第三章 热力学第二定律

合集下载

《物理化学》第三章 热力学第二定律PPT课件

《物理化学》第三章 热力学第二定律PPT课件

例一:理想气体自由膨胀
原过程:Q=0,W=0,U=0, H=0
p2,V2
体系从T1,p1,V1 T2, 气体
真空
复原过程:
复原体系,恒温可逆压缩
WR
RT1
ln
V2 ,m V1,m
环境对体系做功
保持U=0,体系给环境放热,而且 QR=-WR
表明当体系复原时,在环境中有W的功变为Q的热,因 此环境能否复原,即理想气体自由膨胀能否成为可逆 过程,取决于热能否全部转化为功,而不引起任何其 他变化。
它们的逆过程都不能自动进行。当借助外力,系统 恢复原状后,会给环境留下不可磨灭的影响。
•化学反应 Zn+H2SO4等?
如图是一个典型的自发过程
小球
小球能量的变化:
热能
重力势能转变为动能,动能转化为热能,热传递给地面和小球。
最后,小球失去势能, 静止地停留在地面。此过程是不可逆转的。 或逆转的几率几乎为零。
能量转化守恒定律(热力学第一定律)的提出,根本上宣布 第一类永动机是不能造出的,它只说明了能量的守恒与转化及 在转化过程中各种能量之间的相互关系, 但不违背热力学第一 定律的过程是否就能发生呢?(同学们可以举很多实例)
热力学第一定律(热化学)告诉我们,在一定温度 下,化学反应H2和O2变成H2O的过程的能量变化可用U(或H) 来表示。
热力学第二定律(the second law of thermodynamics)将解答:
化学变化及自然界发生的一切过程进行 的方向及其限度
第二定律是决定自然界发展方向的根本 规律
学习思路
基本路线与讨论热力学第一定律相似, 先从人们在大量实验中的经验得出热力学第 二定律,建立几个热力学函数S、G、A,再 用其改变量判断过程的方向与限度。

第三章热力学第二定律

第三章热力学第二定律
路和基本方法。
一、没有其它功的单纯pVT变化过程 1.恒温过程
恒温过程中,系统的温度T为常数,故式(3-2-1a)变为:
Qr T S T
上式适用于各种恒温过程。
(3-3-1)
对于理想气体恒温过程,U=0,
V2 p1 Qr Wr nRT ln nRT ln V1 p2
代入式(3-3-1),得
Qsu Q Ssu Tsu Tsu
(3-2-7)
式中Q是实际过程系统吸收或放出的热。
第三节 熵变的计算
熵变等于可逆过程的热温商,即
S
2
Qr
T
1
(3-2-1a)
这是计算熵变的基本公式。如果某过程不可逆,则利用S与途径无
关,在始终态之间设计可逆过程进行计算。这是计算熵变的基本思
逆性均可归结为热功转化过程的不可逆性。自发过 程的方向性都可以用热功转化过程的方向性来表达。
二、热力学第二定律的经典表述
1.克劳修斯(Clausius)说法(1850年):热不能自动地从低温物体
传到高温物体,而不引起任何其它变化。这种表述指明了热传导的
不可逆性。
2.开尔文(Kelvin)说法(1851年):不可能从单一热源取出的热使 之完全变为功,而不引起任何其它变化。
统发生一个不可逆过程时,系统的熵不一定增加。我们可将系统和 与系统有联系那部分环境加在一起,作为大隔离系统,于是有
S总 S Ssu
> 自发 (平衡) = 可逆 < 不能发生
(3-2-6)
式中Ssu是环境熵变,S总是大隔离系统熵变。毫无疑问,这个大 隔离系统一定服从隔离系统熵判据。
从单一热源吸取热量,使之完全变为功而不引起其它变化的
机器称为第二类永动机。开尔文说法也可表述为:第二类永 动机是不可能造出来的。

第3章-热力学第二定律

第3章-热力学第二定律
U U 0, 0 V T p T
理想气体
(2)
) CV 主要条件:理想气体,绝热,可逆 pV 常数 用途:求末态 T p1 常数 TV 1 常数 ( Cp
(3) (4)


H自由能和G自由能
def A U TS def G H TS
下列公式的条件和意义
W A W f G

A 0 G 0

热力学函数之间的关系
1、四个基本公式

dU TdS pdV dH TdS Vdp dA SdT pdV dG SdT Vdp
可逆过程的设计
H2O(g), 298.15 K,101.325 kPa


H2O(l), 298.15K,101.325 kPa

H2O(g), 298.15 K, 3.166 kPa

H2O(l), 298.15 K, 3.166 kPa

例题
【例题】在298.15 K和101.325 kPa压力下,1.0 mol过饱和水蒸气变为同温

自发变化
理气 理气 pe 0 p1 , T1 ,V1 p2 , T1 ,V2 自发过程:W1 0, Q1 0, 逆过程:W1 ' 100 kJ,Q1 ' -100 kJ, 系统复原:Q Q1 Q1 ' -100 kJ;W W1 W1 ' 100 kJ
适用于无非体积功的封闭系统。对于简单物理过程,不论过程是否可逆, 基本公式都适用(只有可逆过程TdS才代表系统吸收的热,-pdV才代表系 统所做的功);对于系统中发生相变、混合和化学反应只有可逆时才能用 基本公式。

