB . 13.(1)略;(2)菱形. 14.提示:连结EH ,HG ,GF ,FE15.(1)90°;(2)提示:延长AE 与BC 延长线交于点G ,证明△AFG 是等腰三角形; 16.(1)菱形;(2)菱形,提示:连结CB ,AD ;证明CB =AD ;(3)如图,正方形,提示:连结CB 、AD ,证明△APD ≌△CPB ,从而得出AD =CB , ∠DAP =∠BCP ,进而得到CB ⊥AD .第二十章 数据的分析测试1 平均数(一)1.9.2. 2.8;2. 3.9.70. 4.B . 5.C . 6.(1)略;(2)178,178;(3)甲队,理由略. 7.小明8.900. 9.1.625. 10.80.4;体育技能测试. 11.A . 12.D . 13.够用;∵30×10×1.7=510<600. 14.(1)41元;(2)49200元.15.(1)解题技巧,动手能力;(2)2.84;(3)7000.测试2 平均数(二)1.4. 2.82. 3.165. 4.B . 5.C .6.88.715070805272=--⨯(分).7.10个西瓜的平均质量51013.416.429.430.524.515.5=⨯+⨯+⨯+⨯+⨯+⨯ (千克),估计总产量是5×600=3000(千克).8.1. 9.4. 10.B . 11.D . 12.B . 13.(1)80; (2)4000.14.(1)6;(2)158.8. 15.(1)45; (2)220;(3)略.测试3 中位数和众数(一)1.9;9. 2.11. 3.2. 4.C . 5.C . 6.C .7.(1)15,15,15,平均数、中位数和众数;(2)16,5,4、5和6,中位数和众数. 8.按百分比计算得这个月3元、4元和5元的饭菜分别销售10400×20%=2080份,10400×65%=6760份,10400×15%=1560份,所以师生购买午餐费用的平均数是95.310400515604676032080=⨯+⨯+⨯元;中位数和众数都是4元.9.1.75;1.70;1.69. 10.30;42. 11.A . 12.A . 13.(1)88;(2)86;(3)不能.因为83小于中位数. 14.(1)平均身高为16010162162160158162167151154166=++++++++(厘米);(2)中位数是161厘米,众数是162厘米;(3)根据(1)(2)的计算可知,大多数女生的身高应该在160厘米和162厘米之间,因此可以选择这部分身高的女生组成花队. 15.B .16.(1)50,5,28;(2)300.测试4 中位数和众数(二)1.平均数. 2.2.5或3.5. 3.D . 4.A .5.(1)样本平均数是80分,中位数是80分,众数是85分;(2)估计全年级平均80分. 6.(1)平均数是209133200350051000115002200013500140001500≈⨯+⨯+⨯+⨯+⨯+⨯+⨯+(元),中位数和众数都是1500(元); (2)平均数是32883320035005100011500220001185001285001500≈⨯+⨯+⨯+⨯+⨯+⨯+⨯+(元),中位数和众数都是1500(元).(3)中位数和众数都能反映该公司员工的工资水平.而公司中少数人的工资与大多数人的工资差别较大,导致平均数和中位数偏差较大,所以平均数不能反映该公司员工的工资水平. 7.⋅++++8322;2;dc b a c b c 8.m -a ;n -a . 9.A . 10.(1)3.7101437681=⨯+⨯+⨯=x (分),6.71011067382=⨯+⨯+⨯=x (分),2班将获胜;我认为不公平,因为4号评委给两个班的打分明显有偏差,影响了公正性; (2)可以采取去掉一个最高分和一个最低分后,再计算平均数,这样1班获胜;也可以用中位数来衡量标准,也是1班获胜. 11.(1)众数是113度,平均数是108度;(2)估计一个月的耗电量是108×30=3240(度); (3)解析式为y =54x (x 是正整数).12.(1)21; (2)1班众数:90分;2班中位数:80分;(3)略测试5 极差和方差(一)1.6;4. 2.2. 3.12;3. 4.B . 5.B .6.甲组的极差是6,方差是3.5;乙组的极差是5,方差是3;说明乙组的波动较小. 7.(1)4;(2)方差约是1.5,大于1.3,说明应该对机器进行检修. 8.甲. 9.改变;不变. 10.B . 11.B . 12.C . 13.(1)甲组及格率是30%,乙组及格率是50%,乙组及格率高;(2)甲x =2,乙x =2,2甲s =1,2乙s =1.8,甲组更稳定.测试6 极差和方差(二)1.B . 2.B. 3.4. 4.8. 5.8. 6.18. 7.>,乙. 8.(1)(2)①平均数;②不能;方差太大.9.(1)A 型:平均数 14;方差4.3(约);B 型:中位数 15. (2)略.第二十章 数据的分析全章测试1.⋅++++pn m px nx mx 321 2.4. 3.乙. 4.81. 5.16. 6.D . 7.C . 8.B . 9.C . 10.A . 11.7920元. 12.41,40~42,40~42. 13.平均数分别为26.2,25.8,25.4,班长应当选, 14.(1)(2)略.15.(1)甲种电子钟走时误差的平均数是:0)2112224431(101=+--+-++--乙种电子钟走时误差的平均数是:0)1222122134(101=+-+-+-+--∴两种电子钟走时误差的平均数都是0秒.(2)=⨯=-++--+-=60101])02()03()01[(1012222 甲s 6秒2 8.46101])01()03()04[(1012222=⨯=-++--+-=乙s 秒2 ∴甲乙两种电子钟走时误差的方差分别是6秒2和4.8秒2.(3)我会买乙种电子钟,因为平均数相同,且甲的方差比乙的大,说明乙的稳定性更好,故乙种电子钟的质量更优.16.(1)①25,90°; ②7,7; (2)10,15.第二十一章 二次根式测试1 二次根式1..3,32>≥x a . 2.x >0,x =1. 3.(1)7;(2)7;(3)7;(4)7;(5)0.7;(6)49. 4.D . 5.B .6.D . 7.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≥-7. 8.(1)18; (2)6;(3)15;(4)6.9.x ≤0. 10.x ≥0且⋅=/21x 11.0. 12.1. 13.C . 14.D . 15.(1)0.52;(2)-9;(3)23;(4)36. 16.2,3,4. 17.0测试2 二次根式的乘除(一)1.x ≥0且y ≥0. 2.(1)6;(2)24;(3)16.3.(1)42;(2)0.45;(3).3122a 4.B . 5.A . 6.B . 7.B8.(1)32; (2)6; (3)24; (4)x 32; (5)3b ; (6)ab 2; (7)49; (8)12; (9).263y xy 9..cm 6210.102 11.>,>,<. 12.D . 13.D . 14.(1)45xy 2 (2)2a 2bb ;(3)34; (4)9. 15.6a -3;56 16.(1)a -- (2)y --117.a =-1,b =1,0.测试3 二次根式的乘除(二)1.(1)32; (2)23; (3)53; (4)x 34; (5)36; (6)223; (7)ab b a 2; (8)⋅630 2.(1)3; (2)2; (3)a 3; (4)a 2; (5).6 3.C . 4.C . 5.C . 6.(1);54 (2);35 (3);22 (4);23 (5);63 (6);2 (7);322 (8)4. 7.(1);77 (2);42 (3)-⋅339 8.(1);55 (2);82 (3);66 (4)⋅y yx 55 9.0.577;5.196. 10.B . 11.C . 12.(1)55-;(2);33x (3).b a +13..332 14.(1)722-;(2)1011-;(3).1n n -+测试4 二次根式的加减(一)1..454,125;12,27;18,82,32 2..36)2(;33)1(-3.B . 4.A . 5.C . 6..33 7..632+ 8..216 9..23+10..23- 11.⋅-42341112.错误. 13.D 14..57329- 15..23- 16.⋅617a 17.0. 18.原式=y x 32+,代入得2. 19..33102235+ 20.(1)都打“√”;(2)1122-=-+n n n n n n (n ≥2,且n 是整数); (3)证明:⋅-=-=-+-=-+111)1(1223222n n n n n n nn n n n n 测试5 二次根式的加减(二)1.6. 2.3,72. 3.(1)22; (2)ax 3-.4.B . 5.D . 6.B. 7.⋅66 8..763- 9.⋅3619 10.