2002中山大学信号与系统考研真题
全国2002年4月自考信号与系统试题参考答案
全国2002年4月自考信号与系统试题参考答案课程代码:02354一、单项选择题(本大题共16小题,每小题2分,共32分)1.B2.D3.C4.B5.A6.C7.A8.B9.C 10.A11.D 12.B 13.B 14.D 15.B 16.C二、填空题(本大题共9小题,每小题2分,共18分)17.t t ---2()()τετ18.Q19.必要20.232343341254111++++++cos()cos()cos()ωπωπωπt t t21. [h(t)]22.极点23.单位序列或δ()n24.收敛域25.Z 变换一、计算题(本大题共10小题,每小题5分,共50分)26.I=5mA ;L=5mH ;Q=10027.28.由X j ()ω可以看出,这是一个调制信号的频谱,x(t)可以看作信号x 1(t)与cos500t 的乘积。
由x 1(t)的频谱为而 x 1(t)= [()]()X j Sa t 112ωπ=所以x(t)= x 1(t)cos500t =12500πSa t t ()cos29.阻抗Z=R+j ωL=1+j 12ω∴===I V R A 01111Z j j 11112112=+=+=()|ωω∴=+=-∙I j j m 1111245112()则P I R W 002111==⋅=P I R W m 1122121245114125==+⋅=()()∴=+=+=P P P W 0112575302112212111222222.()()()()()()()()f t t t t t t t F s S S e S ee S s s s =---+--=-+=----εεε或用微分性质做:''=--+-=-+∴=-+=------f t t t t S F s e e F s e e S e S s s ss s ()()()()()()()δδδ2121212122222231.u c ()010-=伏开关到“2”之后的复频域模型为答31图 ()()()()10sc R I s u s E s c ++=-I s sss s s ()=-+=-+=-+110111011111 ∴=--i t t e t t ()()()δε1132.令y t dx t dt ()()=,则y(t)如图所示则Y j ()ω= [()]()sin()y t Sa ==ωωω222由于Y j ()|ωω==≠010,根据时域积分特性X j Y j j Y ()()()()ωωωπδω=+0 =⋅+⋅⋅2211sin()()ωωωπδωj =+222sin()()ωωπδωj33.F z z z z z z zz ()()()=+-=++-41121212f n n n n n n ()()()()([()]())=+-+-221211εεε或34121212122002.()()*()()()()()|()()()()y t f t h t e e t d e e d t e e t e e t f t t t t t t t ==⋅-=⋅⋅=-=-----∞+∞------⎰⎰ττττετετττεεε或y t h t f t e e e t d e e d t e e t e e t f t t tt t t t()()*()()()()()()()()()==⋅-=⋅=-=-----∞+∞----⎰⎰12121211222022ττττετττεεε35.方程两边拉氏变换得:[()()()][()()]()s Y s sy y sy s y Y s s 2003201253--'+-+=+---∴=+++++++Y s s s s s s s ()53321232321222y t f ()= [()()()][]()53112543112s s s e e e t t t+++=-+---εy t x ()= [()()][]()s s s e e t t t+++=-+--32112212εy t y t y t e e e t f x t tt ()()()[]()=+=-++---66123ε。
《信号与系统》考研试题解答第六章 离散系统的z域分析
第六章 离散系统的z 域分析一、单项选择题X6.1(浙江大学2003年考研题)离散时间单位延迟器的单位响应为 。
(A ))(k δ (B ))1(+k δ (C ))1(-k δ (D )1X6.2(北京邮电大学2004年考研题)已知一双边序列⎪⎩⎪⎨⎧<≥=0,30,2)(k k k f k k ,其z 变换为 。
(A )32,)3)(2(<<---z z z z (B )3,2,)3)(2(≥≤---z z z z z(C )32,)3)(2(<<--z z z z (D )32,)3)(2(1<<---z z zX6.3(东南大学2002年考研题)对于离散时间因果系统5.02)(--=z z z H ,下列说法是不对的是 。
(A )这是一个一阶系统 (B )这是一个稳定系统 (C )这是一个全通系统 ()这是一个最小相移系统X6.4(南京理工大学2000年考研题))(2)(k k f --=ε的z 变换为 。
(A )12)(-=z z z F (B )12)(--=z z z F (C )12)(-=z z F (D )12)(--=z z F X6.5(西安电子科技大学2005年考研题)序列[]∑-=-1)()1(2k i iki ε的单边z 变换为 。