第三章 热力学第二定律

第三章 热力学第二定律

第三章热力学第二定律热力学第一定律过程的能量守恒热力学第二定律过程的方向和限度§3.1 热力学第二定律(1)过程的方向和限度自发过程:体系在没有外力作用下自动发生的变化过程,其有方向和限度。

例如:水位差、温度差、压力差等引起的变化过程。

自发过程,有做功能力方向:始态终态反自发过程,需消耗外力平衡状态限度:始态终态无做功能力自发过程的共同特征:不可逆性(2)热力学第二定律的表达式经典表述:人们不能制造一种机器(第二类永动机),这种机器能循环不断地工作,它仅仅从单一热源吸取热量均变为功,而没有任何其它变化。

一般表述:第二类永动机不能实现。

§3.2 卡诺循环1824年,法国工程师卡诺(Carnot)使一个理想热机在两个热源之间,通过一个特殊的可逆循环完成了热→功转换,给出了热机效率表达式。

这个循环称卡诺循环。

(1)卡诺循环过程设热源温度T1 > T2,工作物质为理想气体。

卡诺循环1. 恒温可逆膨胀(A → B ):0U 1=∆ 12111V V lnnRT W Q == 2. 绝热可逆膨胀(B → C ):0q =, )T T (nC U W 21V 22-=∆-=3. 恒温可逆压缩(C → D ):0U 3=∆, 342322V V lnnRT W q Q ==-= 4. 绝热可逆压缩(D → A ):0q =, )T T (nC U W 12V 44-=∆-=整个循环过程的总功为:34212112V 34221V 1214321V Vln nRT V V lnnRT )T T (nC V Vln nRT )T T (nC V V ln nRT W W W W W +=-++-+=+++= 热机循环一周有:0U =∆, W q Q Q Q Q 2121=-=+=热机效率:1213421211V V ln nRT V Vln nRT V V lnnRT Q W+==η对于绝热可逆膨胀:k12312V V T T -⎪⎪⎭⎫ ⎝⎛=对于绝热可逆压缩: k14121V V T T-⎪⎪⎭⎫ ⎝⎛=比较得:1423V V V V =或 4312V V V V = 则: 121121Q Q Q T T T +=-=η η— 卡诺热机效率(2) 卡诺定理卡诺定理:一切工作于高温热源T 1与低温热源T 2之间的热机效率,以可逆热机的效率为最大。

第三章 热力学第二定律重要公式

第三章 热力学第二定律重要公式

第三章 热力学第二定律1. 卡诺定理卡诺热机效率hc h c h 11T T Q Q Q W−=+=−=η 卡诺定理:工作于高温热源T h 与低温热源T c 之间的热机,可逆热机效率最大。

卡诺定理推论:所有工作于高温热源T h 与低温热源T c 之间的可逆热机,其热机效率都相等,与热机的工作物质无关。

卡诺循环中,热温商之和等于零0cch h =+T Q T Q 任意可逆循环热温商之和也等于零,即0R=⎟⎟⎠⎞⎜⎜⎝⎛∑i iiT Q 或 0δR =⎟⎠⎞⎜⎝⎛∫T Q 2. 热力学第二定律的经典表述克劳休斯说法:不可能把热由低温物体传到高温物体, 而不引起其他变化。

开尔文说法:不可能从单一热源吸热使之完全转化为功, 而不发生其他变化。

热力学第二定律的各种说法的实质:断定一切实际过程都是不可逆的。

各种经典表述法是等价的。

3. 熵的定义TQ S revδd =或∫=ΔB ArevδTQ S熵是广度性质,其单位为。

系统状态变化时,要用可逆过程的热温商来衡量熵的变化值。

1K J −⋅4. 克劳修斯不等式T QS δd irrev ≥ 或 ∫≥ΔB A ir rev δT Q S 等号表示可逆,此时环境的温度T 等于系统的温度,为可逆过程中的热量;不等号表示不可逆,此时T 为环境的温度,为不可逆过程中的热量。

Q δQ δ5. 熵增原理0)d (irrev≥绝热S 或0)(irrev≥Δ绝热S 等号表示绝热可逆过程,不等号表示绝热不可逆过程。

在绝热条件下,不可能发生熵减少的过程。

0)d (irrev≥孤立S 或0)(irrev≥Δ孤立S 等号表示可逆过程或达到平衡态,不等号表示自发不可逆过程。

可以将与系统密切相关的环境部分包括在一起,作为一个隔离系统,则有:0irrev sur sys iso ≥Δ+Δ=ΔS S S6. 熵变计算的主要公式计算熵变的基本公式: ∫∫∫−=+=δ=−=Δ2 12 12 1rev12d d d d TpV H T V p UTQ S S S 上式适用于封闭系统,一切非体积功过程。

03章 热力学第二定律

03章 热力学第二定律
第三章 第三章 热力学第二定律 热力学第二定律
Chapter Chapter3 3 The TheSecond SecondLaw Lawof ofThermodynamics Thermodynamics ¾ 不违背第一定律的事情是否一定能成功呢? 例1. H2(g) + 1/2O2(g) H2O(l) ∆rHθm(298K) = -286 kJ.mol-1 加热,不能使之反向进行。 例2. 25 °C及pθ下,H+ + OHH2O(l)极易进行, 但最终[H+][OH-] = 10-14 mol2.dm-6,即 反应不进行到底。 ¾ 第二定律的任务:方向,限度
方法2
1mol H2O(l) 298.2K,pθ Ⅰ
等T, r 等T, p, ir ∆S, ∆H
H2O(g) 298.2K,pθ Ⅲ 等 T, r
H2O(l) 298.2K,3160Pa

