人工智能期末复习资料

合集下载

人工智能期末考试复习

人工智能期末考试复习

1、人工智能的概念及其发展历史上先后出现的主流学派2、传统搜索算法的优点和不足,会用宽度优先和深度优先求解问题答:宽度优先搜索算法(又称广度优先搜索)是最简便的图的搜索算法之一,属于一种盲目搜寻法,目的是系统地展开并检查图中的所有节点,以找寻结果。

换句话说,它并不考虑结果的可能位址,彻底地搜索整张图,直到找到结果为止。

在状态图搜索中,从初始节点出发,同层优先搜索,逐层进行搜索。

深度优先搜索是在搜索树的每一层始终先只扩展一个子节点,不断地向纵深前进直到不能再前进(到达叶节点或受到深度限制)时,才从当前节点返回到上一级节点,沿另一方向又继续前进。

这种方法的搜索树是从根节点开始一枝一枝逐渐形成的。

宽度优先搜索将新扩展的节点放在open表的尾部,而深度优先搜索将新扩展的节点放在open表的前面。

3、高级搜索算法的优点和不足4、A*算法的概念、步骤以及应用5、适值函数的作用和意义,会分析问题的适值函数(估价函数,如八数码问题的估价函数)6、谓词逻辑的概念、原理、优点和不足;能够用其描述知识和过程7、产生式系统概念、组成;能够用其进行逻辑推导。

8、语义网络概念、原理,会用(比较详细)语义网描述知识9、机器学习、聚类分类概念,了解其所采用四个策略。

10、SA原理,其计算过程中的三函数两准则,能够用SA求解实际问题11、GA原理,交叉、变异、选择操作,能够用GA求解实际问题12、人工神经网络的历史和要素13、递归网络结构和原理14、BP网络,能描述网络结构,解释其原理15、Hopfield网络,能描述网络结构,解释其工作机理16、博弈树原理,会利用α-β剪枝搜索(掌握生成节点倒推值的方法、判定剪枝)答:博弈策略假设我们对所讨论的博弈问题构造了一棵完整的博弈树,我们希望能从中找出棋手应采用的策略。

这种策略应当确保棋手会赢,或者起码能够得到和局的结果首先我们把该博弈树的每一个节点标上w(对应于赢)、d(对应于和局)或者l(对应于输)。

大数据与人工智能期末复习

大数据与人工智能期末复习

• 25、人工智能的发展历程:
• 1956年—20世纪60年代初。机器定理证明、 跳棋程序等,掀起人工智能发展的第一个 高潮。
• 第二是反思发展期:20世纪60年代—70年 代初,无法用机器证明两个连续函数之和、 机器翻译闹出笑话等,使人工智能的发展 走入低谷。
• 25、人工智能的发展历程:
• 第三是应用发展期:20世纪70年代初—80 年代中。专家系统模拟人类专家的知识和 经验解决特定领域的问题,
• 18、大数据时代,我们是要让数据自己 “发声”,没必要知道为什么,只需要知 道是什么。
• 19、建立在相关关系分析法基础上的预测 是大数据的核心。
• 20、心跳机制:就是每隔几分钟发送一个 固定信息给服务端,服务端收到后回复一 个固定信息如果服务端几分钟内没有收到 客户端信息则视客户端断开。
• 21、计算智能:机器可以像人类一样存储、 计算和传递信息,帮助人类存储和快速处 理海量数据,即能“存储会算”。
• 14、大数据不是要教机器像人一样思考。 相反,它是把数学算法运用到海量的数据 上来预测事情发生的可能性。
• 15、大数据是指不用随机分析法这样的捷 径,而采用所有数据的方法。
• 16、大数据的简单算法与小数据的复杂算 法相比更有效。
• 17、大数据的发展,使信息技术变革的重 点从关注技术转向关注信息。
• 29、智能机器人可以根据行为能力得到信 息。
• 30、自动识别系统属于人工智能人类感官 模拟领域。
• 31、人人智能主要分人:
• 通讯、感知与人动是现代人人智能的三个关键能 人,在这人我们将根据这些能人/应人对这三个技 术领域进人介绍:计算机视觉(CV)、人然语人处 理(NLP)和机器人。人识别。
• 26、机器学习算法分类。

人工智能期末复习

人工智能期末复习

人工智能期末复习一、名词解释1、人工智能(学科):人工智能学科是计算机科学中涉及研究、设计和应用智能机器的一个分支,是一门综合性的交叉学科和边缘学科。

2、语义网络:语义网络是一种用实体及其语义关系来表达知识的有向图。

3、机器学习:机器学习就是让机器(计算机)来模拟和实现人类的学习功能。

4、正向推理产生式系统:正向推理也称数据驱动方式,它是从初始状态出发,朝着目标状态前进,正向使用规则的一种推理方法。

所谓正向使用规则,是指以问题的初始状态作为初始综合数据库,仅当综合数据库中的事实满足某条规则的前提时,该规则才被使用。

正向推理产生式系统简单明了,且能求出所有解,但是执行效率较低,具有一定的盲目性。

5、遗传算法:遗传算法是在模拟自然界生物遗传进化过程中形成的一种自适应优化的概率搜索算法。

6、人工智能(能力):是智能机器执行的通常与人类智能有关的功能,如判断、推理、证明、识别、感知、理解、设计、思考、规划、学习和问题求解等思维活动。

7、机器学习系统:机器学习系统是指能够在一定程度上实现机器学习的系统。

8、逆向推理产生式系统:逆向推理也称目标驱动方式,它是从目标状态出发,朝着初始状态前进,反向使用规则的一种推理方法。

所谓逆向使用规则,是指以问题的目标状态作为初始综合数据库,仅当综合数据库中的事实满足某条规则的后件时,该规则才被使用。

逆向推理产生式系统不寻找无用数据,不使用与问题无关的规则。

9、演绎推理:演绎推理是从已知的一般性知识出发,去推出蕴含在这些已知知识中的适合于某种个别情况的结论。

是一种由一般到个别的推理方法,其核心是三段论,如假言推理、拒取式和假言三段论。

10、启发式搜索:状态空间的启发式搜索是一种能够利用搜索过程所得到的问题自身的一些特性信息来引导搜索过程尽快达到目标的搜索方法。

二、填空题1、目前人工智能的主要学派有下列三家:符号主义、联结主义和行为主义。

2、常用的知识表示方法有一阶谓词逻辑表示法、产生式表示法、语义网络表示法、框架表示法和过程表示法。

人工智能原理复习题

人工智能原理复习题

人工智能原理复习题一、人工智能的定义与发展历程人工智能(Artificial Intelligence,简称 AI),简单来说,就是让机器模拟人类的智能行为和思维方式。