⋅417 11..215 12..62484- 13..67- 14.B . 15.D . 16.⋅-41 17..103- 18.ab 4 (可以按整式乘法,也可以按因式分解法).19.9.20.⋅335 第二十一章 二次根式全章测试1.>-2. 2..ab b -- 3..27,31,12 4.1. 5.4. 6.B . 7.C . 8.C . 9.A . 10.68-.11..562- 12..12- 13..2ab - 14..293ab b a -15..245x -. 16.周长为.625+ 17.两种:(1)拼成6×1,对角线(cm)0.733712721222≈=+;(2)拼成2×3,对角线)cm (3.431312362422≈=+.第二十二章 一元二次方程测试1 一元二次方程的有关概念及直接开平方法1.1,最高,ax 2+bx +c =0(a ≠0).2.2x 2-6x -1=0,2,-6,-1. 3.k ≠-4.4.x 2-12x =0,1,-12,0. 5.-2. 6..32±=y7.A . 8.C . 9.C . 10.C .11.y 1=2,y 2=-2. 12..32,3221--=-=x x13.x 1=9,x 2=-11. 14.⋅-==21,2321x x15..12,03)12(22+=-++x x16.(2-n )x 2+nx +1-3n =0,2-n ,n ,1-3n .17.m ≠±3,m =3. 18.C . 19.A . 20.C .21.⋅±=3322,1x 22..14,5421-=-=x x 23.x 1=1,x 2=7.24..,21m n x m n x +-=+=25.a +b +c =0,a -b +c =0. 26.C .27.m =1不合题意,舍去,m =-1. 28.2009.测试2 配方法解一元二次方程1.16,4. 2.⋅23,493.⋅43,169 4.⋅31,915.2,42pp 6.⋅a ba b 2,422 7.C . 8.D . 9.C . 10.C .11..21±=x 12..33±=y 13.D . 14.D . 15.C .16.A .17.⋅-=+=3102,310221x x18..2,2321-==x x19.x 2-4x +5=(x -2)2+1≥0,当x =2时有最小值为1.测试3 公式法解一元二次方程1.).04(2422≥--±-=ac b a acb b x2.2,8,-2. 3.C . 4.B . 5.B . 6.B .7..72,7221--=+-=x x 8.⋅-=+=3104,310421x x 9.m =1,-3. 10.B . 11.⋅--=+-=231,23121x x 12..32,3221-=+=x x 13.mx -=121,x 2=1.14.x 1=a +1,x 2=3a -1. 测试4 一元二次方程根的判别式1.>,=,<. 2.>-1. 3.≥0. 4.m =2或m =-1.5.B . 6.C . 7.B . 8.D .9.①k <1且k ≠0;②k =1;③k >1. 10.⋅-≥49k 11.∆=m 2+1>0,则方程有两个不相等的实数根.12.C . 13.D . 14.C . 15.B . 16.C .17.m =4,2121-==x x . 18.证明∆=-4(k 2+2)2<0.19.∵b =c =4 ∴△ABC 是等腰三角形.20.(1) ∆=[2(k -1)]2-4(k 2-1)=4k 2-8k +4-4k 2+4=-8k +8.∵原方程有两个不相等的实数根,∴-8k +8>0,解得k <1,即实数k 的取值范围是k <1.(2)假设0是方程的一个根,则代入得02+2(k -1)·0+k 2-1=0,解得k =-1或k =1(舍去).即当k =-1时,0就为原方程的一个根.此时,原方程变为x 2-4x =0,解得x 1=0,x 2=4,所以它的另一个根是4.测试5 因式分解法解一元二次方程1.x =0,x 2=3. 2.271=x ,x 2=-2. 3.x 1=0,⋅=322x 4.x 1=x 2=-3. 5.x 1=0,.62=x 6.x 1=0,.3222-=x 7.x =1,x 2=3. 8.x 1=x 2=2. 9.A . 10.D .11.x 1=2,⋅=322x 12.x 1=0,x 2=1. 13.x 1=7,x 2=-4. 14.x 1=4,x 2=2.15.x 1=0,x 2=2. 16.x 1=x 2=3.17.x 1=0,.322=x 18..3,321-==x x19.x 1=-1,x 2=-7. 20.C . 21.D . 22.D .23.x 1=-m +n ,x 2=-m -n . 24..2,221b a x b a x -=+=25.x 1=2b ,x 2=-b .26.15. 27.当k =1时,x =1;当k ≠1时,x 1=1,⋅-+-=112k k x 测试6 一元二次方程解法综合训练1.⋅-=+=331,33121x x 2.x 1=1,x 2=-1. 3..1,3221==x x 4..102,10221-=+=x x 5.B . 6.B . 7.B . 8.D . 9.⋅-==21,3221x x 10..32,3221-==x x 11.x 1=m +n ,x 2=m -n . 12.⋅==a x a x 2,2121 13.8. 14.x 1=-a -b ,x 2=-a +b .15.B . 16.B .17.⋅==22,221x x 18.⋅-==227,22721x x 19.x 1=k -2,x 2=k -3. 20..33,2221==x x21.当x =-4 y 时,原式35=;当x =y 时,原式=0. 22.略.23.3(x -1)(x +3).24.).21)(21(+---x x测试7 实际问题与一元二次方程(一)1.(1)工作时间工作总量;(2)速度×时间.2.1.1a , 1.21a , 3.31a . 3.a 81100元. 4.D . 5.D . 6.7,9,11或-11,-9,-7. 7.,226,226+-2. 8.50%. 9.3000(1+x )2=5000. 10.10% 11.(50+2x )(30+2x )=1800. 12.D .13.分析:2007年经营总收入为600÷40%=1500(万元).设年平均增长率为x .1500(1+x )2=2160.1+x =±1.2.∵1+x >1,∴1+x =1.2,∴1500(1+x )=1500×1.2=1800(万元).14.分析:设每件衬衫应降价x 元,则盈利(40-x )元,依题意(40-x )(20+2x )=1200.即x 2-30x +200=0.解出x 1=10,x 2=20.由 于尽量减少库存,应取x =20.15.分析:(1)y =240x 2+180x +45;(2)y =195时,45,2121-==x x (舍去). ∴这面镜子长为1m ,宽为.m 21 16.分析:设x 秒后△PCQ 的面积为△ACB 的面积的一半. 依题意,12,2.216821)6)(8(2121==⨯⨯⨯=--x x x x (舍). 即2秒后△PCQ 的面积为Rt △ACB 的面积的一半.17.分析:设P ,Q 两点开始出发到x 秒时,P ,Q 距离为10cm .(16-3x -2x )2=102-62.⋅==524,5821x x ∴出发58秒或524秒时,点P ,Q 距离为10cm . 第二十二章 一元二次方程全章测试1.3x 2-5x -2=0. 2.5. 3.(1)5; (2)-5.4.4. 5.-2. 6.3.7.C . 8.B . 9.C . 10.B . 11.C .12.(1)x 1=0,x 2=2; (2)x 1=2,x 2=4; (3);221==x x (4)x 1=3,x 2=-7; (5).15,2121=-=x x (6)x 1=a ,x 2=a -b . 13.m =1,另一根为-3.14.∆=4m 2+8m +16=4(m +1)2+12>0.15.(1)设2006年底至2008年底手机用户的数量年平均增长率为x ,50(1+x )2=72,∴1+x =±1.2,∴x 1=0.2,x 2=-2.2(不合题意,舍去),∴2006年底至2008年底手机用户的数量年平均增长率为20%.(2)设每年新增手机用户的数量为y 万部,依题意得:[72(1-5%)+y ](1-5%)+y ≥103.98,即(68.4+y )×0.95+y ≥103.98,68.4×0.95+0.95y +y ≥103.9864.98+1.95y ≥103.98,1.95y ≥39,∴y ≥20(万部).∴每年新增手机用户的数量至少要20万部.16.分析:仓库的宽为x cm .(1)若不用旧墙.S =x (50-x )=600.x 1=30,x 2=20.即长为30cm ,宽为20cm 符合要求.(2)若利用旧墙x (100-2x )=600..13525+=x ∴利用旧墙,取宽为m )13525(+,长为m )131050(-也符合要求.有帮助吗?我还有好多答案,要的找我!。