等T, p, r
H2O(g) 298.2K,3160Pa
¾ 具有普遍意义的过程:热功转换的不等价性
功不可能无代价,全部 热
① W Q 不等价,是长期实践的结果。
无代价,全部
② 不是 Q W 不可能,而是热全部变 功必须 付出代价(系统和环境),若不付 代价只能部分变功
二、自发过程的共同特征 (General character of spontaneous process) (1) 自发过程单向地朝着平衡。 (2) 自发过程都有作功本领。 (3) 自发过程都是不可逆的。
= r Clausius Inequality (1) 意义:在不可逆过程中系统的熵变大于过程 的热温商,在可逆过程中系统的熵变等于过 程的热温商。即系统中不可能发生熵变小于 热温商的过程。 是一切非敞开系统的普遍规律。 (2) T是环境温度:当使用其中的“=”时,可认为T 是系统温度。 (3) 与“第二类永动机不可能”等价。

第三章 热力学第二定律

第三章 热力学第二定律
∆rG = Wf ,max = −nEF
式中 n 为电池反应中电子的物质的量,E 为可逆电池的电动势,F 为 Faraday 常数。 这是联系热力学和电化学的重要公式。因电池对外做功,E 为正值,所以加“-”号。
dS − δQ ≥ 0 T
δQ
dS ≥

T
这些都称为 Clausius 不等式,也可作为热力学第二定律的数学表达式。 二、熵增加原理
1.对于绝热系统中所发生的变化,δQ = 0 ,所以
dS ≥ 0

∆S ≥ 0
等号表示绝热可逆过程,不等号表示绝热不可逆过程。
熵增加原理可表述为:在绝热条件下,趋向于平衡的过程使系统的熵增加。
处于高温时的系统,分布在高能级上的分子数较集中;而处于低温时的系统,分子较 多地集中在低能级上。当热从高温物体传入低温物体时,两物体各能级上分布的分子数都将 改变,总的分子分布的花样数增加,是一个自发过程,而逆过程不可能自动发生。 二、熵和热力学概率的关系——Boltzmann 公式 Boltzmann 公式
§2.5 Clausius 不等式与熵增加原理
一、Clausius 不等式——热力学第二定律的数学表达式 Clausius 不等式:
∑ δQ
∆SA→B − (
i
T ) A→B ≥ 0
δQ 是实际过程的热效应,T 是环境温度。若是不可逆过程,用“>”号,可逆过程用
“=”号,这时环境与系统温度相同。 对于微小变化:
§3.6 热力学基本方程与 T-S 图
一、热力学的基本方程——第一定律与第二定律的联合公式
1.根据热力学第一定律
dU = δW + δQ = δQ − pdV (不考虑非膨胀功)
根据热力学第二定律

第三章 热力学第二定律

第三章 热力学第二定律

P4 ,V4
恒温可逆压缩
U2= 0 Q2 = -W2= nRTcln(V4 /V3)
P3 ,V3 Tc
Tc
卡诺热机效率
Th
高温热源
R
W Qh
V2 V1
总功: W nR ( T1 T 2 ) ln
Qh
R
W Q

W Qh

Qh Qc Qh V2 V1
I
W
nR ( T h T c ) ln nRT
def
Q r T
或: S
Q
r

2 1
Q r T
T为可逆换热
时系统的温度。
注意:①熵值仅与始终态有关,是状态函数; ②熵被定义为可逆过程的热温商,即熵变 的大小用可逆过程的热温商来衡量;不可逆过程 也有热和温度的比值,但这个比值在数值上不等 于熵变; SR 可逆
始态 终态 不可逆
S IR QR
1
SB SA S

B
(
A
Q T
)R Q T )R
S
(
i
Qi Ti
)R 0
对微小变化
dS (
表明:系统从A点到B点,熵值的变化值,为B状态熵的 绝对值减A状态熵的绝对值,在数值上恰好等于从A点 到B点,可逆过 Q r 为可逆热,
从以上几个不可逆过程的例子可以看出: 一切不可逆过程都是向混乱度增加的方向进行,
而熵函数可以作为系统混乱度的一种量度, 这就是热力学第二定律所阐明的不可逆过程的本质。
§3.1 热力学第二定律:文字表达式
§3.2 卡诺循环:理想气体可逆循环
§3.3 熵及热力学第二定律的数学表达式:

第三章 热力学第二定律

第三章 热力学第二定律

例2 N 2 ( g) 3 H2 ( g) 2 NH3 ( g) 反应不能最终进行到底
热力学第二定律任务:过程的方向与限度
自发过程
1. 自发过程
自发过程:在一定环境条件下,(环境)不作非体积功,系 统中自动发生的过程。 通常所说的“过程方向”即是指自发过程的方向。 非自发过程:自发过程的逆过程,不可逆 例:水流:水由高处往低处流; 传热: 热从高温物体传向低温物体; 扩散:NaCl溶液从高浓度向低浓度进行; 反应: Zn放在CuSO4溶液中
等容变温过程
QV dU nCV ,mdT dS
故有, S
T2 nCV ,m ln T1
CV ,m
例1、4mol单原子理想气体从始态750K,150KPa,先恒容 冷却使压力下降至50KPa,再恒温可逆压缩至100KPa。求 整个过程中的Q,W,U , H , S 4mol, 750K, 150KPa dV=0 4mol, dT=0 50KPa, T2 4mol, 100KPa, T2
(第二类永动机不可能)
热与功的转化