它旨在使计算机能够像人类一样学习、推理、解决问题和执行任务。

人工智能的发展可以追溯到上世纪 50 年代。

早期的研究主要集中在基于规则的系统和逻辑推理。

然而,由于计算能力的限制和对智能本质理解的不足,进展相对缓慢。

到了 80 年代,专家系统开始流行,它们基于特定领域的知识和规则,能够为用户提供专业的建议和解决方案。

但专家系统的局限性也逐渐显现,比如难以处理不确定性和动态变化的问题。

进入 21 世纪,随着大数据的兴起、计算能力的大幅提升以及深度学习算法的突破,人工智能迎来了新的发展高潮。

图像识别、语音识别、自然语言处理等领域取得了显著的成果,人工智能开始广泛应用于医疗、交通、金融、教育等众多领域。

二、人工智能的主要技术(一)机器学习机器学习是人工智能的核心技术之一。

它使计算机通过数据自动学习和改进,而无需明确编程。

机器学习主要包括监督学习、无监督学习和强化学习。

监督学习是最常见的类型,通过有标记的训练数据来学习预测未知数据的标签。

例如,通过大量带有标签的图像(如猫、狗)来训练模型,使其能够识别新的未标记图像中的动物类别。

无监督学习则是在没有标记的数据中寻找模式和结构。

聚类分析就是一种无监督学习方法,它可以将相似的数据点分组在一起。

强化学习通过与环境进行交互并根据奖励信号来学习最佳策略。

比如,在机器人控制中,通过不断尝试不同的动作并根据获得的奖励来优化行为。

(二)深度学习深度学习是机器学习的一个分支,它基于深度神经网络(Deep Neural Network,简称 DNN)。

DNN 由多层神经元组成,可以自动从数据中提取特征和模式。

卷积神经网络(Convolutional Neural Network,简称 CNN)在图像识别中表现出色,能够识别图像中的物体、场景等。

大学人工智能期末考试题库及答案

大学人工智能期末考试题库及答案

大学人工智能期末考试题库及答案1. 选择题1. 人工智能(AI)是一种:- [ ] A. 操作系统- [ ] B. 程序语言- [ ] C. 计算机硬件- [x] D. 计算机科学领域2. 以下哪个不是人工智能的应用领域?- [ ] A. 语音识别- [ ] B. 机器研究- [x] C. 图像处理- [ ] D. 人类基因编辑3. 以下哪个不是人工智能的主要方法?- [ ] A. 逻辑推理- [ ] B. 遗传算法- [x] C. 数学公式- [ ] D. 神经网络4. 以下哪个不属于机器研究的类型?- [ ] A. 监督研究- [ ] B. 无监督研究- [ ] C. 强化研究- [x] D. 编程研究5. 以下哪个算法被广泛应用于图像处理和计算机视觉?- [x] A. 卷积神经网络(CNN)- [ ] B. 支持向量机(SVM)- [ ] C. 遗传算法- [ ] D. 贝叶斯网络2. 简答题1. 请简要解释人工智能的定义和作用。

人工智能是一种计算机科学领域,旨在使计算机能够模拟和模仿人类智能的能力。

它的目的是使计算机能够感知、研究、推理和决策,以解决各种复杂问题和任务。

人工智能在许多领域有重大应用,如自然语言处理、图像处理、机器研究等,为现代社会和技术的发展带来了巨大的影响和潜力。

2. 请列举一个你认为人工智能在未来可能出现显著进展的领域,并说明原因。

一个可能出现显著进展的领域是医疗保健。

人工智能可以通过大数据分析和机器研究算法,帮助医生进行更准确的诊断和治疗决策。

它可以快速处理和分析大量的医疗数据,提供个性化的医疗建议,改善病患的治疗结果和医疗服务效率。

此外,人工智能还可以应用于医疗机器人和辅助技术,提供更好的医疗保健服务和患者管理。

3. 请说明机器研究和深度研究之间的区别。

机器研究是人工智能的一个分支,它关注如何从数据中研究和构建模型,以进行预测和决策。

机器研究算法可以通过分析数据集中的模式和规律,自动调整模型参数,并根据历史数据进行预测。

【2024版】人工智能导论复习

【2024版】人工智能导论复习

可编辑修改精选全文完整版《人工智能导论》期末复习一、题型:填空题、简答题、计算题、论述题二、复习重点:第一章:1.什么是人工智能?人工智能的三种观点分别是什么?2.实现人工智能的技术路线是哪四种?3.人工智能要研究的三个主要问题是什么?4.人工智能有哪些主要研究领域?第二章:1.什么是知识?何谓知识表示?2.用谓词逻辑表示法表示猴子摘香蕉问题。

3.产生式系统推理机的推理形式有哪三种?4.产生式系统一般由哪三个基本部分组成?5.用语义网络表示:“苹果树枝繁叶茂,上结了很多苹果,有大的,也有小的,有红的,也有绿的” 。

6.用与 / 或树方法表示三阶Hanoi 塔问题。

第三章:1.推理的含义是什么?2.应用归结原理求解下列问题:任何兄弟都有同一个父亲, John 和Peter 是兄弟,且 John 的父亲是 David ,问 Peter 的父亲是谁?第四章:1.可信度方法:例 4.1 ,例 4.22.主观 Bayes 方法:例 4.8 ,例 4.93.证据理论中描述证据和结论的不确定性采用哪两个函数度量?第五章:1.什么叫搜索?搜索的两层含义是什么?2.用全局最佳优先搜索方法求解以下八数码问题。