八年级上册第16章知识点

八年级上册第16章知识点

八年级上册第16章知识点八年级上册的第16章主要讲述了三个知识点:基础代数思想、方程和不等式以及图形的对称性。

这些知识点是中学数学学习的基础,我们必须认真掌握它们,才能够更好地学习高中数学和大学数学。

下面,我们就来详细介绍一下这三个知识点。

一、基础代数思想基础代数思想是我们学习代数的基础,也是理解和运用方程和不等式的前提。

在这一部分,我们需要掌握一些基本的代数概念,如变量、常量、项、系数、同类项等。

同时,我们还要学习代数运算,包括加、减、乘和除,以及运用这些运算进行简单的方程和不等式求解。

此外,我们还要学会运用代数式解决实际问题,加深对代数思想的理解和应用。

二、方程和不等式方程和不等式是中学代数的重要组成部分,掌握它们对我们后续的学习有着重要的影响。

在这一部分,我们需要学习如何分析和解决不等式和方程,掌握一些基本的解法,如加减消元法、消元法、配方法等。

同时,我们还要学习常用的一些方程和不等式,如一元一次方程,一元二次方程,一元一次不等式,一元二次不等式等。

通过不断练习,我们可以逐步提高解题的能力,进而构建自己的解题思路和方法。

三、图形的对称性图形的对称性是高中数学的重要概念,也是理解几何知识的基础。

在这一部分,我们需要学习图形对称性的基本概念,如轴对称、中心对称等。

同时,我们还需要学习如何进行对称变换,将一个图形通过对称变换变成另一个相似的图形。

掌握这些概念和技巧,可以帮助我们更好地理解空间几何知识,并应用到实际问题中。

总之,八年级上册第16章知识点是中学数学学习的重要组成部分,掌握它们对我们后续的学习有着重要的影响。

我们要认真学习,多做练习,理解概念,掌握方法,让自己在数学学习中取得更好的成绩。

北京西城区学习探究诊断数学八上第十六章二次根式

北京西城区学习探究诊断数学八上第十六章二次根式

北京西城区学习探究诊断数学八上第十六章二次根式第十六章二次根式测试1 二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.1?a表示二次根式的条件是______. 2.当x______时,?21有意义,当x______时,有意义. x?1x?33.若无意义x?2,则x的取值范围是______. 4.直接写出下列各式的结果: (1)49=_______;(2)(7)2_______; (3)(?7)2_______;(4)?(?7)2_______; (5)(0.7)2_______;(6)[(?7)2]2 _______.二、选择题5.下列计算正确的有( ).①(?2)2?2 ②?2?2 ③(?2)2?2 ④(?2)2??2 A.①、② B.③、④6.下列各式中一定是二次根式的是( ). A.?32B.(?0.3)2C.①、③D.②、④C.?2 D.x7.当x=2时,下列各式中,没有意义的是( ). A.x?2B.2?xC.x2?2D.2?x28.已知(2a?1)2?1?2a,那么a的取值范围是( ).11 B.a? 22三、解答题9.当x为何值时,下列式子有意义? A.a?(1)1?x;(3)x2?1;1C.a?1 2D.a?1 2(2)?x2;(4)1?x? 2?x10.计算下列各式:(1)(32)2;综合、运用、诊断一、填空题11.?2x表示二次根式的条件是______. 12.使(2)(a2?1)2;3(3)?2?(?)2;4 (4)(?322). 3x有意义的x的取值范围是______. 2x?113.已知x?1?1?x?y?4,则xy的平方根为______. 14.当x=-2时,1?2x?x2?1?4x?4x2=________.二、选择题15.下列各式中,x的取值范围是x>2的是( ).11A.x?2 B. C.x?22?x16.若|x?5|?2y?2?0,则x-y的值是( ). A.-7三、解答题17.计算下列各式:2(1)(3.14?π);D.12x?1B.-5 C.3 D.7(2)?(?32)2;3(4)(30.52)2.?b?b2?4ac18.当a=2,b=-1,c=-1时,求代数式的值.2a拓广、探究、思考19.已知数a,b,c在数轴上的位置如图所示:化简:a2?|a?c|?(c?b)2?|?b|的结果是:______________________.20.已知△ABC的三边长a,b,c均为整数,且a和b满足a?2?b2?6b?9?0.试求△ABC的c边的长.2测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果4xy?2x?y成立,x,y必须满足条件______.11?_________;(2)(?3)(?48)?__________; 1222.计算:(1)72?(3)?20.27?0.03?___________.3.化简:(1)49?36?______;(2)0.81?0.25? ______;(3)?45?______.二、选择题 4.下列计算正确的是( ). A.2?3?5 5.如果x?x?3?A.x≥0B.2?3?6C.8?4x(x?3),那么( ).B.x≥3C.0≤x≤3D.x为任意实数6.当x=-3时,x2的值是( ). A.±3 三、解答题7.计算:(1)6?2;(4)(7)(?7)2?49;8.已知三角形一边长为2cm,这条边上的高为12cm,求该三角形的面积.3B.3 C.-3 D.9(2)?53?(?33); (3)32?28;527?; 3125(5)ab?11; 3a(6)2a2bc??; 5bc5a(8)132?52;(9)72x2y7.综合、运用、诊断一、填空题9.定义运算“@”的运算法则为:x@y?xy?4,则(2@6)@6=______.10.已知矩形的长为25cm,宽为10cm,则面积为______cm2.11.比较大小:(1)32_____23;(2)52______43;(3)-22_______-6.二、选择题 12.若a2b??ab成立,则a,b满足的条件是( ).A.a<0且b>0 13.把42B.a≤0且b≥0C.a<0且b≥0D.a,b异号3根号外的因式移进根号内,结果等于( ). 4B.11C.?44D.211A.?11 三、解答题14.计算:(1)53xy?36x?_______;21?1?_______; 32(2)27a2?9a2b2?_______;(3)12?2(4)3?(3?12)?_______.15.若(x-y+2)2与x?y?2互为相反数,求(x+y)x的值.拓广、探究、思考16.化简:(1)(2?1)10(2?1)11?________;(2)(3?1)?(3?1)?_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:(1)12?______;(2)18x?______;(3)48x5y3?______;(4)4y?______; x(5)2111??______. ?______;(6)4?______;(7)x4?3x2?______;(8)22332.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:32 与2.(1)23与______; (2)32与______;(3)3a与______; (4)3a2与______; (5)3a3与______.二、选择题 3.1?x1?x?成立的条件是( ). xxA.x<1且x≠0 B.x>0且x≠14.下列计算不正确的是( ). A.317? 164C.0<x≤1 D.0<x<1B.2y1?6xy 3x3x42x? 3x9x111C.()2?()2?4520D.5.把1化成最简二次根式为( ). 32B.A.3232 三、计算题 6.(1) (5)5; 21516; 25132 32C.12 8D.12 47(2)2;9(3)24; 3(4)?575?2125;(6)66?33;11(7)1?1;32(8)11?0.125. 22综合、运用、诊断一、填空题5感谢您的阅读,祝您生活愉快。