① W 无代价,全部
不可能无代价, 全部

Q 不等价,是长期实践的结果。
② 不是 Q W 不可能,而是热全部变 功必须 付出代价(系统和环境),若不付 代价只能部分变功
3.卡诺循环及卡诺定理
△U = Q1 + Q2 + W = 0
W Q1 Q2 η Q1 Q1
热机效率
1. 卡诺循环
Carnot从理论上证明了热机效率的极限 卡诺循环 : 恒温可逆膨胀:1 绝热可逆膨胀:2 恒温可逆压缩:3 2 3 4
绝热可逆压缩 :4
1
卡诺循环示意图

物理化学 第三章 热力学第二定律

物理化学 第三章  热力学第二定律
Siso S(体系) S(环境) 0
“>” 号为不可逆过程 “=” 号为可逆过程
克劳修斯不等式引进的不等号,在热力学上可以作 为变化方向与限度的判据。
dS Q T
dSiso 0
“>” 号为不可逆过程 “=” 号为可逆过程
“>” 号为自发过程 “=” 号为处于平衡状态
因为隔离体系中一旦发生一个不可逆过程,则一定 是自发过程,不可逆过程的方向就是自发过程的方 向。可逆过程则是处于平衡态的过程。
二、规定熵和标准熵
1. 规定熵 : 在第三定律基础上相对于SB* (0K,完美晶体)= 0 , 求得纯物质B要某一状态的熵.
S(T ) S(0K ) T,Qr
0K T
Sm (B,T )
T Qr
0K T
2. 标准熵: 在标准状态下温度T 的规定熵又叫 标准熵Sm ⊖(B,相态,T) 。
则:
i

Q1 Q2 Q1
1
Q2 Q1
r
T1 T2 T1
1 T2 T1
根据卡诺定理:
i
r
不可逆 可逆

Q1 Q2 0 不可逆
T1 T2
可逆
对于微小循环,有 Q1 Q2 0 不可逆
T1 T2
可逆
推广为与多个热源接触的任意循环过程得:
Q 0
T
不可逆 可逆
自发过程的逆过程都不能自动进行。当借助 外力,体系恢复原状后,会给环境留下不可磨灭 的影响。自发过程是不可逆过程。
自发过程逆过程进行必须环境对系统作功。
例:
1. 传热过程:低温 传冷热冻方机向高温 2. 气体扩散过程: 低压 传压质缩方机向高压 3. 溶质传质过程: 低浓度 浓差传电质池方通向电高浓度 4. 化学反应: Cu ZnSO4 原反电应池方电向解 Zn CuSO4

第三章 热力学第二定律

第三章 热力学第二定律

过程1: 过程2: 过程3: 过程4:
W4 U 4 nCV ,m (T1 T2 )
V2 U1 0 Q1 -W1 nRT ln 1 V1 W2 U 2 nCV ,m (T2 T1 ) V4 Q2 -W3 nRT2 ln U 3 0 V3
循环过程: Q Q1 Q2 (W W2 W3 W4 ) U 0 1 V2 V4 nRT ln nRT ln 1 2 V1 V3 根据绝热可逆 V V3 V2 V4 3 方程,有: V2 V1 即: V4 V1
§3-1卡诺循环
1.卡诺循环
高温热源T1
Q1 热机 W
p
p1 ,V1 , T1

Q1>0
Q2
p2 ,V2 , T1
低温热源T2

p4 ,V4 , T2 Q2<0
Ⅱ Ⅲ
p3 ,V3 , T2
V
卡诺循环示意图
(Ⅰ)恒温可逆膨胀:吸热Q2作 功,W(1→2); (Ⅱ)绝热可逆膨胀:系统膨胀 作功,Q=0; (Ⅲ)恒温可逆压缩:放热Q1,系 统得功, W(3→4); (Ⅳ)绝热可逆压缩:系统受压 得功,Q=0 .
V2 所以: Q1 Q2 nR(T2 T1 ) ln V1
2. 热机效率 2.2 热机效率的定义 2.1 热机 通过工质从高温热源吸热 一次循环系统对环境所 做总功 作功,然后向低温热源放热 一次循环系统从高温热 源所吸收之热 复原,如此循环操作,不断将 W Q1 Q2 即: 热转化为功的机器.
Q2
低温热源T2
2.4 说明
3.致冷效率
(1)卡诺热机是工作于T1和T2两 热源间的可逆机,高温T1热源的 热部分地转化为功,其余部分流 向低温T2热源. (2) η只与T1和T2有关,与工质 无关.