3.用代价树的深度优先搜索求解下面的推销员旅行问题。

第六章:1.什么是机器学习?机器学习研究的目标是什么?研究机器学习的意义何在?2.机器学习有哪些主要学习策略?3.机器学习系统的基本模型包含哪四个基本环节?4.实例学习的含义是什么?它包含哪两个空间模型?对规则空间进行搜索的方法有几种?第七章:1.什么是自然语言理解?自然语言理解过程有哪些层次?各层次的功能如何?2.对汉语语料库加工的方法是什么?汉语自动分词的方法有哪些?其难点何在?第八章:1.什么是专家系统?它有哪些基本特点?一般专家系统由哪些基本部分构成?2.知识获取的主要任务是什么?3.有哪几类专家系统开发工具?各有什么特点?第九章:1.解答 B-P 学习算法的流程图,并说明其优缺点。

《人工智能导论》期末复习知识点

《人工智能导论》期末复习知识点

《人工智能导论》期末复习知识点
人工智能导论知识点总结
一、定义:
人工智能(Artificial Intelligence,AI)是指研究如何实现机器的智能,即使用计算机来模拟或提高人类的智能表现和能力。

基于此,人工智能的主要任务是解决一些超出传统计算能力的问题,其中包括学习、推理和解决一些挑战。

二、技术:
人工智能技术可分为三个主要技术领域:
1、机器学习:机器学习是一种研究机器如何学习,并从这些学习中学习及其反馈环境的解决实际问题的学科。

包括规则学习、支持向量机以及深度学习。

2、自然语言处理:自然语言处理是指人工智能技术在处理人类自然语言的理解和翻译方面的应用研究。

它将注重语言应用的学习、理解、表达和使用,以及语言识别、概念识别和分析。

3、计算机视觉:计算机视觉是指使用计算机的视觉系统来处理可视化的图像、图片、视频信息,以及关于图像的相关内容的研究。

它是一种智能系统,包括图像处理、识别和分析等功能。

三、应用:
人工智能在各行各业都有广泛的应用,有助于改善工作效率,提高工作质量,提升企业竞争力,节省成本。

1、机器人:工业机器人、服务机器人等用于工厂生产线和服务行业,可以大大提高工作效率。

人工智能导论复习资料

人工智能导论复习资料

人工智能导论复习资料一、什么是人工智能人工智能,简单来说,就是让机器像人一样思考和行动。

它不是一种单一的技术,而是一个涵盖了多种学科和技术的领域,包括计算机科学、数学、统计学、心理学、语言学等等。

想象一下,你有一个智能助手,它能理解你的需求,回答你的问题,甚至帮你完成一些复杂的任务,比如规划旅行、管理财务。

这就是人工智能在日常生活中的一种应用。

人工智能的目标是创建能够执行需要人类智能才能完成的任务的计算机系统。

这些任务包括学习、推理、解决问题、理解语言、识别图像和声音等等。

二、人工智能的发展历程人工智能的发展并非一蹴而就,它经历了几个重要的阶段。

在早期,科学家们就开始思考机器能否像人类一样思考。

20 世纪50 年代,人工智能的概念被正式提出,当时的研究主要集中在基于规则的系统和符号推理上。

然而,由于计算能力的限制和对智能本质理解的不足,人工智能在20 世纪 70 年代遭遇了第一次寒冬。

到了 20 世纪 80 年代,随着专家系统的出现,人工智能迎来了一次小的复兴。

专家系统是一种基于知识库和推理规则的系统,可以解决特定领域的问题。

但随着问题的复杂度增加,专家系统的局限性也逐渐显现。

近年来,由于大数据的出现、计算能力的大幅提升以及深度学习算法的突破,人工智能再次取得了巨大的进展。

图像识别、语音识别、自然语言处理等领域都取得了令人瞩目的成果。

三、人工智能的核心技术(一)机器学习机器学习是人工智能的核心领域之一。

它让计算机通过数据自动学习模式和规律。

机器学习有监督学习、无监督学习和强化学习等多种方法。

监督学习是最常见的一种,比如通过大量已标记的图片(比如猫和狗的图片)来训练计算机识别新的猫和狗的图片。

无监督学习则是让计算机在没有标记的数据中自己发现模式,例如将相似的客户分组。

强化学习是通过奖励和惩罚机制来训练智能体做出最优决策,比如让机器人学会走路。

(二)深度学习深度学习是机器学习的一个分支,它使用多层神经网络来学习数据的表示。

人工智能期末复习材料

人工智能期末复习材料

、选择填空。

1.智能:1956年智能作为个专业术语出现。

智能有以下点:AI(ArtificialIntelligence)1.智能具有感知能;2.智能具有记忆和思维能:记忆和思维是脑最重要的功能,记忆和思维需要同时具备,它们是由智能的根本原因;思维分为好种:逻辑思维,形象思维,以及顿悟思维;3.智能具有学习能,适应能及为能。

2.图灵1950年发表“计算机与智能”的论,章以“机器能思维吗?”开始,论述并提出了著名的“图灵测试”,以测试个计算机系统是否具有智能。

3.智能界主要由符号主义,为主义和连结主义等研究学派。

4.智能主要的研究领域(挑选5或6个认真看)1.专家系统2.模式识别3.机器学4.动定理证明5.博弈6.智能检索7.动程序设计 8.组合调度问题 9.软计算 10.分布式智能 11.数据挖掘5.智能研究的3个主要内容:知识的获取、知识的表和知识的运。