初二数学 十六章

初二数学 十六章

小 练 习
m + 2n n 2m + − n−m m−n n−m
1 1知识点四 :
分式的分子分母同乘以(或 除以)一个不等于0的整式, 分式的值不变。
A A÷M = B B÷M
A A× M = B B×M
分式的变号法则: 分式的变号法则:
A −A −A A =− =− = −B −B B B
知识点五: 分式的约分 知识点五 :
首先,确定最大公因式 最大公因式的系数取分子、 最大公因式的系数取分子、分母系 系数取分子 数的最大公约数 最大公约数; 数的最大公约数; 取分子、分母相同的字母 相同的字母因式的最 取分子、分母相同的字母因式的最 低次幂
a c a•c • = b d b•d
a c a d a•d ÷ = • = b d b c b•c
分式的乘方: 分式的乘方:把分子分母分别乘方
a n a ( ) = n b b
n
y−x 2 3a 3 2 2 ) ⋅ (x − y ) ÷ ( ) (1) ( x+ y y+x
3
小 练 习
a b 3 c 2 bc 4 (2) ( ) ⋅( ) ÷( ) −c − ab a
第十六章 分式
知识点一 : 分式的定义
A,B表示两个整式; A,B表示两个整式; 表示两个整式 B中含有字母; 中含有字母; 形如 A ;
B
知识点二: 分式有意义的条件 知识点二 : 分母不等于0 分母不等于0;
知识点三: 分式的值为零条件 知识点三 : 分子等于0 分子等于0,且分母不等 于0;
.
约 分 小 练 习
− 16 x y
2
20 xy
3
n −m m−n