(A )422-z z (B ))1)(2(+-z z z (C )422-z z(D ))1)(2(2--z z zX6.6(西安电子科技大学2004年考研题)离散序列[]∑∞=--=0)()1()(m mm k k f δ的z 变换及收敛域为 。
(A )1,1<-z z z (B )1,1>-z z z (C )1,1<+z z z (D )1,1>+z z zX6.7(北京交通大学2004年考研题)已知)(k f 的z 变换)2(211)(+⎪⎭⎫⎝⎛+=z z z F ,)(z F 的收敛域为 时,)(k f 为因果序列。
信号与系统考研试题答案
信号与系统考研试题答案一、选择题1. 信号的傅里叶变换具有以下哪些性质?A. 线性B. 时移C. 频移D. 以上都有答案:D解析:傅里叶变换具有线性性质,即两个信号的傅里叶变换等于它们各自傅里叶变换的和;具有时移性质,即时域中的平移对应频域中的相乘以频率因子;具有频移性质,即频域中的平移对应时域中的相乘以复指数函数。
2. 下列哪个系统是线性时不变系统?A. 弹簧质量阻尼系统B. 电子滤波器C. 人体生理系统D. 经济系统答案:B解析:线性时不变系统是指系统对任何输入信号的响应可以分解为对每个单独输入分量的响应的线性组合,并且这种关系不随时间变化。
电子滤波器满足这一定义,而其他选项中的系统通常不具备这种性质。
3. 连续时间信号的拉普拉斯变换定义中,s表示什么?A. 复频域变量B. 时域变量C. 空间变量D. 频率变量答案:A解析:拉普拉斯变换是将连续时间信号从时域转换到复频域的数学工具,其中s代表复频域变量,它包含了频率和阻尼因子。
4. 在数字信号处理中,离散傅里叶变换(DFT)的主要应用是什么?A. 信号的去噪B. 信号的压缩C. 信号的频谱分析D. 信号的滤波答案:C解析:离散傅里叶变换(DFT)主要用于分析离散信号的频率成分,即信号的频谱分析。
而去噪、压缩和滤波通常是通过其他方法或变换来实现的。
二、填空题1. 一个连续时间信号若在整个时间轴上绝对可积,则其傅里叶变换存在的条件是________。
答案:该信号的傅里叶变换收敛解析:连续时间信号的傅里叶变换存在的必要条件是信号在整个时间轴上绝对可积,即其积分绝对值有限。
2. 在信号与系统中,单位脉冲函数通常用符号________表示。
答案:δ(t)解析:单位脉冲函数是一个理想化的信号,其在t=0处的值无限大,但在整个时间轴上的积分为1,通常用δ(t)表示。
三、简答题1. 简述线性系统和非线性系统的区别。
答案:线性系统满足叠加原理,即系统对多个输入信号的响应等于对每个单独输入信号响应的和。
陈后金《信号与系统》(第2版)配套题库【名校考研真题+课后习题+章节题库+模拟试题】(上册)
图2-2
3.有一离散时间信号
(1)画出
(2)求序列 学]
使之满足
解:(1)
又 比较上述两式可得: 故如图2-3所示。
[电子科技大
图2-3
4.已知 如图2-4(a),画出
和
的波形。[北
京理工大学]
解:将 反转得 如图2-4(b)所示,将它们相加、减得 ,波形如图2-4(c)、(d)所示。
图2-4 5.已知f(t)的波形如图2-5所示,令r(t)=tu(t)。
大学]
图1-2 解:因为:
故:
y2(t)的波形如图1-3所示。
图1-3 3.将如图1-4(a)、(b)所示的连续信号展成如下形式:
给出信号
最简单的解析表达形式。[北京航空航天大学]
图1-4
解:(a)该信号可分为两段:
和
可化简为
故
,即:
(b)该信号可分为三段: 可化简为 故
,即
4.求
的值。[北京航空航天大学2006研]
,应该与齐次解有关,即系统的特征根为-1和-3,故特征方程应为 ,即a0=4,a1=3。
(2)设系统对激励 rzs(t),则
的零输入响应和零状态响应分别为rzi(t)和
由于
,则由线性时不变系统的微分特性可知
同时,设系统的单位冲激响应为h(t),则由线性时不变系统的叠加性 可知
由式(1)、式(2),并设
陈后金《信号与系统》(第2版)配 套模拟试题及详解
第一部分 名校考研真题 第1章 信号与系统分析导论 一、选择题
1.方程 天大学2007研] A.线性时不变 B.非线性时不变 C.线性时变 D.非线性时变 E.都不对 【答案】B
描述的系统是( )。[北京航空航
(NEW)中山大学信号与系统历年考研真题汇编
2019年ቤተ መጻሕፍቲ ባይዱ山大学911信号与系统考 研真题
2013年中山大学870信号与系统考 研真题
2014年中山大学875信号与系统考 研真题
2015年中山大学878信号与系统考 研真题
2016年中山大学869信号与系统考 研真题
2017年中山大学906信号与系统考 研真题
2018年中山大学904信号与系统考 研真题
目 录
2013年中山大学870信号与系统考研真题 2014年中山大学875信号与系统考研真题 2015年中山大学878信号与系统考研真题 2016年中山大学869信号与系统考研真题 2017年中山大学906信号与系统考研真题 2018年中山大学904信号与系统考研真题 2019年中山大学911信号与系统考研真题
信号与系统考研试题2
信号与系统考研试题2第二章连续系统的时域分析一、单项选择题X2.1(东南大学2002年考研题)一线性时不变连续时间系统,其在某激励信号作用下的自由响应为(e -3t +e -t )ε(t ),强迫响应为(1-e -2t )ε(t ),则下面的说法正确的是。