6.知识的描述:知识的某领域中所涉及的各有关的种符号表。

7.知识的特点:(1)相对正确性(2)不确定性(3)可表性(4)可利性8.知识的分类(1)事实性知识(2)过程性知识(3)为性知识(4)实例性知识(5)类性知识(6)元知识9.确定性和不确定性规则知识的产式表:确定性:P Q或者 if P then Q不确定性:P Q(可信度)或者 if P then Q(可信度)10.确定性和不确定性事实性知识的产式表:确定性事实性知识般使三元组(对象,属性,值)或(关系,对象1,对象2)不确定性事实性知识般使四元组(对象,属性,值,不确定度量值)或(关系,对象1,对象2,不确定度量值)11.产式系统通常由规则库、数据库、推理机这3个基本部分组成。

它们之间的关系可以表为12.规则库是专家系统的核。

数据库,称事实库。

13.产式系统推理机的推理式:正向推理,反向推理,双向推理和混合式推理。

个较常的槽名:(要会判断属于哪种槽)P46(1)ISA槽(2)AKO槽(3)Instance槽(4)Part-of槽15.语义络的基本语义联系(学会如何表各种关系,重点是类属关系)1.类属关系2.包含关系3.属性关系4.时间关系5.位置关系6.相近关系7.因果关系8.组成关系16类属关系:(1)AKO(A-Kind-of)表个事物是另个事物的种类型。

人工智能考试复习总结学习资料.doc

人工智能考试复习总结学习资料.doc

实用文档人工智能第一章1 、智能( intelligence)人的智能是他们理解和学习事物的能力,或者说,智能是思考和理解能力而不是本能做事能力。

2 、人工智能(学科)人工智能研究者们认为:人工智能(学科)是计算机科学中涉及研究、设计和应用智能机器的一个分支。

它的近期主要目标在于研究用机器来模仿和执行人脑的某些智力功能,并开发相关理论和技术。

3 、人工智能(能力)人工智能(能力)是智能机器所执行的通常与人类智能有关的智能行为,这些智能行为涉及学习、感知、思考、理解、识别、判断、推理、证明、通信、设计、规划、行动和问题求解等活动。

4 、人工智能:就是用人工的方法在机器上实现的智能,或者说,是人们使用机器模拟人类的智能。

5、人工智能的主要学派:符号主义:又称逻辑主义、心理学派或计算机学派,其原理主要为物理符号系统(即符号操作系统)假设和有限合理性原理。

代表人物有纽厄尔、肖、西蒙和尼尔逊等。

连接主义:又称仿生学派或生理学派,其原理主要为神经网络及神经网络间的连接机制与学习算法。

行为主义:又称进化主义或控制论学派,其原理为控制论及感知—动作模式控制系统。

6 、人类认知活动具有不同的层次,它可以与计算机的层次相比较,见图思维策略计算机程序计算机语言初级信息处理生理过程计算机硬件人类计算机图:人类认知活动与计算机的比认知活动的最高层级是思维策略,中间一层是初级信息处理,最低层级是生理过程,即中枢神经系统、神经元和大脑的活动,与此相对应的是计算机程序、语言和硬件。

研究认知过程的主要任务是探求高层次思维决策与初级信息处理的关系,并用计算机程序来模拟人的思维策略水平,而用计算机语言模拟人的初级信息处理过程。

7 、人工智能研究目标为:1、更好的理解人类智能,通过编写程序来模仿和检验的关人类智能的理论。

2、创造有用和程序,该程序能够执行一般需要人类专家才能实现的任务。

一般来说,人工智能的研究目标又可分为近期研究目标和远期研究目标两种。

人工智能期末考试复习提纲(工硕)

人工智能期末考试复习提纲(工硕)

人工智能期末考试复习范围第1部分绪论1-1.什么是人工智能?试从学科和能力两方面加以说明.答:从学科方面定义:人工智能是计算机科学中涉及研究、设计和应用智能机器的一个分支。

它的近期目标在于研究用机器来模拟和执行人脑的某些智力功能,并开发相关理论和技术从能力方面定义:人工智能是智能机器所执行的通常与人类智能有关的智能行为,如判断、推理、证明、识别、感知、理解、通信、设计、思考、规划、学习和问题求解等思维活动。

1-2.在人工智能的发展过程中,有哪些思想和思潮起了重要作用?答:1)数理逻辑和关于计算本质的新思想,提供了形式推理概念与即将发明的计算机之间的联系;2)1956年第一次人工智能研讨会召开,标志着人工智能学科的诞生;3)控制论思想把神经系统的工作原理与信息理论、控制理论、逻辑以及计算联系起来,影响了许多早期人工智能工作者,并成为他们的指导思想;4)计算机的发明与发展;5)专家系统与知识工程;6)机器学习、计算智能、人工神经网络和行为主义研究,推动人工智能研究的近一步发展。

1-3.为什么能够用机器(计算机)模仿人的智能?答:物理符号系统的假设:任何一个系统,如果它能够表现出智能,那么它就必定能执行输入符号、输出符号、存储符号、复制符号、建立符号结构、条件迁移6种功能。

反之,任何系统如果具有这6种功能,那么它就能够表现出智能(人类所具有的智能)。

物理符号系统的假设伴随有3个推论.推论一:既然人具有智能,那么他(她)就一定是各物理符号系统;推论二:既然计算机是一个物理符号系统,它就一定能够表现出智能;推论三:既然人是一个物理符号系统,计算机也是一个物理符号系统,那么我们就能够用计算机来模拟人的活动.1-4.人工智能的主要研究内容和应用领域是什么?其中,哪些是新的研究热点?答:研究和应用领域:问题求解(下棋程序),逻辑推理与定理证明(四色定理证明),自然语言理解,自动程序设计,专家系统,机器学习,神经网络,机器人学(星际探索机器人),模式识别(手写识别,汽车牌照识别,指纹识别),机器视觉(机器装配,卫星图像处理),智能控制,智能检索,智能调度与指挥(汽车运输高度,列车编组指挥),系统与语言工具。