第三章热力学第二定律

第三章热力学第二定律

第三章 热力学第二定律一.基本要求1.了解自发变化的共同特征,熟悉热力学第二定律的文字和数学表述方式。

2.掌握Carnot 循环中,各步骤的功和热的计算,了解如何从Carnot 循环引出熵这个状态函数。

3.理解Clausius 不等式和熵增加原理的重要性,会熟练计算一些常见过程如:等温、等压、等容和,,p V T 都改变过程的熵变,学会将一些简单的不可逆过程设计成始、终态相同的可逆过程。

4.了解熵的本质和热力学第三定律的意义,会使用标准摩尔熵值来计算化学变化的熵变。

5.理解为什么要定义Helmholtz 自由能和Gibbs 自由能,这两个新函数有什么用处?熟练掌握一些简单过程的,,H S A ΔΔΔ和G Δ的计算。

6.掌握常用的三个热力学判据的使用条件,熟练使用热力学数据表来计算化学变化的,和r m H Δr m S Δr m G Δ,理解如何利用熵判据和Gibbs 自由能判据来判断变化的方向和限度。

7.了解热力学的四个基本公式的由来,记住每个热力学函数的特征变量,会利用d 的表示式计算温度和压力对Gibbs 自由能的影响。

G 二.把握学习要点的建议自发过程的共同特征是不可逆性,是单向的。

自发过程一旦发生,就不需要环境帮助,可以自己进行,并能对环境做功。

但是,热力学判据只提供自发变化的趋势,如何将这个趋势变为现实,还需要提供必要的条件。

例如,处于高山上的水有自发向低处流的趋势,但是如果有一个大坝拦住,它还是流不下来。

不过,一旦将大坝的闸门打开,水就会自动一泻千里,人们可以利用这个能量来发电。

又如,氢气和氧气反应生成水是个自发过程,但是,将氢气和氧气封在一个试管内是看不到有水生成的,不过,一旦有一个火星,氢气和氧气的混合物可以在瞬间化合生成水,人们可以利用这个自发反应得到热能或电能。

自发过程不是不能逆向进行,只是它自己不会自动逆向进行,要它逆向进行,环境必须对它做功。

例如,用水泵可以将水从低处打到高处,用电可以将水分解成氢气和氧气。

第三章热力学第二定律

第三章热力学第二定律
第三章 热力学第二定律
Chapter 3 The Second Law of Thermodynamics
不可能把热从低 温物体传到高温物 体,而不引起其 它变化
1
不违背第一定律的事情是否一定能成功呢?
例1. H2(g) + 1/2O2(g) H2O(l)
rHm(298K) = -286 kJ.mol-1
A Q Q A ( T )R1 B ( T )R 2 0 B
20
移项得:
B Q Q ( ) ( ) R A T 1 A T R2 B
说明任意可逆过程的热 温商的值决定于始末状态, 而与可逆途径无关,这个热
温商具有状态函数的性质。
任意可逆过程
21
必是某个函数的全微分(∵只有全微分的积分才 与路径无关)。Clausius将此状态函数定义为熵 (entropy),用符号S表示。
I R
16
Carnot定理的实际意义: 原则上解决了的极限,提高的根本途径。 理论意义,热二律数学表达式推出的基础。 卡诺定理的推论:所有工作于同温热源与同温冷 源之间的可逆热机,其热机效率都相等,即与热 机的工作物质无关。
17
§3-3熵的概念
1. 熵的导出
Q1 Q2 卡诺循环: T T 0 1 2

1
W Q1 Q2 T1 T2 Q1 Q1 T1
Q2 T 1 2 Q1 T1
Q1 Q2 0 T1 T2
Q — 热温商 T
14
3. 卡诺定理及其推论 所有工作于同温热源和同温冷源之间的热机,其效 率都不能超过可逆机,即可逆机的效率最大。 hI £ h R
ThIBiblioteka W Q1 Q2 Q2 1 Q1 Q1 Q1

第三章 热力学第二定律主要公式及其适用条件

第三章       热力学第二定律主要公式及其适用条件

第三章 热力学第二定律 主要公式及使用条件1.热机效率1211211/)(/)(/T T T Q Q Q Q W -=+=-=η式中1Q 和2Q 分别为工质在循环过程中从高温热源T 1吸收的热量和向低温热源T 2放出的热。

W 为在循环过程中热机中的工质对环境所作的功。

此式适用于在任意两个不同温度的热源之间一切可逆循环过程。

2.卡诺定理的重要结论2211//T Q T Q +⎩⎨⎧=<可逆循环不可逆循环,,00 任意可逆循环的热温商之和为零,不可逆循环的热温商之和必小于零。

3.熵的定义4.克劳修斯不等式d S{//Q T Q T =>δ, δ, 可逆不可逆5.熵判据a mb s y s i s o S S S ∆+∆=∆{0, 0, >=不可逆可逆式中iso, sys 和amb 分别代表隔离系统、系统和环境。

在隔离系统中,不可逆过程即自发过程。

可逆,即系统内部及系统与环境之间皆处于平衡态。

在隔离系统中,一切自动进行的过程,都是向熵增大的方向进行,这称之为熵增原理。

此式只适用于隔离系统。

6.环境的熵变d δ/S Q T =ambys amb amb amb //S T Q T Q s -==∆7. 熵变计算的主要公式222r 111δd d d d Q U p VH V pS TTT+-∆===⎰⎰⎰对于封闭系统,一切0=W δ的可逆过程的S ∆计算式,皆可由上式导出 (1),m 2121ln(/)ln(/)V S nC T T nR V V ∆=+ ,m 2112ln(/)ln(/)p S nC T T nR p p ∆=+ ,m 21,m 21ln(/)ln(/)V p S nC p p nC V V ∆=+上式只适用于封闭系统、理想气体、,m V C 为常数,只有pVT 变化的一切过程 (2) T 2112l n (/)l n (/)S n R V V n R pp ∆== 此式使用于n 一定、理想气体、恒温过程或始末态温度相等的过程。