西城区学习探究诊断 第十六章 分 式

西城区学习探究诊断 第十六章 分 式

第十六章 分 式测试1 分 式课堂学习检测一、选择题1.在代数式32,252,43,32,1,32222-++x x x x xy x x 中,分式共有( ). (A)2个 (B)3个 (C)4个 (D)5个2.下列变形从左到右一定正确的是( ).(A)22--=b a b a(B)bcac b a =(C)ba bx ax =(D)22b a ba =3.把分式yx x+2中的x 、y 都扩大3倍,则分式的值( ). (A)扩大3倍(B)扩大6倍 (C)缩小为原来的31(D)不变4.下列各式中,正确的是( ). (A)y x yx y x y x +-=--+- (B)y x yx y x y x ---=--+- (C)yx yx y x y x -+=--+- (D)yx yx y x y x ++-=--+- 5.若分式222---x x x 的值为零,则x 的值为( ).(A)-1 (B)1 (C)2 (D)2或-1二、填空题6.当x ______时,分式121-+x x 有意义. 7.当x ______时,分式122+-x 的值为正.8.若分式1||2--x xx 的值为0,则x 的值为______.9.分式22112m m m -+-约分的结果是______.10.若x 2-12y 2=xy ,且xy >0,则分式yx yx -+23的值为______. 11.填上适当的代数式,使等式成立:(1)ba b a b ab a +=--+)(22222; (2)xxx x 2122)(2--=-; (3)a b ba b a-=-+)(11;(4))(22xy xy =. 综合、运用、诊断三、解答题12.把下列各组分式通分:(1);65,31,22abca b a -(2)222,ba aab a b--. 13.把分子、分母的各项系数化为整数:(1);04.03.05.02.0+-x x(2)b a ba -+32232. 14.不改变分式的值,使分式的分子与分式本身不含负号:(1)yx yx ---22; (2)ba b a +-+-2)(. 15.有这样一道题,计算))(1()12)((2222x x x x x x x --+-+,其中x =2080.某同学把x =2080错抄成x =2008,但他的计算结果是正确的.你能解释其中的原因吗?拓展、探究、思考16.已知311=-y x ,求分式yxy x yxy x ---+2232的值.17.当x 为何整数时,分式2)1(4-x 的值为正整数. 18.已知3x -4y -z =0,2x +y -8z =0,求yz xy z y x +-+222的值.测试2 分式的运算课堂学习检测一、选择题1.下列各式计算结果是分式的是( ).(A)ba m n ÷(B)nm m n 23.(C)xx 53÷(D)3223473y x y x ÷2.下列计算中正确的是( ). (A)(-1)0=-1 (B)(-1)-1=1 (C)33212a a =-(D)4731)()(a a a =-÷- 3.下列各式计算正确的是( ). (A)m ÷n ·m =m (B)m nn m =⋅÷1(C)11=⋅÷m m m(D)n ÷m ·m =n 4.计算54)()(ab a a b a -⋅-的结果是( ).(A)-1 (B)1 (C)a 1 (D)ba a--5.下列分式中,最简分式是( ).(A)21521yxy(B)y x y x +-22 (C)yx y xy x -+-.222 (D)y x y x -+226.下列运算中,计算正确的是( ).(A))(212121b a b a +=+ (B)acb c b a b 2=+ (C)a a c a c 11=+-(D)011=-+-ab b α 7.a b a b a -++2的结果是( ).(A)a 2-(B)a4(C)b a b --2(D)ab- 8.化简22)11(yx xyyx -⋅-的结果是( ). (A)yx +1(B)yx +-1(C)x -y (D)y -x二、填空题9.2232)()(yx y x -÷=______.10.232])[(x y -=______.11.a 、b 为实数,且ab =1,设1111,11+++=+++=b a Q b b a a P ,则P ______Q (填“>”、“<”或“=”). 12.aa a -+-21422=______. 13.若x <0,则|3|1||31---x x =______. 14.若ab =2,a +b =3,则ba 11+=______.综合、运用、诊断三、解答题15.计算:)()()(432b a ba ba -÷-⋅-.16.计算:⋅-+-++222244242x y yx y x y y x17.计算:⋅-÷+--+11)1211(22x x x x 18.已知2222222y x y x N yx xy M -+=-=、,用“+”或“-”连结M 、N ,有三种不同的形式:M +N 、M -N 、N -M ,请你任选其中一种进行计算,并化简求值,其中x ∶y =5∶2.19.先化简,再求值:1112+---x xx x ,其中x =2. 20.已知x 2-2=0,求代数式11)1(222++--x x x x 的值.拓展、探究、思考21.等式⋅-++=-++236982x Bx A x x x 对于任何使分母不为0的x 均成立,求A 、B的值.22.A 玉米试验田是边长为a m 的正方形减去边长为1m 的蓄水池后余下部分,B 玉米试验田是边长为(a -1)m 的正方形,两块试验田的玉米都收获了500kg .(1)哪种玉米田的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?测试3 分式方程课堂学习检测一、选择题 1.方程132+=x x的解为( ). (A)2 (B)1 (C)-2 (D)-12.解分式方程12112-=-x x ,可得结果( ). (A)x =1 (B)x =-1 (C)x =3 (D)无解3.要使54--x x 的值和xx--424的值互为倒数,则x 的值为( ).(A)0 (B)-1 (C)21(D)14.已知4321--=+-y y x x ,若用含x 的代数式表示y ,则以下结果正确的是( ). (A)310+=x y (B)y =x +2 (C)310xy -=(D)y =-7x -25.若关于x 的方程xkx --=-1113有增根,则k 的值为( ). (A)3(B)1 (C)0 (D)-16.若关于x 的方程323-=--x mx x 有正数解,则( ). (A)m >0且m ≠3 (B)m <6且m ≠3 (C)m <0(D)m >67.完成某项工作,甲独做需a 小时,乙独做需b 小时,则两人合作完成这项工作的80%,所需要的时间是( ). (A))(54b a +小时 (B))11(54ba +小时 (C))(54b a ab+小时 (D)ba ab+小时 8.a 个人b 天可做c 个零件(设每人速度一样),则b 个人用同样速度做a 个零件所需天数是( ).(A)c a 2(B)2ac(C)a c 2(D)2c a 二、填空题9.x =______时,两分式44-x 与13-x 的值相等. 10.关于x 的方程324+=-b xa 的解为______. 11.当a =______时,关于x 的方程4532=-+x a ax 的根是1. 12.若方程114112=---+x x x 有增根,则增根是______. 13.关于x 的方程11=+x a的解是负数,则a 的取值范围为____________.14.一艘轮船在静水中的最大航速为20千米/时,它在江水中航行时,江水的流速为v 千米/时,则它以最大航速顺流航行s 千米所需的时间是______.综合、运用、诊断三、解方程15..32121=-+--xx x16.⋅+=+--1211422x xx x x 17.⋅-+=+-xx x x x 25316 四、列方程解应用题18.甲工人工作效率是乙工人工作效率的212倍,他们同时加工1500个零件,甲比乙提前18个小时完工,问他们每人每小时各加工多少个零件? 19.甲、乙两地相距50km ,A 骑自行车,B 乘汽车,同时从甲城出发去乙城.已知汽车的速度是自行车速度的2.5倍,B 中途休息了0.5小时还比A 早到2小时,求自行车和汽车的速度.拓展、探究、思考20.面对全球金融危机的挑战,我国政府毅然启动内需,改善民生.国务院决定从2009年2月1日起,在全国范围内实施“家电下乡”,农民购买入选产品,政府按原价购买总额的....13..%.给予补贴返还.某村委会组织部分农民到商场购买入选的同一型号的冰箱、电视机两种家电,已知购买冰箱的数量是电视机的2倍,且按原价购买冰箱总额为40000元、电视机总额为15000元.根据“家电下乡”优惠政策,每台冰箱补贴返还的金额比每台电视机补贴返还的金额多65元,求冰箱、电视机各购买多少台?(1)设购买电视机x台,依题意填充下列表格:(2)列出方程(组)并解答.参考答案第十六章 分式测试1 分 式1.B . 2.C . 3.D . 4.A . 5.A . 6.21≠. 7.21-<. 8.0. 9.⋅+--11m m 10.1. 11.(1)a +2b ; (2)2x 2; (3)b +a ; (4)x 2y 2.12.(1);65,62,632223bca abc a bc bc a c a - (2)⋅-+-++))((,))(()(2b a b a a a b a b a a b a b 13.(1);2152510+-x x (2)⋅-+ba ba 64912 14.(1);22x y y x -- (2)⋅-+ba ba 2 15.化简原式后为1,结果与x 的取值无关. 16.⋅5317.x =0或2或3或-1. 18.⋅23测试2 分式的运算1.A . 2.D . 3.D . 4.D . 5.D . 6.D . 7.C . 8.B .9.x 4y . 10.⋅612x y 11.=. 12.⋅+21a 13.⋅-922x x 14.⋅2315.⋅6ba16.⋅+y x x 22提示:分步通分.17.2x .18.选择一:y x y x N M -+=+,当x ∶y =5∶2时,原式37= 选择二:y x x y N M +-=-,当x ∶y =5∶2时,原式⋅-=73选择三:yx y x M N +-=-,当x ∶y =5∶2时,原式73=.注:只写一种即可. 19.化简得1)1(+--x x ,把x =2代入得31-. 20.原式112+-+=x x x∵x 2-2=0,∴x 2=2,∴原式112+-+=x x ,∴原式=1 21.A =3,B =5.22.(1)A 面积(a 2-1)米2,单位产量15002-a 千克/米;B 玉米田面积(a -1)2米2,单位产量是2)1(500-a 千克/米2,22)1(5001500-<-a a ,B 玉米的单位面积产量高; (2)11-+a a 倍. 测试3 分式方程1.A . 2.D . 3.B . 4.C . 5.A. 6.B . 7.C . 8.A .9.x =-8. 10.⋅--=462b a x 11.⋅-=317a12.x =1. 13.a <1且a ≠0. 14.20+v s小时.15.无解. 16.⋅-=21x 17.无解.18.设乙的工作效率为x 个/时,甲的工作效率为x 25个/时.182515001500+=x x .50=x .经检验,x =50是原方程的根. 