人工智能期末复习概要

人工智能期末复习概要
当MD(H,E)>0时,应该有P(H/E)< P(H),那么有 MB(H,E)=0
当MB(H,E)>0时,则为P(H/E)> P(H),那么有 MD(H,E)=0
如果P(H/E)= P(H),则MD(H,E)= MD(H,E)=0表 示,E与H无关
第四章 不确定性推理
不确定性的传递问题
– 单条知识
第四章 不确定性推理
可信度方法 组合证据不确定性表示
– 当多个证据以合取得方式构成一个组合证 据的时候,组合证据的可信度为这些单一 证据的可信度最小值;
– 当多个证据以析取得方式构成一个组合证 据的时候,组合证据的可信度为这些单一 证据的可信度最大值;
第四章 不确定性推理
– MB(H,E):信任增长度 – MD(H,E):不信任增长度 – MB(H,E)与MD(H,E)是互斥的 – 解释
学习目标
– 了解不确定性推理的含义、思路和讨论的 主要问题。
– 掌握可信度方法、主观Bayes方法和证据 理论不确定性推理方法
第四章 不确定性推理
计算问题
– 不确定性的传递问题 – 证据不确定性的合成问题 – 结论不确定性的合成问题
第四章 不确定性推理
可信度方法 知识不确定性的表示
– 在基于可信度的不确定性推理模型中,知 识是以产生式规则来表示的,而只是的不 确定性则是以可信度CF(H,E)来表示的, 其一般的形式为:
第一章 绪论
课程研究的主要内容
– 知识表示 – 推理方式
确定性推理(主要归结原理) 不确定性推理
– 搜索技术研究
普通图搜索 超图搜索(与或图搜索)
第一章 绪论
需要解决的问题:
– 万能的人工智能的知识体系结构从根本上 就不可能有,最根本的原因是缺乏知识。 人是根据知识行事的,而不是根据抽象原 则上进行推理。

人工智能复习参考(带答案).doc

人工智能复习参考(带答案).doc

复习参考题一、填空I•构成产生式系统的基本元素有综合数据库、规则库、控制系统,控制策略按执行规则的方式分类,分为止向、逆向、双向三类。

2•归结过程中控制策略的作用是给出控制策略,以使仅对选择合适的子句间方可做归结,避免多余的、不必要的归结式出现或者说,少做些归结仍能导出空子句。

常见的控制策略有线性归结策略、支持集策略、单元归结、输入归结。

3.公式G和公式的子句集并不等值,但它们在不可满足的意义下是一致的。

4.与或图的启发式搜索算法(A0*算法)的两个过程分别是图生成过程即扩展节点和计算耗散值的过程。

5.人工智能的研究途径主要有两种不同的观点,一种观点称为符号主义,认为人类智能基木单元是符号。

另一种观点称为连接主义(仿牛主义),认为职能的基本单元是神经元。

6.集合{P(a, x, f (g(y))? P(z, f (z) ,f(u)))的mgu (最一般合一置换)为{z/a, f(x)/x, u/g(y)}o7•语义网络是对知识的有向图表示方法,一个最简单的语义网络是一个形如节点1、弧、节点2的三元组,语义网络可以描述事物间多种复杂的语义关系、常用ISA、AKO弧表示节点间具有类屈的分类关系。

语义网络下的推理是通过继承和匹配实现的。

8.当前人工智能研究的热点之一就是机器学习。

常见的机器学习方法可分为连接学习、归纳学习、分析学习和遗传算法与分类器系统等。

一个机器学习系统应有环境、知识库、学习环节和执行环节四个基本部分组成。

9•常用的知识表示法有逻辑表示法、产牛式规则表示法、语义网络表示法、框架理论表示法、过程表示法等。

10.有两个A*算法A1和A2,若A1比A2有较多的启发信息,贝9hl(n)>h2(n)oII.关于A算法与A*算法,若规定h(n)M0,并J1定义启发函数:P|c(n)=g*(n)+h*(n) 表示初始状态S。

经点n到Fl标状态Sg最优路径的费用。

其屮g*(n)为So到n的最小费用,h*(n)为到Sg的实际最小费用。

人工智能期末复习

人工智能期末复习

人工智能原理期末考试复习1. 什么是人工智能?发展经历了几个阶段?人工智能指的是能够感知或推断信息,并将其作为知识而拥有,以应用于环境或语境中适合的行为;机器的智能称为人工智能,通常在运用程序、间或适当硬件的计算机系统中得以实现.2. 人工智能研究的内容有哪些?机器学习、知识表示方法、搜索求解策略、进化算法及其应用、确定性及不确定性推理方法、群体智能算法及其应用。

3. 人工智能有哪些研究领域?安全防范、医疗诊断、语音识别、工业制造、计算机游戏、机器翻译。

4. 什么是知识?有哪些特性?有几种分类方法?知识是人们在长期的生活及社会实践中、在科学研究及实验中积累起来的对客观世界的认识与经验。

相对正确性、不确定性、可表示性与可利用性。

分类方法:(1)按知识的作用范围分为∶常识性知识和领域性知识﹔(2)按知识的作用及表示分为∶事实性知识、规则性知识、控制性知识和元知识;(3 )按知识的确定性分为:确定知识和不确定知识;(4) 按人类思维及认识方法分为:逻辑性知识和形象性知识。

5. 什么是知识表示、命题、谓词,一阶谓词逻辑、产生式、框架、语义网络?知识表示就是将人类知识形式化或者模型化;命题是一个非真即假的陈述句;谓词的一般形式: ),...,,(21n x x x P );n x x x ,...,,21是个体,某个独立存在的事物或者某个抽象的概念, P 是谓词名,用来刻画个体的性质、状态或个体间的关系。