第三章 热力学第二定律

第三章 热力学第二定律
物理化学
滨州学院化工与安全学院
2.吉布斯自由能判据
如果系统在恒温、恒压、且不作非膨胀功的条件下,
dGT , p,W / =0 0 GT , p,W / =0 0
=
可逆
平衡
不可逆 自发
不能自发
即恒温、恒压不做非体积功的系统中,自发变化总是 朝着吉布斯自由能减少的方向进行,直到达到平衡为 止。
=
可逆
平衡
不可逆 自发
不能自发
在恒温、恒容、不做非体积功的条件下,自发变化 总是朝着亥姆霍兹自由能减少的方向进行,直到达到平 衡为止。
物理化学
滨州学院化工与安全学院
(三)吉布斯自由能 1.吉布斯自由能函数
G def H −TS
G称为吉布斯自由能(Gibbs free energy),是 状态函数,具有容量性质。
S = QR T
S = nR ln(V2 ) = nR ln( p1 )
V1
p2
(2)理想气体(或理想溶液)的等温混合过程,并
符合分体积定律,即
mixS = −R nB
xB =
ln xB
VB V总
B
(3)等温等压可逆相变(若是不可逆相变,应设计
可逆过程)
S
(相变)=
H (相变) T (相变)
物理化学
ln
T2 T1
物理化学
滨州学院化工与安全学院
(3)一定量理想气体从 p1,V1,T1 到 p2 ,V2 ,T2 的过程。
a. 先等温后等容 S = nR ln(V2 ) + T2 nCV ,mdT
⎯若⎯CV⎯,m =常 ⎯⎯数→
S
=
nR
ln
V2 V1

第三章_热力学第二定律

第三章_热力学第二定律

deS—外熵变 diS—内熵变
当diS>0时, dS>0 为不可逆过程 当diS=0时, dS=0 为可逆过程 diS≥0 体系内的熵产生永远不能为负值
39
§3-7 非平衡体系的热力学
孤立体系:
S
U ,V
0
处理方法: ①用距离非平衡态最近的平衡态描述。
②把非平衡态分割成无数小的平衡态, 然后将其加和起来描述非平衡态的性 质。
H1 H2 H3 Tsur
37
3. 恒温非恒压不可逆相变
例: H2O(l)
向真空
100℃,pθ T环=100℃
[ T ]可逆
S H相变 T
Ssur
Qsur Tsur
Q Tsur
U T
H2O(g) 100℃,pθ
( pV ) H pVg H
T
TT
38
§3-6 熵产生原理
任意体系: dSsys=deS+diS 孤立体系: deS=0
40
§3-8 自由能
8-1 目的 用自由能判别任一过程的方向和限度
8-2 Helmholtz 自由能 A (or F 功函)
一、定义
封闭体系
Q
S Tsur
dS Q
Tsur
温度恒定时: d S Q
T
d(TS) Q
Q Q dU W d(TS) dU W
判别过程的方向和限度 5.发展史: 热机Carnot热机卡诺定理 经典
第二定律表述 熵函数 S=klnΩ 熵产生
2
§3-2 Carnot定理
2-1 热机 1. 热机:将热量转化为机械功的装置 2. 热机过程 工作物质: 水
①恒温气化 ②绝热膨胀做功 ③恒温液化 ④绝热压缩

第三章热力学第二定律

第三章热力学第二定律

自发变化
能够自动发生的变化,即无需外力帮助,任其自然, 即可发生的变化。 自发变化的共同特征 不可逆性
任何自发变化的逆过程是不能自动进行的。
1.理想气体自由膨胀:
Q=W=U=H=0, V>0
要使系统恢复原状,可经等温压缩过程
U=0, H=0, – Q = W。 2.热由高温物体传向低温物体 对冷冻机做功后,系统恢复原状。 3.化学反应: Zn(s)+CuSO4(aq)=ZnSO4(aq)+Cu(s)
Q1
I
W
Q1 W
R
W
Q1 W
Tc
(2)Carnot定理推论: 所有工作于同温热源与同温冷源之间的可逆机, 其热机效率都相等。 (3)Carnot定理的意义: (1)解决了热机效率的极限值问题;
(2)引入了一个不等号I R ,原则上解决了 化学反应的方向问题。
3.4 熵的概念
•从Carnot循环得到的结论
278.7
= -35.4JK-1
9874J Q体 Ssur= =36.8JK-1 268.2K T环
Siso= Ssys + Ssur =-35.4JK-1+36.8JK-1=1.40 JK-1>0 该过程是可以自动发生的不可逆过程。
B
A
B
B
R1
V
说明只要始、终态确定, Q 就有确定值,
B
与具体的可逆途径无关。
A
T R
Clausius据此定义了一个状态函数entropy(熵),用“S”表示
三、熵的定义
设始、终态A,B的熵分别为 SA 和 SB ,则:
Q SB SA S ( ) R A T Qi Qi S ( )R S ( )R 0 Ti Ti i i
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 热力学第二定律【复习题】【1】指出下列公式的适用范围。

(1)min ln BB BS Rnx ∆=-∑;(2)12222111lnln ln ln P v p T V T S nR C nR C p T V T ∆=+=+; (3)dU TdS pdV =-; (4)G Vdp ∆=⎰(5),,S A G ∆∆∆作为判据时必须满足的条件。