答:甲每小时加工125个,乙每小时加工50个. 19.设自行车速度为x 千米/时,汽车速度为2.5x 千米/时.xx 502215.250=++.x =12.经检验x =12是原方程的根. 答:自行车的速度为12km/时,汽车的速度为30km/时. 20.(1)2x ,40000×13%,x2%1340000⨯,15000×13%,x %1315000⨯;(2)冰箱、电视机分别购买20台、10台.第十六章 分式全章测试一、填空题1.在代数式222232,3221,12,1,2,3,1,43abx x x b a a y x x b a --+++-中,分式有_________. 2.当x ______时,分式2+x x 没有意义;当x ______时,分式112+x 有意义;当x ______时,分式113-+x x 的值是零.3.不改变分式的值,把分式的分子和分母各项系数都化成整数:b a ba 3.051214.0+-=______.4.计算:--32m m m -3=______.5.若x =-4是方程311+=-x x a 的解,则a =______. 6.若332-+x x 与35+x 的值互为相反数,则满足条件的x 的值是______. 7.当x ______时,等式512)5(2222+-=+-x x x x x x 成立.8.加工一批产品m 件,原计划a 天完成,今需要提前b 天完成,则每天应生产______件产品.9.已知空气的单位体积质量为0.001239g/cm 3,那么100单位体积的空气质量为______g/cm 3.(用科学记数法表示) 10.设a >b >0,a 2+b 2-6ab =0,则ab ba -+的值等于______. 二、选择题11.下列分式为最简分式的是( ).(A)ab 1533(B)a b b a --22 (C)x x 32(D)y x y x ++2212.下列分式的约分运算中,正确的是( ).(A)339x x x =(B)bac b c a =++ (C)0=++ba ba (D)1=++ba ba 13.分式11,121,1122-+-+x x x x 的最简公分母是( ). (A)(x 2+1)(x -1) (B)(x 2-1)(x 2+1) (C)(x -1)2(x 2+1)(D)(x -1)214.下列各式中,正确的个数有( ).①2-2=-4; ②(32)3=35; ③2241)2(x x -=--; ④(-1)-1=1. (A)0个 (B)1个(C)2个(D)3个15.使分式x326--的值为负数的条件是( ). (A)32<x (B)x >0 (C)32>x(D)x <016.使分式1||-x x有意义的条件是( ). (A)x ≠1 (B)x ≠-1 (C)x ≠1且x ≠-1(D)x ≠017.学完分式运算后,老师出了一道题“化简42232--+++x xx x ”. 小明的做法是:原式=424)2)(3(22-----+x x x x x ; 小亮的做法是:原式=(x +3)(x -2)+(2-x )=x 2+x -6+2-x =x 2-4;小芳的做法是:原式=.12132123)2)(2(223=+-+=+-++=-+---+x x x x x x x x x x 其中正确的是( ).(A)小明 (B)小亮 (C)小芳(D)没有正确的18.如果分式)(3)(b a b a a ++的值是零,那么a ,b 满足的条件是( ). (A)a =-b (B)a ≠-b (C)a =0(D)a =0且a ≠-b19.若关于x 的分式方程11+=+x mx x 无解,则m 的值为( ). (A)1(B)0 (C)-1 (D)-220.有一项工程需在规定日期内完成,如果甲队去做,恰能如期完成;如果乙队去做,要超过规定日期3天.现由甲、乙两队合作2天后,余下的工程由乙队单独去做,恰好在规定日期内完成.如果设规定日期为x 天,下列关于x 的方程中错误的是( ). (A)132=++x xx (B)332+=x x(C)1)2(312)311(=-++⨯++x x x x(D)1311=++x x三、化简下列各题21.⋅+----112223x x xx x x 22.⋅-÷+--24)22(x xx x x x 23.⋅--÷-++--+)64121()622322(222x x x x x x x x 四、解方程 24.⋅++=+-312132x x x 25.⋅--+=--2163524245m m m m .五、列方程解应用题26.A,B两地相距80千米,一辆大汽车从A地开出2小时后,又从A地开出另一辆小汽车,已知小汽车的速度是大汽车速度的3倍,结果小汽车比大汽车早40分钟到达B地,求两辆汽车每小时各走多少千米.参考答案第十六章 分式全章测试1.⋅-++2232,12,1,1ab x x b a x 2.=-2,取任意实数,⋅-=31. 3.⋅+-b a ba 32544.⋅-39m 5.5. 6.-4. 7.≠0. 8.⋅-ba m9.1.239×10-1. 10..2- 11.D . 12.D . 13.C .14.A . 15.A . 16.C . 17.C . 18.D . 19.C . 20.D . 21.2x -1. 22.⋅+21x 23.⋅+-x x 1 24.⋅-=31x 25.m =2是增根,无解.26.小汽车每小时60千米,大汽车每小时20千米.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十六章 分式测试1 从分数到分式学习要求掌握分式的概念,能求出分式有意义,分式值为0、为1的条件.课堂学习检测一、填空题1.用A 、B 表示两个整式,A ÷B 就可以表示成______的形式,如果除式B 中______,该分式的分式.2.把下列各式写成分式的形式: (1)5÷xy 为______. (2)(3x +2y )÷(x -3y )为______.3.甲每小时做x 个零件,做90个零件所用的时间,可用式子表示成______小时. 4.n 公顷麦田共收小麦m 吨,平均每公顷的产量可用式子表示成______吨.5.轮船在静水中每小时走a 千米,水流速度是b 千米/时,轮船在逆流中航行s 千米所需要的时间可用式子表示成______小时. 6.当x =______时,分式13-x x没有意义. 7.当x =______时,分式112--x x 的值为0.8.分式yx,当字母x 、y 满足______时,值为1;当字母x ,y 满足______时值为-1. 二、选择题 9.使得分式1+a a有意义的a 的取值范围是( ) A .a ≠0 B .a ≠1 C .a ≠-1D .a +1>010.下列判断错误..的是( ) A .当32=/x 时,分式231-+x x 有意义 B .当a ≠b 时,分式22ba ab-有意义 C .当21-=x 时,分式x x 412+值为0D .当x ≠y 时,分式x y y x --22有意义11.使分式5+x x值为0的x 值是( ) A .0B .5C .-5D .x ≠-512.当x <0时,xx ||的值为( ) A .1 B .-1 C .±1 D .不确定13.x 为任何实数时,下列分式中一定有意义的是( )A .x x 12+B .112--x x C .11+-x xD .112+-x x 三、解答题14.下列各式中,哪些是整式?哪些是分式?⋅----++++-π1;)1(;2;3;3;13;222x x x x y x y x y x x y x y x 15.x 取什么值时,2)3)(2(---x x x 的值为0?综合、运用、诊断一、填空题16.当x =______时,分式632-x x无意义. 17.使分式2)3(2+x x有意义的条件为______.18.分式2)1(52+++x x 有意义的条件为______. 19.当______时,分式44||--x x 的值为零. 20.若分式x--76的值为正数,则x 满足______. 二、选择题21.若x 、y 互为倒数,则用x 表示y 的正确结果是( )A .x =-yB .y x 1=C .x y 1=D .xy 1±=22.若分式ba ba 235+-有意义,则a 、b 满足的关系是( )A .3a ≠2bB .b a 51=/C .a b 32-=/ D .b a 32-=/23.式子222--+x x x 的值为0,那么x 的值是( )A .2B .-2C .±2D .不存在24.若分式6922---a a a 的值为0,则a 的值为( )A .3B .-3C .±3D .a ≠-225.若分式1212+-b b的值是负数,则b 满足( ) A .b <0 B .b ≥1C .b <1D .b >1三、解答题 26.如果分式323||2-+-y y y 的值为0,求y 的值.27.当x 为何值时,分式121+x 的值为正数?28.当x 为何整数时,分式124+x 的值为正整数?拓展、探究、思考29.已知分式,by ay +-当y =-3时无意义,当y =2时分式的值为0,求当y =-7时分式的值.测试2 分式的基本性质学习要求掌握分式的基本性质,并能利用分式的基本性质将分式约分.课堂学习检测一、填空题1.,MB M A B A ⨯⨯=其中A 是整式,B 是整式,且B ≠0,M 是______. 2.把分式xy中的x 和y 都扩大3倍,则分式的值______.3.⋅-=--)(121x x x4..y x xy x 22353)(=5.22)(1y x y x -=+.6.⋅-=--24)(21y y x 二、选择题7.把分式bab a 392+-约分得( )A .33++b a B .33+-b a C .ba 3- D .ba 3+ 8.如果把分式yx yx ++2中的x 和y 都扩大10倍,那么分式的值( ) A .扩大10倍B .缩小10倍C .是原来的32 D .不变9.下列各式中,正确的是( ) A .b am b m a =++ B .0=++b a ba C .1111--=-+c b ac abD .y x yx y x +=--122 三、解答题10.约分:(1)acab 1510-(2)yx yx 322.36.1-(3)112--m m(4)yx x xy y -+-2442211.不改变分式的值,使下列分式的分子、分母都不含负号.(1);53a- (2);y x 532- (3);52a b-- (4)⋅---x y 1511综合、运用、诊断一、填空题12.化简分式:(1)=--3)(x y yx _____;(2)=+--22699xx x _____. 13.填空:)()1(=++-nm n m =-----ba n m m n 212)2(;)(⋅-ba221 14.填入适当的代数式,使等式成立.(1)⋅+=--+b a b a b ab a )(22222(2).a b ba b a-=-+)(11 二、选择题 15.把分式yx x-2中的x 、 y 都扩大m 倍(m ≠0),则分式的值( )A .扩大m 倍B .缩小m 倍C .不变D .不能确定16.下面四个等式:;22;22;22yx y x y x y x y x y x +-=+---=----=+-③②①⋅-+=--22yx y x ④其中正确的有( ) A .0个B .1个C .2个D .3个17.化简222b ab a b a ++-的正确结果是( )A .ba ba -+ B .ba ba +- C .ab21 D .ab21- 18.