一阶谓词逻辑表示:谓词不但可表示一些简单的事实,而且可以表示带有变量的“知识”,有时称为“事实的函数”。

进而可用谓词演算中的逻辑联接词“与()”、“或(v)"、“非(┐)”和“蕴含(→)”等来组合已有知识,从而表示出更复杂的知识。

产生式通常用于表示事实、规则以及它们的不确定性度量,适合于表示事实性知识和规则性知识。

框架是一种描述所论对象(一个事物、事件或概念)属性的数据结构。

语义网络:从图论的观点看,它其实就是“一个带标识的有向图”,由结点和弧(也称“边”)所组成。

人工智能期末试题及答案

人工智能期末试题及答案

人工智能期末试题及答案1. 单选题1) 人工智能的定义是:A. 让计算机具备像人一样的智能B. 通过人的智能让计算机取得突破性进展C. 利用机器学习和自然语言处理等技术让计算机模拟人的智能D. 让计算机能够执行复杂的计算任务答案:C. 利用机器学习和自然语言处理等技术让计算机模拟人的智能2) 人工智能最早的起源可以追溯到以下哪个年代?A. 1940年代B. 1950年代C. 1960年代D. 1970年代答案:B. 1950年代3) 以下哪个是人工智能领域常用的编程语言?A. JavaB. C++C. PythonD. Ruby答案:C. Python4) 以下哪个是机器学习中的监督学习算法?A. K近邻算法B. K均值算法C. 支持向量机算法D. DBSCAN算法答案:C. 支持向量机算法5) 以下哪个是人工智能技术的一个典型应用领域?A. 医疗保健B. 金融C. 物流D. 手机游戏答案:A. 医疗保健2. 简答题1) 请简述人工智能与机器学习的关系。

人工智能是一个更广泛的概念,旨在让计算机模拟人类智能的各个方面。

机器学习则是实现人工智能的一种方法,它通过让计算机从数据中学习并提取规律,进而自动改进和调整算法,以实现更准确的结果预测和决策。

机器学习是人工智能中的一个重要分支,通过训练模型来预测和解决问题。

2) 请简述深度学习的原理和应用。

深度学习是一种机器学习的方法,其原理是模仿人脑神经网络的工作原理构建出来的。

它通过构建深层次的神经网络模型,从数据中提取高级抽象特征,进而实现对于非结构化和复杂数据的更准确的分析和预测。

深度学习在图像识别、语音识别、自然语言处理等领域有广泛的应用。

3) 请简述自然语言处理的方法和应用。

自然语言处理是人工智能领域的重要分支,主要用于让计算机能够理解和处理人类的自然语言。

其方法包括文本分析、语义理解、文本生成等。

自然语言处理在机器翻译、自动问答系统、智能客服等方面有广泛应用。

人工智能期末复习资料

人工智能期末复习资料

人工智能技术期末复习纲要一、填空(20分)+判断(10分)1、人工智能:Artificial Intelligence,简称AI2、计算智能就是计算人工智能, 它是模拟(群智能)的人工智能。

计算智能以(数值数据)为基础, 主要通过数值计算,运用算法进行问题求解。

3、(判断)人工智能作为一门学科, 其研究目标就是制造智能机器和智能系统, 实现智能化社会4、(判断)人工智能学科的研究策略则是先部分地或某种程度地实现机器的智能,并运用智能技术解决各种实际问题特别是工程问题, 从而逐步扩展和不断延伸人的智能, 逐步实现智能化。

5、(判断)符号智能采用搜索方法进行问题求解,一般是在(问题空间)搜索;计算智能也采用搜索方法进行问题求解,一般是在(解空间)搜索。

6、(填空)表示、运算和搜索是人工智能的三个最基本、最核心的技术。

7、PROLOG语言只有三种语句,分别称为(事实)、(规则)和(问题)。

8、(填空)PROLOG程序的执行过程是一个(归结)演绎推理过程9、(填空)一个完整的Turbo PROLOG(2.0版)程序一般包括常量段、领域段、数据库段、(谓词段)、(目标段)和(子句段)等六个部分。

10、(填空)按连接同一节点的各边间的逻辑关系划分,图可分为(或图)或(与或图)两大类,图搜索也就可分为(或图搜索)和(与或图搜索)两大类。

或图通常称为(状态图)。

11、(填空)用计算机来实现状态图的搜索, 有两种最基本的方式:(树式搜索)和(线式搜索)。

12、(填空)按搜索范围的扩展顺序的不同, 搜索又可分为(广度优先)和(深度优先)两种类型。

13、(填空)与或图搜索也分为(盲目搜索)和(启发式搜索)两大类。

前者又分为穷举搜索和盲目碰撞搜索。

14、(填空)遗传算法中有三种关于染色体的运算: (选择-复制)、(交叉)和(变异)。

15、(判断、填空)遗传算法是一种随机搜索算法,遗传算法又是一种优化搜索算法。

16、(填空、判断)基于谓词逻辑的机器推理也称(自动推理)。

人工智能期末考试知识点(考点)总结

人工智能期末考试知识点(考点)总结

⼈⼯智能期末考试知识点(考点)总结1、智能所包含的能⼒(1)感知能⼒(2)记忆与思维能⼒(3)学习和⾃适应能⼒(4)⾏为能⼒2、⼈⼯智能分为五个阶段:(1)孕育期(2)形成期(3)知识应⽤期(4)从学派分⽴⾛向综合(5)智能科学技术学科的兴起3、⼈⼯智能研究的基本内容(1)与脑科学和认知科学的交叉研究(2)智能模拟的⽅法和技术研究4、⼈⼯智能研究中的不同学派(三⼤学派)(1)符号主义(2)联结主义(3)⾏为主义5、机器学习机器学习是机器获取知识的根本途径,同时也是机器具有智能的重要标志。