【解】 (1)封闭体系平衡态,理想气体的等温混合,混合前后每种气体单独存在时的压力都相等,且等于混合后气体的总压力。

(2)非等温过程中熵的变化过程,对一定量的理想气体由状态A (P 1、V 1、T 1)改变到状态A (P 2、V 2、T 2)时,可由两种可逆过程的加和而求得。

(3)均相单组分(或组成一定的多组分)封闭体系,非体积功为0的任何过程;或组成可变的多相多组分封闭体系,非体积功为0的可逆过程。

(4)非体积功为0,组成不变的均相封闭体系的等温过程。

(5)S ∆:封闭体系的绝热过程,可判定过程的可逆与否; 隔离体系,可判定过程的自发与平衡。

A ∆:封闭体系非体积功为0的等温等容过程,可判断过程的平衡与否; G ∆:封闭体系非体积功为0的等温等压过程,可判断过程的平衡与否;【2】判断下列说法是否正确,并说明原因。

(1)不可逆过程一定是自发的,而自发过程一定是不可逆的; (2)凡熵增加过程都是自发过程; (3)不可逆过程的熵永不减少;(4)系统达平衡时,熵值最大,Gibbs 自由能最小;(5)当某系统的热力学能和体积恒定时,S ∆<0的过程不可能发生;(6)某系统从始态经过一个绝热不可逆过程到达终态,先在要在相同的始、终态之间设计一个绝热可逆过程;(7)在一个绝热系统中,发生了一个不可逆过程,系统从状态1变到了状态2,不论用什么方法,系统再也回不到原来状态了;(8)理想气体的等温膨胀过程,0U ∆=,系统所吸的热全部变成了功,这与Kelvin 的说法不符;(9)冷冻机可以从低温热源吸热放给高温热源,这与Clausius 的说法不符; (10)p C 恒大于V C 。

【答】(1)不正确,因为不可逆过程不一定是自发的例如 可逆压缩就不是自发过程,但自发过程一定是不可逆的;(2)不正确,因为熵增加过程不一定是自发过程,但自发过程都是熵增加的过程;所以必须在隔离体系中凡熵增加过程都是自发过程。

(3)不正确,因为不可逆过程不一定是自发的,而自发过程的熵永不减少;所以必须在隔离体系中。

不可逆过程的熵永不减少(4)不正确。

绝热体系或隔离体系达平衡时熵最大,等温等压不作非体积功的条件下,体系达平衡时Gibbs 自由能最小。

(5)不正确,因为只有当系统的U 和V 恒定非体积功为0时,S ∆<0和S ∆=0的过程不可能发生;(6)不正确,根据熵增加原理,绝热不可逆过程的S ∆>0,而绝热可逆过程的S ∆=0,从同一始态出发经历一个绝热不可逆过程的熵值和经历一个绝热可逆过程的熵值永不相等,不可能达到同一终态。

(7)正确,在绝热系统中,发生了一个不可逆过程,从状态1变到了状态2,S ∆>0,S 2>S 1,仍然在绝热系统中,从状态2出发,无论经历什么过程,体系的熵值有增无减,所以永远回不到原来状态了。

(8)不正确,Kelvin 的说法是不可能从单一的热源取出热使之变为功而不留下其它变化。

关键是不留下其它变化,理想气体的等温膨胀时热全部变成了功,,体积增大了,环境的体积缩小的,留下了变化,故原来的说法不违反Kelvin 的说法。

(9)不正确,Clausius 的说法是不可能把热从低温热源传到高温热源而不引起其它变化。

冷冻机可以从低温热源吸热放给高温热源时环境失去了功,得到了热引起了变化,故原来的说法不违反Clausius 的说法。

(10)不正确,211p V P T T VV V C C V T V P αακκ∂∂⎛⎫⎛⎫-===- ⎪ ⎪∂∂⎝⎭⎝⎭,,因为PV T ∂⎛⎫⎪∂⎝⎭>0,TV P ∂⎛⎫⎪∂⎝⎭<0,即α>0,κ>0,则p V C C ->0,p C 恒大于V C 。

但有例外,如对277.15K 的水,PV T ∂⎛⎫⎪∂⎝⎭=0,此时p V C C =。

【3】指出下列各过程中,,,,,,Q W U H S A ∆∆∆∆和G ∆等热力学函数的变量哪些为零,哪些绝对值相等?(1)理想气体真空膨胀; (2)理想气体等温可逆膨胀; (3)理想气体绝热节流膨胀; (4)实际气体绝热可逆膨胀; (5)实际气体绝热节流膨胀;(6)2()H g 和2()O g 在绝热钢瓶中发生反应生成水; (7)2()H g 和2()Cl g 在绝热钢瓶中发生反应生成()HCl g ; (8)22(,373,101)(,373,101)H O l k kPa H O g k kPa ƒ;(9)在等温、等压、不作非膨胀功的条件下,下列反应达到平衡2233()()2()H g N g NH g +ƒ(10)绝热、恒压、不作非膨胀功的条件下,发生了一个化学反应。

【解】(1)0Q W U H ==∆=∆=(2)0R U H Q W G A ∆=∆==∆=∆,,,0S ∆= (3)0U H Q W ∆=∆=== (4)0Q S U Q W W =∆=∆=+=, (5)0V Q U H =∆=∆=(6)0W A G Q =∆=∆== U H ∆=∆ (7)0W A G Q =∆=∆== U H ∆=∆(8)00R G A W U ∆=∆=-∆=∆H =,,; (9)0G ∆= ;(10)p 0H Q ∆== U W ∆=【4】将不可逆过程设计为可逆过程。