化简分式2222639ab b a b a -后得( )A .222223ab b a b a -B .263ab a ab-C .ba ab23- D .bb a ab2332-三、解答题 19.约分:(1)322)(27)(12b a a b a --(2)62322--++x x x x(3)22164m m m --(4)2442-+-x x x20.不改变分式的值,使分子、分母中次数最高的项的系数都化为正数.(1)yx x --22(2)aa b --2(3)xx x x +---2211(4)2213m m m ---拓展、探究、思考21.(1)阅读下面解题过程:已知,5212=+x x 求142+x x 的值.解:),0(5212=/=+x x x,5211=+∴xx 即⋅=+251x x ⋅=-=-+=+=+∴1742)2(12)(111222242x x x x x x (2)请借鉴(1)中的方法解答下面的题目:已知,2132=+-x x x求1242++x x x 的值.测试3 分式的乘法、除法学习要求1.学会类比方法、总结出分式乘法、除法法则. 2.会进行分式的乘法、除法运算.课堂学习检测一、填空题1.=-⋅)29(283x yy x ______. 2.=+-÷-x y x x xy x 33322______. 3.=+÷+)(1b a ba ______.4.=--++⋅+ab a b a .b ab a b ab 2222222______. 5.已知x =2008,y =2009,则4422))((y x y x y x -++的值为______.二、选择题 6.)(22m n n m a-⋅-的值为( )A .nm a+2 B .nm a+ C .nm a+-D .nm a--7.计算cdaxcd ab 4322-÷等于( ) A .x b 322B .232x bC .xb 322-D .222283dc x b a -8.当x >1时,化简xx --1|1|得( ) A .1B .-1C .±1D .0三、计算下列各题 9.xy x y 212852⋅10.nm mn m mn m n m --÷--24222211.11.11)1(122+-÷--x x x x 12.2222294255)23(x a x b a b a a x --⋅++四、阅读下列解题过程,然后回答后面问题13.计算:⋅⨯÷⨯÷⨯÷dd c c b b a 1112解:dd c c b b a 1112⨯÷⨯÷⨯÷ =a 2÷1÷1÷1①=a 2. ②请判断上述解题过程是否正确?若不正确,请指出在①、②中,错在何处,并给出正确的解题过程.综合、运用、诊断一、填空题14.cc b a 1⨯÷_____. 15.x y xy 3232÷-_____.16.一份稿件,甲单独打字需要a 天完成,乙单独打字需b 天完成,两人共同打需_____天完成. 二、选择题 17.计算xx x x x x +-÷---2231)2)(3(的结果是( ) A .22--x xx B .xx x 212--C .xx x --22D .122--x x x18.下列各式运算正确的是( )A .m ÷n ·n =mB .m nn m =÷1. C .111=÷⋅÷mm m m D .1123=÷÷m mm 三、计算下列各题 19.44)16(.2-+÷-a a a20.2222)1()1(a a a a .a a a -+--21.a b b ab a b ab a b a a 22222224.2+÷+--22.xx x x x x --+÷+--32.)3(446222拓展、探究、思考23.小明在做一道化简求值题:,.2)(2222xyx xy y xy x x xy -+-÷-他不小心把条件x 的值抄丢了,只抄了y =-5,你说他能算出这道题的正确结果吗?为什么?测试4 分式的乘法、除法、乘方学习要求掌握乘方的意义,能根据乘方的法则,先乘方,再乘除进行分式运算.课堂学习检测一、填空题1.分式乘方就是________________.2.=323)2(bca ____________. 3.=-522)23(z y x ____________.二、选择题4.分式32)32(b a 的计算结果是( )A .3632b aB .3596baC .3598b aD .36278b a5.下列各式计算正确的是( ) A .yx y x =33B .326m mm =C .b a ba b a +=++22D .b a a b b a -=--23)()(6.222nm m n m n ⋅÷-的结果是( )A .2nm -B .32nm -C .4mn -D .-n7.计算⨯-32)2(b a 2)2(a b )2(a b -⨯的结果是( ) A .68ba - B .638b a - C .5216b aD .5216ba -三、计算题 8.32)32(c b a9.22)52(a y x --10.223)2(8y xy ÷11.232)4()2(ba ba -÷-四、解答题12.先化简,再求值:(1),144421422xx x x x ++÷--其中⋅-=41x(2),a b .b b a a b a b a a 22224)()(+÷--其中,21=a b =-1.综合、运用、诊断一、填空题13.=⋅-⋅-76252)1()()(aba b b a ______.14.=-÷-32223)3()3(ac b c ab ______. 二、选择题15.下列各式中正确的是( )A .363223)23(yx y x =B .22224)2(b a a b a a +=+C .22222)(yx y x y x y x +-=+- D .33)()(n m nm n m +=-+ 16.na b 22)(-(n 为正整数)的值是( ) A .n n a b 222+ B .n n ab 24C .n n a b 212+-D .n nab 24-17.下列分式运算结果正确的是( )A .nm m n n m =3454.B .bc add c b a =.C .22224)2(b a a ba a -=-D .33343)43(y x yx =三、计算下列各题18.2222)2()()(ab a bb a -÷⋅-19.2313.-nn ba a c b20.22321).()(ba ab a ab b a -÷---四、化简求值21.若m 等于它的倒数,求32222)2.()22(444m m m m m m m --+÷-++的值.拓展、探究、思考22.已知.0)255(|13|2=-+-+b a b a 求2232332).6().()3(a bb a ab b a -÷--的值.测试5 分式的加减学习要求1.能利用分式的基本性质通分. 2.会进行同分母分式的加减法. 3.会进行异分母分式的加减法.课堂学习检测一、填空题1.分式2292,32acbc b a 的最简公分母是______. 2.分式3241,34,21x x x x x +--的最简公分母是______. 3.分式)2(,)2(++m b nm a m 的最简公分母是______. 4.分式)(,)(x y b yy x a x --的最简公分母是______. 5.同分母的分式相加减的法则是______.6.异分母的分式相加减,先______,变为______的分式,再加减. 二、选择题 7.已知=++=/xx x x 31211,0( ) A .x21B .x61 C .x65 D .x611 8.x y y a y x a x +--+++3333等于( )A .y x y x +-33B .x -yC .x 2-xy +y 2D .x 2+y 29.cab c a b +-的计算结果是( ) A .abca cb 222+-B .abcb a ac c b 222--C .abc b a ac c b 222+-D .abcac b +- 10.313---a a 等于( )A .aa a --+1622B .1242-++-a a a C .1442-++-a a a D .a a -111.21111xx x x n n n +-+-+等于( ) A .11+n xB .11-n xC .21xD .1三、解答题 12.通分:(1)abb a a b 41,3,22 (2))2(2,)2(-+x b x a y(3)aa a a -+21,)1(2 (4)aba b a b a --+2222,1,1四、计算下列各题 13.x x x x x -+--+22422214.xx x x x x x x +---+--+++3522363422215.412234272--+--x x x 16.xyy xxy x y -+-22综合、运用、诊断一、填空题17.计算a a -+-329122的结果是____________. 18.=-+abb a 6543322____________.二、选择题19.下列计算结果正确的是( )A .)2)(2(42121-+=--+x x x x B .))((211222222222x y y x x xy y x ---=--- C .yx xy y x x 231223622-=- D .33329152+-=----x x x x 20.下列各式中错误..的是( ) A .ad a d c d c a d c a d c 2-=---=+-- B .1522525=+++a aaC .1-=---xy yy x xD .11)1(1)1(22-=---x x x x 三、计算下列各题21.ba aa b b b a b a ---+-+22 22.zx y zy z x y z x z y x y ------+++-223.941522333222-++-++a a a a 24.43214121111xx x x x x +-++-+--25.先化简,1)121(22xx x x x x x ÷+---+再选择一个恰当的x 值代入并求值.拓展、探究、思考26.已知,10345252---=++-x x x x B x A 试求实数A 、B 的值.27.阅读并计算:例:计算:⋅+++++++)3)(2(1)2)(1(1)1(1x x x x x x原式31212111111+-+++-+++-=x x x x x x⋅+=+-=)3(3311x x x x仿照上例计算:⋅+++++++)6)(4(2)4)(2(2)2(2x x x x x x测试6 分式的混合运算学习要求1.掌握分式的四则运算法则、运算顺序、运算律. 2.能正确进行分式的四则运算.课堂学习检测一、填空题1.化简=-22639ab b a b a ______.2.化简2426a a ab -=______. 3.计算)1()1111(2-⨯+--m m m 的结果是______. 4.)1(yx y y x +-÷的结果是______.二、选择题5.2222yx y x y x y x -+÷+-的结果是( )A .222)(y x y x ++B .222)(y x y x -+C .222)(y x y x +-D .222)(yx y x ++6.222)(b a bb b a -⨯-的结果是( ) A .b1 B .2bab ba +- C .ba ba +- D .)(1b a b +7.ba ba b a b a b a b a -+⨯-+÷-+22)()(的结果是( ) A .ba ba +- B .ba ba -+ C .2)(ba b a -+ D .1三、计算题 8.xxx -+-111 9.291232mm -+-10.242-++x x11.121)11(22+-+-÷--a a a a a a12.)