有⼈认为,⼀个计算机系统如果不具备学习功能,就不能称其为智能系统。

机器学习有多种不同的分类⽅法,如果按照对⼈类学习的模拟⽅式,机器学习可分为符号学习、联结学习、知识发现和数据挖掘等。

6、演绎推理与归纳推理的区别演绎推理与归纳推理是两种完全不同的推理。

演绎推理是在已知领域内的⼀般性知识的前提下,通过演绎求解⼀个具体问题或证明⼀个给定的结论。

这个结论实际上早已蕴涵在⼀般性知识的前提中,演绎推理只不过是将其揭⽰出来,因此它不能增殖新知识。

⽽在归纳推理中,所推出的结论是没有包含在前提内容中的。

这种由个别事物或现象推出⼀般性知识的过程,是增殖新知识的过程。

7、确定性知识确定性知识是指其真假可以明确给出的知识,其表⽰⽅法主要包含谓语逻辑表⽰法、产⽣式表⽰法、语义⽹络表⽰法、框架表⽰法等。

8、谓语逻辑表⽰⽅法P299、语义⽹络表⽰法P3410、框架表⽰法(鸟框架)P4111、产⽣式推理的基本结构产⽣式推理的基本结构如图所⽰,它包括综合数据库、规则库和控制系统三个重要组成部分。

12、谓语公式P6913、状态空间的盲⽬搜索根据状态空间采⽤的数据结构的不同,它可分为图搜索算法和树搜索算法。

树搜索算法包括⼀般树和代价树的盲⽬搜索算法。

⼀般树的盲⽬搜索主要包括⼴度优先搜索算法和深度优先搜索算法两种。

14、⼴度优先搜索算法和深度优先搜索算法的区别P7915、⼋数码难题P7916、代价树的⼴度优先搜索也称为分枝界限算法P8017、城市交通难题P8118、什么是估价函数⽤来估计节点重要性的函数称为估价函数。

人工智能期末复习资料

人工智能期末复习资料

一、智能化智能体1.什么是智能体?什么是理性智能体?智能体的特性有哪些?智能体的分类有哪些?智能体定义:通过传感器感知所处环境并通过执行器对该环境产生作用的计算机程序及其控制的硬件。

理性智能体定义:给定感知序列(percept sequence)和内在知识(built—in knowledge),理性智能体能够选择使得性能度量的期望值(expected value)最大的行动。

智能体的特性:自主性(自主感知学习环境等先验知识)、反应性(Agent为实现自身目标做出的行为)、社会性(多Agent及外在环境之间的协作协商)、进化性(Agent自主学习,逐步适应环境变化)智能体的分类:简单反射型智能体:智能体寻找一条规则,其条件满足当前的状态(感知),然后执行该规则的行动。

基于模型的反射型智能体:智能体根据内部状态和当前感知更新当前状态的描述,选择符合当前状态的规则,然后执行对应规则的行动。

基于目标的智能体:为了达到目标选择合适的行动,可能会考虑一个很长的可能行动序列,比反射型智能体更灵活。

基于效用的智能体:决定最好的选择达到自身的满足。

学习型智能体:自主学习,不断适应环境与修正原来的先验知识.2.描述几种智能体类型实例的任务环境PFAS,并说明各任务环境的属性。

答题举例:练习:给出如下智能体的任务环境描述及其属性刻画。

o机器人足球运动员o因特网购书智能体o自主的火星漫游者o数学家的定理证明助手二、用搜索法对问题求解1。

简述有信息搜索(启发式搜索)与无信息搜索(盲目搜索、非启发式搜索)的区别。

非启发式搜索:按已经付出的代价决定下一步要搜索的节点。

具有较大的盲目性,产生较多的无用节点,搜索空间大,效率不高。

启发式搜索:要用到问题自身的某些信息,以指导搜索朝着最有希望的方向前进.由于这种搜索针对性较强,因而原则上只需搜索问题的部份状态空间,搜索效率较高。

2.如何评价一个算法的性能?(度量问题求解的性能)▪完备性:当问题有解时,算法是否能保证找到一个解;▪最优性:找到的解是最优解;▪时间复杂度:找到一个解需要花多长时间▪搜索中产生的节点数▪空间复杂度:在执行搜索过程中需要多少内存▪在内存中存储的最大节点数3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.什么是智能体?什么是理性智能体?智能体的特性有哪些?智能体的分类有哪些?
智能体定义:通过传感器感知所处环境并通过执行器对该环境产生作用的计算机程序及其控制的硬件。

理性智能体定义:给定感知序列(percept sequence)和内在知识(built-in knowledge),理性智能体能够选择使得性能度量的期望值(expected value)最大的行动。

智能体的特性:自主性(自主感知学习环境等先验知识)、反应性(Agent为实现自身目标做出的行为)、社会性(多Agent及外在环境之间的协作协商)、进化性(Agent自主学习,逐步适应环境变化)
智能体的分类:
简单反射型智能体:智能体寻找一条规则,其条件满足当前的状态(感知),然后执行该规则的行动。

基于模型的反射型智能体:智能体根据内部状态和当前感知更新当前状态的描述,选择符合当前状态的规则,然后执行对应规则的行动。

基于目标的智能体:为了达到目标选择合适的行动,可能会考虑一个很长的可能行动序列,比反射型智能体更灵活。

基于效用的智能体:决定最好的选择达到自身的满足。

学习型智能体:自主学习,不断适应环境与修正原来的先验知识。

2.描述几种智能体类型实例的任务环境PFAS,并说明各任务环境的属性。

答题举例:
练习:给出如下智能体的任务环境描述及其属性刻画。

o机器人足球运动员
o因特网购书智能体
o自主的火星漫游者
o数学家的定理证明助手
二、用搜索法对问题求解
1.简述有信息搜索(启发式搜索)与无信息搜索(盲目搜索、非启发式搜索)的区别。

非启发式搜索:按已经付出的代价决定下一步要搜索的节点。

具有较大的盲目性,产生较多的无用节点,搜索空间大,效率不高。

启发式搜索:要用到问题自身的某些信息,以指导搜索朝着最有希望的方向前进。

由于这种搜索针对性较强,因而原则上只需搜索问题的部份状态空间,搜索效率较高。

2.如何评价一个算法的性能?(度量问题求解的性能)
完备性:当问题有解时,算法是否能保证找到一个解;
最优性:找到的解是最优解;
时间复杂度:找到一个解需要花多长时间
搜索中产生的节点数
空间复杂度:在执行搜索过程中需要多少内存
在内存中存储的最大节点数
3.简述几种搜索方式的思想。