(1)理想气体从压力为p 1向真空膨胀为p 2;(2)将两块温度分别为T 1,T 2的铁块(T 1>T 2)相接触,最后终态温度为T (3)水真空蒸发为同温、同压的气,设水在该温度时的饱和蒸气压为p , 22(,303,100)(,303,100)H O l K kPa H O g K kPa →(4)理想气体从111,,p V T 经不可逆过程到达222,,p V T ,可设计几条可逆路线,画出示意图。

【答】(1)设计等温可逆膨胀(2)在T 1和T 2之间设置无数个温差为dT 的热源,使铁块T 1和T 1-dT ,T 1-2dT ,…的无数热源接触,无限缓慢地达到终态温度T ,使铁块T 2和T 2-dT ,T 2-2dT ,…的热源接触,无限缓慢地达到终态温度T 。

(3)可以设计两条可逆途径:一是等压可逆,另一条是等温可逆。

H 2O (l,303K,P S ) H 2S )H 2O (l,,)H 2H 2O ()H 2逆降温(4)可设计下列四条途径,从111,,p V T 变化到222,,p V T 。

(a )等容可逆升压到状态A 后再等温可逆膨胀终态Ⅱ; (b )等压可逆膨胀到状态B 后再等温可逆膨胀到终态Ⅱ; (c) 等温可逆膨胀到状态C 后再等压可逆膨胀到终态Ⅱ; (d) 等温可逆膨胀到状态D 后再等容可逆升压到终态Ⅱ。

【5】判断下列恒温、恒压过程中,熵值的变化,是大于零,小于零还是等于零,为什么? (1)将食盐放入水中;(2)HCl(g)溶于水中生成盐酸溶液;(3)43()()()NH Cl s NH g HCl g →+; (4)2221()()()2H g O g H O l +→; (5)333221(,)1(,)2(,)dm N g dm Ar g dm N Ar g +→+; (6)333221(,)1(,)1(,)dm N g dm Ar g dm N Ar g +→+; (7)3332221(,)1(,)2(,)dm N g dm N g dm N g +→; (8)3332221(,)1(,)1(,)dm N g dm N g dm N g +→。

【解】(1)S ∆<0,因为将食盐放入水中为放热过程,Q <0,QS Tδ∆=,所以S ∆<0;(2)S ∆<0,同理,HCl(g)溶于水中Q <0,S ∆<0;(3)S ∆>0,因为该过程为吸热反应,Q >0,S ∆>0;或因为混乱度增加; (4)S ∆<0,因为该过程为放热反应,Q <0,S ∆<0;或因为混乱度减小; (5)S ∆>0,根据min ln 2ln 2BB BS Rnx R ∆=-=∑>0,或因为混乱度增加;(6)S ∆=0,根据min ln 0BB BS Rnx ∆=-=∑;(7)S ∆=0,根据min ln 0BB BS Rnx ∆=-=∑;(8)S ∆<0,根据min ln 2ln 2BB BS Rnx R ∆=-=-∑<0【6】(1)在298K 和100kPa 时,反应2221()()()2H O l H g O g →+的r m G ∆>0,说明该反应不能自发进行。

但在实验室内常用电解水的方法制备氢气,这两者有无矛盾? (2)请将Carnot 循环分别表达在以如下坐标表示的图上:,,,,T p T S S V U S T H -----【解】 (1)r m G ∆>0的判据是在等温等压非体积功为0的条件下,所以在298K 和100kPa 时,反应2221()()()2H O l H g O g →+的r m G ∆>0,说明该反应在等温等压非体积功为0的条件下不能自发进行。

而在实验室内常用电解水的方法制备氢气,是在电功对体系作功,所以并不矛盾。

(2)1234【习题】【01】有5mol某双原子理想气体,已知其RCmV5.2,=,从始态400K,200kPa,经绝热可逆压缩至400kPa后,再真空膨胀至200kPa,求整个过程的Q,W,△U,△H和△S.【解】第一步绝热可逆压缩Q1=0 △S1=04.15.25.2,,,,=+=+==RRRCRCCCrmVmVmVmP根据绝热过程方程CTP rr=-1得KkPakPaKPPTTrr6.4874002004004.14.1112112=⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛=--111,21()5 2.58.314(487.6400)9.1 V mU W nC T T mol J K mol K K kJ--∆==-=⨯⨯⋅⋅-=111,21()5 3.58.314(487.6400)12.75 P mH nC T T mol J K mol K K kJ--∆=-=⨯⨯⋅⋅-=第二步等温向真空膨胀W2=0 △U2=△H2=0 Q2=0111221400ln58.314ln28.8200p kPaS nR mol J K mol J Kp kPa---∆==⨯⋅⋅=⋅所以整个过程的Q=0,W=9.1kJ,△U=9.1kJ,△H=12.75kJ,△S=28.8J•K-1【2】有5molHe(g)可看作理想气体, 已知其RCmV5.1,=,从始态273K,100kPa,变到终态298K,1000kPa,计算该过程的熵变.【解】根据理想气体从状态p1,V1,T1到终态p2,V2,T2的熵变公式:1221lnlnTTCppnRSp+=∆得:111110029858.314ln5 2.58.314ln1000273kPa K S mol J K mol mol J K molkPa K----∆=⨯⋅⋅+⨯⨯⋅⋅186.615J K-=-⋅【03】在绝热容器中,将0.10kg、283K的水与0.20kg、313K的水混合,求混合过程的熵变。

相关文档
最新文档