(A )该系统一定是二阶系统(B )该系统一定是稳定系统(C )零输入响应中一定包含(e -3t +e -t )ε(t ) (D )零状态响应中一定包含(1-e -2t )ε(t )X2.2(西安电子科技大学2005年考研题)信号f 1(t )和 f 2(t ) 如图X2.2所示,f =f 1(t )* f 2(t ),则 f (-1)等于。
(A )1 (B )-1 (C )1.5 (D )-0.5图X2.2X2.3(西安电子科技大学2005年考研题)下列等式不成立的是。
)(*)()(*)()(210201t f t f t t f t t f A =+-[]??=)(*)()(*)()(2121t f dt d t f dt d t f t f dt d B )()(*)()(t f t t f C '='δ )()(*)()(t f t t f D =δ答案:X2.1[D],X2.2[C],X2.3[B]二、判断与填空题T2.1(北京航空航天大学2001年考研题)判断下列说法是否正确,正确的打“√”,错误的打“×”。
(1)若)(*)()(t h t f t y =,则)2(*)2(2)2(t h t f t y =。
[ ](2)如果x (t )和y (t )均为奇函数,则x (t )*y (t )为偶函数。
[ ] (3)卷积的方法只适用于线性时不变系统的分析。
[ ] (4)若)(*)()(t h t f t y =,则)(*)()(t h t f t y --=-。
[ ](5)两个LTI 系统级联,其总的输入输出关系与它们在级联中的次序没有关系。
全国名校信号与系统考研真题及详解(拉普拉斯变换、连续时间系统的s域分析)【圣才出品】
第4章拉普拉斯变换、连续时间系统的s域分析一、选择题以下为4个信号的拉普拉斯变换,其中不存在傅里叶变换的信号是()。
[武汉大学2015研]A.1/sB.1C.1/(s+3)D.1/(s-3)【答案】D【解析】D选项为1/(s-3),其时域表达式为e3t u(t),很显然是不稳定的,不满足绝对可积条件,也就不存在傅里叶变换。
二、填空题1.信号x(t)=cos2t的单边拉普拉斯变换为______。
[北京邮电大学2016研]【答案】s/(s2+4),Re[s]>0【解析】由于cos(βt)=(1/2)(e jβt+e-jβt),根据拉氏变换的定义式即可求解,该拉氏变换对也是常用变换对。
2.某连续线性时不变系统的系统函数为H(s)=s/(s+2),若用e(t)表示输入信号,而r(t)表示输出信号,则该系统的微分方程可以表示为______。
[北京邮电大学2016研]【答案】r ′(t)+2r(t)=e ′(t)【解析】由H(s)=s/(s +2)=R(s)/E(s),有sR(s)+2R(s)=sE(s),对应的微分方程即为:r ′(t)+2r(t)=e ′(t)3.已知某LTI 系统模型如下:y ′′(t)+3y ′(t)+2y(t)=f ′(t)+4f(t),y ′(0-)=1,y(0-)=0,f (t)=u (t),则系统的零状态响应y f (t )为______。
[武汉大学2015研]【答案】(2+e -2t -3e -t )u(t)【解析】对该微分方程两边取拉普拉斯变换得:s 2Y (s )+3sY (s )+2Y (s )=sF (s )+4F (s ) 则H (s)为:H(s)=(s +4)/(s 2+3s +2),系统的零状态响应为22441()()3232s s Y s F s s s s s s ++==⋅++++对Y (s)取拉氏逆变换得:y f (t)=(2+e -2t -3e -t )u(t)。
《中山大学911信号与系统2007-2018年考研真题及答案解析》
《中山大学信号与系统历年考研真题及答案解析》
3 / 169
七、(18 分)
图
4
所示的抽头滤波器,如果要求其传输系数在
w=0
时为
1,在
w1
=
2
*103
rad
/s
及
w2 = *103 rad /s 时为 0.求图中各标量乘法器的传输值,并绘出幅频特性曲线(注:输入信
号的抽样间隔为 1ms)
《中山大学信号与系统历年考研真题及答案解析》
《中山大学信号与系统历年考研真题及答案解析》
5 / 169
四、(35 分)
计算
(1)求象函数
F (z)
(z
z2 z 1)( z 2
z
1)
,|
z
| 1的逆z变换
(2)利用 z 变换的性质求序列 (k-1)2u(k-1) 的 z 变换,并注明收敛域。
1 (3)求象函数 s(s+1)2 的拉普拉斯逆变换 f(t)。
5 系统 y(t) x(2t) 是线性因果系统。
6、在仅知线性时不变(LTI)系统的系统函数和系统的初始状态的条件下,可以获得该 系统的零输入响应。
7、离散时间系统的频率响应 H (e jw ) 为 H (z) 在单位圆的 z 变换。
三、(20 分) 已知 LTI 系统的冲激响应 h(t) e2tu(t) (1)若激励信号为 f (t) et[u(t) u(t 2) a (t 2)] 式中 a 为常数,确定该系统的
零状态响应。
(2)若激励信号表示为 f (t) x(t)[u(t) u(t 2) a (t 2)] ,式中 x(t) 为任意 t 的 函数,若要求系统在 t>2 的响应为 0,试确定 a 值应等于多少?