()(nm mnm n m mn m +-÷-+13.)131()11(22a a a a --÷++综合、运用、诊断一、填空题14.=-+-+-b a ba b a b a ______. 15.=++-+-32329122m m m ______. 二、选择题 16.(1-m )÷(1-m 2)×(m +1)的结果是( )A .2)1(1m +B .2)1(1m -C .-1D .117.下列各分式运算结果正确的是( ).24435232510.25bc b a c c b a =①abc b a a c b 32332=⋅② 1131).3(1122+=--÷+x x x x ③1111.2=+÷--xyx x x xy ④ A .①③ B .②④ C .①② D .③④18.abb a b a 2223231⨯--等于( ) A .aba - B .b ab - C .a ba 323- D .bab 232- 19.实数a 、b 满足ab =1,设,11,1111b ba aN b a M +++=+++=则M 、N 的大小关系为( ) A .M >N B .M =N C .M <ND .不确定三、解答下列各题 20.yy y y y yy y 4)44122(22-÷+--+-+21.)1214()11(22-----+÷+x x x x x x四、化简求值22.,)]3(232[x y x y x x y x y x x -÷--++-其中5x +3y =0.拓展、探究、思考23.甲、乙两名采购员去同一家饲料公司购买两次饲料,两次购买时饲料的价格各不相同.两位采购员的购货方式也各不相同,甲每次购买1000千克,乙每次只购买800元的饲料,设两次购买的饲料单价分别为m 元/千克和n 元/千克(m ,n 为正整数,且m ≠n ),那么甲、乙两名采购员两次购得饲料的平均价格分别是多少?谁的购买方法更合算?测试7 整数指数幂学习要求1.掌握零指数幂和负整数指数幂的意义. 2.掌握科学记数法.课堂学习检测一、填空题1.3-2=______,=--3)51(______.2.(-0.02)0=______,=0)20051(______. 3.(a 2)-3=______(a ≠0),=-2)3(______,=--1)23(______.4.用科学记数法表示:1cm =______m ,2.7mL =______L . 5.一种细菌的半径为0.0004m ,用科学记数法表示为______m .6.用小数表示下列各数:10-5=______,2.5×10-3=______.7.(3a 2b -2)3=______,(-a -2b )-2=______.8.纳米是表示微小距离的单位,1米=109纳米,已知某种植物花粉的直径为35000纳米,用科学记数法表示成______m . 二、选择题9.计算3)71(--的结果是( )A .3431-B .211-C .-343D .-2110.下列各数,属于用科学记数法表示的是( )A .20.7×10-2B .0.35×10-1C .2004×10-3D .3.14×10-5 11.近似数0.33万表示为( )A .3.3×10-2 B .3.3000×103 C .3.3×103 D .0.33×104 12.下列各式中正确的有( )①;9)31(2=-②2-2=-4;③a 0=1;④(-1)-1=1;⑤(-3)2=36.A .2个B .3个C .4个D .1个 三、解答题13.用科学记数法表示:(1)0.00016 (2)-0.0000312 (3)1000.5 (4)0.00003万14.计算:(1)98÷98 (2)10-3 (3)2010)51(-⨯15.地球的质量为6×1013亿吨,太阳的质量为1.98×1019亿吨,则地球的质量是太阳质量的多少倍(用负指数幂表示)?综合、运用、诊断一、填空题16.=-+-01)π()21(______,-1+(3.14)0+2-1=______.17.=-+---|3|)12()21(01______.18.计算(a -3)2(ab 2)-2并把结果化成只含有正整数指数幂形式为______. 19.“神威一号”计算机运算速度为每秒384000000000次,其运算速度用科学记数法表示,为______次/秒.20.近似数-1.25×10-3有效数字的个数有______位. 二、选择题21.200920098)125.0()13(⨯+-的结果是( )A .3B .23-C .2D .022.将201)3(,)2(,)61(---这三个数按从小到大的顺序排列为()A .21)3()61()2(-<<-- B .201)3()2()61(-<-<-C .12)61()2()3(-<-<-D .12)61()3()2(-<-<-三、解答题23.计算下列各式,并把结果化成只含有正整数指数幂的形式:(1)(a 2b -3)-2(a -2b 3)2 (2)(x -5y -2z -3)2(3)(5m -2n 3)-3(-mn -2)-224.用小数表示下列各数:(1)8.5×10-3 (2)2.25×10-8 (3)9.03×10-5测试8 分式方程的解法学习要求了解分式方程的概念和检验根的意义,会解可化为一元一次方程的分式方程.课堂学习检测一、填空题 1.分式方程1712112-=-++x x x 若要化为整式方程,在方程两边同乘的最简公分母是______. 2.方程111=+x 的解是______.3.方程625--=-x x x x 的解是______. 4.x =2是否为方程32121---=-x x x 的解?答:______. 5.若分式方程127723=-+-xax x 的解是x =0,则a =______.二、选择题6.下列关于x 的方程中,不是分式方程的是( ) A .11=+x xB .4132=+x xC .52433=+x xD .6516-=x x 7.下列关于x 的方程中,是分式方程的是( )A .55433+=--x x B .abb x b a a x +=- C .11)1(2=--x xD .nx m n n x =- 8.将分式方程yyy y 2434216252--=+-+化为整式方程时,方程两边应同乘( ). A .(2y -6)(4-2y ) B .2(y -3) C .4(y -2)(y -3) D .2(y -3)(y -2)9.方程4321+-=+-x x x x 的解是( ) A .x =-4 B .21-=x C .x =3 D .x =110.方程34231--=+-x xx 的解是( ) A .0 B .2C .3D .无解11.分式方程)2(6223-+=-x x x x 的解是( ) A .0B .2C .0或2D .无解三、解分式方程12.0227=-+x x13.3625+=-x x 14.45411--=--x xx 15.1617222-=-++x xx xx综合、运用、诊断一、填空题16.当x =______时,分式x 3与x-62的值互为相反数. 17.下列每小题中的两个方程的解是否相同?(1)2322-=-+x x x 与x +2=3 ( ) (2)2422-=-+x x x 与x +2=4 ( ) (3)113112-+=-++x x x 与x +2=3 ( ) 18.当m =______时,方程312=-xm 的解为1. 19.已知分式方程 424-+=-x ax x 有增根,则a 的值为______. 二、选择题 20.若分式方程58)1()(2-=-+x a a x 的解为,51-=x 则a 等于( )A .65 B .5C .65-D .-521.已知,11,11cb b a -=-=用a 表示c 的代数式为( ) A .bc -=11 B .ca -=11 C . aa c -=1 D .a a c 1-=22.若关于x 的方程0111=----x xx m 有增根,则m 的值是( ) A .3B .2C .1D .-123.将公式21111R R R +=(R ,R 1,R 2均不为零,且R ≠R 2)变形成求R 1的式子,正确的是( )A .R R RR R -=221B .R R RR R +=221 C .2211R RR RR R +=D .221R R RR R -=三、解分式方程 24.1211422+=+--x xx x x 25.2224412-++=--x x x x x26.32)3)(2(122-=-----x x x x x x x 27.xx x x x x ---+-=-+41341216852拓展、探究、思考28.若关于x 的分式方程211=--x m 的解为正数,求m 的取值范围. 29.(1)如下表,方程1、方程2、方程3……是按照一定规律排列的一列方程.猜想方程1的解,并将它们的解填在表中的空白处.(2)若方程)(11b a bx x a >=--的解是x 1=6,x 2=10,猜想a 、b 的值,该方程是不是(1)中所给出的一列方程中的一个?如果是,是第几个?(3)请写出这列方程中的第n 个方程和它的解.测试9 列分式方程解应用题学习要求会列出分式方程解简单的应用问题.课堂学习检测一、选择题1.某班学生军训打靶,有m 人各中靶a 环,n 人各中靶b 环,那么所有中靶学生的平均环数是( ) A .nm ba ++ B .nm bnam ++ C .)(21nb m a +D .)(21bn am +2.某农场挖一条480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x 米,那么下列方程正确的是( )A .420480480=+-x xB .204480480=+-x xC .448020480=--x x D .204804480=--xx 二、列方程解应用题3.一辆汽车先以一定速度行驶120千米,后因临时有任务,每小时加5千米,又行驶135千米,结果行驶这两段路程所用时间相等,求汽车先后行驶的速度.4.一个车间加工720个零件,预计每天做48个,就能如期完成,现在要提前5天完成,每天应该做多少个?5.甲、乙两同学学习电脑打字,甲打一篇3000字的文章与乙打一篇2400字的文章所用的时间相同,已知甲每分钟比乙多打12个字,问甲、乙两人每分钟各打字多少个?6.某煤矿现在平均每天比原计划多采330吨煤,已知现在采33000吨煤所需的时间和原计划采23100吨煤的时间相同.问现在平均每天采煤多少吨?综合、运用、诊断一、填空题7.仓库贮存水果a 吨,原计划每天供应市场m 吨,若每天多供应2吨,则要少供应______天.8.某人上山,下山的路程都是s ,上山速度v 1,下山速度v 2,则这个人上山和下山的平均速度是______.9.若一个分数的分子、分母同时加1,得;21若分子、分母同时减2,则得,31这个分数是______. 二、列方程解应用题10.某市决定修建一条从市中心到飞机场的轻轨铁路,为了使工程能提前3个月完成,需要将原定的工作效率提高12%,问原计划完成这项工程用多少月?11.某一工程招标时,接到甲、乙两工程队的投标书,每施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元.目前有三种施工方案:方案一:甲队单独完成此项工程刚好如期完成;方案二:乙队单独完成此项工程比规定日期多5天;方案三:若甲、乙两队合作4天,剩下的工程由乙队单独做也正好如期完成.哪一种方案既能如期完工又最节省工程款?。

相关文档
最新文档