非启发式搜索:
广度优先搜索:首先扩展根节点,接着扩展根节点的所有后续,然后在扩展它们的后续,依
次类推。

在下一层的任何节点扩展之前搜索树上本层深度的所有节点都已经扩展过。

代价一致搜索:扩展路径消耗最低的节点,若单步耗散相等,则等价于广度优先搜索算法。

深度优先搜索:扩展搜索树的当前边缘中最深的节点。

搜索直接推进到搜索树的最深层,当最深层节点扩展完没达到目标节点则将向上回到下一个还有未扩展后续节点的稍浅的节点。

深度有限搜索:深度为l的节点被当做没有后续的节点对待。

迭代深入深度优先搜索:不断增大深度限制,直到找到目标节点。

代价一致搜索的迭代搜索:不断增加路径耗散限制
双向搜索:运行两个同时的搜索:向前搜索(从初始状态向前搜索)和向后搜索(从目标状态向后搜索),扩展节点前检查该节点是否在另一棵树的边缘。

启发式搜索:
贪婪最佳优先搜索:定义一个评价函数f,对当前的搜索状态进行评估,找出一个最有希望的节点来扩展。

局部搜索算法:从单独的一个当前状态出发,只移动到相邻状态,找目标状态,通常不保留搜索路径。

爬山法搜索:根据一个目标函数,找寻目前邻居中状态最好的一个(最陡上升)。

(贪婪局部搜索)
模拟退火搜索:先高温烧热,再慢慢降温。

当“温度”T降低得足够慢,能找到全局最优解的概率逼近1。

局部剪枝搜索:按一定概率随机地从后续集合中选择k个后续,若出现目标状态则停止,否则再从所有后续中选择k个最佳后续,重复这一过程。

遗传算法:基于进化过程中的信息遗传机制和优胜劣汰的自然选择原则的搜索算法。

4.什么是启发式、启发式函数、可采纳的启发式、一致的启发式、启发式搜索?PPT方法一:对h加以限制。

评价函数 f(n) = g(n) + h(n)
g(n): 从初始状态s到状态n的实际耗散值。

h(n): 启发函数,从状态n到目标的最短路径的估计耗散值
f(n):从s经过n到目标的最短路径估计耗散值
5.简述A*算法,证明其最优性。

6.简述智能优化方法中遗传算法的概念及优点。

遗传算法通过作用于染色体上的基因寻找好的染色体来求解问题。

随机产生初始群体,其中每个个体给予一个数值评价即适应度,基于适应度来随机选择染色体,使适应性好的染色体有更多繁殖机会。

优点:
随机搜索:始于搜索空间的一个随机点集,而不像图搜索那样固定地始于初始节点。

满意解
并行搜索:从搜索空间的一个点集(种群)到另一个点集。

适合大规模并行计算,有能力跳出局部最优解。

算法适应性强:除确定适应度函数外几乎不需要其他先验知识
不要求解的连续性,因此能从离散的、多极值、含噪声的高维问题中找到全局最优。

三、知识表示
课本P42用谓词表达语句。

四、确定性推理方法
1.演绎推理、归纳推理、默认推理的概念。

演绎推理是从全称判断推导出单称判断的过程,即由一般性知识推出适合于某一具体情况的结论。

这是一种从一般到个别的推理。

归纳推理是从足够多的事例中归纳出一般性结论的推理过程,是一种从个别到一般的推理。

默认推理又称为缺省推理,是在知识不完全的情况下假设某些条件已经具备所进行的推理。

3.确定性推理、不确定性推理的概念。

确定性推理:推理时所用的知识与证据都是确定的,推出的结论也是确定的,其真值或者为真或者为假,没有第三种情况出现。

不确定性推理:推理时所用的知识与证据不都是确定的,推出的结论也是不确定的。

4.单调推理、非单调推理的概念。

单调推理:随着推理向前推进及新知识的加入,推出的结论越来越接近最终目标。

非单调推理:由于新知识的加入,不仅没有加强已推出的结论,反而要否定它,使推理退回到前面的某一步,重新开始。

5.启发式推理、非启发式推理的概念。

如果推理过程中运用与推理有关的启发性知识,则称为启发性推理,否则称为非启发性推理。

启发性知识:与问题有关且能加快推理过程、求得问题最优解的知识。

6.正向推理、逆向推理的概念及优缺点。

正向推理是以已知事实作为出发点的一种推理。

正向推理简单,易实现,但目的性不强,效率低。

逆向推理是以某个假设为目标作为出发点的一种推理。

逆向推理不必使用与目标无关的知识,目的性强,同时利于向用户提供解释,但起始目标的选择有盲目性,比正向推理复杂。

7.谓词公式化为子句集。

8.归结原理
(1)应用归结原理证明定理
(2)应用归结原理求解问题
五、不确定性推理方法
1.不确定推理的概念。

不确定性推理:从不确定性的初始证据出发,通过运用不确定性的知识,最终推出具有一定程度的不确定性但却是合理或者近乎合理的结论的思维过程。

2.可信度方法
可信度:根据经验对一个事物或现象为真的相信程度。

可信度带有较大的主观性和经验性,其准确性难以把握。

C-F模型:基于可信度表示的不确定性推理的基本方法。

CF(H,E)的取值范围: [-1,1]。

若由于相应证据的出现增加结论H 为真的可信度,则CF(H,E)> 0,证据的出现越是支持H 为真,就使CF(H,E) 的值越大。

反之,CF(H,E)< 0,证据的出现越是支持H 为假,CF(H,E)的值就越小。

若证据的出现与否与H 无关,则CF(H,E)= 0。

3.可信度求法
4.证据理论:信任函数、似然函数、概率分配函数的正交和、例
5.模糊推理方法:模糊集合运算、求模糊关系例、模糊关系的合成、模糊推理应用例
6.根据全联合概率分布表求边缘概率、条件概率P365
7.用贝叶斯法则证明P368 公式证明题
8.怪兽推理(172、389)。

相关文档
最新文档